gcc/libgo/go/compress/flate/inflate.go
Ian Lance Taylor 2fd401c8f1 libgo: Update to weekly.2011-11-02.
From-SVN: r181964
2011-12-03 02:17:34 +00:00

708 lines
15 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package flate implements the DEFLATE compressed data format, described in
// RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file
// formats.
package flate
import (
"bufio"
"io"
"strconv"
)
const (
maxCodeLen = 16 // max length of Huffman code
maxHist = 32768 // max history required
maxLit = 286
maxDist = 32
numCodes = 19 // number of codes in Huffman meta-code
)
// A CorruptInputError reports the presence of corrupt input at a given offset.
type CorruptInputError int64
func (e CorruptInputError) Error() string {
return "flate: corrupt input before offset " + strconv.Itoa64(int64(e))
}
// An InternalError reports an error in the flate code itself.
type InternalError string
func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
// A ReadError reports an error encountered while reading input.
type ReadError struct {
Offset int64 // byte offset where error occurred
Err error // error returned by underlying Read
}
func (e *ReadError) Error() string {
return "flate: read error at offset " + strconv.Itoa64(e.Offset) + ": " + e.Err.Error()
}
// A WriteError reports an error encountered while writing output.
type WriteError struct {
Offset int64 // byte offset where error occurred
Err error // error returned by underlying Write
}
func (e *WriteError) Error() string {
return "flate: write error at offset " + strconv.Itoa64(e.Offset) + ": " + e.Err.Error()
}
// Huffman decoder is based on
// J. Brian Connell, ``A Huffman-Shannon-Fano Code,''
// Proceedings of the IEEE, 61(7) (July 1973), pp 1046-1047.
type huffmanDecoder struct {
// min, max code length
min, max int
// limit[i] = largest code word of length i
// Given code v of length n,
// need more bits if v > limit[n].
limit [maxCodeLen + 1]int
// base[i] = smallest code word of length i - seq number
base [maxCodeLen + 1]int
// codes[seq number] = output code.
// Given code v of length n, value is
// codes[v - base[n]].
codes []int
}
// Initialize Huffman decoding tables from array of code lengths.
func (h *huffmanDecoder) init(bits []int) bool {
// Count number of codes of each length,
// compute min and max length.
var count [maxCodeLen + 1]int
var min, max int
for _, n := range bits {
if n == 0 {
continue
}
if min == 0 || n < min {
min = n
}
if n > max {
max = n
}
count[n]++
}
if max == 0 {
return false
}
h.min = min
h.max = max
// For each code range, compute
// nextcode (first code of that length),
// limit (last code of that length), and
// base (offset from first code to sequence number).
code := 0
seq := 0
var nextcode [maxCodeLen]int
for i := min; i <= max; i++ {
n := count[i]
nextcode[i] = code
h.base[i] = code - seq
code += n
seq += n
h.limit[i] = code - 1
code <<= 1
}
// Make array mapping sequence numbers to codes.
if len(h.codes) < len(bits) {
h.codes = make([]int, len(bits))
}
for i, n := range bits {
if n == 0 {
continue
}
code := nextcode[n]
nextcode[n]++
seq := code - h.base[n]
h.codes[seq] = i
}
return true
}
// Hard-coded Huffman tables for DEFLATE algorithm.
// See RFC 1951, section 3.2.6.
var fixedHuffmanDecoder = huffmanDecoder{
7, 9,
[maxCodeLen + 1]int{7: 23, 199, 511},
[maxCodeLen + 1]int{7: 0, 24, 224},
[]int{
// length 7: 256-279
256, 257, 258, 259, 260, 261, 262,
263, 264, 265, 266, 267, 268, 269,
270, 271, 272, 273, 274, 275, 276,
277, 278, 279,
// length 8: 0-143
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124,
125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140,
141, 142, 143,
// length 8: 280-287
280, 281, 282, 283, 284, 285, 286, 287,
// length 9: 144-255
144, 145, 146, 147, 148, 149, 150, 151,
152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167,
168, 169, 170, 171, 172, 173, 174, 175,
176, 177, 178, 179, 180, 181, 182, 183,
184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199,
200, 201, 202, 203, 204, 205, 206, 207,
208, 209, 210, 211, 212, 213, 214, 215,
216, 217, 218, 219, 220, 221, 222, 223,
224, 225, 226, 227, 228, 229, 230, 231,
232, 233, 234, 235, 236, 237, 238, 239,
240, 241, 242, 243, 244, 245, 246, 247,
248, 249, 250, 251, 252, 253, 254, 255,
},
}
// The actual read interface needed by NewReader.
// If the passed in io.Reader does not also have ReadByte,
// the NewReader will introduce its own buffering.
type Reader interface {
io.Reader
ReadByte() (c byte, err error)
}
// Decompress state.
type decompressor struct {
// Input source.
r Reader
roffset int64
woffset int64
// Input bits, in top of b.
b uint32
nb uint
// Huffman decoders for literal/length, distance.
h1, h2 huffmanDecoder
// Length arrays used to define Huffman codes.
bits [maxLit + maxDist]int
codebits [numCodes]int
// Output history, buffer.
hist [maxHist]byte
hp int // current output position in buffer
hw int // have written hist[0:hw] already
hfull bool // buffer has filled at least once
// Temporary buffer (avoids repeated allocation).
buf [4]byte
// Next step in the decompression,
// and decompression state.
step func(*decompressor)
final bool
err error
toRead []byte
hl, hd *huffmanDecoder
copyLen int
copyDist int
}
func (f *decompressor) nextBlock() {
if f.final {
if f.hw != f.hp {
f.flush((*decompressor).nextBlock)
return
}
f.err = io.EOF
return
}
for f.nb < 1+2 {
if f.err = f.moreBits(); f.err != nil {
return
}
}
f.final = f.b&1 == 1
f.b >>= 1
typ := f.b & 3
f.b >>= 2
f.nb -= 1 + 2
switch typ {
case 0:
f.dataBlock()
case 1:
// compressed, fixed Huffman tables
f.hl = &fixedHuffmanDecoder
f.hd = nil
f.huffmanBlock()
case 2:
// compressed, dynamic Huffman tables
if f.err = f.readHuffman(); f.err != nil {
break
}
f.hl = &f.h1
f.hd = &f.h2
f.huffmanBlock()
default:
// 3 is reserved.
f.err = CorruptInputError(f.roffset)
}
}
func (f *decompressor) Read(b []byte) (int, error) {
for {
if len(f.toRead) > 0 {
n := copy(b, f.toRead)
f.toRead = f.toRead[n:]
return n, nil
}
if f.err != nil {
return 0, f.err
}
f.step(f)
}
panic("unreachable")
}
func (f *decompressor) Close() error {
if f.err == io.EOF {
return nil
}
return f.err
}
// RFC 1951 section 3.2.7.
// Compression with dynamic Huffman codes
var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
func (f *decompressor) readHuffman() error {
// HLIT[5], HDIST[5], HCLEN[4].
for f.nb < 5+5+4 {
if err := f.moreBits(); err != nil {
return err
}
}
nlit := int(f.b&0x1F) + 257
f.b >>= 5
ndist := int(f.b&0x1F) + 1
f.b >>= 5
nclen := int(f.b&0xF) + 4
f.b >>= 4
f.nb -= 5 + 5 + 4
// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
for i := 0; i < nclen; i++ {
for f.nb < 3 {
if err := f.moreBits(); err != nil {
return err
}
}
f.codebits[codeOrder[i]] = int(f.b & 0x7)
f.b >>= 3
f.nb -= 3
}
for i := nclen; i < len(codeOrder); i++ {
f.codebits[codeOrder[i]] = 0
}
if !f.h1.init(f.codebits[0:]) {
return CorruptInputError(f.roffset)
}
// HLIT + 257 code lengths, HDIST + 1 code lengths,
// using the code length Huffman code.
for i, n := 0, nlit+ndist; i < n; {
x, err := f.huffSym(&f.h1)
if err != nil {
return err
}
if x < 16 {
// Actual length.
f.bits[i] = x
i++
continue
}
// Repeat previous length or zero.
var rep int
var nb uint
var b int
switch x {
default:
return InternalError("unexpected length code")
case 16:
rep = 3
nb = 2
if i == 0 {
return CorruptInputError(f.roffset)
}
b = f.bits[i-1]
case 17:
rep = 3
nb = 3
b = 0
case 18:
rep = 11
nb = 7
b = 0
}
for f.nb < nb {
if err := f.moreBits(); err != nil {
return err
}
}
rep += int(f.b & uint32(1<<nb-1))
f.b >>= nb
f.nb -= nb
if i+rep > n {
return CorruptInputError(f.roffset)
}
for j := 0; j < rep; j++ {
f.bits[i] = b
i++
}
}
if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
return CorruptInputError(f.roffset)
}
return nil
}
// Decode a single Huffman block from f.
// hl and hd are the Huffman states for the lit/length values
// and the distance values, respectively. If hd == nil, using the
// fixed distance encoding associated with fixed Huffman blocks.
func (f *decompressor) huffmanBlock() {
for {
v, err := f.huffSym(f.hl)
if err != nil {
f.err = err
return
}
var n uint // number of bits extra
var length int
switch {
case v < 256:
f.hist[f.hp] = byte(v)
f.hp++
if f.hp == len(f.hist) {
// After the flush, continue this loop.
f.flush((*decompressor).huffmanBlock)
return
}
continue
case v == 256:
// Done with huffman block; read next block.
f.step = (*decompressor).nextBlock
return
// otherwise, reference to older data
case v < 265:
length = v - (257 - 3)
n = 0
case v < 269:
length = v*2 - (265*2 - 11)
n = 1
case v < 273:
length = v*4 - (269*4 - 19)
n = 2
case v < 277:
length = v*8 - (273*8 - 35)
n = 3
case v < 281:
length = v*16 - (277*16 - 67)
n = 4
case v < 285:
length = v*32 - (281*32 - 131)
n = 5
default:
length = 258
n = 0
}
if n > 0 {
for f.nb < n {
if err = f.moreBits(); err != nil {
f.err = err
return
}
}
length += int(f.b & uint32(1<<n-1))
f.b >>= n
f.nb -= n
}
var dist int
if f.hd == nil {
for f.nb < 5 {
if err = f.moreBits(); err != nil {
f.err = err
return
}
}
dist = int(reverseByte[(f.b&0x1F)<<3])
f.b >>= 5
f.nb -= 5
} else {
if dist, err = f.huffSym(f.hd); err != nil {
f.err = err
return
}
}
switch {
case dist < 4:
dist++
case dist >= 30:
f.err = CorruptInputError(f.roffset)
return
default:
nb := uint(dist-2) >> 1
// have 1 bit in bottom of dist, need nb more.
extra := (dist & 1) << nb
for f.nb < nb {
if err = f.moreBits(); err != nil {
f.err = err
return
}
}
extra |= int(f.b & uint32(1<<nb-1))
f.b >>= nb
f.nb -= nb
dist = 1<<(nb+1) + 1 + extra
}
// Copy history[-dist:-dist+length] into output.
if dist > len(f.hist) {
f.err = InternalError("bad history distance")
return
}
// No check on length; encoding can be prescient.
if !f.hfull && dist > f.hp {
f.err = CorruptInputError(f.roffset)
return
}
p := f.hp - dist
if p < 0 {
p += len(f.hist)
}
for i := 0; i < length; i++ {
f.hist[f.hp] = f.hist[p]
f.hp++
p++
if f.hp == len(f.hist) {
// After flush continue copying out of history.
f.copyLen = length - (i + 1)
f.copyDist = dist
f.flush((*decompressor).copyHuff)
return
}
if p == len(f.hist) {
p = 0
}
}
}
panic("unreached")
}
func (f *decompressor) copyHuff() {
length := f.copyLen
dist := f.copyDist
p := f.hp - dist
if p < 0 {
p += len(f.hist)
}
for i := 0; i < length; i++ {
f.hist[f.hp] = f.hist[p]
f.hp++
p++
if f.hp == len(f.hist) {
f.copyLen = length - (i + 1)
f.flush((*decompressor).copyHuff)
return
}
if p == len(f.hist) {
p = 0
}
}
// Continue processing Huffman block.
f.huffmanBlock()
}
// Copy a single uncompressed data block from input to output.
func (f *decompressor) dataBlock() {
// Uncompressed.
// Discard current half-byte.
f.nb = 0
f.b = 0
// Length then ones-complement of length.
nr, err := io.ReadFull(f.r, f.buf[0:4])
f.roffset += int64(nr)
if err != nil {
f.err = &ReadError{f.roffset, err}
return
}
n := int(f.buf[0]) | int(f.buf[1])<<8
nn := int(f.buf[2]) | int(f.buf[3])<<8
if uint16(nn) != uint16(^n) {
f.err = CorruptInputError(f.roffset)
return
}
if n == 0 {
// 0-length block means sync
f.flush((*decompressor).nextBlock)
return
}
f.copyLen = n
f.copyData()
}
func (f *decompressor) copyData() {
// Read f.dataLen bytes into history,
// pausing for reads as history fills.
n := f.copyLen
for n > 0 {
m := len(f.hist) - f.hp
if m > n {
m = n
}
m, err := io.ReadFull(f.r, f.hist[f.hp:f.hp+m])
f.roffset += int64(m)
if err != nil {
f.err = &ReadError{f.roffset, err}
return
}
n -= m
f.hp += m
if f.hp == len(f.hist) {
f.copyLen = n
f.flush((*decompressor).copyData)
return
}
}
f.step = (*decompressor).nextBlock
}
func (f *decompressor) setDict(dict []byte) {
if len(dict) > len(f.hist) {
// Will only remember the tail.
dict = dict[len(dict)-len(f.hist):]
}
f.hp = copy(f.hist[:], dict)
if f.hp == len(f.hist) {
f.hp = 0
f.hfull = true
}
f.hw = f.hp
}
func (f *decompressor) moreBits() error {
c, err := f.r.ReadByte()
if err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return err
}
f.roffset++
f.b |= uint32(c) << f.nb
f.nb += 8
return nil
}
// Read the next Huffman-encoded symbol from f according to h.
func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
for n := uint(h.min); n <= uint(h.max); n++ {
lim := h.limit[n]
if lim == -1 {
continue
}
for f.nb < n {
if err := f.moreBits(); err != nil {
return 0, err
}
}
v := int(f.b & uint32(1<<n-1))
v <<= 16 - n
v = int(reverseByte[v>>8]) | int(reverseByte[v&0xFF])<<8 // reverse bits
if v <= lim {
f.b >>= n
f.nb -= n
return h.codes[v-h.base[n]], nil
}
}
return 0, CorruptInputError(f.roffset)
}
// Flush any buffered output to the underlying writer.
func (f *decompressor) flush(step func(*decompressor)) {
f.toRead = f.hist[f.hw:f.hp]
f.woffset += int64(f.hp - f.hw)
f.hw = f.hp
if f.hp == len(f.hist) {
f.hp = 0
f.hw = 0
f.hfull = true
}
f.step = step
}
func makeReader(r io.Reader) Reader {
if rr, ok := r.(Reader); ok {
return rr
}
return bufio.NewReader(r)
}
// NewReader returns a new ReadCloser that can be used
// to read the uncompressed version of r. It is the caller's
// responsibility to call Close on the ReadCloser when
// finished reading.
func NewReader(r io.Reader) io.ReadCloser {
var f decompressor
f.r = makeReader(r)
f.step = (*decompressor).nextBlock
return &f
}
// NewReaderDict is like NewReader but initializes the reader
// with a preset dictionary. The returned Reader behaves as if
// the uncompressed data stream started with the given dictionary,
// which has already been read. NewReaderDict is typically used
// to read data compressed by NewWriterDict.
func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
var f decompressor
f.setDict(dict)
f.r = makeReader(r)
f.step = (*decompressor).nextBlock
return &f
}