15dc95cbcc
* config/arm/arm.c, config/rs6000/ppu_intrinsics.h, config/spu/spu.c, df-scan.c, fixed-value.c, fold-const.c, ginclude/tgmath.h, haifa-sched.c, optabs.c, recog.c, sched-deps.c, sched-int.h, system.h, target.h, tree-ssa-live.c, tree-vect-transform.c, tree-vectorizer.c, tree.def: Fix comment typos. From-SVN: r128016
4328 lines
119 KiB
C
4328 lines
119 KiB
C
/* Scanning of rtl for dataflow analysis.
|
||
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
||
Free Software Foundation, Inc.
|
||
Originally contributed by Michael P. Hayes
|
||
(m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
|
||
Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
|
||
and Kenneth Zadeck (zadeck@naturalbridge.com).
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "function.h"
|
||
#include "regs.h"
|
||
#include "output.h"
|
||
#include "alloc-pool.h"
|
||
#include "flags.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "sbitmap.h"
|
||
#include "bitmap.h"
|
||
#include "timevar.h"
|
||
#include "tree.h"
|
||
#include "target.h"
|
||
#include "target-def.h"
|
||
#include "df.h"
|
||
#include "tree-pass.h"
|
||
|
||
#ifndef HAVE_epilogue
|
||
#define HAVE_epilogue 0
|
||
#endif
|
||
#ifndef HAVE_prologue
|
||
#define HAVE_prologue 0
|
||
#endif
|
||
#ifndef HAVE_sibcall_epilogue
|
||
#define HAVE_sibcall_epilogue 0
|
||
#endif
|
||
|
||
#ifndef EPILOGUE_USES
|
||
#define EPILOGUE_USES(REGNO) 0
|
||
#endif
|
||
|
||
/* The bitmap_obstack is used to hold some static variables that
|
||
should not be reset after each function is compiled. */
|
||
|
||
static bitmap_obstack persistent_obstack;
|
||
|
||
/* The set of hard registers in eliminables[i].from. */
|
||
|
||
static HARD_REG_SET elim_reg_set;
|
||
|
||
/* This is a bitmap copy of regs_invalidated_by_call so that we can
|
||
easily add it into bitmaps, etc. */
|
||
|
||
bitmap df_invalidated_by_call = NULL;
|
||
|
||
/* Initialize ur_in and ur_out as if all hard registers were partially
|
||
available. */
|
||
|
||
struct df_collection_rec
|
||
{
|
||
struct df_ref ** def_vec;
|
||
unsigned int next_def;
|
||
struct df_ref ** use_vec;
|
||
unsigned int next_use;
|
||
struct df_ref ** eq_use_vec;
|
||
unsigned int next_eq_use;
|
||
struct df_mw_hardreg **mw_vec;
|
||
unsigned int next_mw;
|
||
};
|
||
|
||
static struct df_ref * df_null_ref_rec[1];
|
||
static struct df_mw_hardreg * df_null_mw_rec[1];
|
||
|
||
static void df_ref_record (struct df_collection_rec *,
|
||
rtx, rtx *,
|
||
basic_block, rtx, enum df_ref_type,
|
||
enum df_ref_flags);
|
||
static void df_def_record_1 (struct df_collection_rec *,
|
||
rtx, basic_block, rtx,
|
||
enum df_ref_flags);
|
||
static void df_defs_record (struct df_collection_rec *,
|
||
rtx, basic_block, rtx,
|
||
enum df_ref_flags);
|
||
static void df_uses_record (struct df_collection_rec *,
|
||
rtx *, enum df_ref_type,
|
||
basic_block, rtx, enum df_ref_flags);
|
||
|
||
static struct df_ref *df_ref_create_structure (struct df_collection_rec *, rtx, rtx *,
|
||
basic_block, rtx, enum df_ref_type,
|
||
enum df_ref_flags);
|
||
|
||
static void df_insn_refs_collect (struct df_collection_rec*,
|
||
basic_block, rtx);
|
||
static void df_canonize_collection_rec (struct df_collection_rec *);
|
||
|
||
static void df_get_regular_block_artificial_uses (bitmap);
|
||
static void df_get_eh_block_artificial_uses (bitmap);
|
||
|
||
static void df_record_entry_block_defs (bitmap);
|
||
static void df_record_exit_block_uses (bitmap);
|
||
static void df_get_exit_block_use_set (bitmap);
|
||
static void df_get_entry_block_def_set (bitmap);
|
||
static void df_grow_ref_info (struct df_ref_info *, unsigned int);
|
||
static void df_ref_chain_delete_du_chain (struct df_ref **);
|
||
static void df_ref_chain_delete (struct df_ref **);
|
||
|
||
static void df_refs_add_to_chains (struct df_collection_rec *,
|
||
basic_block, rtx);
|
||
|
||
static bool df_insn_refs_verify (struct df_collection_rec *, basic_block, rtx, bool);
|
||
static void df_entry_block_defs_collect (struct df_collection_rec *, bitmap);
|
||
static void df_exit_block_uses_collect (struct df_collection_rec *, bitmap);
|
||
static void df_install_ref (struct df_ref *, struct df_reg_info *,
|
||
struct df_ref_info *, bool);
|
||
|
||
static int df_ref_compare (const void *, const void *);
|
||
static int df_mw_compare (const void *, const void *);
|
||
|
||
/* Indexed by hardware reg number, is true if that register is ever
|
||
used in the current function.
|
||
|
||
In df-scan.c, this is set up to record the hard regs used
|
||
explicitly. Reload adds in the hard regs used for holding pseudo
|
||
regs. Final uses it to generate the code in the function prologue
|
||
and epilogue to save and restore registers as needed. */
|
||
|
||
static bool regs_ever_live[FIRST_PSEUDO_REGISTER];
|
||
|
||
/*----------------------------------------------------------------------------
|
||
SCANNING DATAFLOW PROBLEM
|
||
|
||
There are several ways in which scanning looks just like the other
|
||
dataflow problems. It shares the all the mechanisms for local info
|
||
as well as basic block info. Where it differs is when and how often
|
||
it gets run. It also has no need for the iterative solver.
|
||
----------------------------------------------------------------------------*/
|
||
|
||
/* Problem data for the scanning dataflow function. */
|
||
struct df_scan_problem_data
|
||
{
|
||
alloc_pool ref_pool;
|
||
alloc_pool insn_pool;
|
||
alloc_pool reg_pool;
|
||
alloc_pool mw_reg_pool;
|
||
alloc_pool mw_link_pool;
|
||
bitmap_obstack reg_bitmaps;
|
||
bitmap_obstack insn_bitmaps;
|
||
};
|
||
|
||
typedef struct df_scan_bb_info *df_scan_bb_info_t;
|
||
|
||
static void
|
||
df_scan_free_internal (void)
|
||
{
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
|
||
free (df->def_info.refs);
|
||
free (df->def_info.begin);
|
||
free (df->def_info.count);
|
||
memset (&df->def_info, 0, (sizeof (struct df_ref_info)));
|
||
|
||
free (df->use_info.refs);
|
||
free (df->use_info.begin);
|
||
free (df->use_info.count);
|
||
memset (&df->use_info, 0, (sizeof (struct df_ref_info)));
|
||
|
||
free (df->def_regs);
|
||
df->def_regs = NULL;
|
||
free (df->use_regs);
|
||
df->use_regs = NULL;
|
||
free (df->eq_use_regs);
|
||
df->eq_use_regs = NULL;
|
||
df->regs_size = 0;
|
||
DF_REG_SIZE(df) = 0;
|
||
|
||
free (df->insns);
|
||
df->insns = NULL;
|
||
DF_INSN_SIZE () = 0;
|
||
|
||
free (df_scan->block_info);
|
||
df_scan->block_info = NULL;
|
||
df_scan->block_info_size = 0;
|
||
|
||
BITMAP_FREE (df->hardware_regs_used);
|
||
BITMAP_FREE (df->regular_block_artificial_uses);
|
||
BITMAP_FREE (df->eh_block_artificial_uses);
|
||
BITMAP_FREE (df->entry_block_defs);
|
||
BITMAP_FREE (df->exit_block_uses);
|
||
BITMAP_FREE (df->insns_to_delete);
|
||
BITMAP_FREE (df->insns_to_rescan);
|
||
BITMAP_FREE (df->insns_to_notes_rescan);
|
||
|
||
free_alloc_pool (df_scan->block_pool);
|
||
free_alloc_pool (problem_data->ref_pool);
|
||
free_alloc_pool (problem_data->insn_pool);
|
||
free_alloc_pool (problem_data->reg_pool);
|
||
free_alloc_pool (problem_data->mw_reg_pool);
|
||
free_alloc_pool (problem_data->mw_link_pool);
|
||
bitmap_obstack_release (&problem_data->reg_bitmaps);
|
||
bitmap_obstack_release (&problem_data->insn_bitmaps);
|
||
free (df_scan->problem_data);
|
||
}
|
||
|
||
|
||
/* Set basic block info. */
|
||
|
||
static void
|
||
df_scan_set_bb_info (unsigned int index,
|
||
struct df_scan_bb_info *bb_info)
|
||
{
|
||
gcc_assert (df_scan);
|
||
df_grow_bb_info (df_scan);
|
||
df_scan->block_info[index] = (void *) bb_info;
|
||
}
|
||
|
||
|
||
/* Free basic block info. */
|
||
|
||
static void
|
||
df_scan_free_bb_info (basic_block bb, void *vbb_info)
|
||
{
|
||
struct df_scan_bb_info *bb_info = (struct df_scan_bb_info *) vbb_info;
|
||
unsigned int bb_index = bb->index;
|
||
if (bb_info)
|
||
{
|
||
rtx insn;
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (INSN_P (insn))
|
||
/* Record defs within INSN. */
|
||
df_insn_delete (bb, INSN_UID (insn));
|
||
}
|
||
|
||
if (bb_index < df_scan->block_info_size)
|
||
bb_info = df_scan_get_bb_info (bb_index);
|
||
|
||
/* Get rid of any artificial uses or defs. */
|
||
df_ref_chain_delete_du_chain (bb_info->artificial_defs);
|
||
df_ref_chain_delete_du_chain (bb_info->artificial_uses);
|
||
df_ref_chain_delete (bb_info->artificial_defs);
|
||
df_ref_chain_delete (bb_info->artificial_uses);
|
||
bb_info->artificial_defs = NULL;
|
||
bb_info->artificial_uses = NULL;
|
||
pool_free (df_scan->block_pool, bb_info);
|
||
}
|
||
}
|
||
|
||
|
||
/* Allocate the problem data for the scanning problem. This should be
|
||
called when the problem is created or when the entire function is to
|
||
be rescanned. */
|
||
void
|
||
df_scan_alloc (bitmap all_blocks ATTRIBUTE_UNUSED)
|
||
{
|
||
struct df_scan_problem_data *problem_data;
|
||
unsigned int insn_num = get_max_uid () + 1;
|
||
unsigned int block_size = 400;
|
||
basic_block bb;
|
||
|
||
/* Given the number of pools, this is really faster than tearing
|
||
everything apart. */
|
||
if (df_scan->problem_data)
|
||
df_scan_free_internal ();
|
||
|
||
df_scan->block_pool
|
||
= create_alloc_pool ("df_scan_block pool",
|
||
sizeof (struct df_scan_bb_info),
|
||
block_size);
|
||
|
||
problem_data = XNEW (struct df_scan_problem_data);
|
||
df_scan->problem_data = problem_data;
|
||
df_scan->computed = true;
|
||
|
||
problem_data->ref_pool
|
||
= create_alloc_pool ("df_scan_ref pool",
|
||
sizeof (struct df_ref), block_size);
|
||
problem_data->insn_pool
|
||
= create_alloc_pool ("df_scan_insn pool",
|
||
sizeof (struct df_insn_info), block_size);
|
||
problem_data->reg_pool
|
||
= create_alloc_pool ("df_scan_reg pool",
|
||
sizeof (struct df_reg_info), block_size);
|
||
problem_data->mw_reg_pool
|
||
= create_alloc_pool ("df_scan_mw_reg pool",
|
||
sizeof (struct df_mw_hardreg), block_size);
|
||
problem_data->mw_link_pool
|
||
= create_alloc_pool ("df_scan_mw_link pool",
|
||
sizeof (struct df_link), block_size);
|
||
|
||
bitmap_obstack_initialize (&problem_data->reg_bitmaps);
|
||
bitmap_obstack_initialize (&problem_data->insn_bitmaps);
|
||
|
||
insn_num += insn_num / 4;
|
||
df_grow_reg_info ();
|
||
|
||
df_grow_insn_info ();
|
||
df_grow_bb_info (df_scan);
|
||
|
||
FOR_ALL_BB (bb)
|
||
{
|
||
unsigned int bb_index = bb->index;
|
||
struct df_scan_bb_info *bb_info = df_scan_get_bb_info (bb_index);
|
||
if (!bb_info)
|
||
{
|
||
bb_info = (struct df_scan_bb_info *) pool_alloc (df_scan->block_pool);
|
||
df_scan_set_bb_info (bb_index, bb_info);
|
||
}
|
||
bb_info->artificial_defs = NULL;
|
||
bb_info->artificial_uses = NULL;
|
||
}
|
||
|
||
df->hardware_regs_used = BITMAP_ALLOC (&problem_data->reg_bitmaps);
|
||
df->regular_block_artificial_uses = BITMAP_ALLOC (&problem_data->reg_bitmaps);
|
||
df->eh_block_artificial_uses = BITMAP_ALLOC (&problem_data->reg_bitmaps);
|
||
df->entry_block_defs = BITMAP_ALLOC (&problem_data->reg_bitmaps);
|
||
df->exit_block_uses = BITMAP_ALLOC (&problem_data->reg_bitmaps);
|
||
df->insns_to_delete = BITMAP_ALLOC (&problem_data->insn_bitmaps);
|
||
df->insns_to_rescan = BITMAP_ALLOC (&problem_data->insn_bitmaps);
|
||
df->insns_to_notes_rescan = BITMAP_ALLOC (&problem_data->insn_bitmaps);
|
||
df_scan->optional_p = false;
|
||
}
|
||
|
||
|
||
/* Free all of the data associated with the scan problem. */
|
||
|
||
static void
|
||
df_scan_free (void)
|
||
{
|
||
if (df_scan->problem_data)
|
||
df_scan_free_internal ();
|
||
|
||
if (df->blocks_to_analyze)
|
||
{
|
||
BITMAP_FREE (df->blocks_to_analyze);
|
||
df->blocks_to_analyze = NULL;
|
||
}
|
||
|
||
free (df_scan);
|
||
}
|
||
|
||
/* Dump the preamble for DF_SCAN dump. */
|
||
static void
|
||
df_scan_start_dump (FILE *file ATTRIBUTE_UNUSED)
|
||
{
|
||
int i;
|
||
|
||
fprintf (file, ";; invalidated by call \t");
|
||
df_print_regset (file, df_invalidated_by_call);
|
||
fprintf (file, ";; hardware regs used \t");
|
||
df_print_regset (file, df->hardware_regs_used);
|
||
fprintf (file, ";; regular block artificial uses \t");
|
||
df_print_regset (file, df->regular_block_artificial_uses);
|
||
fprintf (file, ";; eh block artificial uses \t");
|
||
df_print_regset (file, df->eh_block_artificial_uses);
|
||
fprintf (file, ";; entry block defs \t");
|
||
df_print_regset (file, df->entry_block_defs);
|
||
fprintf (file, ";; exit block uses \t");
|
||
df_print_regset (file, df->exit_block_uses);
|
||
fprintf (file, ";; regs ever live \t");
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (df_regs_ever_live_p (i))
|
||
fprintf (file, " %d[%s]", i, reg_names[i]);
|
||
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
/* Dump the bb_info for a given basic block. */
|
||
static void
|
||
df_scan_start_block (basic_block bb, FILE *file)
|
||
{
|
||
struct df_scan_bb_info *bb_info
|
||
= df_scan_get_bb_info (bb->index);
|
||
|
||
if (bb_info)
|
||
{
|
||
fprintf (file, ";; bb %d artificial_defs: ", bb->index);
|
||
df_refs_chain_dump (bb_info->artificial_defs, true, file);
|
||
fprintf (file, "\n;; bb %d artificial_uses: ", bb->index);
|
||
df_refs_chain_dump (bb_info->artificial_uses, true, file);
|
||
fprintf (file, "\n");
|
||
}
|
||
#if 0
|
||
{
|
||
rtx insn;
|
||
FOR_BB_INSNS (bb, insn)
|
||
if (INSN_P (insn))
|
||
df_insn_debug (insn, false, file);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
static struct df_problem problem_SCAN =
|
||
{
|
||
DF_SCAN, /* Problem id. */
|
||
DF_NONE, /* Direction. */
|
||
df_scan_alloc, /* Allocate the problem specific data. */
|
||
NULL, /* Reset global information. */
|
||
df_scan_free_bb_info, /* Free basic block info. */
|
||
NULL, /* Local compute function. */
|
||
NULL, /* Init the solution specific data. */
|
||
NULL, /* Iterative solver. */
|
||
NULL, /* Confluence operator 0. */
|
||
NULL, /* Confluence operator n. */
|
||
NULL, /* Transfer function. */
|
||
NULL, /* Finalize function. */
|
||
df_scan_free, /* Free all of the problem information. */
|
||
NULL, /* Remove this problem from the stack of dataflow problems. */
|
||
df_scan_start_dump, /* Debugging. */
|
||
df_scan_start_block, /* Debugging start block. */
|
||
NULL, /* Debugging end block. */
|
||
NULL, /* Incremental solution verify start. */
|
||
NULL, /* Incremental solution verify end. */
|
||
NULL, /* Dependent problem. */
|
||
TV_DF_SCAN, /* Timing variable. */
|
||
false /* Reset blocks on dropping out of blocks_to_analyze. */
|
||
};
|
||
|
||
|
||
/* Create a new DATAFLOW instance and add it to an existing instance
|
||
of DF. The returned structure is what is used to get at the
|
||
solution. */
|
||
|
||
void
|
||
df_scan_add_problem (void)
|
||
{
|
||
df_add_problem (&problem_SCAN);
|
||
}
|
||
|
||
|
||
/*----------------------------------------------------------------------------
|
||
Storage Allocation Utilities
|
||
----------------------------------------------------------------------------*/
|
||
|
||
|
||
/* First, grow the reg_info information. If the current size is less than
|
||
the number of psuedos, grow to 25% more than the number of
|
||
pseudos.
|
||
|
||
Second, assure that all of the slots up to max_reg_num have been
|
||
filled with reg_info structures. */
|
||
|
||
void
|
||
df_grow_reg_info (void)
|
||
{
|
||
unsigned int max_reg = max_reg_num ();
|
||
unsigned int new_size = max_reg;
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
unsigned int i;
|
||
|
||
if (df->regs_size < new_size)
|
||
{
|
||
new_size += new_size / 4;
|
||
df->def_regs = xrealloc (df->def_regs,
|
||
new_size *sizeof (struct df_reg_info*));
|
||
df->use_regs = xrealloc (df->use_regs,
|
||
new_size *sizeof (struct df_reg_info*));
|
||
df->eq_use_regs = xrealloc (df->eq_use_regs,
|
||
new_size *sizeof (struct df_reg_info*));
|
||
df->def_info.begin = xrealloc (df->def_info.begin,
|
||
new_size *sizeof (int));
|
||
df->def_info.count = xrealloc (df->def_info.count,
|
||
new_size *sizeof (int));
|
||
df->use_info.begin = xrealloc (df->use_info.begin,
|
||
new_size *sizeof (int));
|
||
df->use_info.count = xrealloc (df->use_info.count,
|
||
new_size *sizeof (int));
|
||
df->regs_size = new_size;
|
||
}
|
||
|
||
for (i = df->regs_inited; i < max_reg; i++)
|
||
{
|
||
struct df_reg_info *reg_info;
|
||
|
||
reg_info = pool_alloc (problem_data->reg_pool);
|
||
memset (reg_info, 0, sizeof (struct df_reg_info));
|
||
df->def_regs[i] = reg_info;
|
||
reg_info = pool_alloc (problem_data->reg_pool);
|
||
memset (reg_info, 0, sizeof (struct df_reg_info));
|
||
df->use_regs[i] = reg_info;
|
||
reg_info = pool_alloc (problem_data->reg_pool);
|
||
memset (reg_info, 0, sizeof (struct df_reg_info));
|
||
df->eq_use_regs[i] = reg_info;
|
||
df->def_info.begin[i] = 0;
|
||
df->def_info.count[i] = 0;
|
||
df->use_info.begin[i] = 0;
|
||
df->use_info.count[i] = 0;
|
||
}
|
||
|
||
df->regs_inited = max_reg;
|
||
}
|
||
|
||
|
||
/* Grow the ref information. */
|
||
|
||
static void
|
||
df_grow_ref_info (struct df_ref_info *ref_info, unsigned int new_size)
|
||
{
|
||
if (ref_info->refs_size < new_size)
|
||
{
|
||
ref_info->refs = xrealloc (ref_info->refs,
|
||
new_size *sizeof (struct df_ref *));
|
||
memset (ref_info->refs + ref_info->refs_size, 0,
|
||
(new_size - ref_info->refs_size) *sizeof (struct df_ref *));
|
||
ref_info->refs_size = new_size;
|
||
}
|
||
}
|
||
|
||
|
||
/* Check and grow the ref information if necessary. This routine
|
||
guarantees total_size + BITMAP_ADDEND amount of entries in refs
|
||
array. It updates ref_info->refs_size only and does not change
|
||
ref_info->total_size. */
|
||
|
||
static void
|
||
df_check_and_grow_ref_info (struct df_ref_info *ref_info,
|
||
unsigned bitmap_addend)
|
||
{
|
||
if (ref_info->refs_size < ref_info->total_size + bitmap_addend)
|
||
{
|
||
int new_size = ref_info->total_size + bitmap_addend;
|
||
new_size += ref_info->total_size / 4;
|
||
df_grow_ref_info (ref_info, new_size);
|
||
}
|
||
}
|
||
|
||
|
||
/* Grow the ref information. If the current size is less than the
|
||
number of instructions, grow to 25% more than the number of
|
||
instructions. */
|
||
|
||
void
|
||
df_grow_insn_info (void)
|
||
{
|
||
unsigned int new_size = get_max_uid () + 1;
|
||
if (DF_INSN_SIZE () < new_size)
|
||
{
|
||
new_size += new_size / 4;
|
||
df->insns = xrealloc (df->insns,
|
||
new_size *sizeof (struct df_insn_info *));
|
||
memset (df->insns + df->insns_size, 0,
|
||
(new_size - DF_INSN_SIZE ()) *sizeof (struct df_insn_info *));
|
||
DF_INSN_SIZE () = new_size;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/*----------------------------------------------------------------------------
|
||
PUBLIC INTERFACES FOR SMALL GRAIN CHANGES TO SCANNING.
|
||
----------------------------------------------------------------------------*/
|
||
|
||
/* Rescan all of the block_to_analyze or all of the blocks in the
|
||
function if df_set_blocks if blocks_to_analyze is NULL; */
|
||
|
||
void
|
||
df_scan_blocks (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
df->def_info.ref_order = DF_REF_ORDER_NO_TABLE;
|
||
df->use_info.ref_order = DF_REF_ORDER_NO_TABLE;
|
||
|
||
df_get_regular_block_artificial_uses (df->regular_block_artificial_uses);
|
||
df_get_eh_block_artificial_uses (df->eh_block_artificial_uses);
|
||
|
||
bitmap_ior_into (df->eh_block_artificial_uses,
|
||
df->regular_block_artificial_uses);
|
||
|
||
/* ENTRY and EXIT blocks have special defs/uses. */
|
||
df_get_entry_block_def_set (df->entry_block_defs);
|
||
df_record_entry_block_defs (df->entry_block_defs);
|
||
df_get_exit_block_use_set (df->exit_block_uses);
|
||
df_record_exit_block_uses (df->exit_block_uses);
|
||
df_set_bb_dirty (BASIC_BLOCK (ENTRY_BLOCK));
|
||
df_set_bb_dirty (BASIC_BLOCK (EXIT_BLOCK));
|
||
|
||
/* Regular blocks */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
unsigned int bb_index = bb->index;
|
||
df_bb_refs_record (bb_index, true);
|
||
}
|
||
}
|
||
|
||
|
||
/* Create a new ref of type DF_REF_TYPE for register REG at address
|
||
LOC within INSN of BB. */
|
||
|
||
struct df_ref *
|
||
df_ref_create (rtx reg, rtx *loc, rtx insn,
|
||
basic_block bb,
|
||
enum df_ref_type ref_type,
|
||
enum df_ref_flags ref_flags)
|
||
{
|
||
struct df_ref *ref;
|
||
struct df_reg_info **reg_info;
|
||
struct df_ref_info *ref_info;
|
||
struct df_ref **ref_rec;
|
||
struct df_ref ***ref_rec_ptr;
|
||
unsigned int count = 0;
|
||
bool add_to_table;
|
||
|
||
df_grow_reg_info ();
|
||
|
||
/* You cannot hack artificial refs. */
|
||
gcc_assert (insn);
|
||
ref = df_ref_create_structure (NULL, reg, loc, bb, insn,
|
||
ref_type, ref_flags);
|
||
|
||
if (DF_REF_TYPE (ref) == DF_REF_REG_DEF)
|
||
{
|
||
reg_info = df->def_regs;
|
||
ref_info = &df->def_info;
|
||
ref_rec_ptr = &DF_INSN_DEFS (insn);
|
||
add_to_table = ref_info->ref_order != DF_REF_ORDER_NO_TABLE;
|
||
}
|
||
else if (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE)
|
||
{
|
||
reg_info = df->eq_use_regs;
|
||
ref_info = &df->use_info;
|
||
ref_rec_ptr = &DF_INSN_EQ_USES (insn);
|
||
switch (ref_info->ref_order)
|
||
{
|
||
case DF_REF_ORDER_UNORDERED_WITH_NOTES:
|
||
case DF_REF_ORDER_BY_REG_WITH_NOTES:
|
||
case DF_REF_ORDER_BY_INSN_WITH_NOTES:
|
||
add_to_table = true;
|
||
break;
|
||
default:
|
||
add_to_table = false;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
reg_info = df->use_regs;
|
||
ref_info = &df->use_info;
|
||
ref_rec_ptr = &DF_INSN_USES (insn);
|
||
add_to_table = ref_info->ref_order != DF_REF_ORDER_NO_TABLE;
|
||
}
|
||
|
||
/* Do not add if ref is not in the right blocks. */
|
||
if (add_to_table && df->analyze_subset)
|
||
add_to_table = bitmap_bit_p (df->blocks_to_analyze, bb->index);
|
||
|
||
df_install_ref (ref, reg_info[DF_REF_REGNO (ref)], ref_info, add_to_table);
|
||
|
||
if (add_to_table)
|
||
switch (ref_info->ref_order)
|
||
{
|
||
case DF_REF_ORDER_UNORDERED_WITH_NOTES:
|
||
case DF_REF_ORDER_BY_REG_WITH_NOTES:
|
||
case DF_REF_ORDER_BY_INSN_WITH_NOTES:
|
||
ref_info->ref_order = DF_REF_ORDER_UNORDERED_WITH_NOTES;
|
||
break;
|
||
default:
|
||
ref_info->ref_order = DF_REF_ORDER_UNORDERED;
|
||
break;
|
||
}
|
||
|
||
ref_rec = *ref_rec_ptr;
|
||
while (*ref_rec)
|
||
{
|
||
count++;
|
||
ref_rec++;
|
||
}
|
||
|
||
ref_rec = *ref_rec_ptr;
|
||
if (count)
|
||
{
|
||
ref_rec = xrealloc (ref_rec, (count+2) * sizeof (struct df_ref*));
|
||
*ref_rec_ptr = ref_rec;
|
||
ref_rec[count] = ref;
|
||
ref_rec[count+1] = NULL;
|
||
qsort (ref_rec, count + 1, sizeof (struct df_ref *), df_ref_compare);
|
||
}
|
||
else
|
||
{
|
||
struct df_ref **ref_rec = XNEWVEC (struct df_ref*, 2);
|
||
ref_rec[0] = ref;
|
||
ref_rec[1] = NULL;
|
||
*ref_rec_ptr = ref_rec;
|
||
}
|
||
|
||
#if 0
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "adding ref ");
|
||
df_ref_debug (ref, dump_file);
|
||
}
|
||
#endif
|
||
/* By adding the ref directly, df_insn_rescan my not find any
|
||
differences even though the block will have changed. So we need
|
||
to mark the block dirty ourselves. */
|
||
df_set_bb_dirty (bb);
|
||
|
||
return ref;
|
||
}
|
||
|
||
|
||
|
||
/*----------------------------------------------------------------------------
|
||
UTILITIES TO CREATE AND DESTROY REFS AND CHAINS.
|
||
----------------------------------------------------------------------------*/
|
||
|
||
|
||
/* Unlink and delete REF at the reg_use, reg_eq_use or reg_def chain.
|
||
Also delete the def-use or use-def chain if it exists. */
|
||
|
||
static void
|
||
df_reg_chain_unlink (struct df_ref *ref)
|
||
{
|
||
struct df_ref *next = DF_REF_NEXT_REG (ref);
|
||
struct df_ref *prev = DF_REF_PREV_REG (ref);
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
int id = DF_REF_ID (ref);
|
||
struct df_reg_info *reg_info;
|
||
struct df_ref **refs = NULL;
|
||
|
||
if (DF_REF_TYPE (ref) == DF_REF_REG_DEF)
|
||
{
|
||
reg_info = DF_REG_DEF_GET (DF_REF_REGNO (ref));
|
||
refs = df->def_info.refs;
|
||
}
|
||
else
|
||
{
|
||
if (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE)
|
||
{
|
||
reg_info = DF_REG_EQ_USE_GET (DF_REF_REGNO (ref));
|
||
switch (df->use_info.ref_order)
|
||
{
|
||
case DF_REF_ORDER_UNORDERED_WITH_NOTES:
|
||
case DF_REF_ORDER_BY_REG_WITH_NOTES:
|
||
case DF_REF_ORDER_BY_INSN_WITH_NOTES:
|
||
refs = df->use_info.refs;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
reg_info = DF_REG_USE_GET (DF_REF_REGNO (ref));
|
||
refs = df->use_info.refs;
|
||
}
|
||
}
|
||
|
||
if (refs)
|
||
{
|
||
if (df->analyze_subset)
|
||
{
|
||
if (bitmap_bit_p (df->blocks_to_analyze, DF_REF_BB (ref)->index))
|
||
refs[id] = NULL;
|
||
}
|
||
else
|
||
refs[id] = NULL;
|
||
}
|
||
|
||
/* Delete any def-use or use-def chains that start here. It is
|
||
possible that there is trash in this field. This happens for
|
||
insns that have been deleted when rescanning has been deferred
|
||
and the chain problem has also been deleted. The chain tear down
|
||
code skips deleted insns. */
|
||
if (df_chain && DF_REF_CHAIN (ref))
|
||
df_chain_unlink (ref);
|
||
|
||
reg_info->n_refs--;
|
||
if (DF_REF_FLAGS_IS_SET (ref, DF_HARD_REG_LIVE))
|
||
{
|
||
gcc_assert (DF_REF_REGNO (ref) < FIRST_PSEUDO_REGISTER);
|
||
df->hard_regs_live_count[DF_REF_REGNO (ref)]--;
|
||
}
|
||
|
||
/* Unlink from the reg chain. If there is no prev, this is the
|
||
first of the list. If not, just join the next and prev. */
|
||
if (prev)
|
||
DF_REF_NEXT_REG (prev) = next;
|
||
else
|
||
{
|
||
gcc_assert (reg_info->reg_chain == ref);
|
||
reg_info->reg_chain = next;
|
||
}
|
||
if (next)
|
||
DF_REF_PREV_REG (next) = prev;
|
||
|
||
pool_free (problem_data->ref_pool, ref);
|
||
}
|
||
|
||
|
||
/* Remove REF from VEC. */
|
||
|
||
static void
|
||
df_ref_compress_rec (struct df_ref ***vec_ptr, struct df_ref *ref)
|
||
{
|
||
struct df_ref **vec = *vec_ptr;
|
||
|
||
if (vec[1])
|
||
{
|
||
while (*vec && *vec != ref)
|
||
vec++;
|
||
|
||
while (*vec)
|
||
{
|
||
*vec = *(vec+1);
|
||
vec++;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
free (vec);
|
||
*vec_ptr = df_null_ref_rec;
|
||
}
|
||
}
|
||
|
||
|
||
/* Unlink REF from all def-use/use-def chains, etc. */
|
||
|
||
void
|
||
df_ref_remove (struct df_ref *ref)
|
||
{
|
||
#if 0
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "removing ref ");
|
||
df_ref_debug (ref, dump_file);
|
||
}
|
||
#endif
|
||
|
||
if (DF_REF_REG_DEF_P (ref))
|
||
{
|
||
if (DF_REF_IS_ARTIFICIAL (ref))
|
||
{
|
||
struct df_scan_bb_info *bb_info
|
||
= df_scan_get_bb_info (DF_REF_BB (ref)->index);
|
||
df_ref_compress_rec (&bb_info->artificial_defs, ref);
|
||
}
|
||
else
|
||
{
|
||
unsigned int uid = DF_REF_INSN_UID (ref);
|
||
struct df_insn_info *insn_rec = DF_INSN_UID_GET (uid);
|
||
df_ref_compress_rec (&insn_rec->defs, ref);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (DF_REF_IS_ARTIFICIAL (ref))
|
||
{
|
||
struct df_scan_bb_info *bb_info
|
||
= df_scan_get_bb_info (DF_REF_BB (ref)->index);
|
||
df_ref_compress_rec (&bb_info->artificial_uses, ref);
|
||
}
|
||
else
|
||
{
|
||
unsigned int uid = DF_REF_INSN_UID (ref);
|
||
struct df_insn_info *insn_rec = DF_INSN_UID_GET (uid);
|
||
|
||
if (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE)
|
||
df_ref_compress_rec (&insn_rec->eq_uses, ref);
|
||
else
|
||
df_ref_compress_rec (&insn_rec->uses, ref);
|
||
}
|
||
}
|
||
|
||
/* By deleting the ref directly, df_insn_rescan my not find any
|
||
differences even though the block will have changed. So we need
|
||
to mark the block dirty ourselves. */
|
||
df_set_bb_dirty (DF_REF_BB (ref));
|
||
df_reg_chain_unlink (ref);
|
||
}
|
||
|
||
|
||
/* Create the insn record for INSN. If there was one there, zero it
|
||
out. */
|
||
|
||
struct df_insn_info *
|
||
df_insn_create_insn_record (rtx insn)
|
||
{
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
struct df_insn_info *insn_rec;
|
||
|
||
df_grow_insn_info ();
|
||
insn_rec = DF_INSN_GET (insn);
|
||
if (!insn_rec)
|
||
{
|
||
insn_rec = pool_alloc (problem_data->insn_pool);
|
||
DF_INSN_SET (insn, insn_rec);
|
||
}
|
||
memset (insn_rec, 0, sizeof (struct df_insn_info));
|
||
insn_rec->insn = insn;
|
||
return insn_rec;
|
||
}
|
||
|
||
|
||
/* Delete all du chain (DF_REF_CHAIN()) of all refs in the ref chain. */
|
||
|
||
static void
|
||
df_ref_chain_delete_du_chain (struct df_ref **ref_rec)
|
||
{
|
||
while (*ref_rec)
|
||
{
|
||
struct df_ref *ref = *ref_rec;
|
||
/* CHAIN is allocated by DF_CHAIN. So make sure to
|
||
pass df_scan instance for the problem. */
|
||
if (DF_REF_CHAIN (ref))
|
||
df_chain_unlink (ref);
|
||
ref_rec++;
|
||
}
|
||
}
|
||
|
||
|
||
/* Delete all refs in the ref chain. */
|
||
|
||
static void
|
||
df_ref_chain_delete (struct df_ref **ref_rec)
|
||
{
|
||
struct df_ref **start = ref_rec;
|
||
while (*ref_rec)
|
||
{
|
||
df_reg_chain_unlink (*ref_rec);
|
||
ref_rec++;
|
||
}
|
||
|
||
/* If the list is empty, it has a special shared element that is not
|
||
to be deleted. */
|
||
if (*start)
|
||
free (start);
|
||
}
|
||
|
||
|
||
/* Delete the hardreg chain. */
|
||
|
||
static void
|
||
df_mw_hardreg_chain_delete (struct df_mw_hardreg **hardregs)
|
||
{
|
||
struct df_scan_problem_data *problem_data;
|
||
|
||
if (!hardregs)
|
||
return;
|
||
|
||
problem_data = (struct df_scan_problem_data *) df_scan->problem_data;
|
||
|
||
while (*hardregs)
|
||
{
|
||
pool_free (problem_data->mw_reg_pool, *hardregs);
|
||
hardregs++;
|
||
}
|
||
}
|
||
|
||
|
||
/* Delete all of the refs information from INSN. BB must be passed in
|
||
except when called from df_process_deferred_rescans to mark the block
|
||
as dirty. */
|
||
|
||
void
|
||
df_insn_delete (basic_block bb, unsigned int uid)
|
||
{
|
||
struct df_insn_info *insn_info = NULL;
|
||
if (!df)
|
||
return;
|
||
|
||
df_grow_bb_info (df_scan);
|
||
df_grow_reg_info ();
|
||
|
||
/* The block must be marked as dirty now, rather than later as in
|
||
df_insn_rescan and df_notes_rescan because it may not be there at
|
||
rescanning time and the mark would blow up. */
|
||
if (bb)
|
||
df_set_bb_dirty (bb);
|
||
|
||
insn_info = DF_INSN_UID_SAFE_GET (uid);
|
||
|
||
/* The client has deferred rescanning. */
|
||
if (df->changeable_flags & DF_DEFER_INSN_RESCAN)
|
||
{
|
||
if (insn_info)
|
||
{
|
||
bitmap_clear_bit (df->insns_to_rescan, uid);
|
||
bitmap_clear_bit (df->insns_to_notes_rescan, uid);
|
||
bitmap_set_bit (df->insns_to_delete, uid);
|
||
}
|
||
if (dump_file)
|
||
fprintf (dump_file, "deferring deletion of insn with uid = %d.\n", uid);
|
||
return;
|
||
}
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "deleting insn with uid = %d.\n", uid);
|
||
|
||
bitmap_clear_bit (df->insns_to_delete, uid);
|
||
bitmap_clear_bit (df->insns_to_rescan, uid);
|
||
bitmap_clear_bit (df->insns_to_notes_rescan, uid);
|
||
if (insn_info)
|
||
{
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
|
||
/* In general, notes do not have the insn_info fields
|
||
initialized. However, combine deletes insns by changing them
|
||
to notes. How clever. So we cannot just check if it is a
|
||
valid insn before short circuiting this code, we need to see
|
||
if we actually initialized it. */
|
||
if (insn_info->defs)
|
||
{
|
||
df_mw_hardreg_chain_delete (insn_info->mw_hardregs);
|
||
|
||
if (df_chain)
|
||
{
|
||
df_ref_chain_delete_du_chain (insn_info->defs);
|
||
df_ref_chain_delete_du_chain (insn_info->uses);
|
||
df_ref_chain_delete_du_chain (insn_info->eq_uses);
|
||
}
|
||
|
||
df_ref_chain_delete (insn_info->defs);
|
||
df_ref_chain_delete (insn_info->uses);
|
||
df_ref_chain_delete (insn_info->eq_uses);
|
||
}
|
||
pool_free (problem_data->insn_pool, insn_info);
|
||
DF_INSN_UID_SET (uid, NULL);
|
||
}
|
||
}
|
||
|
||
|
||
/* Free all of the refs and the mw_hardregs in COLLECTION_REC. */
|
||
|
||
static void
|
||
df_free_collection_rec (struct df_collection_rec *collection_rec)
|
||
{
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
struct df_ref **ref;
|
||
struct df_mw_hardreg **mw;
|
||
|
||
if (collection_rec->def_vec)
|
||
for (ref = collection_rec->def_vec; *ref; ref++)
|
||
pool_free (problem_data->ref_pool, *ref);
|
||
if (collection_rec->use_vec)
|
||
for (ref = collection_rec->use_vec; *ref; ref++)
|
||
pool_free (problem_data->ref_pool, *ref);
|
||
if (collection_rec->eq_use_vec)
|
||
for (ref = collection_rec->eq_use_vec; *ref; ref++)
|
||
pool_free (problem_data->ref_pool, *ref);
|
||
if (collection_rec->mw_vec)
|
||
for (mw = collection_rec->mw_vec; *mw; mw++)
|
||
pool_free (problem_data->mw_reg_pool, *mw);
|
||
}
|
||
|
||
|
||
/* Rescan INSN. Return TRUE if the rescanning produced any changes. */
|
||
|
||
bool
|
||
df_insn_rescan (rtx insn)
|
||
{
|
||
unsigned int uid = INSN_UID (insn);
|
||
struct df_insn_info *insn_info = NULL;
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
struct df_collection_rec collection_rec;
|
||
collection_rec.def_vec = alloca (sizeof (struct df_ref*) * 1000);
|
||
collection_rec.use_vec = alloca (sizeof (struct df_ref*) * 1000);
|
||
collection_rec.eq_use_vec = alloca (sizeof (struct df_ref*) * 1000);
|
||
collection_rec.mw_vec = alloca (sizeof (struct df_mw_hardreg*) * 100);
|
||
|
||
if ((!df) || (!INSN_P (insn)))
|
||
return false;
|
||
|
||
if (!bb)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "no bb for insn with uid = %d.\n", uid);
|
||
return false;
|
||
}
|
||
|
||
/* The client has disabled rescanning and plans to do it itself. */
|
||
if (df->changeable_flags & DF_NO_INSN_RESCAN)
|
||
return false;
|
||
|
||
df_grow_bb_info (df_scan);
|
||
df_grow_reg_info ();
|
||
|
||
insn_info = DF_INSN_UID_SAFE_GET (uid);
|
||
|
||
/* The client has deferred rescanning. */
|
||
if (df->changeable_flags & DF_DEFER_INSN_RESCAN)
|
||
{
|
||
if (!insn_info)
|
||
{
|
||
insn_info = df_insn_create_insn_record (insn);
|
||
insn_info->defs = df_null_ref_rec;
|
||
insn_info->uses = df_null_ref_rec;
|
||
insn_info->eq_uses = df_null_ref_rec;
|
||
insn_info->mw_hardregs = df_null_mw_rec;
|
||
}
|
||
if (dump_file)
|
||
fprintf (dump_file, "deferring rescan insn with uid = %d.\n", uid);
|
||
|
||
bitmap_clear_bit (df->insns_to_delete, uid);
|
||
bitmap_clear_bit (df->insns_to_notes_rescan, uid);
|
||
bitmap_set_bit (df->insns_to_rescan, INSN_UID (insn));
|
||
return false;
|
||
}
|
||
|
||
bitmap_clear_bit (df->insns_to_delete, uid);
|
||
bitmap_clear_bit (df->insns_to_rescan, uid);
|
||
bitmap_clear_bit (df->insns_to_notes_rescan, uid);
|
||
if (insn_info)
|
||
{
|
||
bool the_same = df_insn_refs_verify (&collection_rec, bb, insn, false);
|
||
/* If there's no change, return false. */
|
||
if (the_same)
|
||
{
|
||
df_free_collection_rec (&collection_rec);
|
||
if (dump_file)
|
||
fprintf (dump_file, "verify found no changes in insn with uid = %d.\n", uid);
|
||
return false;
|
||
}
|
||
if (dump_file)
|
||
fprintf (dump_file, "rescanning insn with uid = %d.\n", uid);
|
||
|
||
/* There's change - we need to delete the existing info. */
|
||
df_insn_delete (NULL, uid);
|
||
df_insn_create_insn_record (insn);
|
||
}
|
||
else
|
||
{
|
||
df_insn_create_insn_record (insn);
|
||
df_insn_refs_collect (&collection_rec, bb, insn);
|
||
if (dump_file)
|
||
fprintf (dump_file, "scanning new insn with uid = %d.\n", uid);
|
||
}
|
||
|
||
df_refs_add_to_chains (&collection_rec, bb, insn);
|
||
df_set_bb_dirty (bb);
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Rescan all of the insns in the function. Note that the artificial
|
||
uses and defs are not touched. This function will destroy def-se
|
||
or use-def chains. */
|
||
|
||
void
|
||
df_insn_rescan_all (void)
|
||
{
|
||
bool no_insn_rescan = false;
|
||
bool defer_insn_rescan = false;
|
||
basic_block bb;
|
||
bitmap_iterator bi;
|
||
unsigned int uid;
|
||
bitmap tmp = BITMAP_ALLOC (&df_bitmap_obstack);
|
||
|
||
if (df->changeable_flags & DF_NO_INSN_RESCAN)
|
||
{
|
||
df_clear_flags (DF_NO_INSN_RESCAN);
|
||
no_insn_rescan = true;
|
||
}
|
||
|
||
if (df->changeable_flags & DF_DEFER_INSN_RESCAN)
|
||
{
|
||
df_clear_flags (DF_DEFER_INSN_RESCAN);
|
||
defer_insn_rescan = true;
|
||
}
|
||
|
||
bitmap_copy (tmp, df->insns_to_delete);
|
||
EXECUTE_IF_SET_IN_BITMAP (tmp, 0, uid, bi)
|
||
{
|
||
struct df_insn_info *insn_info = DF_INSN_UID_SAFE_GET (uid);
|
||
if (insn_info)
|
||
df_insn_delete (NULL, uid);
|
||
}
|
||
|
||
BITMAP_FREE (tmp);
|
||
bitmap_clear (df->insns_to_delete);
|
||
bitmap_clear (df->insns_to_rescan);
|
||
bitmap_clear (df->insns_to_notes_rescan);
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
rtx insn;
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
df_insn_rescan (insn);
|
||
}
|
||
}
|
||
|
||
if (no_insn_rescan)
|
||
df_set_flags (DF_NO_INSN_RESCAN);
|
||
if (defer_insn_rescan)
|
||
df_set_flags (DF_DEFER_INSN_RESCAN);
|
||
}
|
||
|
||
|
||
/* Process all of the deferred rescans or deletions. */
|
||
|
||
void
|
||
df_process_deferred_rescans (void)
|
||
{
|
||
bool no_insn_rescan = false;
|
||
bool defer_insn_rescan = false;
|
||
bitmap_iterator bi;
|
||
unsigned int uid;
|
||
bitmap tmp = BITMAP_ALLOC (&df_bitmap_obstack);
|
||
|
||
if (df->changeable_flags & DF_NO_INSN_RESCAN)
|
||
{
|
||
df_clear_flags (DF_NO_INSN_RESCAN);
|
||
no_insn_rescan = true;
|
||
}
|
||
|
||
if (df->changeable_flags & DF_DEFER_INSN_RESCAN)
|
||
{
|
||
df_clear_flags (DF_DEFER_INSN_RESCAN);
|
||
defer_insn_rescan = true;
|
||
}
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "starting the processing of deferred insns\n");
|
||
|
||
bitmap_copy (tmp, df->insns_to_delete);
|
||
EXECUTE_IF_SET_IN_BITMAP (tmp, 0, uid, bi)
|
||
{
|
||
struct df_insn_info *insn_info = DF_INSN_UID_SAFE_GET (uid);
|
||
if (insn_info)
|
||
df_insn_delete (NULL, uid);
|
||
}
|
||
|
||
bitmap_copy (tmp, df->insns_to_rescan);
|
||
EXECUTE_IF_SET_IN_BITMAP (tmp, 0, uid, bi)
|
||
{
|
||
struct df_insn_info *insn_info = DF_INSN_UID_SAFE_GET (uid);
|
||
if (insn_info)
|
||
df_insn_rescan (insn_info->insn);
|
||
}
|
||
|
||
bitmap_copy (tmp, df->insns_to_notes_rescan);
|
||
EXECUTE_IF_SET_IN_BITMAP (tmp, 0, uid, bi)
|
||
{
|
||
struct df_insn_info *insn_info = DF_INSN_UID_SAFE_GET (uid);
|
||
if (insn_info)
|
||
df_notes_rescan (insn_info->insn);
|
||
}
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "ending the processing of deferred insns\n");
|
||
|
||
BITMAP_FREE (tmp);
|
||
bitmap_clear (df->insns_to_delete);
|
||
bitmap_clear (df->insns_to_rescan);
|
||
bitmap_clear (df->insns_to_notes_rescan);
|
||
|
||
if (no_insn_rescan)
|
||
df_set_flags (DF_NO_INSN_RESCAN);
|
||
if (defer_insn_rescan)
|
||
df_set_flags (DF_DEFER_INSN_RESCAN);
|
||
|
||
/* If someone changed regs_ever_live during this pass, fix up the
|
||
entry and exit blocks. */
|
||
if (df->redo_entry_and_exit)
|
||
{
|
||
df_update_entry_exit_and_calls ();
|
||
df->redo_entry_and_exit = false;
|
||
}
|
||
}
|
||
|
||
|
||
/* Count the number of refs. Include the defs if INCLUDE_DEFS. Include
|
||
the uses if INCLUDE_USES. Include the eq_uses if
|
||
INCLUDE_EQ_USES. */
|
||
|
||
static unsigned int
|
||
df_count_refs (bool include_defs, bool include_uses,
|
||
bool include_eq_uses)
|
||
{
|
||
unsigned int regno;
|
||
int size = 0;
|
||
unsigned int m = df->regs_inited;
|
||
|
||
for (regno = 0; regno < m; regno++)
|
||
{
|
||
if (include_defs)
|
||
size += DF_REG_DEF_COUNT (regno);
|
||
if (include_uses)
|
||
size += DF_REG_USE_COUNT (regno);
|
||
if (include_eq_uses)
|
||
size += DF_REG_EQ_USE_COUNT (regno);
|
||
}
|
||
return size;
|
||
}
|
||
|
||
|
||
/* Take build ref table for either the uses or defs from the reg-use
|
||
or reg-def chains. This version processes the refs in reg order
|
||
which is likely to be best if processing the whole function. */
|
||
|
||
static void
|
||
df_reorganize_refs_by_reg_by_reg (struct df_ref_info *ref_info,
|
||
bool include_defs,
|
||
bool include_uses,
|
||
bool include_eq_uses)
|
||
{
|
||
unsigned int m = df->regs_inited;
|
||
unsigned int regno;
|
||
unsigned int offset = 0;
|
||
unsigned int start;
|
||
|
||
if (df->changeable_flags & DF_NO_HARD_REGS)
|
||
{
|
||
start = FIRST_PSEUDO_REGISTER;
|
||
memset (ref_info->begin, 0, sizeof (int) * FIRST_PSEUDO_REGISTER);
|
||
memset (ref_info->count, 0, sizeof (int) * FIRST_PSEUDO_REGISTER);
|
||
}
|
||
else
|
||
start = 0;
|
||
|
||
ref_info->total_size
|
||
= df_count_refs (include_defs, include_uses, include_eq_uses);
|
||
|
||
df_check_and_grow_ref_info (ref_info, 1);
|
||
|
||
for (regno = start; regno < m; regno++)
|
||
{
|
||
int count = 0;
|
||
ref_info->begin[regno] = offset;
|
||
if (include_defs)
|
||
{
|
||
struct df_ref *ref = DF_REG_DEF_CHAIN (regno);
|
||
while (ref)
|
||
{
|
||
ref_info->refs[offset] = ref;
|
||
DF_REF_ID (ref) = offset++;
|
||
count++;
|
||
ref = DF_REF_NEXT_REG (ref);
|
||
gcc_assert (offset < ref_info->refs_size);
|
||
}
|
||
}
|
||
if (include_uses)
|
||
{
|
||
struct df_ref *ref = DF_REG_USE_CHAIN (regno);
|
||
while (ref)
|
||
{
|
||
ref_info->refs[offset] = ref;
|
||
DF_REF_ID (ref) = offset++;
|
||
count++;
|
||
ref = DF_REF_NEXT_REG (ref);
|
||
gcc_assert (offset < ref_info->refs_size);
|
||
}
|
||
}
|
||
if (include_eq_uses)
|
||
{
|
||
struct df_ref *ref = DF_REG_EQ_USE_CHAIN (regno);
|
||
while (ref)
|
||
{
|
||
ref_info->refs[offset] = ref;
|
||
DF_REF_ID (ref) = offset++;
|
||
count++;
|
||
ref = DF_REF_NEXT_REG (ref);
|
||
gcc_assert (offset < ref_info->refs_size);
|
||
}
|
||
}
|
||
ref_info->count[regno] = count;
|
||
}
|
||
|
||
/* The bitmap size is not decremented when refs are deleted. So
|
||
reset it now that we have squished out all of the empty
|
||
slots. */
|
||
ref_info->table_size = offset;
|
||
}
|
||
|
||
|
||
/* Take build ref table for either the uses or defs from the reg-use
|
||
or reg-def chains. This version processes the refs in insn order
|
||
which is likely to be best if processing some segment of the
|
||
function. */
|
||
|
||
static void
|
||
df_reorganize_refs_by_reg_by_insn (struct df_ref_info *ref_info,
|
||
bool include_defs,
|
||
bool include_uses,
|
||
bool include_eq_uses)
|
||
{
|
||
bitmap_iterator bi;
|
||
unsigned int bb_index;
|
||
unsigned int m = df->regs_inited;
|
||
unsigned int offset = 0;
|
||
unsigned int r;
|
||
unsigned int start
|
||
= (df->changeable_flags & DF_NO_HARD_REGS) ? FIRST_PSEUDO_REGISTER : 0;
|
||
|
||
memset (ref_info->begin, 0, sizeof (int) * df->regs_inited);
|
||
memset (ref_info->count, 0, sizeof (int) * df->regs_inited);
|
||
|
||
ref_info->total_size = df_count_refs (include_defs, include_uses, include_eq_uses);
|
||
df_check_and_grow_ref_info (ref_info, 1);
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
|
||
{
|
||
basic_block bb = BASIC_BLOCK (bb_index);
|
||
rtx insn;
|
||
struct df_ref **ref_rec;
|
||
|
||
if (include_defs)
|
||
for (ref_rec = df_get_artificial_defs (bb_index); *ref_rec; ref_rec++)
|
||
{
|
||
unsigned int regno = DF_REF_REGNO (*ref_rec);
|
||
ref_info->count[regno]++;
|
||
}
|
||
if (include_uses)
|
||
for (ref_rec = df_get_artificial_uses (bb_index); *ref_rec; ref_rec++)
|
||
{
|
||
unsigned int regno = DF_REF_REGNO (*ref_rec);
|
||
ref_info->count[regno]++;
|
||
}
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (INSN_P (insn))
|
||
{
|
||
unsigned int uid = INSN_UID (insn);
|
||
|
||
if (include_defs)
|
||
for (ref_rec = DF_INSN_UID_DEFS (uid); *ref_rec; ref_rec++)
|
||
{
|
||
unsigned int regno = DF_REF_REGNO (*ref_rec);
|
||
ref_info->count[regno]++;
|
||
}
|
||
if (include_uses)
|
||
for (ref_rec = DF_INSN_UID_USES (uid); *ref_rec; ref_rec++)
|
||
{
|
||
unsigned int regno = DF_REF_REGNO (*ref_rec);
|
||
ref_info->count[regno]++;
|
||
}
|
||
if (include_eq_uses)
|
||
for (ref_rec = DF_INSN_UID_EQ_USES (uid); *ref_rec; ref_rec++)
|
||
{
|
||
unsigned int regno = DF_REF_REGNO (*ref_rec);
|
||
ref_info->count[regno]++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
for (r = start; r < m; r++)
|
||
{
|
||
ref_info->begin[r] = offset;
|
||
offset += ref_info->count[r];
|
||
ref_info->count[r] = 0;
|
||
}
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
|
||
{
|
||
basic_block bb = BASIC_BLOCK (bb_index);
|
||
rtx insn;
|
||
struct df_ref **ref_rec;
|
||
|
||
if (include_defs)
|
||
for (ref_rec = df_get_artificial_defs (bb_index); *ref_rec; ref_rec++)
|
||
{
|
||
struct df_ref *ref = *ref_rec;
|
||
unsigned int regno = DF_REF_REGNO (ref);
|
||
if (regno >= start)
|
||
{
|
||
unsigned int id
|
||
= ref_info->begin[regno] + ref_info->count[regno]++;
|
||
DF_REF_ID (ref) = id;
|
||
ref_info->refs[id] = ref;
|
||
}
|
||
}
|
||
if (include_uses)
|
||
for (ref_rec = df_get_artificial_uses (bb_index); *ref_rec; ref_rec++)
|
||
{
|
||
struct df_ref *ref = *ref_rec;
|
||
unsigned int regno = DF_REF_REGNO (ref);
|
||
if (regno >= start)
|
||
{
|
||
unsigned int id
|
||
= ref_info->begin[regno] + ref_info->count[regno]++;
|
||
DF_REF_ID (ref) = id;
|
||
ref_info->refs[id] = ref;
|
||
}
|
||
}
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (INSN_P (insn))
|
||
{
|
||
unsigned int uid = INSN_UID (insn);
|
||
|
||
if (include_defs)
|
||
for (ref_rec = DF_INSN_UID_DEFS (uid); *ref_rec; ref_rec++)
|
||
{
|
||
struct df_ref *ref = *ref_rec;
|
||
unsigned int regno = DF_REF_REGNO (ref);
|
||
if (regno >= start)
|
||
{
|
||
unsigned int id
|
||
= ref_info->begin[regno] + ref_info->count[regno]++;
|
||
DF_REF_ID (ref) = id;
|
||
ref_info->refs[id] = ref;
|
||
}
|
||
}
|
||
if (include_uses)
|
||
for (ref_rec = DF_INSN_UID_USES (uid); *ref_rec; ref_rec++)
|
||
{
|
||
struct df_ref *ref = *ref_rec;
|
||
unsigned int regno = DF_REF_REGNO (ref);
|
||
if (regno >= start)
|
||
{
|
||
unsigned int id
|
||
= ref_info->begin[regno] + ref_info->count[regno]++;
|
||
DF_REF_ID (ref) = id;
|
||
ref_info->refs[id] = ref;
|
||
}
|
||
}
|
||
if (include_eq_uses)
|
||
for (ref_rec = DF_INSN_UID_EQ_USES (uid); *ref_rec; ref_rec++)
|
||
{
|
||
struct df_ref *ref = *ref_rec;
|
||
unsigned int regno = DF_REF_REGNO (ref);
|
||
if (regno >= start)
|
||
{
|
||
unsigned int id
|
||
= ref_info->begin[regno] + ref_info->count[regno]++;
|
||
DF_REF_ID (ref) = id;
|
||
ref_info->refs[id] = ref;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The bitmap size is not decremented when refs are deleted. So
|
||
reset it now that we have squished out all of the empty
|
||
slots. */
|
||
|
||
ref_info->table_size = offset;
|
||
}
|
||
|
||
/* Take build ref table for either the uses or defs from the reg-use
|
||
or reg-def chains. */
|
||
|
||
static void
|
||
df_reorganize_refs_by_reg (struct df_ref_info *ref_info,
|
||
bool include_defs,
|
||
bool include_uses,
|
||
bool include_eq_uses)
|
||
{
|
||
if (df->analyze_subset)
|
||
df_reorganize_refs_by_reg_by_insn (ref_info, include_defs,
|
||
include_uses, include_eq_uses);
|
||
else
|
||
df_reorganize_refs_by_reg_by_reg (ref_info, include_defs,
|
||
include_uses, include_eq_uses);
|
||
}
|
||
|
||
|
||
/* Add the refs in REF_VEC to the table in REF_INFO starting at OFFSET. */
|
||
static unsigned int
|
||
df_add_refs_to_table (unsigned int offset,
|
||
struct df_ref_info *ref_info,
|
||
struct df_ref **ref_vec)
|
||
{
|
||
while (*ref_vec)
|
||
{
|
||
struct df_ref *ref = *ref_vec;
|
||
if ((!(df->changeable_flags & DF_NO_HARD_REGS))
|
||
|| (DF_REF_REGNO (ref) >= FIRST_PSEUDO_REGISTER))
|
||
{
|
||
ref_info->refs[offset] = ref;
|
||
DF_REF_ID (*ref_vec) = offset++;
|
||
}
|
||
ref_vec++;
|
||
}
|
||
return offset;
|
||
}
|
||
|
||
|
||
/* Count the number of refs in all of the insns of BB. Include the
|
||
defs if INCLUDE_DEFS. Include the uses if INCLUDE_USES. Include the
|
||
eq_uses if INCLUDE_EQ_USES. */
|
||
|
||
static unsigned int
|
||
df_reorganize_refs_by_insn_bb (basic_block bb, unsigned int offset,
|
||
struct df_ref_info *ref_info,
|
||
bool include_defs, bool include_uses,
|
||
bool include_eq_uses)
|
||
{
|
||
rtx insn;
|
||
|
||
if (include_defs)
|
||
offset = df_add_refs_to_table (offset, ref_info,
|
||
df_get_artificial_defs (bb->index));
|
||
if (include_uses)
|
||
offset = df_add_refs_to_table (offset, ref_info,
|
||
df_get_artificial_uses (bb->index));
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
if (INSN_P (insn))
|
||
{
|
||
unsigned int uid = INSN_UID (insn);
|
||
if (include_defs)
|
||
offset = df_add_refs_to_table (offset, ref_info,
|
||
DF_INSN_UID_DEFS (uid));
|
||
if (include_uses)
|
||
offset = df_add_refs_to_table (offset, ref_info,
|
||
DF_INSN_UID_USES (uid));
|
||
if (include_eq_uses)
|
||
offset = df_add_refs_to_table (offset, ref_info,
|
||
DF_INSN_UID_EQ_USES (uid));
|
||
}
|
||
return offset;
|
||
}
|
||
|
||
|
||
/* Organize the refs by insn into the table in REF_INFO. If
|
||
blocks_to_analyze is defined, use that set, otherwise the entire
|
||
program. Include the defs if INCLUDE_DEFS. Include the uses if
|
||
INCLUDE_USES. Include the eq_uses if INCLUDE_EQ_USES. */
|
||
|
||
static void
|
||
df_reorganize_refs_by_insn (struct df_ref_info *ref_info,
|
||
bool include_defs, bool include_uses,
|
||
bool include_eq_uses)
|
||
{
|
||
basic_block bb;
|
||
unsigned int offset = 0;
|
||
|
||
ref_info->total_size = df_count_refs (include_defs, include_uses, include_eq_uses);
|
||
df_check_and_grow_ref_info (ref_info, 1);
|
||
if (df->blocks_to_analyze)
|
||
{
|
||
bitmap_iterator bi;
|
||
unsigned int index;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, index, bi)
|
||
{
|
||
offset = df_reorganize_refs_by_insn_bb (BASIC_BLOCK (index), offset, ref_info,
|
||
include_defs, include_uses,
|
||
include_eq_uses);
|
||
}
|
||
|
||
ref_info->table_size = offset;
|
||
}
|
||
else
|
||
{
|
||
FOR_ALL_BB (bb)
|
||
offset = df_reorganize_refs_by_insn_bb (bb, offset, ref_info,
|
||
include_defs, include_uses,
|
||
include_eq_uses);
|
||
ref_info->table_size = offset;
|
||
}
|
||
}
|
||
|
||
|
||
/* If the use refs in DF are not organized, reorganize them. */
|
||
|
||
void
|
||
df_maybe_reorganize_use_refs (enum df_ref_order order)
|
||
{
|
||
if (order == df->use_info.ref_order)
|
||
return;
|
||
|
||
switch (order)
|
||
{
|
||
case DF_REF_ORDER_BY_REG:
|
||
df_reorganize_refs_by_reg (&df->use_info, false, true, false);
|
||
break;
|
||
|
||
case DF_REF_ORDER_BY_REG_WITH_NOTES:
|
||
df_reorganize_refs_by_reg (&df->use_info, false, true, true);
|
||
break;
|
||
|
||
case DF_REF_ORDER_BY_INSN:
|
||
df_reorganize_refs_by_insn (&df->use_info, false, true, false);
|
||
break;
|
||
|
||
case DF_REF_ORDER_BY_INSN_WITH_NOTES:
|
||
df_reorganize_refs_by_insn (&df->use_info, false, true, true);
|
||
break;
|
||
|
||
case DF_REF_ORDER_NO_TABLE:
|
||
free (df->use_info.refs);
|
||
df->use_info.refs = NULL;
|
||
df->use_info.refs_size = 0;
|
||
break;
|
||
|
||
case DF_REF_ORDER_UNORDERED:
|
||
case DF_REF_ORDER_UNORDERED_WITH_NOTES:
|
||
gcc_unreachable ();
|
||
break;
|
||
}
|
||
|
||
df->use_info.ref_order = order;
|
||
}
|
||
|
||
|
||
/* If the def refs in DF are not organized, reorganize them. */
|
||
|
||
void
|
||
df_maybe_reorganize_def_refs (enum df_ref_order order)
|
||
{
|
||
if (order == df->def_info.ref_order)
|
||
return;
|
||
|
||
switch (order)
|
||
{
|
||
case DF_REF_ORDER_BY_REG:
|
||
df_reorganize_refs_by_reg (&df->def_info, true, false, false);
|
||
break;
|
||
|
||
case DF_REF_ORDER_BY_INSN:
|
||
df_reorganize_refs_by_insn (&df->def_info, true, false, false);
|
||
break;
|
||
|
||
case DF_REF_ORDER_NO_TABLE:
|
||
free (df->def_info.refs);
|
||
df->def_info.refs = NULL;
|
||
df->def_info.refs_size = 0;
|
||
break;
|
||
|
||
case DF_REF_ORDER_BY_INSN_WITH_NOTES:
|
||
case DF_REF_ORDER_BY_REG_WITH_NOTES:
|
||
case DF_REF_ORDER_UNORDERED:
|
||
case DF_REF_ORDER_UNORDERED_WITH_NOTES:
|
||
gcc_unreachable ();
|
||
break;
|
||
}
|
||
|
||
df->def_info.ref_order = order;
|
||
}
|
||
|
||
|
||
/* Change the BB of all refs in the ref chain to NEW_BB.
|
||
Assumes that all refs in the chain have the same BB.
|
||
If changed, return the original bb the chain belonged to
|
||
(or .
|
||
If no change, return NEW_BB.
|
||
If something's wrong, it will return NULL. */
|
||
|
||
static basic_block
|
||
df_ref_chain_change_bb (struct df_ref **ref_rec,
|
||
basic_block old_bb,
|
||
basic_block new_bb)
|
||
{
|
||
while (*ref_rec)
|
||
{
|
||
struct df_ref *ref = *ref_rec;
|
||
|
||
if (DF_REF_BB (ref) == new_bb)
|
||
return new_bb;
|
||
else
|
||
{
|
||
gcc_assert (old_bb == NULL || DF_REF_BB (ref) == old_bb);
|
||
old_bb = DF_REF_BB (ref);
|
||
DF_REF_BB (ref) = new_bb;
|
||
}
|
||
ref_rec++;
|
||
}
|
||
|
||
return old_bb;
|
||
}
|
||
|
||
|
||
/* Change all of the basic block references in INSN to use the insn's
|
||
current basic block. This function is called from routines that move
|
||
instructions from one block to another. */
|
||
|
||
void
|
||
df_insn_change_bb (rtx insn)
|
||
{
|
||
basic_block new_bb = BLOCK_FOR_INSN (insn);
|
||
basic_block old_bb = NULL;
|
||
struct df_insn_info *insn_info;
|
||
unsigned int uid = INSN_UID (insn);
|
||
|
||
if (!df)
|
||
return;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "changing bb of uid %d\n", uid);
|
||
|
||
insn_info = DF_INSN_UID_SAFE_GET (uid);
|
||
if (insn_info == NULL)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, " unscanned insn\n");
|
||
df_insn_rescan (insn);
|
||
return;
|
||
}
|
||
|
||
if (!INSN_P (insn))
|
||
return;
|
||
|
||
old_bb = df_ref_chain_change_bb (insn_info->defs, old_bb, new_bb);
|
||
if (old_bb == new_bb)
|
||
return;
|
||
|
||
old_bb = df_ref_chain_change_bb (insn_info->uses, old_bb, new_bb);
|
||
if (old_bb == new_bb)
|
||
return;
|
||
|
||
old_bb = df_ref_chain_change_bb (insn_info->eq_uses, old_bb, new_bb);
|
||
if (old_bb == new_bb)
|
||
return;
|
||
|
||
df_set_bb_dirty (new_bb);
|
||
if (old_bb)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, " from %d to %d\n",
|
||
old_bb->index, new_bb->index);
|
||
df_set_bb_dirty (old_bb);
|
||
}
|
||
else
|
||
if (dump_file)
|
||
fprintf (dump_file, " to %d\n", new_bb->index);
|
||
}
|
||
|
||
|
||
/* Helper function for df_ref_change_reg_with_loc. */
|
||
|
||
static void
|
||
df_ref_change_reg_with_loc_1 (struct df_reg_info *old, struct df_reg_info *new,
|
||
int new_regno, rtx loc)
|
||
{
|
||
struct df_ref *the_ref = old->reg_chain;
|
||
|
||
while (the_ref)
|
||
{
|
||
if (DF_REF_LOC(the_ref) && (*DF_REF_LOC(the_ref) == loc))
|
||
{
|
||
struct df_ref *next_ref = the_ref->next_reg;
|
||
struct df_ref *prev_ref = the_ref->prev_reg;
|
||
struct df_ref **ref_vec, **ref_vec_t;
|
||
unsigned int count = 0;
|
||
|
||
DF_REF_REGNO (the_ref) = new_regno;
|
||
DF_REF_REG (the_ref) = regno_reg_rtx[new_regno];
|
||
|
||
/* Pull the_ref out of the old regno chain. */
|
||
if (prev_ref)
|
||
prev_ref->next_reg = next_ref;
|
||
else
|
||
old->reg_chain = next_ref;
|
||
if (next_ref)
|
||
next_ref->prev_reg = prev_ref;
|
||
old->n_refs--;
|
||
|
||
/* Put the ref into the new regno chain. */
|
||
the_ref->prev_reg = NULL;
|
||
the_ref->next_reg = new->reg_chain;
|
||
if (new->reg_chain)
|
||
new->reg_chain->prev_reg = the_ref;
|
||
new->reg_chain = the_ref;
|
||
new->n_refs++;
|
||
df_set_bb_dirty (DF_REF_BB (the_ref));
|
||
|
||
/* Need to resort the record that the ref was in because the
|
||
regno is a sorting key. First, find the right record. */
|
||
if (DF_REF_IS_ARTIFICIAL (the_ref))
|
||
{
|
||
unsigned int bb_index = DF_REF_BB (the_ref)->index;
|
||
if (DF_REF_REG_DEF_P (the_ref))
|
||
ref_vec = df_get_artificial_defs (bb_index);
|
||
else
|
||
ref_vec = df_get_artificial_uses (bb_index);
|
||
}
|
||
else
|
||
{
|
||
struct df_insn_info *insn_info
|
||
= DF_INSN_GET (DF_REF_INSN (the_ref));
|
||
if (DF_REF_FLAGS (the_ref) & DF_REF_IN_NOTE)
|
||
ref_vec = insn_info->eq_uses;
|
||
else
|
||
ref_vec = insn_info->uses;
|
||
if (dump_file)
|
||
fprintf (dump_file, "changing reg in insn %d\n",
|
||
INSN_UID (DF_REF_INSN (the_ref)));
|
||
}
|
||
ref_vec_t = ref_vec;
|
||
|
||
/* Find the length. */
|
||
while (*ref_vec_t)
|
||
{
|
||
count++;
|
||
ref_vec_t++;
|
||
}
|
||
qsort (ref_vec, count, sizeof (struct df_ref *), df_ref_compare);
|
||
|
||
the_ref = next_ref;
|
||
}
|
||
else
|
||
the_ref = the_ref->next_reg;
|
||
}
|
||
}
|
||
|
||
|
||
/* Change the regno of all refs that contained LOC from OLD_REGNO to
|
||
NEW_REGNO. Refs that do not match LOC are not changed. This call
|
||
is to support the SET_REGNO macro. */
|
||
|
||
void
|
||
df_ref_change_reg_with_loc (int old_regno, int new_regno, rtx loc)
|
||
{
|
||
if ((!df) || (old_regno == -1) || (old_regno == new_regno))
|
||
return;
|
||
|
||
df_grow_reg_info ();
|
||
|
||
df_ref_change_reg_with_loc_1 (DF_REG_DEF_GET (old_regno),
|
||
DF_REG_DEF_GET (new_regno), new_regno, loc);
|
||
df_ref_change_reg_with_loc_1 (DF_REG_USE_GET (old_regno),
|
||
DF_REG_USE_GET (new_regno), new_regno, loc);
|
||
df_ref_change_reg_with_loc_1 (DF_REG_EQ_USE_GET (old_regno),
|
||
DF_REG_EQ_USE_GET (new_regno), new_regno, loc);
|
||
}
|
||
|
||
|
||
/* Delete the mw_hardregs that point into the eq_notes. */
|
||
|
||
static unsigned int
|
||
df_mw_hardreg_chain_delete_eq_uses (struct df_insn_info *insn_info)
|
||
{
|
||
struct df_mw_hardreg **mw_vec = insn_info->mw_hardregs;
|
||
unsigned int deleted = 0;
|
||
unsigned int count = 0;
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
|
||
if (!*mw_vec)
|
||
return 0;
|
||
|
||
while (*mw_vec)
|
||
{
|
||
if ((*mw_vec)->flags & DF_REF_IN_NOTE)
|
||
{
|
||
struct df_mw_hardreg **temp_vec = mw_vec;
|
||
|
||
pool_free (problem_data->mw_reg_pool, *mw_vec);
|
||
temp_vec = mw_vec;
|
||
/* Shove the remaining ones down one to fill the gap. While
|
||
this looks n**2, it is highly unusual to have any mw regs
|
||
in eq_notes and the chances of more than one are almost
|
||
non existent. */
|
||
while (*temp_vec)
|
||
{
|
||
*temp_vec = *(temp_vec + 1);
|
||
temp_vec++;
|
||
}
|
||
deleted++;
|
||
}
|
||
else
|
||
{
|
||
mw_vec++;
|
||
count++;
|
||
}
|
||
}
|
||
|
||
if (count == 0)
|
||
{
|
||
free (insn_info->mw_hardregs);
|
||
insn_info->mw_hardregs = df_null_mw_rec;
|
||
return 0;
|
||
}
|
||
return deleted;
|
||
}
|
||
|
||
|
||
/* Rescan only the REG_EQUIV/REG_EQUAL notes part of INSN. */
|
||
|
||
void
|
||
df_notes_rescan (rtx insn)
|
||
{
|
||
struct df_insn_info *insn_info;
|
||
unsigned int uid = INSN_UID (insn);
|
||
|
||
if (!df)
|
||
return;
|
||
|
||
/* The client has disabled rescanning and plans to do it itself. */
|
||
if (df->changeable_flags & DF_NO_INSN_RESCAN)
|
||
return;
|
||
|
||
df_grow_bb_info (df_scan);
|
||
df_grow_reg_info ();
|
||
|
||
insn_info = DF_INSN_UID_SAFE_GET (INSN_UID(insn));
|
||
|
||
/* The client has deferred rescanning. */
|
||
if (df->changeable_flags & DF_DEFER_INSN_RESCAN)
|
||
{
|
||
if (!insn_info)
|
||
{
|
||
insn_info = df_insn_create_insn_record (insn);
|
||
insn_info->defs = df_null_ref_rec;
|
||
insn_info->uses = df_null_ref_rec;
|
||
insn_info->eq_uses = df_null_ref_rec;
|
||
insn_info->mw_hardregs = df_null_mw_rec;
|
||
}
|
||
|
||
bitmap_clear_bit (df->insns_to_delete, uid);
|
||
/* If the insn is set to be rescanned, it does not need to also
|
||
be notes rescanned. */
|
||
if (!bitmap_bit_p (df->insns_to_rescan, uid))
|
||
bitmap_set_bit (df->insns_to_notes_rescan, INSN_UID (insn));
|
||
return;
|
||
}
|
||
|
||
bitmap_clear_bit (df->insns_to_delete, uid);
|
||
bitmap_clear_bit (df->insns_to_notes_rescan, uid);
|
||
|
||
if (insn_info)
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
rtx note;
|
||
struct df_collection_rec collection_rec;
|
||
unsigned int num_deleted;
|
||
|
||
memset (&collection_rec, 0, sizeof (struct df_collection_rec));
|
||
collection_rec.eq_use_vec = alloca (sizeof (struct df_ref*) * 1000);
|
||
collection_rec.mw_vec = alloca (sizeof (struct df_mw_hardreg*) * 1000);
|
||
|
||
num_deleted = df_mw_hardreg_chain_delete_eq_uses (insn_info);
|
||
df_ref_chain_delete (insn_info->eq_uses);
|
||
insn_info->eq_uses = NULL;
|
||
|
||
/* Process REG_EQUIV/REG_EQUAL notes */
|
||
for (note = REG_NOTES (insn); note;
|
||
note = XEXP (note, 1))
|
||
{
|
||
switch (REG_NOTE_KIND (note))
|
||
{
|
||
case REG_EQUIV:
|
||
case REG_EQUAL:
|
||
df_uses_record (&collection_rec,
|
||
&XEXP (note, 0), DF_REF_REG_USE,
|
||
bb, insn, DF_REF_IN_NOTE);
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Find some place to put any new mw_hardregs. */
|
||
df_canonize_collection_rec (&collection_rec);
|
||
if (collection_rec.next_mw)
|
||
{
|
||
unsigned int count = 0;
|
||
struct df_mw_hardreg **mw_rec = insn_info->mw_hardregs;
|
||
while (*mw_rec)
|
||
{
|
||
count++;
|
||
mw_rec++;
|
||
}
|
||
|
||
if (count)
|
||
{
|
||
/* Append to the end of the existing record after
|
||
expanding it if necessary. */
|
||
if (collection_rec.next_mw > num_deleted)
|
||
{
|
||
insn_info->mw_hardregs =
|
||
xrealloc (insn_info->mw_hardregs,
|
||
(count + 1 + collection_rec.next_mw)
|
||
* sizeof (struct df_ref*));
|
||
}
|
||
memcpy (&insn_info->mw_hardregs[count], collection_rec.mw_vec,
|
||
(collection_rec.next_mw + 1) * sizeof (struct df_mw_hardreg *));
|
||
qsort (insn_info->mw_hardregs, count + collection_rec.next_mw,
|
||
sizeof (struct df_mw_hardreg *), df_mw_compare);
|
||
}
|
||
else
|
||
{
|
||
/* No vector there. */
|
||
insn_info->mw_hardregs
|
||
= XNEWVEC (struct df_mw_hardreg*,
|
||
count + 1 + collection_rec.next_mw);
|
||
memcpy (insn_info->mw_hardregs, collection_rec.mw_vec,
|
||
(collection_rec.next_mw + 1) * sizeof (struct df_mw_hardreg *));
|
||
}
|
||
}
|
||
/* Get rid of the mw_rec so that df_refs_add_to_chains will
|
||
ignore it. */
|
||
collection_rec.mw_vec = NULL;
|
||
collection_rec.next_mw = 0;
|
||
df_refs_add_to_chains (&collection_rec, bb, insn);
|
||
}
|
||
else
|
||
df_insn_rescan (insn);
|
||
|
||
}
|
||
|
||
|
||
/*----------------------------------------------------------------------------
|
||
Hard core instruction scanning code. No external interfaces here,
|
||
just a lot of routines that look inside insns.
|
||
----------------------------------------------------------------------------*/
|
||
|
||
|
||
/* Return true if the contents of two df_ref's are identical.
|
||
It ignores DF_REF_MARKER. */
|
||
|
||
static bool
|
||
df_ref_equal_p (struct df_ref *ref1, struct df_ref *ref2)
|
||
{
|
||
if (!ref2)
|
||
return false;
|
||
return (ref1 == ref2) ||
|
||
(DF_REF_REG (ref1) == DF_REF_REG (ref2)
|
||
&& DF_REF_REGNO (ref1) == DF_REF_REGNO (ref2)
|
||
&& DF_REF_LOC (ref1) == DF_REF_LOC (ref2)
|
||
&& DF_REF_INSN (ref1) == DF_REF_INSN (ref2)
|
||
&& DF_REF_TYPE (ref1) == DF_REF_TYPE (ref2)
|
||
&& ((DF_REF_FLAGS (ref1) & ~(DF_REF_REG_MARKER + DF_REF_MW_HARDREG))
|
||
== (DF_REF_FLAGS (ref2) & ~(DF_REF_REG_MARKER + DF_REF_MW_HARDREG)))
|
||
&& DF_REF_BB (ref1) == DF_REF_BB (ref2));
|
||
}
|
||
|
||
|
||
/* Compare REF1 and REF2 for sorting. This is only called from places
|
||
where all of the refs are of the same type, in the same insn, and
|
||
have the same bb. So these fields are not checked. */
|
||
|
||
static int
|
||
df_ref_compare (const void *r1, const void *r2)
|
||
{
|
||
const struct df_ref *const ref1 = *(const struct df_ref *const*)r1;
|
||
const struct df_ref *const ref2 = *(const struct df_ref *const*)r2;
|
||
|
||
if (ref1 == ref2)
|
||
return 0;
|
||
|
||
if (DF_REF_REGNO (ref1) != DF_REF_REGNO (ref2))
|
||
return (int)DF_REF_REGNO (ref1) - (int)DF_REF_REGNO (ref2);
|
||
|
||
if (DF_REF_TYPE (ref1) != DF_REF_TYPE (ref2))
|
||
return (int)DF_REF_TYPE (ref1) - (int)DF_REF_TYPE (ref2);
|
||
|
||
if ((DF_REF_REG (ref1) != DF_REF_REG (ref2))
|
||
|| (DF_REF_LOC (ref1) != DF_REF_LOC (ref2)))
|
||
return (int)DF_REF_ORDER (ref1) - (int)DF_REF_ORDER (ref2);
|
||
|
||
if (DF_REF_FLAGS (ref1) != DF_REF_FLAGS (ref2))
|
||
{
|
||
/* If two refs are identical except that one of them has is from
|
||
a mw and one is not, we need to have the one with the mw
|
||
first. */
|
||
if (DF_REF_FLAGS_IS_SET (ref1, DF_REF_MW_HARDREG) ==
|
||
DF_REF_FLAGS_IS_SET (ref2, DF_REF_MW_HARDREG))
|
||
return DF_REF_FLAGS (ref1) - DF_REF_FLAGS (ref2);
|
||
else if (DF_REF_FLAGS_IS_SET (ref1, DF_REF_MW_HARDREG))
|
||
return -1;
|
||
else
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
df_swap_refs (struct df_ref **ref_vec, int i, int j)
|
||
{
|
||
struct df_ref *tmp = ref_vec[i];
|
||
ref_vec[i] = ref_vec[j];
|
||
ref_vec[j] = tmp;
|
||
}
|
||
|
||
/* Sort and compress a set of refs. */
|
||
|
||
static unsigned int
|
||
df_sort_and_compress_refs (struct df_ref **ref_vec, unsigned int count)
|
||
{
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
unsigned int i;
|
||
unsigned int dist = 0;
|
||
|
||
ref_vec[count] = NULL;
|
||
/* If there are 1 or 0 elements, there is nothing to do. */
|
||
if (count < 2)
|
||
return count;
|
||
else if (count == 2)
|
||
{
|
||
if (df_ref_compare (&ref_vec[0], &ref_vec[1]) > 0)
|
||
df_swap_refs (ref_vec, 0, 1);
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; i < count - 1; i++)
|
||
if (df_ref_compare (&ref_vec[i], &ref_vec[i+1]) >= 0)
|
||
break;
|
||
/* If the array is already strictly ordered,
|
||
which is the most common case for large COUNT case
|
||
(which happens for CALL INSNs),
|
||
no need to sort and filter out duplicate.
|
||
Simply return the count.
|
||
Make sure DF_GET_ADD_REFS adds refs in the increasing order
|
||
of DF_REF_COMPARE. */
|
||
if (i == count - 1)
|
||
return count;
|
||
qsort (ref_vec, count, sizeof (struct df_ref *), df_ref_compare);
|
||
}
|
||
|
||
for (i=0; i<count-dist; i++)
|
||
{
|
||
/* Find the next ref that is not equal to the current ref. */
|
||
while (df_ref_equal_p (ref_vec[i], ref_vec[i + dist + 1]))
|
||
{
|
||
pool_free (problem_data->ref_pool, ref_vec[i + dist + 1]);
|
||
dist++;
|
||
}
|
||
/* Copy it down to the next position. */
|
||
if (dist)
|
||
ref_vec[i+1] = ref_vec[i + dist + 1];
|
||
}
|
||
|
||
count -= dist;
|
||
ref_vec[count] = NULL;
|
||
return count;
|
||
}
|
||
|
||
|
||
/* Return true if the contents of two df_ref's are identical.
|
||
It ignores DF_REF_MARKER. */
|
||
|
||
static bool
|
||
df_mw_equal_p (struct df_mw_hardreg *mw1, struct df_mw_hardreg *mw2)
|
||
{
|
||
if (!mw2)
|
||
return false;
|
||
return (mw1 == mw2) ||
|
||
(mw1->mw_reg == mw2->mw_reg
|
||
&& mw1->type == mw2->type
|
||
&& mw1->flags == mw2->flags
|
||
&& mw1->start_regno == mw2->start_regno
|
||
&& mw1->end_regno == mw2->end_regno);
|
||
}
|
||
|
||
|
||
/* Compare MW1 and MW2 for sorting. */
|
||
|
||
static int
|
||
df_mw_compare (const void *m1, const void *m2)
|
||
{
|
||
const struct df_mw_hardreg *const mw1 = *(const struct df_mw_hardreg *const*)m1;
|
||
const struct df_mw_hardreg *const mw2 = *(const struct df_mw_hardreg *const*)m2;
|
||
|
||
if (mw1 == mw2)
|
||
return 0;
|
||
|
||
if (mw1->type != mw2->type)
|
||
return mw1->type - mw2->type;
|
||
|
||
if (mw1->flags != mw2->flags)
|
||
return mw1->flags - mw2->flags;
|
||
|
||
if (mw1->start_regno != mw2->start_regno)
|
||
return mw1->start_regno - mw2->start_regno;
|
||
|
||
if (mw1->end_regno != mw2->end_regno)
|
||
return mw1->end_regno - mw2->end_regno;
|
||
|
||
if (mw1->mw_reg != mw2->mw_reg)
|
||
return mw1->mw_order - mw2->mw_order;
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Sort and compress a set of refs. */
|
||
|
||
static unsigned int
|
||
df_sort_and_compress_mws (struct df_mw_hardreg **mw_vec, unsigned int count)
|
||
{
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
unsigned int i;
|
||
unsigned int dist = 0;
|
||
mw_vec[count] = NULL;
|
||
|
||
if (count < 2)
|
||
return count;
|
||
else if (count == 2)
|
||
{
|
||
if (df_mw_compare (&mw_vec[0], &mw_vec[1]) > 0)
|
||
{
|
||
struct df_mw_hardreg *tmp = mw_vec[0];
|
||
mw_vec[0] = mw_vec[1];
|
||
mw_vec[1] = tmp;
|
||
}
|
||
}
|
||
else
|
||
qsort (mw_vec, count, sizeof (struct df_mw_hardreg *), df_mw_compare);
|
||
|
||
for (i=0; i<count-dist; i++)
|
||
{
|
||
/* Find the next ref that is not equal to the current ref. */
|
||
while (df_mw_equal_p (mw_vec[i], mw_vec[i + dist + 1]))
|
||
{
|
||
pool_free (problem_data->mw_reg_pool, mw_vec[i + dist + 1]);
|
||
dist++;
|
||
}
|
||
/* Copy it down to the next position. */
|
||
if (dist)
|
||
mw_vec[i+1] = mw_vec[i + dist + 1];
|
||
}
|
||
|
||
count -= dist;
|
||
mw_vec[count] = NULL;
|
||
return count;
|
||
}
|
||
|
||
|
||
/* Sort and remove duplicates from the COLLECTION_REC. */
|
||
|
||
static void
|
||
df_canonize_collection_rec (struct df_collection_rec *collection_rec)
|
||
{
|
||
if (collection_rec->def_vec)
|
||
collection_rec->next_def
|
||
= df_sort_and_compress_refs (collection_rec->def_vec,
|
||
collection_rec->next_def);
|
||
if (collection_rec->use_vec)
|
||
collection_rec->next_use
|
||
= df_sort_and_compress_refs (collection_rec->use_vec,
|
||
collection_rec->next_use);
|
||
if (collection_rec->eq_use_vec)
|
||
collection_rec->next_eq_use
|
||
= df_sort_and_compress_refs (collection_rec->eq_use_vec,
|
||
collection_rec->next_eq_use);
|
||
if (collection_rec->mw_vec)
|
||
collection_rec->next_mw
|
||
= df_sort_and_compress_mws (collection_rec->mw_vec,
|
||
collection_rec->next_mw);
|
||
}
|
||
|
||
|
||
/* Add the new df_ref to appropriate reg_info/ref_info chains. */
|
||
|
||
static void
|
||
df_install_ref (struct df_ref *this_ref,
|
||
struct df_reg_info *reg_info,
|
||
struct df_ref_info *ref_info,
|
||
bool add_to_table)
|
||
{
|
||
unsigned int regno = DF_REF_REGNO (this_ref);
|
||
/* Add the ref to the reg_{def,use,eq_use} chain. */
|
||
struct df_ref *head = reg_info->reg_chain;
|
||
|
||
reg_info->reg_chain = this_ref;
|
||
reg_info->n_refs++;
|
||
|
||
if (DF_REF_FLAGS_IS_SET (this_ref, DF_HARD_REG_LIVE))
|
||
{
|
||
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
|
||
df->hard_regs_live_count[regno]++;
|
||
}
|
||
|
||
gcc_assert (DF_REF_NEXT_REG (this_ref) == NULL);
|
||
gcc_assert (DF_REF_PREV_REG (this_ref) == NULL);
|
||
|
||
DF_REF_NEXT_REG (this_ref) = head;
|
||
|
||
/* We cannot actually link to the head of the chain. */
|
||
DF_REF_PREV_REG (this_ref) = NULL;
|
||
|
||
if (head)
|
||
DF_REF_PREV_REG (head) = this_ref;
|
||
|
||
if (add_to_table)
|
||
{
|
||
gcc_assert (ref_info->ref_order != DF_REF_ORDER_NO_TABLE);
|
||
df_check_and_grow_ref_info (ref_info, 1);
|
||
DF_REF_ID (this_ref) = ref_info->table_size;
|
||
/* Add the ref to the big array of defs. */
|
||
ref_info->refs[ref_info->table_size] = this_ref;
|
||
ref_info->table_size++;
|
||
}
|
||
else
|
||
DF_REF_ID (this_ref) = -1;
|
||
|
||
ref_info->total_size++;
|
||
}
|
||
|
||
|
||
/* This function takes one of the groups of refs (defs, uses or
|
||
eq_uses) and installs the entire group into the insn. It also adds
|
||
each of these refs into the appropriate chains. */
|
||
|
||
static struct df_ref **
|
||
df_install_refs (basic_block bb,
|
||
struct df_ref **old_vec, unsigned int count,
|
||
struct df_reg_info **reg_info,
|
||
struct df_ref_info *ref_info,
|
||
bool is_notes)
|
||
{
|
||
if (count)
|
||
{
|
||
unsigned int i;
|
||
struct df_ref **new_vec = XNEWVEC (struct df_ref*, count + 1);
|
||
bool add_to_table;
|
||
|
||
switch (ref_info->ref_order)
|
||
{
|
||
case DF_REF_ORDER_UNORDERED_WITH_NOTES:
|
||
case DF_REF_ORDER_BY_REG_WITH_NOTES:
|
||
case DF_REF_ORDER_BY_INSN_WITH_NOTES:
|
||
ref_info->ref_order = DF_REF_ORDER_UNORDERED_WITH_NOTES;
|
||
add_to_table = true;
|
||
break;
|
||
case DF_REF_ORDER_UNORDERED:
|
||
case DF_REF_ORDER_BY_REG:
|
||
case DF_REF_ORDER_BY_INSN:
|
||
ref_info->ref_order = DF_REF_ORDER_UNORDERED;
|
||
add_to_table = !is_notes;
|
||
break;
|
||
default:
|
||
add_to_table = false;
|
||
break;
|
||
}
|
||
|
||
/* Do not add if ref is not in the right blocks. */
|
||
if (add_to_table && df->analyze_subset)
|
||
add_to_table = bitmap_bit_p (df->blocks_to_analyze, bb->index);
|
||
|
||
for (i = 0; i < count; i++)
|
||
{
|
||
struct df_ref *this_ref = old_vec[i];
|
||
new_vec[i] = this_ref;
|
||
df_install_ref (this_ref, reg_info[DF_REF_REGNO (this_ref)],
|
||
ref_info, add_to_table);
|
||
}
|
||
|
||
new_vec[count] = NULL;
|
||
return new_vec;
|
||
}
|
||
else
|
||
return df_null_ref_rec;
|
||
}
|
||
|
||
|
||
/* This function takes the mws installs the entire group into the
|
||
insn. */
|
||
|
||
static struct df_mw_hardreg **
|
||
df_install_mws (struct df_mw_hardreg **old_vec, unsigned int count)
|
||
{
|
||
if (count)
|
||
{
|
||
struct df_mw_hardreg **new_vec
|
||
= XNEWVEC (struct df_mw_hardreg*, count + 1);
|
||
memcpy (new_vec, old_vec,
|
||
sizeof (struct df_mw_hardreg*) * (count + 1));
|
||
return new_vec;
|
||
}
|
||
else
|
||
return df_null_mw_rec;
|
||
}
|
||
|
||
|
||
/* Add a chain of df_refs to appropriate ref chain/reg_info/ref_info
|
||
chains and update other necessary information. */
|
||
|
||
static void
|
||
df_refs_add_to_chains (struct df_collection_rec *collection_rec,
|
||
basic_block bb, rtx insn)
|
||
{
|
||
if (insn)
|
||
{
|
||
struct df_insn_info *insn_rec = DF_INSN_GET (insn);
|
||
/* If there is a vector in the collection rec, add it to the
|
||
insn. A null rec is a signal that the caller will handle the
|
||
chain specially. */
|
||
if (collection_rec->def_vec)
|
||
{
|
||
if (insn_rec->defs && *insn_rec->defs)
|
||
free (insn_rec->defs);
|
||
insn_rec->defs
|
||
= df_install_refs (bb, collection_rec->def_vec,
|
||
collection_rec->next_def,
|
||
df->def_regs,
|
||
&df->def_info, false);
|
||
}
|
||
if (collection_rec->use_vec)
|
||
{
|
||
if (insn_rec->uses && *insn_rec->uses)
|
||
free (insn_rec->uses);
|
||
insn_rec->uses
|
||
= df_install_refs (bb, collection_rec->use_vec,
|
||
collection_rec->next_use,
|
||
df->use_regs,
|
||
&df->use_info, false);
|
||
}
|
||
if (collection_rec->eq_use_vec)
|
||
{
|
||
if (insn_rec->eq_uses && *insn_rec->eq_uses)
|
||
free (insn_rec->eq_uses);
|
||
insn_rec->eq_uses
|
||
= df_install_refs (bb, collection_rec->eq_use_vec,
|
||
collection_rec->next_eq_use,
|
||
df->eq_use_regs,
|
||
&df->use_info, true);
|
||
}
|
||
if (collection_rec->mw_vec)
|
||
{
|
||
if (insn_rec->mw_hardregs && *insn_rec->mw_hardregs)
|
||
free (insn_rec->mw_hardregs);
|
||
insn_rec->mw_hardregs
|
||
= df_install_mws (collection_rec->mw_vec,
|
||
collection_rec->next_mw);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct df_scan_bb_info *bb_info = df_scan_get_bb_info (bb->index);
|
||
|
||
if (bb_info->artificial_defs && *bb_info->artificial_defs)
|
||
free (bb_info->artificial_defs);
|
||
bb_info->artificial_defs
|
||
= df_install_refs (bb, collection_rec->def_vec,
|
||
collection_rec->next_def,
|
||
df->def_regs,
|
||
&df->def_info, false);
|
||
if (bb_info->artificial_uses && *bb_info->artificial_uses)
|
||
free (bb_info->artificial_uses);
|
||
bb_info->artificial_uses
|
||
= df_install_refs (bb, collection_rec->use_vec,
|
||
collection_rec->next_use,
|
||
df->use_regs,
|
||
&df->use_info, false);
|
||
}
|
||
}
|
||
|
||
|
||
/* Allocate a ref and initialize its fields. */
|
||
|
||
static struct df_ref *
|
||
df_ref_create_structure (struct df_collection_rec *collection_rec,
|
||
rtx reg, rtx *loc,
|
||
basic_block bb, rtx insn,
|
||
enum df_ref_type ref_type,
|
||
enum df_ref_flags ref_flags)
|
||
{
|
||
struct df_ref *this_ref;
|
||
int regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
|
||
this_ref = pool_alloc (problem_data->ref_pool);
|
||
DF_REF_ID (this_ref) = -1;
|
||
DF_REF_REG (this_ref) = reg;
|
||
DF_REF_REGNO (this_ref) = regno;
|
||
DF_REF_LOC (this_ref) = loc;
|
||
DF_REF_INSN (this_ref) = insn;
|
||
DF_REF_CHAIN (this_ref) = NULL;
|
||
DF_REF_TYPE (this_ref) = ref_type;
|
||
DF_REF_FLAGS (this_ref) = ref_flags;
|
||
DF_REF_BB (this_ref) = bb;
|
||
DF_REF_NEXT_REG (this_ref) = NULL;
|
||
DF_REF_PREV_REG (this_ref) = NULL;
|
||
DF_REF_ORDER (this_ref) = df->ref_order++;
|
||
|
||
/* We need to clear this bit because fwprop, and in the future
|
||
possibly other optimizations sometimes create new refs using ond
|
||
refs as the model. */
|
||
DF_REF_FLAGS_CLEAR (this_ref, DF_HARD_REG_LIVE);
|
||
|
||
/* See if this ref needs to have DF_HARD_REG_LIVE bit set. */
|
||
if ((regno < FIRST_PSEUDO_REGISTER)
|
||
&& (!DF_REF_IS_ARTIFICIAL (this_ref)))
|
||
{
|
||
if (DF_REF_TYPE (this_ref) == DF_REF_REG_DEF)
|
||
{
|
||
if (!DF_REF_FLAGS_IS_SET (this_ref, DF_REF_MAY_CLOBBER))
|
||
DF_REF_FLAGS_SET (this_ref, DF_HARD_REG_LIVE);
|
||
}
|
||
else if (!(TEST_HARD_REG_BIT (elim_reg_set, regno)
|
||
&& (regno == FRAME_POINTER_REGNUM
|
||
|| regno == ARG_POINTER_REGNUM)))
|
||
DF_REF_FLAGS_SET (this_ref, DF_HARD_REG_LIVE);
|
||
}
|
||
|
||
if (collection_rec)
|
||
{
|
||
if (DF_REF_TYPE (this_ref) == DF_REF_REG_DEF)
|
||
collection_rec->def_vec[collection_rec->next_def++] = this_ref;
|
||
else if (DF_REF_FLAGS (this_ref) & DF_REF_IN_NOTE)
|
||
collection_rec->eq_use_vec[collection_rec->next_eq_use++] = this_ref;
|
||
else
|
||
collection_rec->use_vec[collection_rec->next_use++] = this_ref;
|
||
}
|
||
|
||
return this_ref;
|
||
}
|
||
|
||
|
||
/* Create new references of type DF_REF_TYPE for each part of register REG
|
||
at address LOC within INSN of BB. */
|
||
|
||
static void
|
||
df_ref_record (struct df_collection_rec *collection_rec,
|
||
rtx reg, rtx *loc,
|
||
basic_block bb, rtx insn,
|
||
enum df_ref_type ref_type,
|
||
enum df_ref_flags ref_flags)
|
||
{
|
||
unsigned int regno;
|
||
|
||
gcc_assert (REG_P (reg) || GET_CODE (reg) == SUBREG);
|
||
|
||
regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
struct df_mw_hardreg *hardreg = NULL;
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
unsigned int i;
|
||
unsigned int endregno;
|
||
struct df_ref *ref;
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
{
|
||
regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
|
||
SUBREG_BYTE (reg), GET_MODE (reg));
|
||
endregno = regno + subreg_nregs (reg);
|
||
}
|
||
else
|
||
endregno = END_HARD_REGNO (reg);
|
||
|
||
/* If this is a multiword hardreg, we create some extra
|
||
datastructures that will enable us to easily build REG_DEAD
|
||
and REG_UNUSED notes. */
|
||
if ((endregno != regno + 1) && insn)
|
||
{
|
||
/* Sets to a subreg of a multiword register are partial.
|
||
Sets to a non-subreg of a multiword register are not. */
|
||
if (GET_CODE (reg) == SUBREG)
|
||
ref_flags |= DF_REF_PARTIAL;
|
||
ref_flags |= DF_REF_MW_HARDREG;
|
||
|
||
hardreg = pool_alloc (problem_data->mw_reg_pool);
|
||
hardreg->type = ref_type;
|
||
hardreg->flags = ref_flags;
|
||
hardreg->mw_reg = reg;
|
||
hardreg->start_regno = regno;
|
||
hardreg->end_regno = endregno - 1;
|
||
hardreg->mw_order = df->ref_order++;
|
||
collection_rec->mw_vec[collection_rec->next_mw++] = hardreg;
|
||
}
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
{
|
||
ref = df_ref_create_structure (collection_rec, regno_reg_rtx[i], loc,
|
||
bb, insn, ref_type, ref_flags);
|
||
|
||
gcc_assert (ORIGINAL_REGNO (DF_REF_REG (ref)) == i);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct df_ref *ref;
|
||
ref = df_ref_create_structure (collection_rec, reg, loc, bb, insn,
|
||
ref_type, ref_flags);
|
||
}
|
||
}
|
||
|
||
|
||
/* A set to a non-paradoxical SUBREG for which the number of word_mode units
|
||
covered by the outer mode is smaller than that covered by the inner mode,
|
||
is a read-modify-write operation.
|
||
This function returns true iff the SUBREG X is such a SUBREG. */
|
||
|
||
bool
|
||
df_read_modify_subreg_p (rtx x)
|
||
{
|
||
unsigned int isize, osize;
|
||
if (GET_CODE (x) != SUBREG)
|
||
return false;
|
||
isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
|
||
osize = GET_MODE_SIZE (GET_MODE (x));
|
||
return isize > osize
|
||
&& isize > REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
|
||
}
|
||
|
||
|
||
/* Process all the registers defined in the rtx, X.
|
||
Autoincrement/decrement definitions will be picked up by
|
||
df_uses_record. */
|
||
|
||
static void
|
||
df_def_record_1 (struct df_collection_rec *collection_rec,
|
||
rtx x, basic_block bb, rtx insn,
|
||
enum df_ref_flags flags)
|
||
{
|
||
rtx *loc;
|
||
rtx dst;
|
||
|
||
/* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
|
||
construct. */
|
||
if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
|
||
loc = &XEXP (x, 0);
|
||
else
|
||
loc = &SET_DEST (x);
|
||
dst = *loc;
|
||
|
||
/* It is legal to have a set destination be a parallel. */
|
||
if (GET_CODE (dst) == PARALLEL)
|
||
{
|
||
int i;
|
||
|
||
for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
|
||
{
|
||
rtx temp = XVECEXP (dst, 0, i);
|
||
if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
|
||
|| GET_CODE (temp) == SET)
|
||
df_def_record_1 (collection_rec,
|
||
temp, bb, insn,
|
||
GET_CODE (temp) == CLOBBER
|
||
? flags | DF_REF_MUST_CLOBBER : flags);
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
|
||
be handy for the reg allocator. */
|
||
while (GET_CODE (dst) == STRICT_LOW_PART
|
||
|| GET_CODE (dst) == ZERO_EXTRACT)
|
||
{
|
||
flags |= DF_REF_READ_WRITE | DF_REF_PARTIAL;
|
||
loc = &XEXP (dst, 0);
|
||
dst = *loc;
|
||
}
|
||
|
||
if (df_read_modify_subreg_p (dst))
|
||
flags |= DF_REF_READ_WRITE | DF_REF_PARTIAL;
|
||
|
||
if (REG_P (dst)
|
||
|| (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
|
||
df_ref_record (collection_rec,
|
||
dst, loc, bb, insn, DF_REF_REG_DEF, flags);
|
||
|
||
/* We want to keep sp alive everywhere - by making all
|
||
writes to sp also use of sp. */
|
||
if (REG_P (dst) && REGNO (dst) == STACK_POINTER_REGNUM)
|
||
df_ref_record (collection_rec,
|
||
dst, NULL, bb, insn, DF_REF_REG_USE, flags);
|
||
}
|
||
|
||
|
||
/* Process all the registers defined in the pattern rtx, X. */
|
||
|
||
static void
|
||
df_defs_record (struct df_collection_rec *collection_rec,
|
||
rtx x, basic_block bb, rtx insn, enum df_ref_flags flags)
|
||
{
|
||
RTX_CODE code = GET_CODE (x);
|
||
|
||
if (code == SET || code == CLOBBER)
|
||
{
|
||
/* Mark the single def within the pattern. */
|
||
enum df_ref_flags clobber_flags = flags;
|
||
clobber_flags |= (code == CLOBBER) ? DF_REF_MUST_CLOBBER : 0;
|
||
df_def_record_1 (collection_rec, x, bb, insn, clobber_flags);
|
||
}
|
||
else if (code == COND_EXEC)
|
||
{
|
||
df_defs_record (collection_rec, COND_EXEC_CODE (x),
|
||
bb, insn, DF_REF_CONDITIONAL);
|
||
}
|
||
else if (code == PARALLEL)
|
||
{
|
||
int i;
|
||
|
||
/* Mark the multiple defs within the pattern. */
|
||
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
|
||
df_defs_record (collection_rec, XVECEXP (x, 0, i), bb, insn, flags);
|
||
}
|
||
}
|
||
|
||
|
||
/* Process all the registers used in the rtx at address LOC. */
|
||
|
||
static void
|
||
df_uses_record (struct df_collection_rec *collection_rec,
|
||
rtx *loc, enum df_ref_type ref_type,
|
||
basic_block bb, rtx insn, enum df_ref_flags flags)
|
||
{
|
||
RTX_CODE code;
|
||
rtx x;
|
||
|
||
retry:
|
||
x = *loc;
|
||
if (!x)
|
||
return;
|
||
code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST_INT:
|
||
case CONST:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case PC:
|
||
case CC0:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
return;
|
||
|
||
case CLOBBER:
|
||
/* If we are clobbering a MEM, mark any registers inside the address
|
||
as being used. */
|
||
if (MEM_P (XEXP (x, 0)))
|
||
df_uses_record (collection_rec,
|
||
&XEXP (XEXP (x, 0), 0),
|
||
DF_REF_REG_MEM_STORE, bb, insn, flags);
|
||
|
||
/* If we're clobbering a REG then we have a def so ignore. */
|
||
return;
|
||
|
||
case MEM:
|
||
df_uses_record (collection_rec,
|
||
&XEXP (x, 0), DF_REF_REG_MEM_LOAD,
|
||
bb, insn, flags & DF_REF_IN_NOTE);
|
||
return;
|
||
|
||
case SUBREG:
|
||
/* While we're here, optimize this case. */
|
||
flags |= DF_REF_PARTIAL;
|
||
/* In case the SUBREG is not of a REG, do not optimize. */
|
||
if (!REG_P (SUBREG_REG (x)))
|
||
{
|
||
loc = &SUBREG_REG (x);
|
||
df_uses_record (collection_rec, loc, ref_type, bb, insn, flags);
|
||
return;
|
||
}
|
||
/* ... Fall through ... */
|
||
|
||
case REG:
|
||
df_ref_record (collection_rec,
|
||
x, loc, bb, insn, ref_type, flags);
|
||
return;
|
||
|
||
case SET:
|
||
{
|
||
rtx dst = SET_DEST (x);
|
||
gcc_assert (!(flags & DF_REF_IN_NOTE));
|
||
df_uses_record (collection_rec,
|
||
&SET_SRC (x), DF_REF_REG_USE, bb, insn, flags);
|
||
|
||
switch (GET_CODE (dst))
|
||
{
|
||
case SUBREG:
|
||
if (df_read_modify_subreg_p (dst))
|
||
{
|
||
df_uses_record (collection_rec, &SUBREG_REG (dst),
|
||
DF_REF_REG_USE, bb, insn, flags | DF_REF_READ_WRITE);
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
case REG:
|
||
case PARALLEL:
|
||
case SCRATCH:
|
||
case PC:
|
||
case CC0:
|
||
break;
|
||
case MEM:
|
||
df_uses_record (collection_rec, &XEXP (dst, 0),
|
||
DF_REF_REG_MEM_STORE, bb, insn, flags);
|
||
break;
|
||
case STRICT_LOW_PART:
|
||
{
|
||
rtx *temp = &XEXP (dst, 0);
|
||
/* A strict_low_part uses the whole REG and not just the
|
||
SUBREG. */
|
||
dst = XEXP (dst, 0);
|
||
df_uses_record (collection_rec,
|
||
(GET_CODE (dst) == SUBREG) ? &SUBREG_REG (dst) : temp,
|
||
DF_REF_REG_USE, bb, insn, DF_REF_READ_WRITE);
|
||
}
|
||
break;
|
||
case ZERO_EXTRACT:
|
||
case SIGN_EXTRACT:
|
||
df_uses_record (collection_rec, &XEXP (dst, 0),
|
||
DF_REF_REG_USE, bb, insn, DF_REF_READ_WRITE);
|
||
df_uses_record (collection_rec, &XEXP (dst, 1),
|
||
DF_REF_REG_USE, bb, insn, flags);
|
||
df_uses_record (collection_rec, &XEXP (dst, 2),
|
||
DF_REF_REG_USE, bb, insn, flags);
|
||
dst = XEXP (dst, 0);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
return;
|
||
}
|
||
|
||
case RETURN:
|
||
break;
|
||
|
||
case ASM_OPERANDS:
|
||
case UNSPEC_VOLATILE:
|
||
case TRAP_IF:
|
||
case ASM_INPUT:
|
||
{
|
||
/* Traditional and volatile asm instructions must be
|
||
considered to use and clobber all hard registers, all
|
||
pseudo-registers and all of memory. So must TRAP_IF and
|
||
UNSPEC_VOLATILE operations.
|
||
|
||
Consider for instance a volatile asm that changes the fpu
|
||
rounding mode. An insn should not be moved across this
|
||
even if it only uses pseudo-regs because it might give an
|
||
incorrectly rounded result.
|
||
|
||
However, flow.c's liveness computation did *not* do this,
|
||
giving the reasoning as " ?!? Unfortunately, marking all
|
||
hard registers as live causes massive problems for the
|
||
register allocator and marking all pseudos as live creates
|
||
mountains of uninitialized variable warnings."
|
||
|
||
In order to maintain the status quo with regard to liveness
|
||
and uses, we do what flow.c did and just mark any regs we
|
||
can find in ASM_OPERANDS as used. In global asm insns are
|
||
scanned and regs_asm_clobbered is filled out.
|
||
|
||
For all ASM_OPERANDS, we must traverse the vector of input
|
||
operands. We can not just fall through here since then we
|
||
would be confused by the ASM_INPUT rtx inside ASM_OPERANDS,
|
||
which do not indicate traditional asms unlike their normal
|
||
usage. */
|
||
if (code == ASM_OPERANDS)
|
||
{
|
||
int j;
|
||
|
||
for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
|
||
df_uses_record (collection_rec, &ASM_OPERANDS_INPUT (x, j),
|
||
DF_REF_REG_USE, bb, insn, flags);
|
||
return;
|
||
}
|
||
break;
|
||
}
|
||
|
||
case PRE_DEC:
|
||
case POST_DEC:
|
||
case PRE_INC:
|
||
case POST_INC:
|
||
case PRE_MODIFY:
|
||
case POST_MODIFY:
|
||
/* Catch the def of the register being modified. */
|
||
df_ref_record (collection_rec, XEXP (x, 0), &XEXP (x, 0), bb, insn,
|
||
DF_REF_REG_DEF,
|
||
flags | DF_REF_READ_WRITE | DF_REF_PRE_POST_MODIFY);
|
||
|
||
/* ... Fall through to handle uses ... */
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Recursively scan the operands of this expression. */
|
||
{
|
||
const char *fmt = GET_RTX_FORMAT (code);
|
||
int i;
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
/* Tail recursive case: save a function call level. */
|
||
if (i == 0)
|
||
{
|
||
loc = &XEXP (x, 0);
|
||
goto retry;
|
||
}
|
||
df_uses_record (collection_rec, &XEXP (x, i), ref_type, bb, insn, flags);
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
df_uses_record (collection_rec,
|
||
&XVECEXP (x, i, j), ref_type, bb, insn, flags);
|
||
}
|
||
}
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
|
||
/* For all DF_REF_CONDITIONAL defs, add a corresponding uses. */
|
||
|
||
static void
|
||
df_get_conditional_uses (struct df_collection_rec *collection_rec)
|
||
{
|
||
unsigned int i;
|
||
for (i = 0; i < collection_rec->next_def; i++)
|
||
{
|
||
struct df_ref *ref = collection_rec->def_vec[i];
|
||
if (DF_REF_FLAGS_IS_SET (ref, DF_REF_CONDITIONAL))
|
||
{
|
||
struct df_ref *use
|
||
= df_ref_create_structure (collection_rec, DF_REF_REG (ref),
|
||
DF_REF_LOC (ref), DF_REF_BB (ref),
|
||
DF_REF_INSN (ref), DF_REF_REG_USE,
|
||
DF_REF_FLAGS (ref) & ~DF_REF_CONDITIONAL);
|
||
DF_REF_REGNO (use) = DF_REF_REGNO (ref);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Get call's extra defs and uses. */
|
||
|
||
static void
|
||
df_get_call_refs (struct df_collection_rec * collection_rec,
|
||
basic_block bb,
|
||
rtx insn,
|
||
enum df_ref_flags flags)
|
||
{
|
||
rtx note;
|
||
bitmap_iterator bi;
|
||
unsigned int ui;
|
||
bool is_sibling_call;
|
||
unsigned int i;
|
||
bitmap defs_generated = BITMAP_ALLOC (&df_bitmap_obstack);
|
||
|
||
/* Do not generate clobbers for registers that are the result of the
|
||
call. This causes ordering problems in the chain building code
|
||
depending on which def is seen first. */
|
||
for (i=0; i<collection_rec->next_def; i++)
|
||
{
|
||
struct df_ref *def = collection_rec->def_vec[i];
|
||
bitmap_set_bit (defs_generated, DF_REF_REGNO (def));
|
||
}
|
||
|
||
/* Record the registers used to pass arguments, and explicitly
|
||
noted as clobbered. */
|
||
for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
|
||
note = XEXP (note, 1))
|
||
{
|
||
if (GET_CODE (XEXP (note, 0)) == USE)
|
||
df_uses_record (collection_rec, &XEXP (XEXP (note, 0), 0),
|
||
DF_REF_REG_USE, bb, insn, flags);
|
||
else if (GET_CODE (XEXP (note, 0)) == CLOBBER)
|
||
{
|
||
if (REG_P (XEXP (XEXP (note, 0), 0)))
|
||
{
|
||
unsigned int regno = REGNO (XEXP (XEXP (note, 0), 0));
|
||
if (!bitmap_bit_p (defs_generated, regno))
|
||
df_defs_record (collection_rec, XEXP (note, 0), bb,
|
||
insn, flags);
|
||
}
|
||
else
|
||
df_uses_record (collection_rec, &XEXP (note, 0),
|
||
DF_REF_REG_USE, bb, insn, flags);
|
||
}
|
||
}
|
||
|
||
/* The stack ptr is used (honorarily) by a CALL insn. */
|
||
df_ref_record (collection_rec, regno_reg_rtx[STACK_POINTER_REGNUM],
|
||
NULL, bb, insn, DF_REF_REG_USE, DF_REF_CALL_STACK_USAGE | flags);
|
||
|
||
/* Calls may also reference any of the global registers,
|
||
so they are recorded as used. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (global_regs[i])
|
||
df_ref_record (collection_rec, regno_reg_rtx[i],
|
||
NULL, bb, insn, DF_REF_REG_USE, flags);
|
||
|
||
is_sibling_call = SIBLING_CALL_P (insn);
|
||
EXECUTE_IF_SET_IN_BITMAP (df_invalidated_by_call, 0, ui, bi)
|
||
{
|
||
if ((!bitmap_bit_p (defs_generated, ui))
|
||
&& (!is_sibling_call
|
||
|| !bitmap_bit_p (df->exit_block_uses, ui)
|
||
|| refers_to_regno_p (ui, ui+1,
|
||
current_function_return_rtx, NULL)))
|
||
|
||
df_ref_record (collection_rec, regno_reg_rtx[ui],
|
||
NULL, bb, insn, DF_REF_REG_DEF, DF_REF_MAY_CLOBBER | flags);
|
||
}
|
||
|
||
BITMAP_FREE (defs_generated);
|
||
return;
|
||
}
|
||
|
||
/* Collect all refs in the INSN. This function is free of any
|
||
side-effect - it will create and return a lists of df_ref's in the
|
||
COLLECTION_REC without putting those refs into existing ref chains
|
||
and reg chains. */
|
||
|
||
static void
|
||
df_insn_refs_collect (struct df_collection_rec* collection_rec,
|
||
basic_block bb, rtx insn)
|
||
{
|
||
rtx note;
|
||
bool is_cond_exec = (GET_CODE (PATTERN (insn)) == COND_EXEC);
|
||
|
||
/* Clear out the collection record. */
|
||
collection_rec->next_def = 0;
|
||
collection_rec->next_use = 0;
|
||
collection_rec->next_eq_use = 0;
|
||
collection_rec->next_mw = 0;
|
||
|
||
/* Record register defs. */
|
||
df_defs_record (collection_rec, PATTERN (insn), bb, insn, 0);
|
||
|
||
/* Process REG_EQUIV/REG_EQUAL notes */
|
||
for (note = REG_NOTES (insn); note;
|
||
note = XEXP (note, 1))
|
||
{
|
||
switch (REG_NOTE_KIND (note))
|
||
{
|
||
case REG_EQUIV:
|
||
case REG_EQUAL:
|
||
df_uses_record (collection_rec,
|
||
&XEXP (note, 0), DF_REF_REG_USE,
|
||
bb, insn, DF_REF_IN_NOTE);
|
||
break;
|
||
case REG_NON_LOCAL_GOTO:
|
||
/* The frame ptr is used by a non-local goto. */
|
||
df_ref_record (collection_rec,
|
||
regno_reg_rtx[FRAME_POINTER_REGNUM],
|
||
NULL,
|
||
bb, insn,
|
||
DF_REF_REG_USE, 0);
|
||
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
||
df_ref_record (collection_rec,
|
||
regno_reg_rtx[HARD_FRAME_POINTER_REGNUM],
|
||
NULL,
|
||
bb, insn,
|
||
DF_REF_REG_USE, 0);
|
||
#endif
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (CALL_P (insn))
|
||
df_get_call_refs (collection_rec, bb, insn,
|
||
(is_cond_exec) ? DF_REF_CONDITIONAL : 0);
|
||
|
||
/* Record the register uses. */
|
||
df_uses_record (collection_rec,
|
||
&PATTERN (insn), DF_REF_REG_USE, bb, insn, 0);
|
||
|
||
/* DF_REF_CONDITIONAL needs corresponding USES. */
|
||
if (is_cond_exec)
|
||
df_get_conditional_uses (collection_rec);
|
||
|
||
df_canonize_collection_rec (collection_rec);
|
||
}
|
||
|
||
/* Return true if any pred of BB is an eh. */
|
||
|
||
bool
|
||
df_has_eh_preds (basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
if (e->flags & EDGE_EH)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Recompute the luids for the insns in BB. */
|
||
|
||
void
|
||
df_recompute_luids (basic_block bb)
|
||
{
|
||
rtx insn;
|
||
int luid = 0;
|
||
|
||
df_grow_insn_info ();
|
||
|
||
/* Scan the block an insn at a time from beginning to end. */
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
struct df_insn_info *insn_info = DF_INSN_GET (insn);
|
||
/* Inserting labels does not always trigger the incremental
|
||
rescanning. */
|
||
if (!insn_info)
|
||
{
|
||
gcc_assert (!INSN_P (insn));
|
||
df_insn_create_insn_record (insn);
|
||
}
|
||
|
||
DF_INSN_LUID (insn) = luid;
|
||
if (INSN_P (insn))
|
||
luid++;
|
||
}
|
||
}
|
||
|
||
|
||
/* Returns true if the function entry needs to
|
||
define the static chain register. */
|
||
|
||
static bool
|
||
df_need_static_chain_reg (struct function *fun)
|
||
{
|
||
tree fun_context = decl_function_context (fun->decl);
|
||
return fun_context
|
||
&& DECL_NO_STATIC_CHAIN (fun_context) == false;
|
||
}
|
||
|
||
|
||
/* Collect all artificial refs at the block level for BB and add them
|
||
to COLLECTION_REC. */
|
||
|
||
static void
|
||
df_bb_refs_collect (struct df_collection_rec *collection_rec, basic_block bb)
|
||
{
|
||
collection_rec->next_def = 0;
|
||
collection_rec->next_use = 0;
|
||
collection_rec->next_eq_use = 0;
|
||
collection_rec->next_mw = 0;
|
||
|
||
if (bb->index == ENTRY_BLOCK)
|
||
{
|
||
df_entry_block_defs_collect (collection_rec, df->entry_block_defs);
|
||
return;
|
||
}
|
||
else if (bb->index == EXIT_BLOCK)
|
||
{
|
||
df_exit_block_uses_collect (collection_rec, df->exit_block_uses);
|
||
return;
|
||
}
|
||
|
||
#ifdef EH_RETURN_DATA_REGNO
|
||
if (df_has_eh_preds (bb))
|
||
{
|
||
unsigned int i;
|
||
/* Mark the registers that will contain data for the handler. */
|
||
for (i = 0; ; ++i)
|
||
{
|
||
unsigned regno = EH_RETURN_DATA_REGNO (i);
|
||
if (regno == INVALID_REGNUM)
|
||
break;
|
||
df_ref_record (collection_rec, regno_reg_rtx[regno], NULL,
|
||
bb, NULL, DF_REF_REG_DEF, DF_REF_AT_TOP);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
#ifdef EH_USES
|
||
if (df_has_eh_preds (bb))
|
||
{
|
||
unsigned int i;
|
||
/* This code is putting in an artificial ref for the use at the
|
||
TOP of the block that receives the exception. It is too
|
||
cumbersome to actually put the ref on the edge. We could
|
||
either model this at the top of the receiver block or the
|
||
bottom of the sender block.
|
||
|
||
The bottom of the sender block is problematic because not all
|
||
out-edges of the a block are eh-edges. However, it is true
|
||
that all edges into a block are either eh-edges or none of
|
||
them are eh-edges. Thus, we can model this at the top of the
|
||
eh-receiver for all of the edges at once. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (EH_USES (i))
|
||
df_ref_record (collection_rec, regno_reg_rtx[i], NULL,
|
||
bb, NULL, DF_REF_REG_USE, DF_REF_AT_TOP);
|
||
}
|
||
#endif
|
||
|
||
/* Add the hard_frame_pointer if this block is the target of a
|
||
non-local goto. */
|
||
if (bb->flags & BB_NON_LOCAL_GOTO_TARGET)
|
||
df_ref_record (collection_rec, hard_frame_pointer_rtx, NULL,
|
||
bb, NULL, DF_REF_REG_DEF, DF_REF_AT_TOP);
|
||
|
||
/* Add the artificial uses. */
|
||
if (bb->index >= NUM_FIXED_BLOCKS)
|
||
{
|
||
bitmap_iterator bi;
|
||
unsigned int regno;
|
||
bitmap au = df_has_eh_preds (bb)
|
||
? df->eh_block_artificial_uses
|
||
: df->regular_block_artificial_uses;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (au, 0, regno, bi)
|
||
{
|
||
df_ref_record (collection_rec, regno_reg_rtx[regno], NULL,
|
||
bb, NULL, DF_REF_REG_USE, 0);
|
||
}
|
||
}
|
||
|
||
df_canonize_collection_rec (collection_rec);
|
||
}
|
||
|
||
|
||
/* Record all the refs within the basic block BB_INDEX and scan the instructions if SCAN_INSNS. */
|
||
|
||
void
|
||
df_bb_refs_record (int bb_index, bool scan_insns)
|
||
{
|
||
basic_block bb = BASIC_BLOCK (bb_index);
|
||
rtx insn;
|
||
int luid = 0;
|
||
struct df_scan_bb_info *bb_info;
|
||
struct df_collection_rec collection_rec;
|
||
collection_rec.def_vec = alloca (sizeof (struct df_ref*) * 1000);
|
||
collection_rec.use_vec = alloca (sizeof (struct df_ref*) * 1000);
|
||
collection_rec.eq_use_vec = alloca (sizeof (struct df_ref*) * 1000);
|
||
collection_rec.mw_vec = alloca (sizeof (struct df_mw_hardreg*) * 100);
|
||
|
||
if (!df)
|
||
return;
|
||
|
||
bb_info = df_scan_get_bb_info (bb_index);
|
||
|
||
/* Need to make sure that there is a record in the basic block info. */
|
||
if (!bb_info)
|
||
{
|
||
bb_info = (struct df_scan_bb_info *) pool_alloc (df_scan->block_pool);
|
||
df_scan_set_bb_info (bb_index, bb_info);
|
||
bb_info->artificial_defs = NULL;
|
||
bb_info->artificial_uses = NULL;
|
||
}
|
||
|
||
if (scan_insns)
|
||
/* Scan the block an insn at a time from beginning to end. */
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
struct df_insn_info *insn_info = DF_INSN_GET (insn);
|
||
gcc_assert (!insn_info);
|
||
|
||
df_insn_create_insn_record (insn);
|
||
if (INSN_P (insn))
|
||
{
|
||
/* Record refs within INSN. */
|
||
DF_INSN_LUID (insn) = luid++;
|
||
df_insn_refs_collect (&collection_rec, bb, insn);
|
||
df_refs_add_to_chains (&collection_rec, bb, insn);
|
||
}
|
||
DF_INSN_LUID (insn) = luid;
|
||
}
|
||
|
||
/* Other block level artificial refs */
|
||
df_bb_refs_collect (&collection_rec, bb);
|
||
df_refs_add_to_chains (&collection_rec, bb, NULL);
|
||
|
||
/* Now that the block has been processed, set the block as dirty so
|
||
lr and ur will get it processed. */
|
||
df_set_bb_dirty (bb);
|
||
}
|
||
|
||
|
||
/* Get the artificial use set for a regular (i.e. non-exit/non-entry)
|
||
block. */
|
||
|
||
static void
|
||
df_get_regular_block_artificial_uses (bitmap regular_block_artificial_uses)
|
||
{
|
||
bitmap_clear (regular_block_artificial_uses);
|
||
|
||
if (reload_completed)
|
||
{
|
||
if (frame_pointer_needed)
|
||
bitmap_set_bit (regular_block_artificial_uses, HARD_FRAME_POINTER_REGNUM);
|
||
}
|
||
else
|
||
/* Before reload, there are a few registers that must be forced
|
||
live everywhere -- which might not already be the case for
|
||
blocks within infinite loops. */
|
||
{
|
||
/* Any reference to any pseudo before reload is a potential
|
||
reference of the frame pointer. */
|
||
bitmap_set_bit (regular_block_artificial_uses, FRAME_POINTER_REGNUM);
|
||
|
||
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
||
bitmap_set_bit (regular_block_artificial_uses, HARD_FRAME_POINTER_REGNUM);
|
||
#endif
|
||
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
/* Pseudos with argument area equivalences may require
|
||
reloading via the argument pointer. */
|
||
if (fixed_regs[ARG_POINTER_REGNUM])
|
||
bitmap_set_bit (regular_block_artificial_uses, ARG_POINTER_REGNUM);
|
||
#endif
|
||
|
||
/* Any constant, or pseudo with constant equivalences, may
|
||
require reloading from memory using the pic register. */
|
||
if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
|
||
&& fixed_regs[PIC_OFFSET_TABLE_REGNUM])
|
||
bitmap_set_bit (regular_block_artificial_uses, PIC_OFFSET_TABLE_REGNUM);
|
||
}
|
||
/* The all-important stack pointer must always be live. */
|
||
bitmap_set_bit (regular_block_artificial_uses, STACK_POINTER_REGNUM);
|
||
}
|
||
|
||
|
||
/* Get the artificial use set for an eh block. */
|
||
|
||
static void
|
||
df_get_eh_block_artificial_uses (bitmap eh_block_artificial_uses)
|
||
{
|
||
bitmap_clear (eh_block_artificial_uses);
|
||
|
||
/* The following code (down thru the arg_pointer setting APPEARS
|
||
to be necessary because there is nothing that actually
|
||
describes what the exception handling code may actually need
|
||
to keep alive. */
|
||
if (reload_completed)
|
||
{
|
||
if (frame_pointer_needed)
|
||
{
|
||
bitmap_set_bit (eh_block_artificial_uses, FRAME_POINTER_REGNUM);
|
||
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
||
bitmap_set_bit (eh_block_artificial_uses, HARD_FRAME_POINTER_REGNUM);
|
||
#endif
|
||
}
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
if (fixed_regs[ARG_POINTER_REGNUM])
|
||
bitmap_set_bit (eh_block_artificial_uses, ARG_POINTER_REGNUM);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/*----------------------------------------------------------------------------
|
||
Specialized hard register scanning functions.
|
||
----------------------------------------------------------------------------*/
|
||
|
||
|
||
/* Mark a register in SET. Hard registers in large modes get all
|
||
of their component registers set as well. */
|
||
|
||
static void
|
||
df_mark_reg (rtx reg, void *vset)
|
||
{
|
||
bitmap set = (bitmap) vset;
|
||
int regno = REGNO (reg);
|
||
|
||
gcc_assert (GET_MODE (reg) != BLKmode);
|
||
|
||
bitmap_set_bit (set, regno);
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int n = hard_regno_nregs[regno][GET_MODE (reg)];
|
||
while (--n > 0)
|
||
bitmap_set_bit (set, regno + n);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Set the bit for regs that are considered being defined at the entry. */
|
||
|
||
static void
|
||
df_get_entry_block_def_set (bitmap entry_block_defs)
|
||
{
|
||
rtx r;
|
||
int i;
|
||
|
||
bitmap_clear (entry_block_defs);
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (FUNCTION_ARG_REGNO_P (i))
|
||
#ifdef INCOMING_REGNO
|
||
bitmap_set_bit (entry_block_defs, INCOMING_REGNO (i));
|
||
#else
|
||
bitmap_set_bit (entry_block_defs, i);
|
||
#endif
|
||
}
|
||
|
||
/* Once the prologue has been generated, all of these registers
|
||
should just show up in the first regular block. */
|
||
if (HAVE_prologue && epilogue_completed)
|
||
{
|
||
/* Defs for the callee saved registers are inserted so that the
|
||
pushes have some defining location. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if ((call_used_regs[i] == 0) && (df_regs_ever_live_p (i)))
|
||
bitmap_set_bit (entry_block_defs, i);
|
||
}
|
||
else
|
||
{
|
||
/* The always important stack pointer. */
|
||
bitmap_set_bit (entry_block_defs, STACK_POINTER_REGNUM);
|
||
|
||
/* If STATIC_CHAIN_INCOMING_REGNUM == STATIC_CHAIN_REGNUM
|
||
only STATIC_CHAIN_REGNUM is defined. If they are different,
|
||
we only care about the STATIC_CHAIN_INCOMING_REGNUM. */
|
||
#ifdef STATIC_CHAIN_INCOMING_REGNUM
|
||
bitmap_set_bit (entry_block_defs, STATIC_CHAIN_INCOMING_REGNUM);
|
||
#else
|
||
#ifdef STATIC_CHAIN_REGNUM
|
||
bitmap_set_bit (entry_block_defs, STATIC_CHAIN_REGNUM);
|
||
#endif
|
||
#endif
|
||
|
||
r = targetm.calls.struct_value_rtx (current_function_decl, true);
|
||
if (r && REG_P (r))
|
||
bitmap_set_bit (entry_block_defs, REGNO (r));
|
||
}
|
||
|
||
if ((!reload_completed) || frame_pointer_needed)
|
||
{
|
||
/* Any reference to any pseudo before reload is a potential
|
||
reference of the frame pointer. */
|
||
bitmap_set_bit (entry_block_defs, FRAME_POINTER_REGNUM);
|
||
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
||
/* If they are different, also mark the hard frame pointer as live. */
|
||
if (!LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
|
||
bitmap_set_bit (entry_block_defs, HARD_FRAME_POINTER_REGNUM);
|
||
#endif
|
||
}
|
||
|
||
/* These registers are live everywhere. */
|
||
if (!reload_completed)
|
||
{
|
||
#ifdef EH_USES
|
||
/* The ia-64, the only machine that uses this, does not define these
|
||
until after reload. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (EH_USES (i))
|
||
{
|
||
bitmap_set_bit (entry_block_defs, i);
|
||
}
|
||
#endif
|
||
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
/* Pseudos with argument area equivalences may require
|
||
reloading via the argument pointer. */
|
||
if (fixed_regs[ARG_POINTER_REGNUM])
|
||
bitmap_set_bit (entry_block_defs, ARG_POINTER_REGNUM);
|
||
#endif
|
||
|
||
#ifdef PIC_OFFSET_TABLE_REGNUM
|
||
/* Any constant, or pseudo with constant equivalences, may
|
||
require reloading from memory using the pic register. */
|
||
if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
|
||
&& fixed_regs[PIC_OFFSET_TABLE_REGNUM])
|
||
bitmap_set_bit (entry_block_defs, PIC_OFFSET_TABLE_REGNUM);
|
||
#endif
|
||
}
|
||
|
||
#ifdef INCOMING_RETURN_ADDR_RTX
|
||
if (REG_P (INCOMING_RETURN_ADDR_RTX))
|
||
bitmap_set_bit (entry_block_defs, REGNO (INCOMING_RETURN_ADDR_RTX));
|
||
#endif
|
||
|
||
targetm.live_on_entry (entry_block_defs);
|
||
|
||
/* If the function has an incoming STATIC_CHAIN,
|
||
it has to show up in the entry def set. */
|
||
if (df_need_static_chain_reg (cfun))
|
||
{
|
||
#ifdef STATIC_CHAIN_INCOMING_REGNUM
|
||
bitmap_set_bit (entry_block_defs, STATIC_CHAIN_INCOMING_REGNUM);
|
||
#else
|
||
#ifdef STATIC_CHAIN_REGNUM
|
||
bitmap_set_bit (entry_block_defs, STATIC_CHAIN_REGNUM);
|
||
#endif
|
||
#endif
|
||
}
|
||
}
|
||
|
||
|
||
/* Return the (conservative) set of hard registers that are defined on
|
||
entry to the function.
|
||
It uses df->entry_block_defs to determine which register
|
||
reference to include. */
|
||
|
||
static void
|
||
df_entry_block_defs_collect (struct df_collection_rec *collection_rec,
|
||
bitmap entry_block_defs)
|
||
{
|
||
unsigned int i;
|
||
bitmap_iterator bi;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (entry_block_defs, 0, i, bi)
|
||
{
|
||
df_ref_record (collection_rec, regno_reg_rtx[i], NULL,
|
||
ENTRY_BLOCK_PTR, NULL, DF_REF_REG_DEF, 0);
|
||
}
|
||
|
||
df_canonize_collection_rec (collection_rec);
|
||
}
|
||
|
||
|
||
/* Record the (conservative) set of hard registers that are defined on
|
||
entry to the function. */
|
||
|
||
static void
|
||
df_record_entry_block_defs (bitmap entry_block_defs)
|
||
{
|
||
struct df_collection_rec collection_rec;
|
||
memset (&collection_rec, 0, sizeof (struct df_collection_rec));
|
||
collection_rec.def_vec = alloca (sizeof (struct df_ref*) * FIRST_PSEUDO_REGISTER);
|
||
|
||
df_entry_block_defs_collect (&collection_rec, entry_block_defs);
|
||
|
||
/* Process bb_refs chain */
|
||
df_refs_add_to_chains (&collection_rec, BASIC_BLOCK (ENTRY_BLOCK), NULL);
|
||
}
|
||
|
||
|
||
/* Update the defs in the entry block. */
|
||
|
||
void
|
||
df_update_entry_block_defs (void)
|
||
{
|
||
bitmap refs = BITMAP_ALLOC (&df_bitmap_obstack);
|
||
bool changed = false;
|
||
|
||
df_get_entry_block_def_set (refs);
|
||
if (df->entry_block_defs)
|
||
{
|
||
if (!bitmap_equal_p (df->entry_block_defs, refs))
|
||
{
|
||
struct df_scan_bb_info *bb_info = df_scan_get_bb_info (ENTRY_BLOCK);
|
||
df_ref_chain_delete_du_chain (bb_info->artificial_defs);
|
||
df_ref_chain_delete (bb_info->artificial_defs);
|
||
bb_info->artificial_defs = NULL;
|
||
changed = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
df->entry_block_defs = BITMAP_ALLOC (&problem_data->reg_bitmaps);
|
||
changed = true;
|
||
}
|
||
|
||
if (changed)
|
||
{
|
||
df_record_entry_block_defs (refs);
|
||
bitmap_copy (df->entry_block_defs, refs);
|
||
df_set_bb_dirty (BASIC_BLOCK (ENTRY_BLOCK));
|
||
}
|
||
BITMAP_FREE (refs);
|
||
}
|
||
|
||
|
||
/* Set the bit for regs that are considered being used at the exit. */
|
||
|
||
static void
|
||
df_get_exit_block_use_set (bitmap exit_block_uses)
|
||
{
|
||
unsigned int i;
|
||
|
||
bitmap_clear (exit_block_uses);
|
||
|
||
/* Stack pointer is always live at the exit. */
|
||
bitmap_set_bit (exit_block_uses, STACK_POINTER_REGNUM);
|
||
|
||
/* Mark the frame pointer if needed at the end of the function.
|
||
If we end up eliminating it, it will be removed from the live
|
||
list of each basic block by reload. */
|
||
|
||
if ((!reload_completed) || frame_pointer_needed)
|
||
{
|
||
bitmap_set_bit (exit_block_uses, FRAME_POINTER_REGNUM);
|
||
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
||
/* If they are different, also mark the hard frame pointer as live. */
|
||
if (!LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
|
||
bitmap_set_bit (exit_block_uses, HARD_FRAME_POINTER_REGNUM);
|
||
#endif
|
||
}
|
||
|
||
#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|
||
/* Many architectures have a GP register even without flag_pic.
|
||
Assume the pic register is not in use, or will be handled by
|
||
other means, if it is not fixed. */
|
||
if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
|
||
&& fixed_regs[PIC_OFFSET_TABLE_REGNUM])
|
||
bitmap_set_bit (exit_block_uses, PIC_OFFSET_TABLE_REGNUM);
|
||
#endif
|
||
|
||
/* Mark all global registers, and all registers used by the
|
||
epilogue as being live at the end of the function since they
|
||
may be referenced by our caller. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (global_regs[i] || EPILOGUE_USES (i))
|
||
bitmap_set_bit (exit_block_uses, i);
|
||
|
||
if (HAVE_epilogue && epilogue_completed)
|
||
{
|
||
/* Mark all call-saved registers that we actually used. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (df_regs_ever_live_p (i) && !LOCAL_REGNO (i)
|
||
&& !TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
|
||
bitmap_set_bit (exit_block_uses, i);
|
||
}
|
||
|
||
#ifdef EH_RETURN_DATA_REGNO
|
||
/* Mark the registers that will contain data for the handler. */
|
||
if (reload_completed && current_function_calls_eh_return)
|
||
for (i = 0; ; ++i)
|
||
{
|
||
unsigned regno = EH_RETURN_DATA_REGNO (i);
|
||
if (regno == INVALID_REGNUM)
|
||
break;
|
||
bitmap_set_bit (exit_block_uses, regno);
|
||
}
|
||
#endif
|
||
|
||
#ifdef EH_RETURN_STACKADJ_RTX
|
||
if ((!HAVE_epilogue || ! epilogue_completed)
|
||
&& current_function_calls_eh_return)
|
||
{
|
||
rtx tmp = EH_RETURN_STACKADJ_RTX;
|
||
if (tmp && REG_P (tmp))
|
||
df_mark_reg (tmp, exit_block_uses);
|
||
}
|
||
#endif
|
||
|
||
#ifdef EH_RETURN_HANDLER_RTX
|
||
if ((!HAVE_epilogue || ! epilogue_completed)
|
||
&& current_function_calls_eh_return)
|
||
{
|
||
rtx tmp = EH_RETURN_HANDLER_RTX;
|
||
if (tmp && REG_P (tmp))
|
||
df_mark_reg (tmp, exit_block_uses);
|
||
}
|
||
#endif
|
||
|
||
/* Mark function return value. */
|
||
diddle_return_value (df_mark_reg, (void*) exit_block_uses);
|
||
}
|
||
|
||
|
||
/* Return the refs of hard registers that are used in the exit block.
|
||
It uses df->exit_block_uses to determine register to include. */
|
||
|
||
static void
|
||
df_exit_block_uses_collect (struct df_collection_rec *collection_rec, bitmap exit_block_uses)
|
||
{
|
||
unsigned int i;
|
||
bitmap_iterator bi;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (exit_block_uses, 0, i, bi)
|
||
df_ref_record (collection_rec, regno_reg_rtx[i], NULL,
|
||
EXIT_BLOCK_PTR, NULL, DF_REF_REG_USE, 0);
|
||
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
/* It is deliberate that this is not put in the exit block uses but
|
||
I do not know why. */
|
||
if (reload_completed
|
||
&& !bitmap_bit_p (exit_block_uses, ARG_POINTER_REGNUM)
|
||
&& df_has_eh_preds (EXIT_BLOCK_PTR)
|
||
&& fixed_regs[ARG_POINTER_REGNUM])
|
||
df_ref_record (collection_rec, regno_reg_rtx[ARG_POINTER_REGNUM], NULL,
|
||
EXIT_BLOCK_PTR, NULL, DF_REF_REG_USE, 0);
|
||
#endif
|
||
|
||
df_canonize_collection_rec (collection_rec);
|
||
}
|
||
|
||
|
||
/* Record the set of hard registers that are used in the exit block.
|
||
It uses df->exit_block_uses to determine which bit to include. */
|
||
|
||
static void
|
||
df_record_exit_block_uses (bitmap exit_block_uses)
|
||
{
|
||
struct df_collection_rec collection_rec;
|
||
memset (&collection_rec, 0, sizeof (struct df_collection_rec));
|
||
collection_rec.use_vec = alloca (sizeof (struct df_ref*) * FIRST_PSEUDO_REGISTER);
|
||
|
||
df_exit_block_uses_collect (&collection_rec, exit_block_uses);
|
||
|
||
/* Process bb_refs chain */
|
||
df_refs_add_to_chains (&collection_rec, BASIC_BLOCK (EXIT_BLOCK), NULL);
|
||
}
|
||
|
||
|
||
/* Update the uses in the exit block. */
|
||
|
||
void
|
||
df_update_exit_block_uses (void)
|
||
{
|
||
bitmap refs = BITMAP_ALLOC (&df_bitmap_obstack);
|
||
bool changed = false;
|
||
|
||
df_get_exit_block_use_set (refs);
|
||
if (df->exit_block_uses)
|
||
{
|
||
if (!bitmap_equal_p (df->exit_block_uses, refs))
|
||
{
|
||
struct df_scan_bb_info *bb_info = df_scan_get_bb_info (EXIT_BLOCK);
|
||
df_ref_chain_delete_du_chain (bb_info->artificial_uses);
|
||
df_ref_chain_delete (bb_info->artificial_uses);
|
||
bb_info->artificial_uses = NULL;
|
||
changed = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct df_scan_problem_data *problem_data
|
||
= (struct df_scan_problem_data *) df_scan->problem_data;
|
||
df->exit_block_uses = BITMAP_ALLOC (&problem_data->reg_bitmaps);
|
||
changed = true;
|
||
}
|
||
|
||
if (changed)
|
||
{
|
||
df_record_exit_block_uses (refs);
|
||
bitmap_copy (df->exit_block_uses, refs);
|
||
df_set_bb_dirty (BASIC_BLOCK (EXIT_BLOCK));
|
||
}
|
||
BITMAP_FREE (refs);
|
||
}
|
||
|
||
static bool initialized = false;
|
||
|
||
|
||
/* Initialize some platform specific structures. */
|
||
|
||
void
|
||
df_hard_reg_init (void)
|
||
{
|
||
int i;
|
||
#ifdef ELIMINABLE_REGS
|
||
static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
|
||
#endif
|
||
if (initialized)
|
||
return;
|
||
|
||
bitmap_obstack_initialize (&persistent_obstack);
|
||
|
||
/* Record which registers will be eliminated. We use this in
|
||
mark_used_regs. */
|
||
CLEAR_HARD_REG_SET (elim_reg_set);
|
||
|
||
#ifdef ELIMINABLE_REGS
|
||
for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
|
||
SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
|
||
#else
|
||
SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
|
||
#endif
|
||
|
||
df_invalidated_by_call = BITMAP_ALLOC (&persistent_obstack);
|
||
|
||
/* Inconveniently, this is only readily available in hard reg set
|
||
form. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
|
||
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
|
||
bitmap_set_bit (df_invalidated_by_call, i);
|
||
|
||
initialized = true;
|
||
}
|
||
|
||
|
||
/* Recompute the parts of scanning that are based on regs_ever_live
|
||
because something changed in that array. */
|
||
|
||
void
|
||
df_update_entry_exit_and_calls (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
df_update_entry_block_defs ();
|
||
df_update_exit_block_uses ();
|
||
|
||
/* The call insns need to be rescanned because there may be changes
|
||
in the set of registers clobbered across the call. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
rtx insn;
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (INSN_P (insn) && CALL_P (insn))
|
||
df_insn_rescan (insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Return true if hard REG is actually used in the some instruction.
|
||
There are a fair number of conditions that affect the setting of
|
||
this array. See the comment in df.h for df->hard_regs_live_count
|
||
for the conditions that this array is set. */
|
||
|
||
bool
|
||
df_hard_reg_used_p (unsigned int reg)
|
||
{
|
||
gcc_assert (df);
|
||
return df->hard_regs_live_count[reg] != 0;
|
||
}
|
||
|
||
|
||
/* A count of the number of times REG is actually used in the some
|
||
instruction. There are a fair number of conditions that affect the
|
||
setting of this array. See the comment in df.h for
|
||
df->hard_regs_live_count for the conditions that this array is
|
||
set. */
|
||
|
||
|
||
unsigned int
|
||
df_hard_reg_used_count (unsigned int reg)
|
||
{
|
||
gcc_assert (df);
|
||
return df->hard_regs_live_count[reg];
|
||
}
|
||
|
||
|
||
/* Get the value of regs_ever_live[REGNO]. */
|
||
|
||
bool
|
||
df_regs_ever_live_p (unsigned int regno)
|
||
{
|
||
return regs_ever_live[regno];
|
||
}
|
||
|
||
|
||
/* Set regs_ever_live[REGNO] to VALUE. If this cause regs_ever_live
|
||
to change, schedule that change for the next update. */
|
||
|
||
void
|
||
df_set_regs_ever_live (unsigned int regno, bool value)
|
||
{
|
||
if (regs_ever_live[regno] == value)
|
||
return;
|
||
|
||
regs_ever_live[regno] = value;
|
||
if (df)
|
||
df->redo_entry_and_exit = true;
|
||
}
|
||
|
||
|
||
/* Compute "regs_ever_live" information from the underlying df
|
||
information. Set the vector to all false if RESET. */
|
||
|
||
void
|
||
df_compute_regs_ever_live (bool reset)
|
||
{
|
||
unsigned int i;
|
||
bool changed = df->redo_entry_and_exit;
|
||
|
||
if (reset)
|
||
memset (regs_ever_live, 0, sizeof (regs_ever_live));
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if ((!regs_ever_live[i]) && df_hard_reg_used_p (i))
|
||
{
|
||
regs_ever_live[i] = true;
|
||
changed = true;
|
||
}
|
||
if (changed)
|
||
df_update_entry_exit_and_calls ();
|
||
df->redo_entry_and_exit = false;
|
||
}
|
||
|
||
|
||
/*----------------------------------------------------------------------------
|
||
Dataflow ref information verification functions.
|
||
|
||
df_reg_chain_mark (refs, regno, is_def, is_eq_use)
|
||
df_reg_chain_verify_unmarked (refs)
|
||
df_refs_verify (ref*, ref*, bool)
|
||
df_mws_verify (mw*, mw*, bool)
|
||
df_insn_refs_verify (collection_rec, bb, insn, bool)
|
||
df_bb_refs_verify (bb, refs, bool)
|
||
df_bb_verify (bb)
|
||
df_exit_block_bitmap_verify (bool)
|
||
df_entry_block_bitmap_verify (bool)
|
||
df_scan_verify ()
|
||
----------------------------------------------------------------------------*/
|
||
|
||
|
||
/* Mark all refs in the reg chain. Verify that all of the registers
|
||
are in the correct chain. */
|
||
|
||
static unsigned int
|
||
df_reg_chain_mark (struct df_ref *refs, unsigned int regno,
|
||
bool is_def, bool is_eq_use)
|
||
{
|
||
unsigned int count = 0;
|
||
struct df_ref *ref;
|
||
for (ref = refs; ref; ref = DF_REF_NEXT_REG (ref))
|
||
{
|
||
gcc_assert (!DF_REF_IS_REG_MARKED (ref));
|
||
|
||
/* If there are no def-use or use-def chains, make sure that all
|
||
of the chains are clear. */
|
||
if (!df_chain)
|
||
gcc_assert (!DF_REF_CHAIN (ref));
|
||
|
||
/* Check to make sure the ref is in the correct chain. */
|
||
gcc_assert (DF_REF_REGNO (ref) == regno);
|
||
if (is_def)
|
||
gcc_assert (DF_REF_TYPE(ref) == DF_REF_REG_DEF);
|
||
else
|
||
gcc_assert (DF_REF_TYPE(ref) != DF_REF_REG_DEF);
|
||
|
||
if (is_eq_use)
|
||
gcc_assert ((DF_REF_FLAGS (ref) & DF_REF_IN_NOTE));
|
||
else
|
||
gcc_assert ((DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) == 0);
|
||
|
||
if (ref->next_reg)
|
||
gcc_assert (ref->next_reg->prev_reg == ref);
|
||
count++;
|
||
DF_REF_REG_MARK (ref);
|
||
}
|
||
return count;
|
||
}
|
||
|
||
|
||
/* Verify that all of the registers in the chain are unmarked. */
|
||
|
||
static void
|
||
df_reg_chain_verify_unmarked (struct df_ref *refs)
|
||
{
|
||
struct df_ref *ref;
|
||
for (ref = refs; ref; ref = DF_REF_NEXT_REG (ref))
|
||
gcc_assert (!DF_REF_IS_REG_MARKED (ref));
|
||
}
|
||
|
||
|
||
/* Verify that NEW_REC and OLD_REC have exactly the same members. */
|
||
|
||
static bool
|
||
df_refs_verify (struct df_ref **new_rec, struct df_ref **old_rec,
|
||
bool abort_if_fail)
|
||
{
|
||
while ((*new_rec) && (*old_rec))
|
||
{
|
||
if (!df_ref_equal_p (*new_rec, *old_rec))
|
||
{
|
||
if (abort_if_fail)
|
||
gcc_assert (0);
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Abort if fail is called from the function level verifier. If
|
||
that is the context, mark this reg as being seem. */
|
||
if (abort_if_fail)
|
||
{
|
||
gcc_assert (DF_REF_IS_REG_MARKED (*old_rec));
|
||
DF_REF_REG_UNMARK (*old_rec);
|
||
}
|
||
|
||
new_rec++;
|
||
old_rec++;
|
||
}
|
||
|
||
if (abort_if_fail)
|
||
gcc_assert ((*new_rec == NULL) && (*old_rec == NULL));
|
||
else
|
||
return ((*new_rec == NULL) && (*old_rec == NULL));
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Verify that NEW_REC and OLD_REC have exactly the same members. */
|
||
|
||
static bool
|
||
df_mws_verify (struct df_mw_hardreg **new_rec, struct df_mw_hardreg **old_rec,
|
||
bool abort_if_fail)
|
||
{
|
||
while ((*new_rec) && (*old_rec))
|
||
{
|
||
if (!df_mw_equal_p (*new_rec, *old_rec))
|
||
{
|
||
if (abort_if_fail)
|
||
gcc_assert (0);
|
||
else
|
||
return false;
|
||
}
|
||
new_rec++;
|
||
old_rec++;
|
||
}
|
||
|
||
if (abort_if_fail)
|
||
gcc_assert ((*new_rec == NULL) && (*old_rec == NULL));
|
||
else
|
||
return ((*new_rec == NULL) && (*old_rec == NULL));
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Return true if the existing insn refs information is complete and
|
||
correct. Otherwise (i.e. if there's any missing or extra refs),
|
||
return the correct df_ref chain in REFS_RETURN.
|
||
|
||
If ABORT_IF_FAIL, leave the refs that are verified (already in the
|
||
ref chain) as DF_REF_MARKED(). If it's false, then it's a per-insn
|
||
verification mode instead of the whole function, so unmark
|
||
everything.
|
||
|
||
If ABORT_IF_FAIL is set, this function never returns false. */
|
||
|
||
static bool
|
||
df_insn_refs_verify (struct df_collection_rec *collection_rec,
|
||
basic_block bb,
|
||
rtx insn,
|
||
bool abort_if_fail)
|
||
{
|
||
bool ret1, ret2, ret3, ret4;
|
||
unsigned int uid = INSN_UID (insn);
|
||
|
||
df_insn_refs_collect (collection_rec, bb, insn);
|
||
|
||
if (!DF_INSN_UID_DEFS (uid))
|
||
{
|
||
/* The insn_rec was created but it was never filled out. */
|
||
if (abort_if_fail)
|
||
gcc_assert (0);
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Unfortunately we cannot opt out early if one of these is not
|
||
right because the marks will not get cleared. */
|
||
ret1 = df_refs_verify (collection_rec->def_vec, DF_INSN_UID_DEFS (uid),
|
||
abort_if_fail);
|
||
ret2 = df_refs_verify (collection_rec->use_vec, DF_INSN_UID_USES (uid),
|
||
abort_if_fail);
|
||
ret3 = df_refs_verify (collection_rec->eq_use_vec, DF_INSN_UID_EQ_USES (uid),
|
||
abort_if_fail);
|
||
ret4 = df_mws_verify (collection_rec->mw_vec, DF_INSN_UID_MWS (uid),
|
||
abort_if_fail);
|
||
return (ret1 && ret2 && ret3 && ret4);
|
||
}
|
||
|
||
|
||
/* Return true if all refs in the basic block are correct and complete.
|
||
Due to df_ref_chain_verify, it will cause all refs
|
||
that are verified to have DF_REF_MARK bit set. */
|
||
|
||
static bool
|
||
df_bb_verify (basic_block bb)
|
||
{
|
||
rtx insn;
|
||
struct df_scan_bb_info *bb_info = df_scan_get_bb_info (bb->index);
|
||
struct df_collection_rec collection_rec;
|
||
|
||
memset (&collection_rec, 0, sizeof (struct df_collection_rec));
|
||
collection_rec.def_vec = alloca (sizeof (struct df_ref*) * 1000);
|
||
collection_rec.use_vec = alloca (sizeof (struct df_ref*) * 1000);
|
||
collection_rec.eq_use_vec = alloca (sizeof (struct df_ref*) * 1000);
|
||
collection_rec.mw_vec = alloca (sizeof (struct df_mw_hardreg*) * 100);
|
||
|
||
gcc_assert (bb_info);
|
||
|
||
/* Scan the block an insn at a time from beginning to end. */
|
||
FOR_BB_INSNS_REVERSE (bb, insn)
|
||
{
|
||
if (!INSN_P (insn))
|
||
continue;
|
||
df_insn_refs_verify (&collection_rec, bb, insn, true);
|
||
df_free_collection_rec (&collection_rec);
|
||
}
|
||
|
||
/* Do the artificial defs and uses. */
|
||
df_bb_refs_collect (&collection_rec, bb);
|
||
df_refs_verify (collection_rec.def_vec, df_get_artificial_defs (bb->index), true);
|
||
df_refs_verify (collection_rec.use_vec, df_get_artificial_uses (bb->index), true);
|
||
df_free_collection_rec (&collection_rec);
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Returns true if the entry block has correct and complete df_ref set.
|
||
If not it either aborts if ABORT_IF_FAIL is true or returns false. */
|
||
|
||
static bool
|
||
df_entry_block_bitmap_verify (bool abort_if_fail)
|
||
{
|
||
bitmap entry_block_defs = BITMAP_ALLOC (&df_bitmap_obstack);
|
||
bool is_eq;
|
||
|
||
df_get_entry_block_def_set (entry_block_defs);
|
||
|
||
is_eq = bitmap_equal_p (entry_block_defs, df->entry_block_defs);
|
||
|
||
if (!is_eq && abort_if_fail)
|
||
{
|
||
print_current_pass (stderr);
|
||
fprintf (stderr, "entry_block_defs = ");
|
||
df_print_regset (stderr, entry_block_defs);
|
||
fprintf (stderr, "df->entry_block_defs = ");
|
||
df_print_regset (stderr, df->entry_block_defs);
|
||
gcc_assert (0);
|
||
}
|
||
|
||
BITMAP_FREE (entry_block_defs);
|
||
|
||
return is_eq;
|
||
}
|
||
|
||
|
||
/* Returns true if the exit block has correct and complete df_ref set.
|
||
If not it either aborts if ABORT_IF_FAIL is true or returns false. */
|
||
|
||
static bool
|
||
df_exit_block_bitmap_verify (bool abort_if_fail)
|
||
{
|
||
bitmap exit_block_uses = BITMAP_ALLOC (&df_bitmap_obstack);
|
||
bool is_eq;
|
||
|
||
df_get_exit_block_use_set (exit_block_uses);
|
||
|
||
is_eq = bitmap_equal_p (exit_block_uses, df->exit_block_uses);
|
||
|
||
if (!is_eq && abort_if_fail)
|
||
{
|
||
print_current_pass (stderr);
|
||
fprintf (stderr, "exit_block_uses = ");
|
||
df_print_regset (stderr, exit_block_uses);
|
||
fprintf (stderr, "df->exit_block_uses = ");
|
||
df_print_regset (stderr, df->exit_block_uses);
|
||
gcc_assert (0);
|
||
}
|
||
|
||
BITMAP_FREE (exit_block_uses);
|
||
|
||
return is_eq;
|
||
}
|
||
|
||
|
||
/* Return true if df_ref information for all insns in all BLOCKS are
|
||
correct and complete. If BLOCKS is null, all blocks are
|
||
checked. */
|
||
|
||
void
|
||
df_scan_verify (void)
|
||
{
|
||
unsigned int i;
|
||
basic_block bb;
|
||
bitmap regular_block_artificial_uses;
|
||
bitmap eh_block_artificial_uses;
|
||
|
||
if (!df)
|
||
return;
|
||
|
||
/* Verification is a 4 step process. */
|
||
|
||
/* (1) All of the refs are marked by going thru the reg chains. */
|
||
for (i = 0; i < DF_REG_SIZE (df); i++)
|
||
{
|
||
gcc_assert (df_reg_chain_mark (DF_REG_DEF_CHAIN (i), i, true, false)
|
||
== DF_REG_DEF_COUNT(i));
|
||
gcc_assert (df_reg_chain_mark (DF_REG_USE_CHAIN (i), i, false, false)
|
||
== DF_REG_USE_COUNT(i));
|
||
gcc_assert (df_reg_chain_mark (DF_REG_EQ_USE_CHAIN (i), i, false, true)
|
||
== DF_REG_EQ_USE_COUNT(i));
|
||
}
|
||
|
||
/* (2) There are various bitmaps whose value may change over the
|
||
course of the compilation. This step recomputes them to make
|
||
sure that they have not slipped out of date. */
|
||
regular_block_artificial_uses = BITMAP_ALLOC (&df_bitmap_obstack);
|
||
eh_block_artificial_uses = BITMAP_ALLOC (&df_bitmap_obstack);
|
||
|
||
df_get_regular_block_artificial_uses (regular_block_artificial_uses);
|
||
df_get_eh_block_artificial_uses (eh_block_artificial_uses);
|
||
|
||
bitmap_ior_into (eh_block_artificial_uses,
|
||
regular_block_artificial_uses);
|
||
|
||
/* Check artificial_uses bitmaps didn't change. */
|
||
gcc_assert (bitmap_equal_p (regular_block_artificial_uses,
|
||
df->regular_block_artificial_uses));
|
||
gcc_assert (bitmap_equal_p (eh_block_artificial_uses,
|
||
df->eh_block_artificial_uses));
|
||
|
||
BITMAP_FREE (regular_block_artificial_uses);
|
||
BITMAP_FREE (eh_block_artificial_uses);
|
||
|
||
/* Verify entry block and exit block. These only verify the bitmaps,
|
||
the refs are verified in df_bb_verify. */
|
||
df_entry_block_bitmap_verify (true);
|
||
df_exit_block_bitmap_verify (true);
|
||
|
||
/* (3) All of the insns in all of the blocks are traversed and the
|
||
marks are cleared both in the artificial refs attached to the
|
||
blocks and the real refs inside the insns. It is a failure to
|
||
clear a mark that has not been set as this means that the ref in
|
||
the block or insn was not in the reg chain. */
|
||
|
||
FOR_ALL_BB (bb)
|
||
df_bb_verify (bb);
|
||
|
||
/* (4) See if all reg chains are traversed a second time. This time
|
||
a check is made that the marks are clear. A set mark would be a
|
||
from a reg that is not in any insn or basic block. */
|
||
|
||
for (i = 0; i < DF_REG_SIZE (df); i++)
|
||
{
|
||
df_reg_chain_verify_unmarked (DF_REG_DEF_CHAIN (i));
|
||
df_reg_chain_verify_unmarked (DF_REG_USE_CHAIN (i));
|
||
df_reg_chain_verify_unmarked (DF_REG_EQ_USE_CHAIN (i));
|
||
}
|
||
}
|