a36b8a1ee8
* regrename.c (pass_regrename, pass_cprop_hardreg): Add RTL sharing verifier. * fwprop.c (pass_rtl_fwprop, pass_rtl_fwprop_add): Likewise. * see.c (pass_see): Likewise. * tracer.c (pass_tracer): Likewise. * postreload-gcse.c (pass_gcse2): Likewise. * postreload.c (pass_postreload_cse): Likewise. * mode-switching.c (pass_mode_switching): Likewise. * modulo-sched.c (pass_sms): Likewise. * cse.c (cse_insn): Likewise. * web.c (pass_web): Likweise. * combine-stack-adj.c (pass_stack_adjustments): Likewise. * dce.c (pass_ud_rtl_dce, pass_fast_rtl_dce): Likewise. * loop-init.c (pass_rtl_loop_init): Likewise. (pass_rtl_loop_done, pass_rtl_move_loop_, pass_rtl_unswitch, pass_rtl_unroll_and, pass_rtl_doloop): Likewise. * global.c (pass_global_alloc): Likewise. * ifcvt.c (pass_rtl_ifcvt, pass_if_after_combine, pass_if_after_reload): Likewise. * reload.c (pass_peephole2, pass_split_for_shoren_branches): Likewise. * dse.c (pass_rtl_dse1, pass_rtl_dse2): Likewise. * regmove.c (pass_regmove): Likewise. * function.c (pass_thread_prologugues_epilogues): Likewise. * gcse.c (pass_gcse): Likewise. * rtl-factoring.c (pass_rtl_seqabstr): Likewise. * lower-subreg.c (pass_lower_subreg2): Likewise. * bt-load.c (pass_branch_target_load): Likewise. * emit-rtl.c (pass_unshare_all_rtl): Likewise. * cfgcleanup.c (pass_jump, pass_jump2): Likewise. * combine.c (pass_combine): Likewise. * bb-reorder.c (pass_duplicate_comp, pass_reorder_blocks): Likewise. (pass_partition_blocks): Likewise. * var-tracking.c (pass_variable_track): Likewise. * reg-stack.c (pass_stack_regs_run): Likewise. * sched-rgn.c (pass_sched, pass_sched2): Likewise. * passes.c (pass_postreload): Likewise. (execute_function_todo): Add TODO_verify_rtl_sharing handling code. * tree-pass.h (TODO_verify_rtl_sharing): New. (TODO_update_ssa, TODO_update_ssa_no_phi, TODO_update_ssa_full_phi, TODO_update_ssa_only_virtuals, TODO_remove_unused_locals, TODO_set_props, TODO_df_finish, TODO_df_verify, TODO_mark_first_instance, TODO_rebuild_alias): Renumber. From-SVN: r128126
3250 lines
95 KiB
C
3250 lines
95 KiB
C
/* Register to Stack convert for GNU compiler.
|
||
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002, 2003, 2004, 2005, 2006, 2007
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This pass converts stack-like registers from the "flat register
|
||
file" model that gcc uses, to a stack convention that the 387 uses.
|
||
|
||
* The form of the input:
|
||
|
||
On input, the function consists of insn that have had their
|
||
registers fully allocated to a set of "virtual" registers. Note that
|
||
the word "virtual" is used differently here than elsewhere in gcc: for
|
||
each virtual stack reg, there is a hard reg, but the mapping between
|
||
them is not known until this pass is run. On output, hard register
|
||
numbers have been substituted, and various pop and exchange insns have
|
||
been emitted. The hard register numbers and the virtual register
|
||
numbers completely overlap - before this pass, all stack register
|
||
numbers are virtual, and afterward they are all hard.
|
||
|
||
The virtual registers can be manipulated normally by gcc, and their
|
||
semantics are the same as for normal registers. After the hard
|
||
register numbers are substituted, the semantics of an insn containing
|
||
stack-like regs are not the same as for an insn with normal regs: for
|
||
instance, it is not safe to delete an insn that appears to be a no-op
|
||
move. In general, no insn containing hard regs should be changed
|
||
after this pass is done.
|
||
|
||
* The form of the output:
|
||
|
||
After this pass, hard register numbers represent the distance from
|
||
the current top of stack to the desired register. A reference to
|
||
FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
|
||
represents the register just below that, and so forth. Also, REG_DEAD
|
||
notes indicate whether or not a stack register should be popped.
|
||
|
||
A "swap" insn looks like a parallel of two patterns, where each
|
||
pattern is a SET: one sets A to B, the other B to A.
|
||
|
||
A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
|
||
and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
|
||
will replace the existing stack top, not push a new value.
|
||
|
||
A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
|
||
SET_SRC is REG or MEM.
|
||
|
||
The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
|
||
appears ambiguous. As a special case, the presence of a REG_DEAD note
|
||
for FIRST_STACK_REG differentiates between a load insn and a pop.
|
||
|
||
If a REG_DEAD is present, the insn represents a "pop" that discards
|
||
the top of the register stack. If there is no REG_DEAD note, then the
|
||
insn represents a "dup" or a push of the current top of stack onto the
|
||
stack.
|
||
|
||
* Methodology:
|
||
|
||
Existing REG_DEAD and REG_UNUSED notes for stack registers are
|
||
deleted and recreated from scratch. REG_DEAD is never created for a
|
||
SET_DEST, only REG_UNUSED.
|
||
|
||
* asm_operands:
|
||
|
||
There are several rules on the usage of stack-like regs in
|
||
asm_operands insns. These rules apply only to the operands that are
|
||
stack-like regs:
|
||
|
||
1. Given a set of input regs that die in an asm_operands, it is
|
||
necessary to know which are implicitly popped by the asm, and
|
||
which must be explicitly popped by gcc.
|
||
|
||
An input reg that is implicitly popped by the asm must be
|
||
explicitly clobbered, unless it is constrained to match an
|
||
output operand.
|
||
|
||
2. For any input reg that is implicitly popped by an asm, it is
|
||
necessary to know how to adjust the stack to compensate for the pop.
|
||
If any non-popped input is closer to the top of the reg-stack than
|
||
the implicitly popped reg, it would not be possible to know what the
|
||
stack looked like - it's not clear how the rest of the stack "slides
|
||
up".
|
||
|
||
All implicitly popped input regs must be closer to the top of
|
||
the reg-stack than any input that is not implicitly popped.
|
||
|
||
3. It is possible that if an input dies in an insn, reload might
|
||
use the input reg for an output reload. Consider this example:
|
||
|
||
asm ("foo" : "=t" (a) : "f" (b));
|
||
|
||
This asm says that input B is not popped by the asm, and that
|
||
the asm pushes a result onto the reg-stack, i.e., the stack is one
|
||
deeper after the asm than it was before. But, it is possible that
|
||
reload will think that it can use the same reg for both the input and
|
||
the output, if input B dies in this insn.
|
||
|
||
If any input operand uses the "f" constraint, all output reg
|
||
constraints must use the "&" earlyclobber.
|
||
|
||
The asm above would be written as
|
||
|
||
asm ("foo" : "=&t" (a) : "f" (b));
|
||
|
||
4. Some operands need to be in particular places on the stack. All
|
||
output operands fall in this category - there is no other way to
|
||
know which regs the outputs appear in unless the user indicates
|
||
this in the constraints.
|
||
|
||
Output operands must specifically indicate which reg an output
|
||
appears in after an asm. "=f" is not allowed: the operand
|
||
constraints must select a class with a single reg.
|
||
|
||
5. Output operands may not be "inserted" between existing stack regs.
|
||
Since no 387 opcode uses a read/write operand, all output operands
|
||
are dead before the asm_operands, and are pushed by the asm_operands.
|
||
It makes no sense to push anywhere but the top of the reg-stack.
|
||
|
||
Output operands must start at the top of the reg-stack: output
|
||
operands may not "skip" a reg.
|
||
|
||
6. Some asm statements may need extra stack space for internal
|
||
calculations. This can be guaranteed by clobbering stack registers
|
||
unrelated to the inputs and outputs.
|
||
|
||
Here are a couple of reasonable asms to want to write. This asm
|
||
takes one input, which is internally popped, and produces two outputs.
|
||
|
||
asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
|
||
|
||
This asm takes two inputs, which are popped by the fyl2xp1 opcode,
|
||
and replaces them with one output. The user must code the "st(1)"
|
||
clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
|
||
|
||
asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
|
||
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "function.h"
|
||
#include "insn-config.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "flags.h"
|
||
#include "toplev.h"
|
||
#include "recog.h"
|
||
#include "output.h"
|
||
#include "basic-block.h"
|
||
#include "cfglayout.h"
|
||
#include "varray.h"
|
||
#include "reload.h"
|
||
#include "ggc.h"
|
||
#include "timevar.h"
|
||
#include "tree-pass.h"
|
||
#include "target.h"
|
||
#include "df.h"
|
||
#include "vecprim.h"
|
||
|
||
#ifdef STACK_REGS
|
||
|
||
/* We use this array to cache info about insns, because otherwise we
|
||
spend too much time in stack_regs_mentioned_p.
|
||
|
||
Indexed by insn UIDs. A value of zero is uninitialized, one indicates
|
||
the insn uses stack registers, two indicates the insn does not use
|
||
stack registers. */
|
||
static VEC(char,heap) *stack_regs_mentioned_data;
|
||
|
||
#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
|
||
|
||
int regstack_completed = 0;
|
||
|
||
/* This is the basic stack record. TOP is an index into REG[] such
|
||
that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
|
||
|
||
If TOP is -2, REG[] is not yet initialized. Stack initialization
|
||
consists of placing each live reg in array `reg' and setting `top'
|
||
appropriately.
|
||
|
||
REG_SET indicates which registers are live. */
|
||
|
||
typedef struct stack_def
|
||
{
|
||
int top; /* index to top stack element */
|
||
HARD_REG_SET reg_set; /* set of live registers */
|
||
unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
|
||
} *stack;
|
||
|
||
/* This is used to carry information about basic blocks. It is
|
||
attached to the AUX field of the standard CFG block. */
|
||
|
||
typedef struct block_info_def
|
||
{
|
||
struct stack_def stack_in; /* Input stack configuration. */
|
||
struct stack_def stack_out; /* Output stack configuration. */
|
||
HARD_REG_SET out_reg_set; /* Stack regs live on output. */
|
||
int done; /* True if block already converted. */
|
||
int predecessors; /* Number of predecessors that need
|
||
to be visited. */
|
||
} *block_info;
|
||
|
||
#define BLOCK_INFO(B) ((block_info) (B)->aux)
|
||
|
||
/* Passed to change_stack to indicate where to emit insns. */
|
||
enum emit_where
|
||
{
|
||
EMIT_AFTER,
|
||
EMIT_BEFORE
|
||
};
|
||
|
||
/* The block we're currently working on. */
|
||
static basic_block current_block;
|
||
|
||
/* In the current_block, whether we're processing the first register
|
||
stack or call instruction, i.e. the regstack is currently the
|
||
same as BLOCK_INFO(current_block)->stack_in. */
|
||
static bool starting_stack_p;
|
||
|
||
/* This is the register file for all register after conversion. */
|
||
static rtx
|
||
FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
|
||
|
||
#define FP_MODE_REG(regno,mode) \
|
||
(FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
|
||
|
||
/* Used to initialize uninitialized registers. */
|
||
static rtx not_a_num;
|
||
|
||
/* Forward declarations */
|
||
|
||
static int stack_regs_mentioned_p (const_rtx pat);
|
||
static void pop_stack (stack, int);
|
||
static rtx *get_true_reg (rtx *);
|
||
|
||
static int check_asm_stack_operands (rtx);
|
||
static int get_asm_operand_n_inputs (rtx);
|
||
static rtx stack_result (tree);
|
||
static void replace_reg (rtx *, int);
|
||
static void remove_regno_note (rtx, enum reg_note, unsigned int);
|
||
static int get_hard_regnum (stack, rtx);
|
||
static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
|
||
static void swap_to_top(rtx, stack, rtx, rtx);
|
||
static bool move_for_stack_reg (rtx, stack, rtx);
|
||
static bool move_nan_for_stack_reg (rtx, stack, rtx);
|
||
static int swap_rtx_condition_1 (rtx);
|
||
static int swap_rtx_condition (rtx);
|
||
static void compare_for_stack_reg (rtx, stack, rtx);
|
||
static bool subst_stack_regs_pat (rtx, stack, rtx);
|
||
static void subst_asm_stack_regs (rtx, stack);
|
||
static bool subst_stack_regs (rtx, stack);
|
||
static void change_stack (rtx, stack, stack, enum emit_where);
|
||
static void print_stack (FILE *, stack);
|
||
static rtx next_flags_user (rtx);
|
||
|
||
/* Return nonzero if any stack register is mentioned somewhere within PAT. */
|
||
|
||
static int
|
||
stack_regs_mentioned_p (const_rtx pat)
|
||
{
|
||
const char *fmt;
|
||
int i;
|
||
|
||
if (STACK_REG_P (pat))
|
||
return 1;
|
||
|
||
fmt = GET_RTX_FORMAT (GET_CODE (pat));
|
||
for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
|
||
for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
|
||
if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if INSN mentions stacked registers, else return zero. */
|
||
|
||
int
|
||
stack_regs_mentioned (const_rtx insn)
|
||
{
|
||
unsigned int uid, max;
|
||
int test;
|
||
|
||
if (! INSN_P (insn) || !stack_regs_mentioned_data)
|
||
return 0;
|
||
|
||
uid = INSN_UID (insn);
|
||
max = VEC_length (char, stack_regs_mentioned_data);
|
||
if (uid >= max)
|
||
{
|
||
/* Allocate some extra size to avoid too many reallocs, but
|
||
do not grow too quickly. */
|
||
max = uid + uid / 20 + 1;
|
||
VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
|
||
}
|
||
|
||
test = VEC_index (char, stack_regs_mentioned_data, uid);
|
||
if (test == 0)
|
||
{
|
||
/* This insn has yet to be examined. Do so now. */
|
||
test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
|
||
VEC_replace (char, stack_regs_mentioned_data, uid, test);
|
||
}
|
||
|
||
return test == 1;
|
||
}
|
||
|
||
static rtx ix86_flags_rtx;
|
||
|
||
static rtx
|
||
next_flags_user (rtx insn)
|
||
{
|
||
/* Search forward looking for the first use of this value.
|
||
Stop at block boundaries. */
|
||
|
||
while (insn != BB_END (current_block))
|
||
{
|
||
insn = NEXT_INSN (insn);
|
||
|
||
if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
|
||
return insn;
|
||
|
||
if (CALL_P (insn))
|
||
return NULL_RTX;
|
||
}
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Reorganize the stack into ascending numbers, before this insn. */
|
||
|
||
static void
|
||
straighten_stack (rtx insn, stack regstack)
|
||
{
|
||
struct stack_def temp_stack;
|
||
int top;
|
||
|
||
/* If there is only a single register on the stack, then the stack is
|
||
already in increasing order and no reorganization is needed.
|
||
|
||
Similarly if the stack is empty. */
|
||
if (regstack->top <= 0)
|
||
return;
|
||
|
||
COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
|
||
|
||
for (top = temp_stack.top = regstack->top; top >= 0; top--)
|
||
temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
|
||
|
||
change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
|
||
}
|
||
|
||
/* Pop a register from the stack. */
|
||
|
||
static void
|
||
pop_stack (stack regstack, int regno)
|
||
{
|
||
int top = regstack->top;
|
||
|
||
CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
|
||
regstack->top--;
|
||
/* If regno was not at the top of stack then adjust stack. */
|
||
if (regstack->reg [top] != regno)
|
||
{
|
||
int i;
|
||
for (i = regstack->top; i >= 0; i--)
|
||
if (regstack->reg [i] == regno)
|
||
{
|
||
int j;
|
||
for (j = i; j < top; j++)
|
||
regstack->reg [j] = regstack->reg [j + 1];
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return a pointer to the REG expression within PAT. If PAT is not a
|
||
REG, possible enclosed by a conversion rtx, return the inner part of
|
||
PAT that stopped the search. */
|
||
|
||
static rtx *
|
||
get_true_reg (rtx *pat)
|
||
{
|
||
for (;;)
|
||
switch (GET_CODE (*pat))
|
||
{
|
||
case SUBREG:
|
||
/* Eliminate FP subregister accesses in favor of the
|
||
actual FP register in use. */
|
||
{
|
||
rtx subreg;
|
||
if (FP_REG_P (subreg = SUBREG_REG (*pat)))
|
||
{
|
||
int regno_off = subreg_regno_offset (REGNO (subreg),
|
||
GET_MODE (subreg),
|
||
SUBREG_BYTE (*pat),
|
||
GET_MODE (*pat));
|
||
*pat = FP_MODE_REG (REGNO (subreg) + regno_off,
|
||
GET_MODE (subreg));
|
||
return pat;
|
||
}
|
||
}
|
||
case FLOAT:
|
||
case FIX:
|
||
case FLOAT_EXTEND:
|
||
pat = & XEXP (*pat, 0);
|
||
break;
|
||
|
||
case UNSPEC:
|
||
if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
|
||
pat = & XVECEXP (*pat, 0, 0);
|
||
return pat;
|
||
|
||
case FLOAT_TRUNCATE:
|
||
if (!flag_unsafe_math_optimizations)
|
||
return pat;
|
||
pat = & XEXP (*pat, 0);
|
||
break;
|
||
|
||
default:
|
||
return pat;
|
||
}
|
||
}
|
||
|
||
/* Set if we find any malformed asms in a block. */
|
||
static bool any_malformed_asm;
|
||
|
||
/* There are many rules that an asm statement for stack-like regs must
|
||
follow. Those rules are explained at the top of this file: the rule
|
||
numbers below refer to that explanation. */
|
||
|
||
static int
|
||
check_asm_stack_operands (rtx insn)
|
||
{
|
||
int i;
|
||
int n_clobbers;
|
||
int malformed_asm = 0;
|
||
rtx body = PATTERN (insn);
|
||
|
||
char reg_used_as_output[FIRST_PSEUDO_REGISTER];
|
||
char implicitly_dies[FIRST_PSEUDO_REGISTER];
|
||
int alt;
|
||
|
||
rtx *clobber_reg = 0;
|
||
int n_inputs, n_outputs;
|
||
|
||
/* Find out what the constraints require. If no constraint
|
||
alternative matches, this asm is malformed. */
|
||
extract_insn (insn);
|
||
constrain_operands (1);
|
||
alt = which_alternative;
|
||
|
||
preprocess_constraints ();
|
||
|
||
n_inputs = get_asm_operand_n_inputs (body);
|
||
n_outputs = recog_data.n_operands - n_inputs;
|
||
|
||
if (alt < 0)
|
||
{
|
||
malformed_asm = 1;
|
||
/* Avoid further trouble with this insn. */
|
||
PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
|
||
return 0;
|
||
}
|
||
|
||
/* Strip SUBREGs here to make the following code simpler. */
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
if (GET_CODE (recog_data.operand[i]) == SUBREG
|
||
&& REG_P (SUBREG_REG (recog_data.operand[i])))
|
||
recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
|
||
|
||
/* Set up CLOBBER_REG. */
|
||
|
||
n_clobbers = 0;
|
||
|
||
if (GET_CODE (body) == PARALLEL)
|
||
{
|
||
clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
|
||
|
||
for (i = 0; i < XVECLEN (body, 0); i++)
|
||
if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
|
||
{
|
||
rtx clobber = XVECEXP (body, 0, i);
|
||
rtx reg = XEXP (clobber, 0);
|
||
|
||
if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
|
||
reg = SUBREG_REG (reg);
|
||
|
||
if (STACK_REG_P (reg))
|
||
{
|
||
clobber_reg[n_clobbers] = reg;
|
||
n_clobbers++;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Enforce rule #4: Output operands must specifically indicate which
|
||
reg an output appears in after an asm. "=f" is not allowed: the
|
||
operand constraints must select a class with a single reg.
|
||
|
||
Also enforce rule #5: Output operands must start at the top of
|
||
the reg-stack: output operands may not "skip" a reg. */
|
||
|
||
memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
|
||
for (i = 0; i < n_outputs; i++)
|
||
if (STACK_REG_P (recog_data.operand[i]))
|
||
{
|
||
if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
|
||
{
|
||
error_for_asm (insn, "output constraint %d must specify a single register", i);
|
||
malformed_asm = 1;
|
||
}
|
||
else
|
||
{
|
||
int j;
|
||
|
||
for (j = 0; j < n_clobbers; j++)
|
||
if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
|
||
{
|
||
error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
|
||
i, reg_names [REGNO (clobber_reg[j])]);
|
||
malformed_asm = 1;
|
||
break;
|
||
}
|
||
if (j == n_clobbers)
|
||
reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
|
||
}
|
||
}
|
||
|
||
|
||
/* Search for first non-popped reg. */
|
||
for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
|
||
if (! reg_used_as_output[i])
|
||
break;
|
||
|
||
/* If there are any other popped regs, that's an error. */
|
||
for (; i < LAST_STACK_REG + 1; i++)
|
||
if (reg_used_as_output[i])
|
||
break;
|
||
|
||
if (i != LAST_STACK_REG + 1)
|
||
{
|
||
error_for_asm (insn, "output regs must be grouped at top of stack");
|
||
malformed_asm = 1;
|
||
}
|
||
|
||
/* Enforce rule #2: All implicitly popped input regs must be closer
|
||
to the top of the reg-stack than any input that is not implicitly
|
||
popped. */
|
||
|
||
memset (implicitly_dies, 0, sizeof (implicitly_dies));
|
||
for (i = n_outputs; i < n_outputs + n_inputs; i++)
|
||
if (STACK_REG_P (recog_data.operand[i]))
|
||
{
|
||
/* An input reg is implicitly popped if it is tied to an
|
||
output, or if there is a CLOBBER for it. */
|
||
int j;
|
||
|
||
for (j = 0; j < n_clobbers; j++)
|
||
if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
|
||
break;
|
||
|
||
if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
|
||
implicitly_dies[REGNO (recog_data.operand[i])] = 1;
|
||
}
|
||
|
||
/* Search for first non-popped reg. */
|
||
for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
|
||
if (! implicitly_dies[i])
|
||
break;
|
||
|
||
/* If there are any other popped regs, that's an error. */
|
||
for (; i < LAST_STACK_REG + 1; i++)
|
||
if (implicitly_dies[i])
|
||
break;
|
||
|
||
if (i != LAST_STACK_REG + 1)
|
||
{
|
||
error_for_asm (insn,
|
||
"implicitly popped regs must be grouped at top of stack");
|
||
malformed_asm = 1;
|
||
}
|
||
|
||
/* Enforce rule #3: If any input operand uses the "f" constraint, all
|
||
output constraints must use the "&" earlyclobber.
|
||
|
||
??? Detect this more deterministically by having constrain_asm_operands
|
||
record any earlyclobber. */
|
||
|
||
for (i = n_outputs; i < n_outputs + n_inputs; i++)
|
||
if (recog_op_alt[i][alt].matches == -1)
|
||
{
|
||
int j;
|
||
|
||
for (j = 0; j < n_outputs; j++)
|
||
if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
|
||
{
|
||
error_for_asm (insn,
|
||
"output operand %d must use %<&%> constraint", j);
|
||
malformed_asm = 1;
|
||
}
|
||
}
|
||
|
||
if (malformed_asm)
|
||
{
|
||
/* Avoid further trouble with this insn. */
|
||
PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
|
||
any_malformed_asm = true;
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Calculate the number of inputs and outputs in BODY, an
|
||
asm_operands. N_OPERANDS is the total number of operands, and
|
||
N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
|
||
placed. */
|
||
|
||
static int
|
||
get_asm_operand_n_inputs (rtx body)
|
||
{
|
||
switch (GET_CODE (body))
|
||
{
|
||
case SET:
|
||
gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
|
||
return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
|
||
|
||
case ASM_OPERANDS:
|
||
return ASM_OPERANDS_INPUT_LENGTH (body);
|
||
|
||
case PARALLEL:
|
||
return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* If current function returns its result in an fp stack register,
|
||
return the REG. Otherwise, return 0. */
|
||
|
||
static rtx
|
||
stack_result (tree decl)
|
||
{
|
||
rtx result;
|
||
|
||
/* If the value is supposed to be returned in memory, then clearly
|
||
it is not returned in a stack register. */
|
||
if (aggregate_value_p (DECL_RESULT (decl), decl))
|
||
return 0;
|
||
|
||
result = DECL_RTL_IF_SET (DECL_RESULT (decl));
|
||
if (result != 0)
|
||
result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
|
||
decl, true);
|
||
|
||
return result != 0 && STACK_REG_P (result) ? result : 0;
|
||
}
|
||
|
||
|
||
/*
|
||
* This section deals with stack register substitution, and forms the second
|
||
* pass over the RTL.
|
||
*/
|
||
|
||
/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
|
||
the desired hard REGNO. */
|
||
|
||
static void
|
||
replace_reg (rtx *reg, int regno)
|
||
{
|
||
gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
|
||
gcc_assert (STACK_REG_P (*reg));
|
||
|
||
gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
|
||
|| GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
|
||
|
||
*reg = FP_MODE_REG (regno, GET_MODE (*reg));
|
||
}
|
||
|
||
/* Remove a note of type NOTE, which must be found, for register
|
||
number REGNO from INSN. Remove only one such note. */
|
||
|
||
static void
|
||
remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
|
||
{
|
||
rtx *note_link, this;
|
||
|
||
note_link = ®_NOTES (insn);
|
||
for (this = *note_link; this; this = XEXP (this, 1))
|
||
if (REG_NOTE_KIND (this) == note
|
||
&& REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
|
||
{
|
||
*note_link = XEXP (this, 1);
|
||
return;
|
||
}
|
||
else
|
||
note_link = &XEXP (this, 1);
|
||
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Find the hard register number of virtual register REG in REGSTACK.
|
||
The hard register number is relative to the top of the stack. -1 is
|
||
returned if the register is not found. */
|
||
|
||
static int
|
||
get_hard_regnum (stack regstack, rtx reg)
|
||
{
|
||
int i;
|
||
|
||
gcc_assert (STACK_REG_P (reg));
|
||
|
||
for (i = regstack->top; i >= 0; i--)
|
||
if (regstack->reg[i] == REGNO (reg))
|
||
break;
|
||
|
||
return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
|
||
}
|
||
|
||
/* Emit an insn to pop virtual register REG before or after INSN.
|
||
REGSTACK is the stack state after INSN and is updated to reflect this
|
||
pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
|
||
is represented as a SET whose destination is the register to be popped
|
||
and source is the top of stack. A death note for the top of stack
|
||
cases the movdf pattern to pop. */
|
||
|
||
static rtx
|
||
emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
|
||
{
|
||
rtx pop_insn, pop_rtx;
|
||
int hard_regno;
|
||
|
||
/* For complex types take care to pop both halves. These may survive in
|
||
CLOBBER and USE expressions. */
|
||
if (COMPLEX_MODE_P (GET_MODE (reg)))
|
||
{
|
||
rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
|
||
rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
|
||
|
||
pop_insn = NULL_RTX;
|
||
if (get_hard_regnum (regstack, reg1) >= 0)
|
||
pop_insn = emit_pop_insn (insn, regstack, reg1, where);
|
||
if (get_hard_regnum (regstack, reg2) >= 0)
|
||
pop_insn = emit_pop_insn (insn, regstack, reg2, where);
|
||
gcc_assert (pop_insn);
|
||
return pop_insn;
|
||
}
|
||
|
||
hard_regno = get_hard_regnum (regstack, reg);
|
||
|
||
gcc_assert (hard_regno >= FIRST_STACK_REG);
|
||
|
||
pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
|
||
FP_MODE_REG (FIRST_STACK_REG, DFmode));
|
||
|
||
if (where == EMIT_AFTER)
|
||
pop_insn = emit_insn_after (pop_rtx, insn);
|
||
else
|
||
pop_insn = emit_insn_before (pop_rtx, insn);
|
||
|
||
REG_NOTES (pop_insn)
|
||
= gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
|
||
REG_NOTES (pop_insn));
|
||
|
||
regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
|
||
= regstack->reg[regstack->top];
|
||
regstack->top -= 1;
|
||
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
|
||
|
||
return pop_insn;
|
||
}
|
||
|
||
/* Emit an insn before or after INSN to swap virtual register REG with
|
||
the top of stack. REGSTACK is the stack state before the swap, and
|
||
is updated to reflect the swap. A swap insn is represented as a
|
||
PARALLEL of two patterns: each pattern moves one reg to the other.
|
||
|
||
If REG is already at the top of the stack, no insn is emitted. */
|
||
|
||
static void
|
||
emit_swap_insn (rtx insn, stack regstack, rtx reg)
|
||
{
|
||
int hard_regno;
|
||
rtx swap_rtx;
|
||
int tmp, other_reg; /* swap regno temps */
|
||
rtx i1; /* the stack-reg insn prior to INSN */
|
||
rtx i1set = NULL_RTX; /* the SET rtx within I1 */
|
||
|
||
hard_regno = get_hard_regnum (regstack, reg);
|
||
|
||
if (hard_regno == FIRST_STACK_REG)
|
||
return;
|
||
if (hard_regno == -1)
|
||
{
|
||
/* Something failed if the register wasn't on the stack. If we had
|
||
malformed asms, we zapped the instruction itself, but that didn't
|
||
produce the same pattern of register sets as before. To prevent
|
||
further failure, adjust REGSTACK to include REG at TOP. */
|
||
gcc_assert (any_malformed_asm);
|
||
regstack->reg[++regstack->top] = REGNO (reg);
|
||
return;
|
||
}
|
||
gcc_assert (hard_regno >= FIRST_STACK_REG);
|
||
|
||
other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
|
||
|
||
tmp = regstack->reg[other_reg];
|
||
regstack->reg[other_reg] = regstack->reg[regstack->top];
|
||
regstack->reg[regstack->top] = tmp;
|
||
|
||
/* Find the previous insn involving stack regs, but don't pass a
|
||
block boundary. */
|
||
i1 = NULL;
|
||
if (current_block && insn != BB_HEAD (current_block))
|
||
{
|
||
rtx tmp = PREV_INSN (insn);
|
||
rtx limit = PREV_INSN (BB_HEAD (current_block));
|
||
while (tmp != limit)
|
||
{
|
||
if (LABEL_P (tmp)
|
||
|| CALL_P (tmp)
|
||
|| NOTE_INSN_BASIC_BLOCK_P (tmp)
|
||
|| (NONJUMP_INSN_P (tmp)
|
||
&& stack_regs_mentioned (tmp)))
|
||
{
|
||
i1 = tmp;
|
||
break;
|
||
}
|
||
tmp = PREV_INSN (tmp);
|
||
}
|
||
}
|
||
|
||
if (i1 != NULL_RTX
|
||
&& (i1set = single_set (i1)) != NULL_RTX)
|
||
{
|
||
rtx i1src = *get_true_reg (&SET_SRC (i1set));
|
||
rtx i1dest = *get_true_reg (&SET_DEST (i1set));
|
||
|
||
/* If the previous register stack push was from the reg we are to
|
||
swap with, omit the swap. */
|
||
|
||
if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
|
||
&& REG_P (i1src)
|
||
&& REGNO (i1src) == (unsigned) hard_regno - 1
|
||
&& find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
|
||
return;
|
||
|
||
/* If the previous insn wrote to the reg we are to swap with,
|
||
omit the swap. */
|
||
|
||
if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
|
||
&& REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
|
||
&& find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
|
||
return;
|
||
}
|
||
|
||
/* Avoid emitting the swap if this is the first register stack insn
|
||
of the current_block. Instead update the current_block's stack_in
|
||
and let compensate edges take care of this for us. */
|
||
if (current_block && starting_stack_p)
|
||
{
|
||
BLOCK_INFO (current_block)->stack_in = *regstack;
|
||
starting_stack_p = false;
|
||
return;
|
||
}
|
||
|
||
swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
|
||
FP_MODE_REG (FIRST_STACK_REG, XFmode));
|
||
|
||
if (i1)
|
||
emit_insn_after (swap_rtx, i1);
|
||
else if (current_block)
|
||
emit_insn_before (swap_rtx, BB_HEAD (current_block));
|
||
else
|
||
emit_insn_before (swap_rtx, insn);
|
||
}
|
||
|
||
/* Emit an insns before INSN to swap virtual register SRC1 with
|
||
the top of stack and virtual register SRC2 with second stack
|
||
slot. REGSTACK is the stack state before the swaps, and
|
||
is updated to reflect the swaps. A swap insn is represented as a
|
||
PARALLEL of two patterns: each pattern moves one reg to the other.
|
||
|
||
If SRC1 and/or SRC2 are already at the right place, no swap insn
|
||
is emitted. */
|
||
|
||
static void
|
||
swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
|
||
{
|
||
struct stack_def temp_stack;
|
||
int regno, j, k, temp;
|
||
|
||
temp_stack = *regstack;
|
||
|
||
/* Place operand 1 at the top of stack. */
|
||
regno = get_hard_regnum (&temp_stack, src1);
|
||
gcc_assert (regno >= 0);
|
||
if (regno != FIRST_STACK_REG)
|
||
{
|
||
k = temp_stack.top - (regno - FIRST_STACK_REG);
|
||
j = temp_stack.top;
|
||
|
||
temp = temp_stack.reg[k];
|
||
temp_stack.reg[k] = temp_stack.reg[j];
|
||
temp_stack.reg[j] = temp;
|
||
}
|
||
|
||
/* Place operand 2 next on the stack. */
|
||
regno = get_hard_regnum (&temp_stack, src2);
|
||
gcc_assert (regno >= 0);
|
||
if (regno != FIRST_STACK_REG + 1)
|
||
{
|
||
k = temp_stack.top - (regno - FIRST_STACK_REG);
|
||
j = temp_stack.top - 1;
|
||
|
||
temp = temp_stack.reg[k];
|
||
temp_stack.reg[k] = temp_stack.reg[j];
|
||
temp_stack.reg[j] = temp;
|
||
}
|
||
|
||
change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
|
||
}
|
||
|
||
/* Handle a move to or from a stack register in PAT, which is in INSN.
|
||
REGSTACK is the current stack. Return whether a control flow insn
|
||
was deleted in the process. */
|
||
|
||
static bool
|
||
move_for_stack_reg (rtx insn, stack regstack, rtx pat)
|
||
{
|
||
rtx *psrc = get_true_reg (&SET_SRC (pat));
|
||
rtx *pdest = get_true_reg (&SET_DEST (pat));
|
||
rtx src, dest;
|
||
rtx note;
|
||
bool control_flow_insn_deleted = false;
|
||
|
||
src = *psrc; dest = *pdest;
|
||
|
||
if (STACK_REG_P (src) && STACK_REG_P (dest))
|
||
{
|
||
/* Write from one stack reg to another. If SRC dies here, then
|
||
just change the register mapping and delete the insn. */
|
||
|
||
note = find_regno_note (insn, REG_DEAD, REGNO (src));
|
||
if (note)
|
||
{
|
||
int i;
|
||
|
||
/* If this is a no-op move, there must not be a REG_DEAD note. */
|
||
gcc_assert (REGNO (src) != REGNO (dest));
|
||
|
||
for (i = regstack->top; i >= 0; i--)
|
||
if (regstack->reg[i] == REGNO (src))
|
||
break;
|
||
|
||
/* The destination must be dead, or life analysis is borked. */
|
||
gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
|
||
|
||
/* If the source is not live, this is yet another case of
|
||
uninitialized variables. Load up a NaN instead. */
|
||
if (i < 0)
|
||
return move_nan_for_stack_reg (insn, regstack, dest);
|
||
|
||
/* It is possible that the dest is unused after this insn.
|
||
If so, just pop the src. */
|
||
|
||
if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
|
||
emit_pop_insn (insn, regstack, src, EMIT_AFTER);
|
||
else
|
||
{
|
||
regstack->reg[i] = REGNO (dest);
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
|
||
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
|
||
}
|
||
|
||
control_flow_insn_deleted |= control_flow_insn_p (insn);
|
||
delete_insn (insn);
|
||
return control_flow_insn_deleted;
|
||
}
|
||
|
||
/* The source reg does not die. */
|
||
|
||
/* If this appears to be a no-op move, delete it, or else it
|
||
will confuse the machine description output patterns. But if
|
||
it is REG_UNUSED, we must pop the reg now, as per-insn processing
|
||
for REG_UNUSED will not work for deleted insns. */
|
||
|
||
if (REGNO (src) == REGNO (dest))
|
||
{
|
||
if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
|
||
emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
|
||
|
||
control_flow_insn_deleted |= control_flow_insn_p (insn);
|
||
delete_insn (insn);
|
||
return control_flow_insn_deleted;
|
||
}
|
||
|
||
/* The destination ought to be dead. */
|
||
gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
|
||
|
||
replace_reg (psrc, get_hard_regnum (regstack, src));
|
||
|
||
regstack->reg[++regstack->top] = REGNO (dest);
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
|
||
replace_reg (pdest, FIRST_STACK_REG);
|
||
}
|
||
else if (STACK_REG_P (src))
|
||
{
|
||
/* Save from a stack reg to MEM, or possibly integer reg. Since
|
||
only top of stack may be saved, emit an exchange first if
|
||
needs be. */
|
||
|
||
emit_swap_insn (insn, regstack, src);
|
||
|
||
note = find_regno_note (insn, REG_DEAD, REGNO (src));
|
||
if (note)
|
||
{
|
||
replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
|
||
regstack->top--;
|
||
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
|
||
}
|
||
else if ((GET_MODE (src) == XFmode)
|
||
&& regstack->top < REG_STACK_SIZE - 1)
|
||
{
|
||
/* A 387 cannot write an XFmode value to a MEM without
|
||
clobbering the source reg. The output code can handle
|
||
this by reading back the value from the MEM.
|
||
But it is more efficient to use a temp register if one is
|
||
available. Push the source value here if the register
|
||
stack is not full, and then write the value to memory via
|
||
a pop. */
|
||
rtx push_rtx;
|
||
rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
|
||
|
||
push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
|
||
emit_insn_before (push_rtx, insn);
|
||
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
|
||
REG_NOTES (insn));
|
||
}
|
||
|
||
replace_reg (psrc, FIRST_STACK_REG);
|
||
}
|
||
else
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
|
||
gcc_assert (STACK_REG_P (dest));
|
||
|
||
/* Load from MEM, or possibly integer REG or constant, into the
|
||
stack regs. The actual target is always the top of the
|
||
stack. The stack mapping is changed to reflect that DEST is
|
||
now at top of stack. */
|
||
|
||
/* The destination ought to be dead. However, there is a
|
||
special case with i387 UNSPEC_TAN, where destination is live
|
||
(an argument to fptan) but inherent load of 1.0 is modelled
|
||
as a load from a constant. */
|
||
if (! (GET_CODE (pat) == PARALLEL
|
||
&& XVECLEN (pat, 0) == 2
|
||
&& GET_CODE (XVECEXP (pat, 0, 1)) == SET
|
||
&& GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
|
||
&& XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN))
|
||
gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
|
||
|
||
gcc_assert (regstack->top < REG_STACK_SIZE);
|
||
|
||
regstack->reg[++regstack->top] = REGNO (dest);
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
|
||
replace_reg (pdest, FIRST_STACK_REG);
|
||
}
|
||
|
||
return control_flow_insn_deleted;
|
||
}
|
||
|
||
/* A helper function which replaces INSN with a pattern that loads up
|
||
a NaN into DEST, then invokes move_for_stack_reg. */
|
||
|
||
static bool
|
||
move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
|
||
{
|
||
rtx pat;
|
||
|
||
dest = FP_MODE_REG (REGNO (dest), SFmode);
|
||
pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
|
||
PATTERN (insn) = pat;
|
||
INSN_CODE (insn) = -1;
|
||
|
||
return move_for_stack_reg (insn, regstack, pat);
|
||
}
|
||
|
||
/* Swap the condition on a branch, if there is one. Return true if we
|
||
found a condition to swap. False if the condition was not used as
|
||
such. */
|
||
|
||
static int
|
||
swap_rtx_condition_1 (rtx pat)
|
||
{
|
||
const char *fmt;
|
||
int i, r = 0;
|
||
|
||
if (COMPARISON_P (pat))
|
||
{
|
||
PUT_CODE (pat, swap_condition (GET_CODE (pat)));
|
||
r = 1;
|
||
}
|
||
else
|
||
{
|
||
fmt = GET_RTX_FORMAT (GET_CODE (pat));
|
||
for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
|
||
for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
|
||
r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
|
||
}
|
||
else if (fmt[i] == 'e')
|
||
r |= swap_rtx_condition_1 (XEXP (pat, i));
|
||
}
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
static int
|
||
swap_rtx_condition (rtx insn)
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
|
||
/* We're looking for a single set to cc0 or an HImode temporary. */
|
||
|
||
if (GET_CODE (pat) == SET
|
||
&& REG_P (SET_DEST (pat))
|
||
&& REGNO (SET_DEST (pat)) == FLAGS_REG)
|
||
{
|
||
insn = next_flags_user (insn);
|
||
if (insn == NULL_RTX)
|
||
return 0;
|
||
pat = PATTERN (insn);
|
||
}
|
||
|
||
/* See if this is, or ends in, a fnstsw. If so, we're not doing anything
|
||
with the cc value right now. We may be able to search for one
|
||
though. */
|
||
|
||
if (GET_CODE (pat) == SET
|
||
&& GET_CODE (SET_SRC (pat)) == UNSPEC
|
||
&& XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
|
||
{
|
||
rtx dest = SET_DEST (pat);
|
||
|
||
/* Search forward looking for the first use of this value.
|
||
Stop at block boundaries. */
|
||
while (insn != BB_END (current_block))
|
||
{
|
||
insn = NEXT_INSN (insn);
|
||
if (INSN_P (insn) && reg_mentioned_p (dest, insn))
|
||
break;
|
||
if (CALL_P (insn))
|
||
return 0;
|
||
}
|
||
|
||
/* We haven't found it. */
|
||
if (insn == BB_END (current_block))
|
||
return 0;
|
||
|
||
/* So we've found the insn using this value. If it is anything
|
||
other than sahf or the value does not die (meaning we'd have
|
||
to search further), then we must give up. */
|
||
pat = PATTERN (insn);
|
||
if (GET_CODE (pat) != SET
|
||
|| GET_CODE (SET_SRC (pat)) != UNSPEC
|
||
|| XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
|
||
|| ! dead_or_set_p (insn, dest))
|
||
return 0;
|
||
|
||
/* Now we are prepared to handle this as a normal cc0 setter. */
|
||
insn = next_flags_user (insn);
|
||
if (insn == NULL_RTX)
|
||
return 0;
|
||
pat = PATTERN (insn);
|
||
}
|
||
|
||
if (swap_rtx_condition_1 (pat))
|
||
{
|
||
int fail = 0;
|
||
INSN_CODE (insn) = -1;
|
||
if (recog_memoized (insn) == -1)
|
||
fail = 1;
|
||
/* In case the flags don't die here, recurse to try fix
|
||
following user too. */
|
||
else if (! dead_or_set_p (insn, ix86_flags_rtx))
|
||
{
|
||
insn = next_flags_user (insn);
|
||
if (!insn || !swap_rtx_condition (insn))
|
||
fail = 1;
|
||
}
|
||
if (fail)
|
||
{
|
||
swap_rtx_condition_1 (pat);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Handle a comparison. Special care needs to be taken to avoid
|
||
causing comparisons that a 387 cannot do correctly, such as EQ.
|
||
|
||
Also, a pop insn may need to be emitted. The 387 does have an
|
||
`fcompp' insn that can pop two regs, but it is sometimes too expensive
|
||
to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
|
||
set up. */
|
||
|
||
static void
|
||
compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
|
||
{
|
||
rtx *src1, *src2;
|
||
rtx src1_note, src2_note;
|
||
|
||
src1 = get_true_reg (&XEXP (pat_src, 0));
|
||
src2 = get_true_reg (&XEXP (pat_src, 1));
|
||
|
||
/* ??? If fxch turns out to be cheaper than fstp, give priority to
|
||
registers that die in this insn - move those to stack top first. */
|
||
if ((! STACK_REG_P (*src1)
|
||
|| (STACK_REG_P (*src2)
|
||
&& get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
|
||
&& swap_rtx_condition (insn))
|
||
{
|
||
rtx temp;
|
||
temp = XEXP (pat_src, 0);
|
||
XEXP (pat_src, 0) = XEXP (pat_src, 1);
|
||
XEXP (pat_src, 1) = temp;
|
||
|
||
src1 = get_true_reg (&XEXP (pat_src, 0));
|
||
src2 = get_true_reg (&XEXP (pat_src, 1));
|
||
|
||
INSN_CODE (insn) = -1;
|
||
}
|
||
|
||
/* We will fix any death note later. */
|
||
|
||
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
||
|
||
if (STACK_REG_P (*src2))
|
||
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
|
||
else
|
||
src2_note = NULL_RTX;
|
||
|
||
emit_swap_insn (insn, regstack, *src1);
|
||
|
||
replace_reg (src1, FIRST_STACK_REG);
|
||
|
||
if (STACK_REG_P (*src2))
|
||
replace_reg (src2, get_hard_regnum (regstack, *src2));
|
||
|
||
if (src1_note)
|
||
{
|
||
pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
|
||
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
|
||
}
|
||
|
||
/* If the second operand dies, handle that. But if the operands are
|
||
the same stack register, don't bother, because only one death is
|
||
needed, and it was just handled. */
|
||
|
||
if (src2_note
|
||
&& ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
|
||
&& REGNO (*src1) == REGNO (*src2)))
|
||
{
|
||
/* As a special case, two regs may die in this insn if src2 is
|
||
next to top of stack and the top of stack also dies. Since
|
||
we have already popped src1, "next to top of stack" is really
|
||
at top (FIRST_STACK_REG) now. */
|
||
|
||
if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
|
||
&& src1_note)
|
||
{
|
||
pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
|
||
replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
|
||
}
|
||
else
|
||
{
|
||
/* The 386 can only represent death of the first operand in
|
||
the case handled above. In all other cases, emit a separate
|
||
pop and remove the death note from here. */
|
||
|
||
/* link_cc0_insns (insn); */
|
||
|
||
remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
|
||
|
||
emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
|
||
EMIT_AFTER);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Substitute new registers in PAT, which is part of INSN. REGSTACK
|
||
is the current register layout. Return whether a control flow insn
|
||
was deleted in the process. */
|
||
|
||
static bool
|
||
subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
|
||
{
|
||
rtx *dest, *src;
|
||
bool control_flow_insn_deleted = false;
|
||
|
||
switch (GET_CODE (pat))
|
||
{
|
||
case USE:
|
||
/* Deaths in USE insns can happen in non optimizing compilation.
|
||
Handle them by popping the dying register. */
|
||
src = get_true_reg (&XEXP (pat, 0));
|
||
if (STACK_REG_P (*src)
|
||
&& find_regno_note (insn, REG_DEAD, REGNO (*src)))
|
||
{
|
||
/* USEs are ignored for liveness information so USEs of dead
|
||
register might happen. */
|
||
if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
|
||
emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
|
||
return control_flow_insn_deleted;
|
||
}
|
||
/* Uninitialized USE might happen for functions returning uninitialized
|
||
value. We will properly initialize the USE on the edge to EXIT_BLOCK,
|
||
so it is safe to ignore the use here. This is consistent with behavior
|
||
of dataflow analyzer that ignores USE too. (This also imply that
|
||
forcibly initializing the register to NaN here would lead to ICE later,
|
||
since the REG_DEAD notes are not issued.) */
|
||
break;
|
||
|
||
case CLOBBER:
|
||
{
|
||
rtx note;
|
||
|
||
dest = get_true_reg (&XEXP (pat, 0));
|
||
if (STACK_REG_P (*dest))
|
||
{
|
||
note = find_reg_note (insn, REG_DEAD, *dest);
|
||
|
||
if (pat != PATTERN (insn))
|
||
{
|
||
/* The fix_truncdi_1 pattern wants to be able to allocate
|
||
its own scratch register. It does this by clobbering
|
||
an fp reg so that it is assured of an empty reg-stack
|
||
register. If the register is live, kill it now.
|
||
Remove the DEAD/UNUSED note so we don't try to kill it
|
||
later too. */
|
||
|
||
if (note)
|
||
emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
|
||
else
|
||
{
|
||
note = find_reg_note (insn, REG_UNUSED, *dest);
|
||
gcc_assert (note);
|
||
}
|
||
remove_note (insn, note);
|
||
replace_reg (dest, FIRST_STACK_REG + 1);
|
||
}
|
||
else
|
||
{
|
||
/* A top-level clobber with no REG_DEAD, and no hard-regnum
|
||
indicates an uninitialized value. Because reload removed
|
||
all other clobbers, this must be due to a function
|
||
returning without a value. Load up a NaN. */
|
||
|
||
if (!note)
|
||
{
|
||
rtx t = *dest;
|
||
if (COMPLEX_MODE_P (GET_MODE (t)))
|
||
{
|
||
rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
|
||
if (get_hard_regnum (regstack, u) == -1)
|
||
{
|
||
rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
|
||
rtx insn2 = emit_insn_before (pat2, insn);
|
||
control_flow_insn_deleted
|
||
|= move_nan_for_stack_reg (insn2, regstack, u);
|
||
}
|
||
}
|
||
if (get_hard_regnum (regstack, t) == -1)
|
||
control_flow_insn_deleted
|
||
|= move_nan_for_stack_reg (insn, regstack, t);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
case SET:
|
||
{
|
||
rtx *src1 = (rtx *) 0, *src2;
|
||
rtx src1_note, src2_note;
|
||
rtx pat_src;
|
||
|
||
dest = get_true_reg (&SET_DEST (pat));
|
||
src = get_true_reg (&SET_SRC (pat));
|
||
pat_src = SET_SRC (pat);
|
||
|
||
/* See if this is a `movM' pattern, and handle elsewhere if so. */
|
||
if (STACK_REG_P (*src)
|
||
|| (STACK_REG_P (*dest)
|
||
&& (REG_P (*src) || MEM_P (*src)
|
||
|| GET_CODE (*src) == CONST_DOUBLE)))
|
||
{
|
||
control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
|
||
break;
|
||
}
|
||
|
||
switch (GET_CODE (pat_src))
|
||
{
|
||
case COMPARE:
|
||
compare_for_stack_reg (insn, regstack, pat_src);
|
||
break;
|
||
|
||
case CALL:
|
||
{
|
||
int count;
|
||
for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
|
||
--count >= 0;)
|
||
{
|
||
regstack->reg[++regstack->top] = REGNO (*dest) + count;
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
|
||
}
|
||
}
|
||
replace_reg (dest, FIRST_STACK_REG);
|
||
break;
|
||
|
||
case REG:
|
||
/* This is a `tstM2' case. */
|
||
gcc_assert (*dest == cc0_rtx);
|
||
src1 = src;
|
||
|
||
/* Fall through. */
|
||
|
||
case FLOAT_TRUNCATE:
|
||
case SQRT:
|
||
case ABS:
|
||
case NEG:
|
||
/* These insns only operate on the top of the stack. DEST might
|
||
be cc0_rtx if we're processing a tstM pattern. Also, it's
|
||
possible that the tstM case results in a REG_DEAD note on the
|
||
source. */
|
||
|
||
if (src1 == 0)
|
||
src1 = get_true_reg (&XEXP (pat_src, 0));
|
||
|
||
emit_swap_insn (insn, regstack, *src1);
|
||
|
||
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
||
|
||
if (STACK_REG_P (*dest))
|
||
replace_reg (dest, FIRST_STACK_REG);
|
||
|
||
if (src1_note)
|
||
{
|
||
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
|
||
regstack->top--;
|
||
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
|
||
}
|
||
|
||
replace_reg (src1, FIRST_STACK_REG);
|
||
break;
|
||
|
||
case MINUS:
|
||
case DIV:
|
||
/* On i386, reversed forms of subM3 and divM3 exist for
|
||
MODE_FLOAT, so the same code that works for addM3 and mulM3
|
||
can be used. */
|
||
case MULT:
|
||
case PLUS:
|
||
/* These insns can accept the top of stack as a destination
|
||
from a stack reg or mem, or can use the top of stack as a
|
||
source and some other stack register (possibly top of stack)
|
||
as a destination. */
|
||
|
||
src1 = get_true_reg (&XEXP (pat_src, 0));
|
||
src2 = get_true_reg (&XEXP (pat_src, 1));
|
||
|
||
/* We will fix any death note later. */
|
||
|
||
if (STACK_REG_P (*src1))
|
||
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
||
else
|
||
src1_note = NULL_RTX;
|
||
if (STACK_REG_P (*src2))
|
||
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
|
||
else
|
||
src2_note = NULL_RTX;
|
||
|
||
/* If either operand is not a stack register, then the dest
|
||
must be top of stack. */
|
||
|
||
if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
|
||
emit_swap_insn (insn, regstack, *dest);
|
||
else
|
||
{
|
||
/* Both operands are REG. If neither operand is already
|
||
at the top of stack, choose to make the one that is the dest
|
||
the new top of stack. */
|
||
|
||
int src1_hard_regnum, src2_hard_regnum;
|
||
|
||
src1_hard_regnum = get_hard_regnum (regstack, *src1);
|
||
src2_hard_regnum = get_hard_regnum (regstack, *src2);
|
||
gcc_assert (src1_hard_regnum != -1);
|
||
gcc_assert (src2_hard_regnum != -1);
|
||
|
||
if (src1_hard_regnum != FIRST_STACK_REG
|
||
&& src2_hard_regnum != FIRST_STACK_REG)
|
||
emit_swap_insn (insn, regstack, *dest);
|
||
}
|
||
|
||
if (STACK_REG_P (*src1))
|
||
replace_reg (src1, get_hard_regnum (regstack, *src1));
|
||
if (STACK_REG_P (*src2))
|
||
replace_reg (src2, get_hard_regnum (regstack, *src2));
|
||
|
||
if (src1_note)
|
||
{
|
||
rtx src1_reg = XEXP (src1_note, 0);
|
||
|
||
/* If the register that dies is at the top of stack, then
|
||
the destination is somewhere else - merely substitute it.
|
||
But if the reg that dies is not at top of stack, then
|
||
move the top of stack to the dead reg, as though we had
|
||
done the insn and then a store-with-pop. */
|
||
|
||
if (REGNO (src1_reg) == regstack->reg[regstack->top])
|
||
{
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
||
replace_reg (dest, get_hard_regnum (regstack, *dest));
|
||
}
|
||
else
|
||
{
|
||
int regno = get_hard_regnum (regstack, src1_reg);
|
||
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
||
replace_reg (dest, regno);
|
||
|
||
regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
|
||
= regstack->reg[regstack->top];
|
||
}
|
||
|
||
CLEAR_HARD_REG_BIT (regstack->reg_set,
|
||
REGNO (XEXP (src1_note, 0)));
|
||
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
|
||
regstack->top--;
|
||
}
|
||
else if (src2_note)
|
||
{
|
||
rtx src2_reg = XEXP (src2_note, 0);
|
||
if (REGNO (src2_reg) == regstack->reg[regstack->top])
|
||
{
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
||
replace_reg (dest, get_hard_regnum (regstack, *dest));
|
||
}
|
||
else
|
||
{
|
||
int regno = get_hard_regnum (regstack, src2_reg);
|
||
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
||
replace_reg (dest, regno);
|
||
|
||
regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
|
||
= regstack->reg[regstack->top];
|
||
}
|
||
|
||
CLEAR_HARD_REG_BIT (regstack->reg_set,
|
||
REGNO (XEXP (src2_note, 0)));
|
||
replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
|
||
regstack->top--;
|
||
}
|
||
else
|
||
{
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
||
replace_reg (dest, get_hard_regnum (regstack, *dest));
|
||
}
|
||
|
||
/* Keep operand 1 matching with destination. */
|
||
if (COMMUTATIVE_ARITH_P (pat_src)
|
||
&& REG_P (*src1) && REG_P (*src2)
|
||
&& REGNO (*src1) != REGNO (*dest))
|
||
{
|
||
int tmp = REGNO (*src1);
|
||
replace_reg (src1, REGNO (*src2));
|
||
replace_reg (src2, tmp);
|
||
}
|
||
break;
|
||
|
||
case UNSPEC:
|
||
switch (XINT (pat_src, 1))
|
||
{
|
||
case UNSPEC_FIST:
|
||
|
||
case UNSPEC_FIST_FLOOR:
|
||
case UNSPEC_FIST_CEIL:
|
||
|
||
/* These insns only operate on the top of the stack. */
|
||
|
||
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
||
emit_swap_insn (insn, regstack, *src1);
|
||
|
||
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
||
|
||
if (STACK_REG_P (*dest))
|
||
replace_reg (dest, FIRST_STACK_REG);
|
||
|
||
if (src1_note)
|
||
{
|
||
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
|
||
regstack->top--;
|
||
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
|
||
}
|
||
|
||
replace_reg (src1, FIRST_STACK_REG);
|
||
break;
|
||
|
||
case UNSPEC_FXAM:
|
||
|
||
/* This insn only operate on the top of the stack. */
|
||
|
||
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
||
emit_swap_insn (insn, regstack, *src1);
|
||
|
||
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
||
|
||
replace_reg (src1, FIRST_STACK_REG);
|
||
|
||
if (src1_note)
|
||
{
|
||
remove_regno_note (insn, REG_DEAD,
|
||
REGNO (XEXP (src1_note, 0)));
|
||
emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
|
||
EMIT_AFTER);
|
||
}
|
||
|
||
break;
|
||
|
||
case UNSPEC_SIN:
|
||
case UNSPEC_COS:
|
||
case UNSPEC_FRNDINT:
|
||
case UNSPEC_F2XM1:
|
||
|
||
case UNSPEC_FRNDINT_FLOOR:
|
||
case UNSPEC_FRNDINT_CEIL:
|
||
case UNSPEC_FRNDINT_TRUNC:
|
||
case UNSPEC_FRNDINT_MASK_PM:
|
||
|
||
/* Above insns operate on the top of the stack. */
|
||
|
||
case UNSPEC_SINCOS_COS:
|
||
case UNSPEC_XTRACT_FRACT:
|
||
|
||
/* Above insns operate on the top two stack slots,
|
||
first part of one input, double output insn. */
|
||
|
||
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
||
|
||
emit_swap_insn (insn, regstack, *src1);
|
||
|
||
/* Input should never die, it is replaced with output. */
|
||
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
||
gcc_assert (!src1_note);
|
||
|
||
if (STACK_REG_P (*dest))
|
||
replace_reg (dest, FIRST_STACK_REG);
|
||
|
||
replace_reg (src1, FIRST_STACK_REG);
|
||
break;
|
||
|
||
case UNSPEC_SINCOS_SIN:
|
||
case UNSPEC_XTRACT_EXP:
|
||
|
||
/* These insns operate on the top two stack slots,
|
||
second part of one input, double output insn. */
|
||
|
||
regstack->top++;
|
||
/* FALLTHRU */
|
||
|
||
case UNSPEC_TAN:
|
||
|
||
/* For UNSPEC_TAN, regstack->top is already increased
|
||
by inherent load of constant 1.0. */
|
||
|
||
/* Output value is generated in the second stack slot.
|
||
Move current value from second slot to the top. */
|
||
regstack->reg[regstack->top]
|
||
= regstack->reg[regstack->top - 1];
|
||
|
||
gcc_assert (STACK_REG_P (*dest));
|
||
|
||
regstack->reg[regstack->top - 1] = REGNO (*dest);
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
||
replace_reg (dest, FIRST_STACK_REG + 1);
|
||
|
||
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
||
|
||
replace_reg (src1, FIRST_STACK_REG);
|
||
break;
|
||
|
||
case UNSPEC_FPATAN:
|
||
case UNSPEC_FYL2X:
|
||
case UNSPEC_FYL2XP1:
|
||
/* These insns operate on the top two stack slots. */
|
||
|
||
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
||
src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
|
||
|
||
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
||
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
|
||
|
||
swap_to_top (insn, regstack, *src1, *src2);
|
||
|
||
replace_reg (src1, FIRST_STACK_REG);
|
||
replace_reg (src2, FIRST_STACK_REG + 1);
|
||
|
||
if (src1_note)
|
||
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
|
||
if (src2_note)
|
||
replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
|
||
|
||
/* Pop both input operands from the stack. */
|
||
CLEAR_HARD_REG_BIT (regstack->reg_set,
|
||
regstack->reg[regstack->top]);
|
||
CLEAR_HARD_REG_BIT (regstack->reg_set,
|
||
regstack->reg[regstack->top - 1]);
|
||
regstack->top -= 2;
|
||
|
||
/* Push the result back onto the stack. */
|
||
regstack->reg[++regstack->top] = REGNO (*dest);
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
||
replace_reg (dest, FIRST_STACK_REG);
|
||
break;
|
||
|
||
case UNSPEC_FSCALE_FRACT:
|
||
case UNSPEC_FPREM_F:
|
||
case UNSPEC_FPREM1_F:
|
||
/* These insns operate on the top two stack slots,
|
||
first part of double input, double output insn. */
|
||
|
||
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
||
src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
|
||
|
||
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
||
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
|
||
|
||
/* Inputs should never die, they are
|
||
replaced with outputs. */
|
||
gcc_assert (!src1_note);
|
||
gcc_assert (!src2_note);
|
||
|
||
swap_to_top (insn, regstack, *src1, *src2);
|
||
|
||
/* Push the result back onto stack. Empty stack slot
|
||
will be filled in second part of insn. */
|
||
if (STACK_REG_P (*dest))
|
||
{
|
||
regstack->reg[regstack->top] = REGNO (*dest);
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
||
replace_reg (dest, FIRST_STACK_REG);
|
||
}
|
||
|
||
replace_reg (src1, FIRST_STACK_REG);
|
||
replace_reg (src2, FIRST_STACK_REG + 1);
|
||
break;
|
||
|
||
case UNSPEC_FSCALE_EXP:
|
||
case UNSPEC_FPREM_U:
|
||
case UNSPEC_FPREM1_U:
|
||
/* These insns operate on the top two stack slots,
|
||
second part of double input, double output insn. */
|
||
|
||
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
||
src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
|
||
|
||
/* Push the result back onto stack. Fill empty slot from
|
||
first part of insn and fix top of stack pointer. */
|
||
if (STACK_REG_P (*dest))
|
||
{
|
||
regstack->reg[regstack->top - 1] = REGNO (*dest);
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
||
replace_reg (dest, FIRST_STACK_REG + 1);
|
||
}
|
||
|
||
replace_reg (src1, FIRST_STACK_REG);
|
||
replace_reg (src2, FIRST_STACK_REG + 1);
|
||
break;
|
||
|
||
case UNSPEC_C2_FLAG:
|
||
/* This insn operates on the top two stack slots,
|
||
third part of C2 setting double input insn. */
|
||
|
||
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
||
src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
|
||
|
||
replace_reg (src1, FIRST_STACK_REG);
|
||
replace_reg (src2, FIRST_STACK_REG + 1);
|
||
break;
|
||
|
||
case UNSPEC_SAHF:
|
||
/* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
|
||
The combination matches the PPRO fcomi instruction. */
|
||
|
||
pat_src = XVECEXP (pat_src, 0, 0);
|
||
gcc_assert (GET_CODE (pat_src) == UNSPEC);
|
||
gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
|
||
/* Fall through. */
|
||
|
||
case UNSPEC_FNSTSW:
|
||
/* Combined fcomp+fnstsw generated for doing well with
|
||
CSE. When optimizing this would have been broken
|
||
up before now. */
|
||
|
||
pat_src = XVECEXP (pat_src, 0, 0);
|
||
gcc_assert (GET_CODE (pat_src) == COMPARE);
|
||
|
||
compare_for_stack_reg (insn, regstack, pat_src);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
/* This insn requires the top of stack to be the destination. */
|
||
|
||
src1 = get_true_reg (&XEXP (pat_src, 1));
|
||
src2 = get_true_reg (&XEXP (pat_src, 2));
|
||
|
||
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
||
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
|
||
|
||
/* If the comparison operator is an FP comparison operator,
|
||
it is handled correctly by compare_for_stack_reg () who
|
||
will move the destination to the top of stack. But if the
|
||
comparison operator is not an FP comparison operator, we
|
||
have to handle it here. */
|
||
if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
|
||
&& REGNO (*dest) != regstack->reg[regstack->top])
|
||
{
|
||
/* In case one of operands is the top of stack and the operands
|
||
dies, it is safe to make it the destination operand by
|
||
reversing the direction of cmove and avoid fxch. */
|
||
if ((REGNO (*src1) == regstack->reg[regstack->top]
|
||
&& src1_note)
|
||
|| (REGNO (*src2) == regstack->reg[regstack->top]
|
||
&& src2_note))
|
||
{
|
||
int idx1 = (get_hard_regnum (regstack, *src1)
|
||
- FIRST_STACK_REG);
|
||
int idx2 = (get_hard_regnum (regstack, *src2)
|
||
- FIRST_STACK_REG);
|
||
|
||
/* Make reg-stack believe that the operands are already
|
||
swapped on the stack */
|
||
regstack->reg[regstack->top - idx1] = REGNO (*src2);
|
||
regstack->reg[regstack->top - idx2] = REGNO (*src1);
|
||
|
||
/* Reverse condition to compensate the operand swap.
|
||
i386 do have comparison always reversible. */
|
||
PUT_CODE (XEXP (pat_src, 0),
|
||
reversed_comparison_code (XEXP (pat_src, 0), insn));
|
||
}
|
||
else
|
||
emit_swap_insn (insn, regstack, *dest);
|
||
}
|
||
|
||
{
|
||
rtx src_note [3];
|
||
int i;
|
||
|
||
src_note[0] = 0;
|
||
src_note[1] = src1_note;
|
||
src_note[2] = src2_note;
|
||
|
||
if (STACK_REG_P (*src1))
|
||
replace_reg (src1, get_hard_regnum (regstack, *src1));
|
||
if (STACK_REG_P (*src2))
|
||
replace_reg (src2, get_hard_regnum (regstack, *src2));
|
||
|
||
for (i = 1; i <= 2; i++)
|
||
if (src_note [i])
|
||
{
|
||
int regno = REGNO (XEXP (src_note[i], 0));
|
||
|
||
/* If the register that dies is not at the top of
|
||
stack, then move the top of stack to the dead reg.
|
||
Top of stack should never die, as it is the
|
||
destination. */
|
||
gcc_assert (regno != regstack->reg[regstack->top]);
|
||
remove_regno_note (insn, REG_DEAD, regno);
|
||
emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
|
||
EMIT_AFTER);
|
||
}
|
||
}
|
||
|
||
/* Make dest the top of stack. Add dest to regstack if
|
||
not present. */
|
||
if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
|
||
regstack->reg[++regstack->top] = REGNO (*dest);
|
||
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
||
replace_reg (dest, FIRST_STACK_REG);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return control_flow_insn_deleted;
|
||
}
|
||
|
||
/* Substitute hard regnums for any stack regs in INSN, which has
|
||
N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
|
||
before the insn, and is updated with changes made here.
|
||
|
||
There are several requirements and assumptions about the use of
|
||
stack-like regs in asm statements. These rules are enforced by
|
||
record_asm_stack_regs; see comments there for details. Any
|
||
asm_operands left in the RTL at this point may be assume to meet the
|
||
requirements, since record_asm_stack_regs removes any problem asm. */
|
||
|
||
static void
|
||
subst_asm_stack_regs (rtx insn, stack regstack)
|
||
{
|
||
rtx body = PATTERN (insn);
|
||
int alt;
|
||
|
||
rtx *note_reg; /* Array of note contents */
|
||
rtx **note_loc; /* Address of REG field of each note */
|
||
enum reg_note *note_kind; /* The type of each note */
|
||
|
||
rtx *clobber_reg = 0;
|
||
rtx **clobber_loc = 0;
|
||
|
||
struct stack_def temp_stack;
|
||
int n_notes;
|
||
int n_clobbers;
|
||
rtx note;
|
||
int i;
|
||
int n_inputs, n_outputs;
|
||
|
||
if (! check_asm_stack_operands (insn))
|
||
return;
|
||
|
||
/* Find out what the constraints required. If no constraint
|
||
alternative matches, that is a compiler bug: we should have caught
|
||
such an insn in check_asm_stack_operands. */
|
||
extract_insn (insn);
|
||
constrain_operands (1);
|
||
alt = which_alternative;
|
||
|
||
preprocess_constraints ();
|
||
|
||
n_inputs = get_asm_operand_n_inputs (body);
|
||
n_outputs = recog_data.n_operands - n_inputs;
|
||
|
||
gcc_assert (alt >= 0);
|
||
|
||
/* Strip SUBREGs here to make the following code simpler. */
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
if (GET_CODE (recog_data.operand[i]) == SUBREG
|
||
&& REG_P (SUBREG_REG (recog_data.operand[i])))
|
||
{
|
||
recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
|
||
recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
|
||
}
|
||
|
||
/* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
|
||
|
||
for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
i++;
|
||
|
||
note_reg = alloca (i * sizeof (rtx));
|
||
note_loc = alloca (i * sizeof (rtx *));
|
||
note_kind = alloca (i * sizeof (enum reg_note));
|
||
|
||
n_notes = 0;
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
{
|
||
rtx reg = XEXP (note, 0);
|
||
rtx *loc = & XEXP (note, 0);
|
||
|
||
if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
|
||
{
|
||
loc = & SUBREG_REG (reg);
|
||
reg = SUBREG_REG (reg);
|
||
}
|
||
|
||
if (STACK_REG_P (reg)
|
||
&& (REG_NOTE_KIND (note) == REG_DEAD
|
||
|| REG_NOTE_KIND (note) == REG_UNUSED))
|
||
{
|
||
note_reg[n_notes] = reg;
|
||
note_loc[n_notes] = loc;
|
||
note_kind[n_notes] = REG_NOTE_KIND (note);
|
||
n_notes++;
|
||
}
|
||
}
|
||
|
||
/* Set up CLOBBER_REG and CLOBBER_LOC. */
|
||
|
||
n_clobbers = 0;
|
||
|
||
if (GET_CODE (body) == PARALLEL)
|
||
{
|
||
clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
|
||
clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
|
||
|
||
for (i = 0; i < XVECLEN (body, 0); i++)
|
||
if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
|
||
{
|
||
rtx clobber = XVECEXP (body, 0, i);
|
||
rtx reg = XEXP (clobber, 0);
|
||
rtx *loc = & XEXP (clobber, 0);
|
||
|
||
if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
|
||
{
|
||
loc = & SUBREG_REG (reg);
|
||
reg = SUBREG_REG (reg);
|
||
}
|
||
|
||
if (STACK_REG_P (reg))
|
||
{
|
||
clobber_reg[n_clobbers] = reg;
|
||
clobber_loc[n_clobbers] = loc;
|
||
n_clobbers++;
|
||
}
|
||
}
|
||
}
|
||
|
||
temp_stack = *regstack;
|
||
|
||
/* Put the input regs into the desired place in TEMP_STACK. */
|
||
|
||
for (i = n_outputs; i < n_outputs + n_inputs; i++)
|
||
if (STACK_REG_P (recog_data.operand[i])
|
||
&& reg_class_subset_p (recog_op_alt[i][alt].cl,
|
||
FLOAT_REGS)
|
||
&& recog_op_alt[i][alt].cl != FLOAT_REGS)
|
||
{
|
||
/* If an operand needs to be in a particular reg in
|
||
FLOAT_REGS, the constraint was either 't' or 'u'. Since
|
||
these constraints are for single register classes, and
|
||
reload guaranteed that operand[i] is already in that class,
|
||
we can just use REGNO (recog_data.operand[i]) to know which
|
||
actual reg this operand needs to be in. */
|
||
|
||
int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
|
||
|
||
gcc_assert (regno >= 0);
|
||
|
||
if ((unsigned int) regno != REGNO (recog_data.operand[i]))
|
||
{
|
||
/* recog_data.operand[i] is not in the right place. Find
|
||
it and swap it with whatever is already in I's place.
|
||
K is where recog_data.operand[i] is now. J is where it
|
||
should be. */
|
||
int j, k, temp;
|
||
|
||
k = temp_stack.top - (regno - FIRST_STACK_REG);
|
||
j = (temp_stack.top
|
||
- (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
|
||
|
||
temp = temp_stack.reg[k];
|
||
temp_stack.reg[k] = temp_stack.reg[j];
|
||
temp_stack.reg[j] = temp;
|
||
}
|
||
}
|
||
|
||
/* Emit insns before INSN to make sure the reg-stack is in the right
|
||
order. */
|
||
|
||
change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
|
||
|
||
/* Make the needed input register substitutions. Do death notes and
|
||
clobbers too, because these are for inputs, not outputs. */
|
||
|
||
for (i = n_outputs; i < n_outputs + n_inputs; i++)
|
||
if (STACK_REG_P (recog_data.operand[i]))
|
||
{
|
||
int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
|
||
|
||
gcc_assert (regnum >= 0);
|
||
|
||
replace_reg (recog_data.operand_loc[i], regnum);
|
||
}
|
||
|
||
for (i = 0; i < n_notes; i++)
|
||
if (note_kind[i] == REG_DEAD)
|
||
{
|
||
int regnum = get_hard_regnum (regstack, note_reg[i]);
|
||
|
||
gcc_assert (regnum >= 0);
|
||
|
||
replace_reg (note_loc[i], regnum);
|
||
}
|
||
|
||
for (i = 0; i < n_clobbers; i++)
|
||
{
|
||
/* It's OK for a CLOBBER to reference a reg that is not live.
|
||
Don't try to replace it in that case. */
|
||
int regnum = get_hard_regnum (regstack, clobber_reg[i]);
|
||
|
||
if (regnum >= 0)
|
||
{
|
||
/* Sigh - clobbers always have QImode. But replace_reg knows
|
||
that these regs can't be MODE_INT and will assert. Just put
|
||
the right reg there without calling replace_reg. */
|
||
|
||
*clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
|
||
}
|
||
}
|
||
|
||
/* Now remove from REGSTACK any inputs that the asm implicitly popped. */
|
||
|
||
for (i = n_outputs; i < n_outputs + n_inputs; i++)
|
||
if (STACK_REG_P (recog_data.operand[i]))
|
||
{
|
||
/* An input reg is implicitly popped if it is tied to an
|
||
output, or if there is a CLOBBER for it. */
|
||
int j;
|
||
|
||
for (j = 0; j < n_clobbers; j++)
|
||
if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
|
||
break;
|
||
|
||
if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
|
||
{
|
||
/* recog_data.operand[i] might not be at the top of stack.
|
||
But that's OK, because all we need to do is pop the
|
||
right number of regs off of the top of the reg-stack.
|
||
record_asm_stack_regs guaranteed that all implicitly
|
||
popped regs were grouped at the top of the reg-stack. */
|
||
|
||
CLEAR_HARD_REG_BIT (regstack->reg_set,
|
||
regstack->reg[regstack->top]);
|
||
regstack->top--;
|
||
}
|
||
}
|
||
|
||
/* Now add to REGSTACK any outputs that the asm implicitly pushed.
|
||
Note that there isn't any need to substitute register numbers.
|
||
??? Explain why this is true. */
|
||
|
||
for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
|
||
{
|
||
/* See if there is an output for this hard reg. */
|
||
int j;
|
||
|
||
for (j = 0; j < n_outputs; j++)
|
||
if (STACK_REG_P (recog_data.operand[j])
|
||
&& REGNO (recog_data.operand[j]) == (unsigned) i)
|
||
{
|
||
regstack->reg[++regstack->top] = i;
|
||
SET_HARD_REG_BIT (regstack->reg_set, i);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
|
||
input that the asm didn't implicitly pop. If the asm didn't
|
||
implicitly pop an input reg, that reg will still be live.
|
||
|
||
Note that we can't use find_regno_note here: the register numbers
|
||
in the death notes have already been substituted. */
|
||
|
||
for (i = 0; i < n_outputs; i++)
|
||
if (STACK_REG_P (recog_data.operand[i]))
|
||
{
|
||
int j;
|
||
|
||
for (j = 0; j < n_notes; j++)
|
||
if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
|
||
&& note_kind[j] == REG_UNUSED)
|
||
{
|
||
insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
|
||
EMIT_AFTER);
|
||
break;
|
||
}
|
||
}
|
||
|
||
for (i = n_outputs; i < n_outputs + n_inputs; i++)
|
||
if (STACK_REG_P (recog_data.operand[i]))
|
||
{
|
||
int j;
|
||
|
||
for (j = 0; j < n_notes; j++)
|
||
if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
|
||
&& note_kind[j] == REG_DEAD
|
||
&& TEST_HARD_REG_BIT (regstack->reg_set,
|
||
REGNO (recog_data.operand[i])))
|
||
{
|
||
insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
|
||
EMIT_AFTER);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Substitute stack hard reg numbers for stack virtual registers in
|
||
INSN. Non-stack register numbers are not changed. REGSTACK is the
|
||
current stack content. Insns may be emitted as needed to arrange the
|
||
stack for the 387 based on the contents of the insn. Return whether
|
||
a control flow insn was deleted in the process. */
|
||
|
||
static bool
|
||
subst_stack_regs (rtx insn, stack regstack)
|
||
{
|
||
rtx *note_link, note;
|
||
bool control_flow_insn_deleted = false;
|
||
int i;
|
||
|
||
if (CALL_P (insn))
|
||
{
|
||
int top = regstack->top;
|
||
|
||
/* If there are any floating point parameters to be passed in
|
||
registers for this call, make sure they are in the right
|
||
order. */
|
||
|
||
if (top >= 0)
|
||
{
|
||
straighten_stack (insn, regstack);
|
||
|
||
/* Now mark the arguments as dead after the call. */
|
||
|
||
while (regstack->top >= 0)
|
||
{
|
||
CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
|
||
regstack->top--;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Do the actual substitution if any stack regs are mentioned.
|
||
Since we only record whether entire insn mentions stack regs, and
|
||
subst_stack_regs_pat only works for patterns that contain stack regs,
|
||
we must check each pattern in a parallel here. A call_value_pop could
|
||
fail otherwise. */
|
||
|
||
if (stack_regs_mentioned (insn))
|
||
{
|
||
int n_operands = asm_noperands (PATTERN (insn));
|
||
if (n_operands >= 0)
|
||
{
|
||
/* This insn is an `asm' with operands. Decode the operands,
|
||
decide how many are inputs, and do register substitution.
|
||
Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
|
||
|
||
subst_asm_stack_regs (insn, regstack);
|
||
return control_flow_insn_deleted;
|
||
}
|
||
|
||
if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
||
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
{
|
||
if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
|
||
{
|
||
if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
|
||
XVECEXP (PATTERN (insn), 0, i)
|
||
= shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
|
||
control_flow_insn_deleted
|
||
|= subst_stack_regs_pat (insn, regstack,
|
||
XVECEXP (PATTERN (insn), 0, i));
|
||
}
|
||
}
|
||
else
|
||
control_flow_insn_deleted
|
||
|= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
|
||
}
|
||
|
||
/* subst_stack_regs_pat may have deleted a no-op insn. If so, any
|
||
REG_UNUSED will already have been dealt with, so just return. */
|
||
|
||
if (NOTE_P (insn) || INSN_DELETED_P (insn))
|
||
return control_flow_insn_deleted;
|
||
|
||
/* If this a noreturn call, we can't insert pop insns after it.
|
||
Instead, reset the stack state to empty. */
|
||
if (CALL_P (insn)
|
||
&& find_reg_note (insn, REG_NORETURN, NULL))
|
||
{
|
||
regstack->top = -1;
|
||
CLEAR_HARD_REG_SET (regstack->reg_set);
|
||
return control_flow_insn_deleted;
|
||
}
|
||
|
||
/* If there is a REG_UNUSED note on a stack register on this insn,
|
||
the indicated reg must be popped. The REG_UNUSED note is removed,
|
||
since the form of the newly emitted pop insn references the reg,
|
||
making it no longer `unset'. */
|
||
|
||
note_link = ®_NOTES (insn);
|
||
for (note = *note_link; note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
|
||
{
|
||
*note_link = XEXP (note, 1);
|
||
insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
|
||
}
|
||
else
|
||
note_link = &XEXP (note, 1);
|
||
|
||
return control_flow_insn_deleted;
|
||
}
|
||
|
||
/* Change the organization of the stack so that it fits a new basic
|
||
block. Some registers might have to be popped, but there can never be
|
||
a register live in the new block that is not now live.
|
||
|
||
Insert any needed insns before or after INSN, as indicated by
|
||
WHERE. OLD is the original stack layout, and NEW is the desired
|
||
form. OLD is updated to reflect the code emitted, i.e., it will be
|
||
the same as NEW upon return.
|
||
|
||
This function will not preserve block_end[]. But that information
|
||
is no longer needed once this has executed. */
|
||
|
||
static void
|
||
change_stack (rtx insn, stack old, stack new, enum emit_where where)
|
||
{
|
||
int reg;
|
||
int update_end = 0;
|
||
int i;
|
||
|
||
/* Stack adjustments for the first insn in a block update the
|
||
current_block's stack_in instead of inserting insns directly.
|
||
compensate_edges will add the necessary code later. */
|
||
if (current_block
|
||
&& starting_stack_p
|
||
&& where == EMIT_BEFORE)
|
||
{
|
||
BLOCK_INFO (current_block)->stack_in = *new;
|
||
starting_stack_p = false;
|
||
*old = *new;
|
||
return;
|
||
}
|
||
|
||
/* We will be inserting new insns "backwards". If we are to insert
|
||
after INSN, find the next insn, and insert before it. */
|
||
|
||
if (where == EMIT_AFTER)
|
||
{
|
||
if (current_block && BB_END (current_block) == insn)
|
||
update_end = 1;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
/* Initialize partially dead variables. */
|
||
for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
|
||
if (TEST_HARD_REG_BIT (new->reg_set, i)
|
||
&& !TEST_HARD_REG_BIT (old->reg_set, i))
|
||
{
|
||
old->reg[++old->top] = i;
|
||
SET_HARD_REG_BIT (old->reg_set, i);
|
||
emit_insn_before (gen_rtx_SET (VOIDmode,
|
||
FP_MODE_REG (i, SFmode), not_a_num), insn);
|
||
}
|
||
|
||
/* Pop any registers that are not needed in the new block. */
|
||
|
||
/* If the destination block's stack already has a specified layout
|
||
and contains two or more registers, use a more intelligent algorithm
|
||
to pop registers that minimizes the number number of fxchs below. */
|
||
if (new->top > 0)
|
||
{
|
||
bool slots[REG_STACK_SIZE];
|
||
int pops[REG_STACK_SIZE];
|
||
int next, dest, topsrc;
|
||
|
||
/* First pass to determine the free slots. */
|
||
for (reg = 0; reg <= new->top; reg++)
|
||
slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
|
||
|
||
/* Second pass to allocate preferred slots. */
|
||
topsrc = -1;
|
||
for (reg = old->top; reg > new->top; reg--)
|
||
if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
|
||
{
|
||
dest = -1;
|
||
for (next = 0; next <= new->top; next++)
|
||
if (!slots[next] && new->reg[next] == old->reg[reg])
|
||
{
|
||
/* If this is a preference for the new top of stack, record
|
||
the fact by remembering it's old->reg in topsrc. */
|
||
if (next == new->top)
|
||
topsrc = reg;
|
||
slots[next] = true;
|
||
dest = next;
|
||
break;
|
||
}
|
||
pops[reg] = dest;
|
||
}
|
||
else
|
||
pops[reg] = reg;
|
||
|
||
/* Intentionally, avoid placing the top of stack in it's correct
|
||
location, if we still need to permute the stack below and we
|
||
can usefully place it somewhere else. This is the case if any
|
||
slot is still unallocated, in which case we should place the
|
||
top of stack there. */
|
||
if (topsrc != -1)
|
||
for (reg = 0; reg < new->top; reg++)
|
||
if (!slots[reg])
|
||
{
|
||
pops[topsrc] = reg;
|
||
slots[new->top] = false;
|
||
slots[reg] = true;
|
||
break;
|
||
}
|
||
|
||
/* Third pass allocates remaining slots and emits pop insns. */
|
||
next = new->top;
|
||
for (reg = old->top; reg > new->top; reg--)
|
||
{
|
||
dest = pops[reg];
|
||
if (dest == -1)
|
||
{
|
||
/* Find next free slot. */
|
||
while (slots[next])
|
||
next--;
|
||
dest = next--;
|
||
}
|
||
emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
|
||
EMIT_BEFORE);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* The following loop attempts to maximize the number of times we
|
||
pop the top of the stack, as this permits the use of the faster
|
||
ffreep instruction on platforms that support it. */
|
||
int live, next;
|
||
|
||
live = 0;
|
||
for (reg = 0; reg <= old->top; reg++)
|
||
if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
|
||
live++;
|
||
|
||
next = live;
|
||
while (old->top >= live)
|
||
if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
|
||
{
|
||
while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
|
||
next--;
|
||
emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
|
||
EMIT_BEFORE);
|
||
}
|
||
else
|
||
emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
|
||
EMIT_BEFORE);
|
||
}
|
||
|
||
if (new->top == -2)
|
||
{
|
||
/* If the new block has never been processed, then it can inherit
|
||
the old stack order. */
|
||
|
||
new->top = old->top;
|
||
memcpy (new->reg, old->reg, sizeof (new->reg));
|
||
}
|
||
else
|
||
{
|
||
/* This block has been entered before, and we must match the
|
||
previously selected stack order. */
|
||
|
||
/* By now, the only difference should be the order of the stack,
|
||
not their depth or liveliness. */
|
||
|
||
gcc_assert (hard_reg_set_equal_p (old->reg_set, new->reg_set));
|
||
gcc_assert (old->top == new->top);
|
||
|
||
/* If the stack is not empty (new->top != -1), loop here emitting
|
||
swaps until the stack is correct.
|
||
|
||
The worst case number of swaps emitted is N + 2, where N is the
|
||
depth of the stack. In some cases, the reg at the top of
|
||
stack may be correct, but swapped anyway in order to fix
|
||
other regs. But since we never swap any other reg away from
|
||
its correct slot, this algorithm will converge. */
|
||
|
||
if (new->top != -1)
|
||
do
|
||
{
|
||
/* Swap the reg at top of stack into the position it is
|
||
supposed to be in, until the correct top of stack appears. */
|
||
|
||
while (old->reg[old->top] != new->reg[new->top])
|
||
{
|
||
for (reg = new->top; reg >= 0; reg--)
|
||
if (new->reg[reg] == old->reg[old->top])
|
||
break;
|
||
|
||
gcc_assert (reg != -1);
|
||
|
||
emit_swap_insn (insn, old,
|
||
FP_MODE_REG (old->reg[reg], DFmode));
|
||
}
|
||
|
||
/* See if any regs remain incorrect. If so, bring an
|
||
incorrect reg to the top of stack, and let the while loop
|
||
above fix it. */
|
||
|
||
for (reg = new->top; reg >= 0; reg--)
|
||
if (new->reg[reg] != old->reg[reg])
|
||
{
|
||
emit_swap_insn (insn, old,
|
||
FP_MODE_REG (old->reg[reg], DFmode));
|
||
break;
|
||
}
|
||
} while (reg >= 0);
|
||
|
||
/* At this point there must be no differences. */
|
||
|
||
for (reg = old->top; reg >= 0; reg--)
|
||
gcc_assert (old->reg[reg] == new->reg[reg]);
|
||
}
|
||
|
||
if (update_end)
|
||
BB_END (current_block) = PREV_INSN (insn);
|
||
}
|
||
|
||
/* Print stack configuration. */
|
||
|
||
static void
|
||
print_stack (FILE *file, stack s)
|
||
{
|
||
if (! file)
|
||
return;
|
||
|
||
if (s->top == -2)
|
||
fprintf (file, "uninitialized\n");
|
||
else if (s->top == -1)
|
||
fprintf (file, "empty\n");
|
||
else
|
||
{
|
||
int i;
|
||
fputs ("[ ", file);
|
||
for (i = 0; i <= s->top; ++i)
|
||
fprintf (file, "%d ", s->reg[i]);
|
||
fputs ("]\n", file);
|
||
}
|
||
}
|
||
|
||
/* This function was doing life analysis. We now let the regular live
|
||
code do it's job, so we only need to check some extra invariants
|
||
that reg-stack expects. Primary among these being that all registers
|
||
are initialized before use.
|
||
|
||
The function returns true when code was emitted to CFG edges and
|
||
commit_edge_insertions needs to be called. */
|
||
|
||
static int
|
||
convert_regs_entry (void)
|
||
{
|
||
int inserted = 0;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
/* Load something into each stack register live at function entry.
|
||
Such live registers can be caused by uninitialized variables or
|
||
functions not returning values on all paths. In order to keep
|
||
the push/pop code happy, and to not scrog the register stack, we
|
||
must put something in these registers. Use a QNaN.
|
||
|
||
Note that we are inserting converted code here. This code is
|
||
never seen by the convert_regs pass. */
|
||
|
||
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
||
{
|
||
basic_block block = e->dest;
|
||
block_info bi = BLOCK_INFO (block);
|
||
int reg, top = -1;
|
||
|
||
for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
|
||
if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
|
||
{
|
||
rtx init;
|
||
|
||
bi->stack_in.reg[++top] = reg;
|
||
|
||
init = gen_rtx_SET (VOIDmode,
|
||
FP_MODE_REG (FIRST_STACK_REG, SFmode),
|
||
not_a_num);
|
||
insert_insn_on_edge (init, e);
|
||
inserted = 1;
|
||
}
|
||
|
||
bi->stack_in.top = top;
|
||
}
|
||
|
||
return inserted;
|
||
}
|
||
|
||
/* Construct the desired stack for function exit. This will either
|
||
be `empty', or the function return value at top-of-stack. */
|
||
|
||
static void
|
||
convert_regs_exit (void)
|
||
{
|
||
int value_reg_low, value_reg_high;
|
||
stack output_stack;
|
||
rtx retvalue;
|
||
|
||
retvalue = stack_result (current_function_decl);
|
||
value_reg_low = value_reg_high = -1;
|
||
if (retvalue)
|
||
{
|
||
value_reg_low = REGNO (retvalue);
|
||
value_reg_high = END_HARD_REGNO (retvalue) - 1;
|
||
}
|
||
|
||
output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
|
||
if (value_reg_low == -1)
|
||
output_stack->top = -1;
|
||
else
|
||
{
|
||
int reg;
|
||
|
||
output_stack->top = value_reg_high - value_reg_low;
|
||
for (reg = value_reg_low; reg <= value_reg_high; ++reg)
|
||
{
|
||
output_stack->reg[value_reg_high - reg] = reg;
|
||
SET_HARD_REG_BIT (output_stack->reg_set, reg);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Copy the stack info from the end of edge E's source block to the
|
||
start of E's destination block. */
|
||
|
||
static void
|
||
propagate_stack (edge e)
|
||
{
|
||
stack src_stack = &BLOCK_INFO (e->src)->stack_out;
|
||
stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
|
||
int reg;
|
||
|
||
/* Preserve the order of the original stack, but check whether
|
||
any pops are needed. */
|
||
dest_stack->top = -1;
|
||
for (reg = 0; reg <= src_stack->top; ++reg)
|
||
if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
|
||
dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
|
||
|
||
/* Push in any partially dead values. */
|
||
for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
|
||
if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
|
||
&& !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
|
||
dest_stack->reg[++dest_stack->top] = reg;
|
||
}
|
||
|
||
|
||
/* Adjust the stack of edge E's source block on exit to match the stack
|
||
of it's target block upon input. The stack layouts of both blocks
|
||
should have been defined by now. */
|
||
|
||
static bool
|
||
compensate_edge (edge e)
|
||
{
|
||
basic_block source = e->src, target = e->dest;
|
||
stack target_stack = &BLOCK_INFO (target)->stack_in;
|
||
stack source_stack = &BLOCK_INFO (source)->stack_out;
|
||
struct stack_def regstack;
|
||
int reg;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
|
||
|
||
gcc_assert (target_stack->top != -2);
|
||
|
||
/* Check whether stacks are identical. */
|
||
if (target_stack->top == source_stack->top)
|
||
{
|
||
for (reg = target_stack->top; reg >= 0; --reg)
|
||
if (target_stack->reg[reg] != source_stack->reg[reg])
|
||
break;
|
||
|
||
if (reg == -1)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "no changes needed\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "correcting stack to ");
|
||
print_stack (dump_file, target_stack);
|
||
}
|
||
|
||
/* Abnormal calls may appear to have values live in st(0), but the
|
||
abnormal return path will not have actually loaded the values. */
|
||
if (e->flags & EDGE_ABNORMAL_CALL)
|
||
{
|
||
/* Assert that the lifetimes are as we expect -- one value
|
||
live at st(0) on the end of the source block, and no
|
||
values live at the beginning of the destination block.
|
||
For complex return values, we may have st(1) live as well. */
|
||
gcc_assert (source_stack->top == 0 || source_stack->top == 1);
|
||
gcc_assert (target_stack->top == -1);
|
||
return false;
|
||
}
|
||
|
||
/* Handle non-call EH edges specially. The normal return path have
|
||
values in registers. These will be popped en masse by the unwind
|
||
library. */
|
||
if (e->flags & EDGE_EH)
|
||
{
|
||
gcc_assert (target_stack->top == -1);
|
||
return false;
|
||
}
|
||
|
||
/* We don't support abnormal edges. Global takes care to
|
||
avoid any live register across them, so we should never
|
||
have to insert instructions on such edges. */
|
||
gcc_assert (! (e->flags & EDGE_ABNORMAL));
|
||
|
||
/* Make a copy of source_stack as change_stack is destructive. */
|
||
regstack = *source_stack;
|
||
|
||
/* It is better to output directly to the end of the block
|
||
instead of to the edge, because emit_swap can do minimal
|
||
insn scheduling. We can do this when there is only one
|
||
edge out, and it is not abnormal. */
|
||
if (EDGE_COUNT (source->succs) == 1)
|
||
{
|
||
current_block = source;
|
||
change_stack (BB_END (source), ®stack, target_stack,
|
||
(JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
|
||
}
|
||
else
|
||
{
|
||
rtx seq, after;
|
||
|
||
current_block = NULL;
|
||
start_sequence ();
|
||
|
||
/* ??? change_stack needs some point to emit insns after. */
|
||
after = emit_note (NOTE_INSN_DELETED);
|
||
|
||
change_stack (after, ®stack, target_stack, EMIT_BEFORE);
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
insert_insn_on_edge (seq, e);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Traverse all non-entry edges in the CFG, and emit the necessary
|
||
edge compensation code to change the stack from stack_out of the
|
||
source block to the stack_in of the destination block. */
|
||
|
||
static bool
|
||
compensate_edges (void)
|
||
{
|
||
bool inserted = false;
|
||
basic_block bb;
|
||
|
||
starting_stack_p = false;
|
||
|
||
FOR_EACH_BB (bb)
|
||
if (bb != ENTRY_BLOCK_PTR)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
inserted |= compensate_edge (e);
|
||
}
|
||
return inserted;
|
||
}
|
||
|
||
/* Select the better of two edges E1 and E2 to use to determine the
|
||
stack layout for their shared destination basic block. This is
|
||
typically the more frequently executed. The edge E1 may be NULL
|
||
(in which case E2 is returned), but E2 is always non-NULL. */
|
||
|
||
static edge
|
||
better_edge (edge e1, edge e2)
|
||
{
|
||
if (!e1)
|
||
return e2;
|
||
|
||
if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
|
||
return e1;
|
||
if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
|
||
return e2;
|
||
|
||
if (e1->count > e2->count)
|
||
return e1;
|
||
if (e1->count < e2->count)
|
||
return e2;
|
||
|
||
/* Prefer critical edges to minimize inserting compensation code on
|
||
critical edges. */
|
||
|
||
if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
|
||
return EDGE_CRITICAL_P (e1) ? e1 : e2;
|
||
|
||
/* Avoid non-deterministic behavior. */
|
||
return (e1->src->index < e2->src->index) ? e1 : e2;
|
||
}
|
||
|
||
/* Convert stack register references in one block. */
|
||
|
||
static void
|
||
convert_regs_1 (basic_block block)
|
||
{
|
||
struct stack_def regstack;
|
||
block_info bi = BLOCK_INFO (block);
|
||
int reg;
|
||
rtx insn, next;
|
||
bool control_flow_insn_deleted = false;
|
||
|
||
any_malformed_asm = false;
|
||
|
||
/* Choose an initial stack layout, if one hasn't already been chosen. */
|
||
if (bi->stack_in.top == -2)
|
||
{
|
||
edge e, beste = NULL;
|
||
edge_iterator ei;
|
||
|
||
/* Select the best incoming edge (typically the most frequent) to
|
||
use as a template for this basic block. */
|
||
FOR_EACH_EDGE (e, ei, block->preds)
|
||
if (BLOCK_INFO (e->src)->done)
|
||
beste = better_edge (beste, e);
|
||
|
||
if (beste)
|
||
propagate_stack (beste);
|
||
else
|
||
{
|
||
/* No predecessors. Create an arbitrary input stack. */
|
||
bi->stack_in.top = -1;
|
||
for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
|
||
if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
|
||
bi->stack_in.reg[++bi->stack_in.top] = reg;
|
||
}
|
||
}
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
|
||
print_stack (dump_file, &bi->stack_in);
|
||
}
|
||
|
||
/* Process all insns in this block. Keep track of NEXT so that we
|
||
don't process insns emitted while substituting in INSN. */
|
||
current_block = block;
|
||
next = BB_HEAD (block);
|
||
regstack = bi->stack_in;
|
||
starting_stack_p = true;
|
||
|
||
do
|
||
{
|
||
insn = next;
|
||
next = NEXT_INSN (insn);
|
||
|
||
/* Ensure we have not missed a block boundary. */
|
||
gcc_assert (next);
|
||
if (insn == BB_END (block))
|
||
next = NULL;
|
||
|
||
/* Don't bother processing unless there is a stack reg
|
||
mentioned or if it's a CALL_INSN. */
|
||
if (stack_regs_mentioned (insn)
|
||
|| CALL_P (insn))
|
||
{
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, " insn %d input stack: ",
|
||
INSN_UID (insn));
|
||
print_stack (dump_file, ®stack);
|
||
}
|
||
control_flow_insn_deleted |= subst_stack_regs (insn, ®stack);
|
||
starting_stack_p = false;
|
||
}
|
||
}
|
||
while (next);
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Expected live registers [");
|
||
for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
|
||
if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
|
||
fprintf (dump_file, " %d", reg);
|
||
fprintf (dump_file, " ]\nOutput stack: ");
|
||
print_stack (dump_file, ®stack);
|
||
}
|
||
|
||
insn = BB_END (block);
|
||
if (JUMP_P (insn))
|
||
insn = PREV_INSN (insn);
|
||
|
||
/* If the function is declared to return a value, but it returns one
|
||
in only some cases, some registers might come live here. Emit
|
||
necessary moves for them. */
|
||
|
||
for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
|
||
{
|
||
if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
|
||
&& ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
|
||
{
|
||
rtx set;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
|
||
|
||
set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
|
||
insn = emit_insn_after (set, insn);
|
||
control_flow_insn_deleted |= subst_stack_regs (insn, ®stack);
|
||
}
|
||
}
|
||
|
||
/* Amongst the insns possibly deleted during the substitution process above,
|
||
might have been the only trapping insn in the block. We purge the now
|
||
possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
|
||
called at the end of convert_regs. The order in which we process the
|
||
blocks ensures that we never delete an already processed edge.
|
||
|
||
Note that, at this point, the CFG may have been damaged by the emission
|
||
of instructions after an abnormal call, which moves the basic block end
|
||
(and is the reason why we call fixup_abnormal_edges later). So we must
|
||
be sure that the trapping insn has been deleted before trying to purge
|
||
dead edges, otherwise we risk purging valid edges.
|
||
|
||
??? We are normally supposed not to delete trapping insns, so we pretend
|
||
that the insns deleted above don't actually trap. It would have been
|
||
better to detect this earlier and avoid creating the EH edge in the first
|
||
place, still, but we don't have enough information at that time. */
|
||
|
||
if (control_flow_insn_deleted)
|
||
purge_dead_edges (block);
|
||
|
||
/* Something failed if the stack lives don't match. If we had malformed
|
||
asms, we zapped the instruction itself, but that didn't produce the
|
||
same pattern of register kills as before. */
|
||
|
||
gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
|
||
|| any_malformed_asm);
|
||
bi->stack_out = regstack;
|
||
bi->done = true;
|
||
}
|
||
|
||
/* Convert registers in all blocks reachable from BLOCK. */
|
||
|
||
static void
|
||
convert_regs_2 (basic_block block)
|
||
{
|
||
basic_block *stack, *sp;
|
||
|
||
/* We process the blocks in a top-down manner, in a way such that one block
|
||
is only processed after all its predecessors. The number of predecessors
|
||
of every block has already been computed. */
|
||
|
||
stack = XNEWVEC (basic_block, n_basic_blocks);
|
||
sp = stack;
|
||
|
||
*sp++ = block;
|
||
|
||
do
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
block = *--sp;
|
||
|
||
/* Processing BLOCK is achieved by convert_regs_1, which may purge
|
||
some dead EH outgoing edge after the deletion of the trapping
|
||
insn inside the block. Since the number of predecessors of
|
||
BLOCK's successors was computed based on the initial edge set,
|
||
we check the necessity to process some of these successors
|
||
before such an edge deletion may happen. However, there is
|
||
a pitfall: if BLOCK is the only predecessor of a successor and
|
||
the edge between them happens to be deleted, the successor
|
||
becomes unreachable and should not be processed. The problem
|
||
is that there is no way to preventively detect this case so we
|
||
stack the successor in all cases and hand over the task of
|
||
fixing up the discrepancy to convert_regs_1. */
|
||
|
||
FOR_EACH_EDGE (e, ei, block->succs)
|
||
if (! (e->flags & EDGE_DFS_BACK))
|
||
{
|
||
BLOCK_INFO (e->dest)->predecessors--;
|
||
if (!BLOCK_INFO (e->dest)->predecessors)
|
||
*sp++ = e->dest;
|
||
}
|
||
|
||
convert_regs_1 (block);
|
||
}
|
||
while (sp != stack);
|
||
|
||
free (stack);
|
||
}
|
||
|
||
/* Traverse all basic blocks in a function, converting the register
|
||
references in each insn from the "flat" register file that gcc uses,
|
||
to the stack-like registers the 387 uses. */
|
||
|
||
static void
|
||
convert_regs (void)
|
||
{
|
||
int inserted;
|
||
basic_block b;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
/* Initialize uninitialized registers on function entry. */
|
||
inserted = convert_regs_entry ();
|
||
|
||
/* Construct the desired stack for function exit. */
|
||
convert_regs_exit ();
|
||
BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
|
||
|
||
/* ??? Future: process inner loops first, and give them arbitrary
|
||
initial stacks which emit_swap_insn can modify. This ought to
|
||
prevent double fxch that often appears at the head of a loop. */
|
||
|
||
/* Process all blocks reachable from all entry points. */
|
||
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
||
convert_regs_2 (e->dest);
|
||
|
||
/* ??? Process all unreachable blocks. Though there's no excuse
|
||
for keeping these even when not optimizing. */
|
||
FOR_EACH_BB (b)
|
||
{
|
||
block_info bi = BLOCK_INFO (b);
|
||
|
||
if (! bi->done)
|
||
convert_regs_2 (b);
|
||
}
|
||
|
||
inserted |= compensate_edges ();
|
||
|
||
clear_aux_for_blocks ();
|
||
|
||
fixup_abnormal_edges ();
|
||
if (inserted)
|
||
commit_edge_insertions ();
|
||
|
||
if (dump_file)
|
||
fputc ('\n', dump_file);
|
||
}
|
||
|
||
/* Convert register usage from "flat" register file usage to a "stack
|
||
register file. FILE is the dump file, if used.
|
||
|
||
Construct a CFG and run life analysis. Then convert each insn one
|
||
by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
|
||
code duplication created when the converter inserts pop insns on
|
||
the edges. */
|
||
|
||
static bool
|
||
reg_to_stack (void)
|
||
{
|
||
basic_block bb;
|
||
int i;
|
||
int max_uid;
|
||
|
||
/* Clean up previous run. */
|
||
if (stack_regs_mentioned_data != NULL)
|
||
VEC_free (char, heap, stack_regs_mentioned_data);
|
||
|
||
/* See if there is something to do. Flow analysis is quite
|
||
expensive so we might save some compilation time. */
|
||
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
|
||
if (df_regs_ever_live_p (i))
|
||
break;
|
||
if (i > LAST_STACK_REG)
|
||
return false;
|
||
|
||
df_note_add_problem ();
|
||
df_analyze ();
|
||
|
||
mark_dfs_back_edges ();
|
||
|
||
/* Set up block info for each basic block. */
|
||
alloc_aux_for_blocks (sizeof (struct block_info_def));
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
block_info bi = BLOCK_INFO (bb);
|
||
edge_iterator ei;
|
||
edge e;
|
||
int reg;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (!(e->flags & EDGE_DFS_BACK)
|
||
&& e->src != ENTRY_BLOCK_PTR)
|
||
bi->predecessors++;
|
||
|
||
/* Set current register status at last instruction `uninitialized'. */
|
||
bi->stack_in.top = -2;
|
||
|
||
/* Copy live_at_end and live_at_start into temporaries. */
|
||
for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
|
||
{
|
||
if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
|
||
SET_HARD_REG_BIT (bi->out_reg_set, reg);
|
||
if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
|
||
SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
|
||
}
|
||
}
|
||
|
||
/* Create the replacement registers up front. */
|
||
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
|
||
{
|
||
enum machine_mode mode;
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
|
||
mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
|
||
mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
|
||
}
|
||
|
||
ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
|
||
|
||
/* A QNaN for initializing uninitialized variables.
|
||
|
||
??? We can't load from constant memory in PIC mode, because
|
||
we're inserting these instructions before the prologue and
|
||
the PIC register hasn't been set up. In that case, fall back
|
||
on zero, which we can get from `ldz'. */
|
||
|
||
if ((flag_pic && !TARGET_64BIT)
|
||
|| ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
|
||
not_a_num = CONST0_RTX (SFmode);
|
||
else
|
||
{
|
||
not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
|
||
not_a_num = force_const_mem (SFmode, not_a_num);
|
||
}
|
||
|
||
/* Allocate a cache for stack_regs_mentioned. */
|
||
max_uid = get_max_uid ();
|
||
stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
|
||
memset (VEC_address (char, stack_regs_mentioned_data),
|
||
0, sizeof (char) * max_uid + 1);
|
||
|
||
convert_regs ();
|
||
|
||
free_aux_for_blocks ();
|
||
return true;
|
||
}
|
||
#endif /* STACK_REGS */
|
||
|
||
static bool
|
||
gate_handle_stack_regs (void)
|
||
{
|
||
#ifdef STACK_REGS
|
||
return 1;
|
||
#else
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
struct tree_opt_pass pass_stack_regs =
|
||
{
|
||
NULL, /* name */
|
||
gate_handle_stack_regs, /* gate */
|
||
NULL, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_REG_STACK, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
/* Convert register usage from flat register file usage to a stack
|
||
register file. */
|
||
static unsigned int
|
||
rest_of_handle_stack_regs (void)
|
||
{
|
||
#ifdef STACK_REGS
|
||
reg_to_stack ();
|
||
regstack_completed = 1;
|
||
#endif
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_stack_regs_run =
|
||
{
|
||
"stack", /* name */
|
||
NULL, /* gate */
|
||
rest_of_handle_stack_regs, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_REG_STACK, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish | TODO_verify_rtl_sharing |
|
||
TODO_dump_func |
|
||
TODO_ggc_collect, /* todo_flags_finish */
|
||
'k' /* letter */
|
||
};
|