gcc/libsanitizer/tsan/tsan_fd.cpp
H.J. Lu 76288e1c5d libsanitizer: Merge with upstream
Merged revision: 1c2e5fd66ea27d0c51360ba4e22099124a915562
2021-10-01 09:02:54 -07:00

317 lines
9.1 KiB
C++

//===-- tsan_fd.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_fd.h"
#include "tsan_rtl.h"
#include <sanitizer_common/sanitizer_atomic.h>
namespace __tsan {
const int kTableSizeL1 = 1024;
const int kTableSizeL2 = 1024;
const int kTableSize = kTableSizeL1 * kTableSizeL2;
struct FdSync {
atomic_uint64_t rc;
};
struct FdDesc {
FdSync *sync;
Tid creation_tid;
StackID creation_stack;
};
struct FdContext {
atomic_uintptr_t tab[kTableSizeL1];
// Addresses used for synchronization.
FdSync globsync;
FdSync filesync;
FdSync socksync;
u64 connectsync;
};
static FdContext fdctx;
static bool bogusfd(int fd) {
// Apparently a bogus fd value.
return fd < 0 || fd >= kTableSize;
}
static FdSync *allocsync(ThreadState *thr, uptr pc) {
FdSync *s = (FdSync*)user_alloc_internal(thr, pc, sizeof(FdSync),
kDefaultAlignment, false);
atomic_store(&s->rc, 1, memory_order_relaxed);
return s;
}
static FdSync *ref(FdSync *s) {
if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
return s;
}
static void unref(ThreadState *thr, uptr pc, FdSync *s) {
if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
CHECK_NE(s, &fdctx.globsync);
CHECK_NE(s, &fdctx.filesync);
CHECK_NE(s, &fdctx.socksync);
user_free(thr, pc, s, false);
}
}
}
static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
CHECK_GE(fd, 0);
CHECK_LT(fd, kTableSize);
atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
uptr l1 = atomic_load(pl1, memory_order_consume);
if (l1 == 0) {
uptr size = kTableSizeL2 * sizeof(FdDesc);
// We need this to reside in user memory to properly catch races on it.
void *p = user_alloc_internal(thr, pc, size, kDefaultAlignment, false);
internal_memset(p, 0, size);
MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
l1 = (uptr)p;
else
user_free(thr, pc, p, false);
}
FdDesc *fds = reinterpret_cast<FdDesc *>(l1);
return &fds[fd % kTableSizeL2];
}
// pd must be already ref'ed.
static void init(ThreadState *thr, uptr pc, int fd, FdSync *s,
bool write = true) {
FdDesc *d = fddesc(thr, pc, fd);
// As a matter of fact, we don't intercept all close calls.
// See e.g. libc __res_iclose().
if (d->sync) {
unref(thr, pc, d->sync);
d->sync = 0;
}
if (flags()->io_sync == 0) {
unref(thr, pc, s);
} else if (flags()->io_sync == 1) {
d->sync = s;
} else if (flags()->io_sync == 2) {
unref(thr, pc, s);
d->sync = &fdctx.globsync;
}
d->creation_tid = thr->tid;
d->creation_stack = CurrentStackId(thr, pc);
if (write) {
// To catch races between fd usage and open.
MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
} else {
// See the dup-related comment in FdClose.
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
}
}
void FdInit() {
atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
}
void FdOnFork(ThreadState *thr, uptr pc) {
// On fork() we need to reset all fd's, because the child is going
// close all them, and that will cause races between previous read/write
// and the close.
for (int l1 = 0; l1 < kTableSizeL1; l1++) {
FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
if (tab == 0)
break;
for (int l2 = 0; l2 < kTableSizeL2; l2++) {
FdDesc *d = &tab[l2];
MemoryResetRange(thr, pc, (uptr)d, 8);
}
}
}
bool FdLocation(uptr addr, int *fd, Tid *tid, StackID *stack) {
for (int l1 = 0; l1 < kTableSizeL1; l1++) {
FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
if (tab == 0)
break;
if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
FdDesc *d = &tab[l2];
*fd = l1 * kTableSizeL1 + l2;
*tid = d->creation_tid;
*stack = d->creation_stack;
return true;
}
}
return false;
}
void FdAcquire(ThreadState *thr, uptr pc, int fd) {
if (bogusfd(fd))
return;
FdDesc *d = fddesc(thr, pc, fd);
FdSync *s = d->sync;
DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
if (s)
Acquire(thr, pc, (uptr)s);
}
void FdRelease(ThreadState *thr, uptr pc, int fd) {
if (bogusfd(fd))
return;
FdDesc *d = fddesc(thr, pc, fd);
FdSync *s = d->sync;
DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
if (s)
Release(thr, pc, (uptr)s);
}
void FdAccess(ThreadState *thr, uptr pc, int fd) {
DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
if (bogusfd(fd))
return;
FdDesc *d = fddesc(thr, pc, fd);
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
}
void FdClose(ThreadState *thr, uptr pc, int fd, bool write) {
DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
if (bogusfd(fd))
return;
FdDesc *d = fddesc(thr, pc, fd);
if (write) {
// To catch races between fd usage and close.
MemoryAccess(thr, pc, (uptr)d, 8, kAccessWrite);
} else {
// This path is used only by dup2/dup3 calls.
// We do read instead of write because there is a number of legitimate
// cases where write would lead to false positives:
// 1. Some software dups a closed pipe in place of a socket before closing
// the socket (to prevent races actually).
// 2. Some daemons dup /dev/null in place of stdin/stdout.
// On the other hand we have not seen cases when write here catches real
// bugs.
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
}
// We need to clear it, because if we do not intercept any call out there
// that creates fd, we will hit false postives.
MemoryResetRange(thr, pc, (uptr)d, 8);
unref(thr, pc, d->sync);
d->sync = 0;
d->creation_tid = kInvalidTid;
d->creation_stack = kInvalidStackID;
}
void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
if (bogusfd(fd))
return;
init(thr, pc, fd, &fdctx.filesync);
}
void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) {
DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
if (bogusfd(oldfd) || bogusfd(newfd))
return;
// Ignore the case when user dups not yet connected socket.
FdDesc *od = fddesc(thr, pc, oldfd);
MemoryAccess(thr, pc, (uptr)od, 8, kAccessRead);
FdClose(thr, pc, newfd, write);
init(thr, pc, newfd, ref(od->sync), write);
}
void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
FdSync *s = allocsync(thr, pc);
init(thr, pc, rfd, ref(s));
init(thr, pc, wfd, ref(s));
unref(thr, pc, s);
}
void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
if (bogusfd(fd))
return;
init(thr, pc, fd, allocsync(thr, pc));
}
void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
if (bogusfd(fd))
return;
init(thr, pc, fd, 0);
}
void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
if (bogusfd(fd))
return;
init(thr, pc, fd, 0);
}
void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
if (bogusfd(fd))
return;
init(thr, pc, fd, allocsync(thr, pc));
}
void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
if (bogusfd(fd))
return;
// It can be a UDP socket.
init(thr, pc, fd, &fdctx.socksync);
}
void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
if (bogusfd(fd))
return;
// Synchronize connect->accept.
Acquire(thr, pc, (uptr)&fdctx.connectsync);
init(thr, pc, newfd, &fdctx.socksync);
}
void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
if (bogusfd(fd))
return;
// Synchronize connect->accept.
Release(thr, pc, (uptr)&fdctx.connectsync);
}
void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
if (bogusfd(fd))
return;
init(thr, pc, fd, &fdctx.socksync);
}
uptr File2addr(const char *path) {
(void)path;
static u64 addr;
return (uptr)&addr;
}
uptr Dir2addr(const char *path) {
(void)path;
static u64 addr;
return (uptr)&addr;
}
} // namespace __tsan