d0ed412a96
PR debug/19192 PR debug/43479 * cfgexpand.c (gimple_assign_rhs_to_tree): Also set TREE_BLOCK from gimple_block. * expr.c (expand_expr_real): Restore previous curr_insn_source_location and curr_insn_block after expand_expr_real_1 call. (expand_expr_real_1) <case SSA_NAME>: Call expand_expr_real instead of expand_expr_real_1. * gcc.dg/guality/pr43479.c: New test. * gcc.dg/debug/dwarf2/inline2.c (third): Make a a global var and add volatile keyword. From-SVN: r157693
3972 lines
111 KiB
C
3972 lines
111 KiB
C
/* A pass for lowering trees to RTL.
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "rtl.h"
|
|
#include "tm_p.h"
|
|
#include "basic-block.h"
|
|
#include "function.h"
|
|
#include "expr.h"
|
|
#include "langhooks.h"
|
|
#include "tree-flow.h"
|
|
#include "timevar.h"
|
|
#include "tree-dump.h"
|
|
#include "tree-pass.h"
|
|
#include "except.h"
|
|
#include "flags.h"
|
|
#include "diagnostic.h"
|
|
#include "toplev.h"
|
|
#include "debug.h"
|
|
#include "params.h"
|
|
#include "tree-inline.h"
|
|
#include "value-prof.h"
|
|
#include "target.h"
|
|
#include "ssaexpand.h"
|
|
|
|
|
|
/* This variable holds information helping the rewriting of SSA trees
|
|
into RTL. */
|
|
struct ssaexpand SA;
|
|
|
|
/* This variable holds the currently expanded gimple statement for purposes
|
|
of comminucating the profile info to the builtin expanders. */
|
|
gimple currently_expanding_gimple_stmt;
|
|
|
|
/* Return an expression tree corresponding to the RHS of GIMPLE
|
|
statement STMT. */
|
|
|
|
tree
|
|
gimple_assign_rhs_to_tree (gimple stmt)
|
|
{
|
|
tree t;
|
|
enum gimple_rhs_class grhs_class;
|
|
|
|
grhs_class = get_gimple_rhs_class (gimple_expr_code (stmt));
|
|
|
|
if (grhs_class == GIMPLE_BINARY_RHS)
|
|
t = build2 (gimple_assign_rhs_code (stmt),
|
|
TREE_TYPE (gimple_assign_lhs (stmt)),
|
|
gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt));
|
|
else if (grhs_class == GIMPLE_UNARY_RHS)
|
|
t = build1 (gimple_assign_rhs_code (stmt),
|
|
TREE_TYPE (gimple_assign_lhs (stmt)),
|
|
gimple_assign_rhs1 (stmt));
|
|
else if (grhs_class == GIMPLE_SINGLE_RHS)
|
|
{
|
|
t = gimple_assign_rhs1 (stmt);
|
|
/* Avoid modifying this tree in place below. */
|
|
if ((gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t)
|
|
&& gimple_location (stmt) != EXPR_LOCATION (t))
|
|
|| (gimple_block (stmt)
|
|
&& currently_expanding_to_rtl
|
|
&& EXPR_P (t)
|
|
&& gimple_block (stmt) != TREE_BLOCK (t)))
|
|
t = copy_node (t);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t))
|
|
SET_EXPR_LOCATION (t, gimple_location (stmt));
|
|
if (gimple_block (stmt) && currently_expanding_to_rtl && EXPR_P (t))
|
|
TREE_BLOCK (t) = gimple_block (stmt);
|
|
|
|
return t;
|
|
}
|
|
|
|
|
|
#ifndef STACK_ALIGNMENT_NEEDED
|
|
#define STACK_ALIGNMENT_NEEDED 1
|
|
#endif
|
|
|
|
#define SSAVAR(x) (TREE_CODE (x) == SSA_NAME ? SSA_NAME_VAR (x) : x)
|
|
|
|
/* Associate declaration T with storage space X. If T is no
|
|
SSA name this is exactly SET_DECL_RTL, otherwise make the
|
|
partition of T associated with X. */
|
|
static inline void
|
|
set_rtl (tree t, rtx x)
|
|
{
|
|
if (TREE_CODE (t) == SSA_NAME)
|
|
{
|
|
SA.partition_to_pseudo[var_to_partition (SA.map, t)] = x;
|
|
if (x && !MEM_P (x))
|
|
set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (t), x);
|
|
/* For the benefit of debug information at -O0 (where vartracking
|
|
doesn't run) record the place also in the base DECL if it's
|
|
a normal variable (not a parameter). */
|
|
if (x && x != pc_rtx && TREE_CODE (SSA_NAME_VAR (t)) == VAR_DECL)
|
|
{
|
|
tree var = SSA_NAME_VAR (t);
|
|
/* If we don't yet have something recorded, just record it now. */
|
|
if (!DECL_RTL_SET_P (var))
|
|
SET_DECL_RTL (var, x);
|
|
/* If we have it set alrady to "multiple places" don't
|
|
change this. */
|
|
else if (DECL_RTL (var) == pc_rtx)
|
|
;
|
|
/* If we have something recorded and it's not the same place
|
|
as we want to record now, we have multiple partitions for the
|
|
same base variable, with different places. We can't just
|
|
randomly chose one, hence we have to say that we don't know.
|
|
This only happens with optimization, and there var-tracking
|
|
will figure out the right thing. */
|
|
else if (DECL_RTL (var) != x)
|
|
SET_DECL_RTL (var, pc_rtx);
|
|
}
|
|
}
|
|
else
|
|
SET_DECL_RTL (t, x);
|
|
}
|
|
|
|
/* This structure holds data relevant to one variable that will be
|
|
placed in a stack slot. */
|
|
struct stack_var
|
|
{
|
|
/* The Variable. */
|
|
tree decl;
|
|
|
|
/* The offset of the variable. During partitioning, this is the
|
|
offset relative to the partition. After partitioning, this
|
|
is relative to the stack frame. */
|
|
HOST_WIDE_INT offset;
|
|
|
|
/* Initially, the size of the variable. Later, the size of the partition,
|
|
if this variable becomes it's partition's representative. */
|
|
HOST_WIDE_INT size;
|
|
|
|
/* The *byte* alignment required for this variable. Or as, with the
|
|
size, the alignment for this partition. */
|
|
unsigned int alignb;
|
|
|
|
/* The partition representative. */
|
|
size_t representative;
|
|
|
|
/* The next stack variable in the partition, or EOC. */
|
|
size_t next;
|
|
|
|
/* The numbers of conflicting stack variables. */
|
|
bitmap conflicts;
|
|
};
|
|
|
|
#define EOC ((size_t)-1)
|
|
|
|
/* We have an array of such objects while deciding allocation. */
|
|
static struct stack_var *stack_vars;
|
|
static size_t stack_vars_alloc;
|
|
static size_t stack_vars_num;
|
|
|
|
/* An array of indices such that stack_vars[stack_vars_sorted[i]].size
|
|
is non-decreasing. */
|
|
static size_t *stack_vars_sorted;
|
|
|
|
/* The phase of the stack frame. This is the known misalignment of
|
|
virtual_stack_vars_rtx from PREFERRED_STACK_BOUNDARY. That is,
|
|
(frame_offset+frame_phase) % PREFERRED_STACK_BOUNDARY == 0. */
|
|
static int frame_phase;
|
|
|
|
/* Used during expand_used_vars to remember if we saw any decls for
|
|
which we'd like to enable stack smashing protection. */
|
|
static bool has_protected_decls;
|
|
|
|
/* Used during expand_used_vars. Remember if we say a character buffer
|
|
smaller than our cutoff threshold. Used for -Wstack-protector. */
|
|
static bool has_short_buffer;
|
|
|
|
/* Discover the byte alignment to use for DECL. Ignore alignment
|
|
we can't do with expected alignment of the stack boundary. */
|
|
|
|
static unsigned int
|
|
get_decl_align_unit (tree decl)
|
|
{
|
|
unsigned int align;
|
|
|
|
align = LOCAL_DECL_ALIGNMENT (decl);
|
|
|
|
if (align > MAX_SUPPORTED_STACK_ALIGNMENT)
|
|
align = MAX_SUPPORTED_STACK_ALIGNMENT;
|
|
|
|
if (SUPPORTS_STACK_ALIGNMENT)
|
|
{
|
|
if (crtl->stack_alignment_estimated < align)
|
|
{
|
|
gcc_assert(!crtl->stack_realign_processed);
|
|
crtl->stack_alignment_estimated = align;
|
|
}
|
|
}
|
|
|
|
/* stack_alignment_needed > PREFERRED_STACK_BOUNDARY is permitted.
|
|
So here we only make sure stack_alignment_needed >= align. */
|
|
if (crtl->stack_alignment_needed < align)
|
|
crtl->stack_alignment_needed = align;
|
|
if (crtl->max_used_stack_slot_alignment < align)
|
|
crtl->max_used_stack_slot_alignment = align;
|
|
|
|
return align / BITS_PER_UNIT;
|
|
}
|
|
|
|
/* Allocate SIZE bytes at byte alignment ALIGN from the stack frame.
|
|
Return the frame offset. */
|
|
|
|
static HOST_WIDE_INT
|
|
alloc_stack_frame_space (HOST_WIDE_INT size, HOST_WIDE_INT align)
|
|
{
|
|
HOST_WIDE_INT offset, new_frame_offset;
|
|
|
|
new_frame_offset = frame_offset;
|
|
if (FRAME_GROWS_DOWNWARD)
|
|
{
|
|
new_frame_offset -= size + frame_phase;
|
|
new_frame_offset &= -align;
|
|
new_frame_offset += frame_phase;
|
|
offset = new_frame_offset;
|
|
}
|
|
else
|
|
{
|
|
new_frame_offset -= frame_phase;
|
|
new_frame_offset += align - 1;
|
|
new_frame_offset &= -align;
|
|
new_frame_offset += frame_phase;
|
|
offset = new_frame_offset;
|
|
new_frame_offset += size;
|
|
}
|
|
frame_offset = new_frame_offset;
|
|
|
|
if (frame_offset_overflow (frame_offset, cfun->decl))
|
|
frame_offset = offset = 0;
|
|
|
|
return offset;
|
|
}
|
|
|
|
/* Accumulate DECL into STACK_VARS. */
|
|
|
|
static void
|
|
add_stack_var (tree decl)
|
|
{
|
|
if (stack_vars_num >= stack_vars_alloc)
|
|
{
|
|
if (stack_vars_alloc)
|
|
stack_vars_alloc = stack_vars_alloc * 3 / 2;
|
|
else
|
|
stack_vars_alloc = 32;
|
|
stack_vars
|
|
= XRESIZEVEC (struct stack_var, stack_vars, stack_vars_alloc);
|
|
}
|
|
stack_vars[stack_vars_num].decl = decl;
|
|
stack_vars[stack_vars_num].offset = 0;
|
|
stack_vars[stack_vars_num].size = tree_low_cst (DECL_SIZE_UNIT (SSAVAR (decl)), 1);
|
|
stack_vars[stack_vars_num].alignb = get_decl_align_unit (SSAVAR (decl));
|
|
|
|
/* All variables are initially in their own partition. */
|
|
stack_vars[stack_vars_num].representative = stack_vars_num;
|
|
stack_vars[stack_vars_num].next = EOC;
|
|
|
|
/* All variables initially conflict with no other. */
|
|
stack_vars[stack_vars_num].conflicts = NULL;
|
|
|
|
/* Ensure that this decl doesn't get put onto the list twice. */
|
|
set_rtl (decl, pc_rtx);
|
|
|
|
stack_vars_num++;
|
|
}
|
|
|
|
/* Make the decls associated with luid's X and Y conflict. */
|
|
|
|
static void
|
|
add_stack_var_conflict (size_t x, size_t y)
|
|
{
|
|
struct stack_var *a = &stack_vars[x];
|
|
struct stack_var *b = &stack_vars[y];
|
|
if (!a->conflicts)
|
|
a->conflicts = BITMAP_ALLOC (NULL);
|
|
if (!b->conflicts)
|
|
b->conflicts = BITMAP_ALLOC (NULL);
|
|
bitmap_set_bit (a->conflicts, y);
|
|
bitmap_set_bit (b->conflicts, x);
|
|
}
|
|
|
|
/* Check whether the decls associated with luid's X and Y conflict. */
|
|
|
|
static bool
|
|
stack_var_conflict_p (size_t x, size_t y)
|
|
{
|
|
struct stack_var *a = &stack_vars[x];
|
|
struct stack_var *b = &stack_vars[y];
|
|
if (!a->conflicts || !b->conflicts)
|
|
return false;
|
|
return bitmap_bit_p (a->conflicts, y);
|
|
}
|
|
|
|
/* Returns true if TYPE is or contains a union type. */
|
|
|
|
static bool
|
|
aggregate_contains_union_type (tree type)
|
|
{
|
|
tree field;
|
|
|
|
if (TREE_CODE (type) == UNION_TYPE
|
|
|| TREE_CODE (type) == QUAL_UNION_TYPE)
|
|
return true;
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
|
return aggregate_contains_union_type (TREE_TYPE (type));
|
|
if (TREE_CODE (type) != RECORD_TYPE)
|
|
return false;
|
|
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
|
if (TREE_CODE (field) == FIELD_DECL)
|
|
if (aggregate_contains_union_type (TREE_TYPE (field)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* A subroutine of expand_used_vars. If two variables X and Y have alias
|
|
sets that do not conflict, then do add a conflict for these variables
|
|
in the interference graph. We also need to make sure to add conflicts
|
|
for union containing structures. Else RTL alias analysis comes along
|
|
and due to type based aliasing rules decides that for two overlapping
|
|
union temporaries { short s; int i; } accesses to the same mem through
|
|
different types may not alias and happily reorders stores across
|
|
life-time boundaries of the temporaries (See PR25654).
|
|
We also have to mind MEM_IN_STRUCT_P and MEM_SCALAR_P. */
|
|
|
|
static void
|
|
add_alias_set_conflicts (void)
|
|
{
|
|
size_t i, j, n = stack_vars_num;
|
|
|
|
for (i = 0; i < n; ++i)
|
|
{
|
|
tree type_i = TREE_TYPE (stack_vars[i].decl);
|
|
bool aggr_i = AGGREGATE_TYPE_P (type_i);
|
|
bool contains_union;
|
|
|
|
contains_union = aggregate_contains_union_type (type_i);
|
|
for (j = 0; j < i; ++j)
|
|
{
|
|
tree type_j = TREE_TYPE (stack_vars[j].decl);
|
|
bool aggr_j = AGGREGATE_TYPE_P (type_j);
|
|
if (aggr_i != aggr_j
|
|
/* Either the objects conflict by means of type based
|
|
aliasing rules, or we need to add a conflict. */
|
|
|| !objects_must_conflict_p (type_i, type_j)
|
|
/* In case the types do not conflict ensure that access
|
|
to elements will conflict. In case of unions we have
|
|
to be careful as type based aliasing rules may say
|
|
access to the same memory does not conflict. So play
|
|
safe and add a conflict in this case. */
|
|
|| contains_union)
|
|
add_stack_var_conflict (i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* A subroutine of partition_stack_vars. A comparison function for qsort,
|
|
sorting an array of indices by the size and type of the object. */
|
|
|
|
static int
|
|
stack_var_size_cmp (const void *a, const void *b)
|
|
{
|
|
HOST_WIDE_INT sa = stack_vars[*(const size_t *)a].size;
|
|
HOST_WIDE_INT sb = stack_vars[*(const size_t *)b].size;
|
|
tree decla, declb;
|
|
unsigned int uida, uidb;
|
|
|
|
if (sa < sb)
|
|
return -1;
|
|
if (sa > sb)
|
|
return 1;
|
|
decla = stack_vars[*(const size_t *)a].decl;
|
|
declb = stack_vars[*(const size_t *)b].decl;
|
|
/* For stack variables of the same size use and id of the decls
|
|
to make the sort stable. Two SSA names are compared by their
|
|
version, SSA names come before non-SSA names, and two normal
|
|
decls are compared by their DECL_UID. */
|
|
if (TREE_CODE (decla) == SSA_NAME)
|
|
{
|
|
if (TREE_CODE (declb) == SSA_NAME)
|
|
uida = SSA_NAME_VERSION (decla), uidb = SSA_NAME_VERSION (declb);
|
|
else
|
|
return -1;
|
|
}
|
|
else if (TREE_CODE (declb) == SSA_NAME)
|
|
return 1;
|
|
else
|
|
uida = DECL_UID (decla), uidb = DECL_UID (declb);
|
|
if (uida < uidb)
|
|
return -1;
|
|
if (uida > uidb)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* If the points-to solution *PI points to variables that are in a partition
|
|
together with other variables add all partition members to the pointed-to
|
|
variables bitmap. */
|
|
|
|
static void
|
|
add_partitioned_vars_to_ptset (struct pt_solution *pt,
|
|
struct pointer_map_t *decls_to_partitions,
|
|
struct pointer_set_t *visited, bitmap temp)
|
|
{
|
|
bitmap_iterator bi;
|
|
unsigned i;
|
|
bitmap *part;
|
|
|
|
if (pt->anything
|
|
|| pt->vars == NULL
|
|
/* The pointed-to vars bitmap is shared, it is enough to
|
|
visit it once. */
|
|
|| pointer_set_insert(visited, pt->vars))
|
|
return;
|
|
|
|
bitmap_clear (temp);
|
|
|
|
/* By using a temporary bitmap to store all members of the partitions
|
|
we have to add we make sure to visit each of the partitions only
|
|
once. */
|
|
EXECUTE_IF_SET_IN_BITMAP (pt->vars, 0, i, bi)
|
|
if ((!temp
|
|
|| !bitmap_bit_p (temp, i))
|
|
&& (part = (bitmap *) pointer_map_contains (decls_to_partitions,
|
|
(void *)(size_t) i)))
|
|
bitmap_ior_into (temp, *part);
|
|
if (!bitmap_empty_p (temp))
|
|
bitmap_ior_into (pt->vars, temp);
|
|
}
|
|
|
|
/* Update points-to sets based on partition info, so we can use them on RTL.
|
|
The bitmaps representing stack partitions will be saved until expand,
|
|
where partitioned decls used as bases in memory expressions will be
|
|
rewritten. */
|
|
|
|
static void
|
|
update_alias_info_with_stack_vars (void)
|
|
{
|
|
struct pointer_map_t *decls_to_partitions = NULL;
|
|
size_t i, j;
|
|
tree var = NULL_TREE;
|
|
|
|
for (i = 0; i < stack_vars_num; i++)
|
|
{
|
|
bitmap part = NULL;
|
|
tree name;
|
|
struct ptr_info_def *pi;
|
|
|
|
/* Not interested in partitions with single variable. */
|
|
if (stack_vars[i].representative != i
|
|
|| stack_vars[i].next == EOC)
|
|
continue;
|
|
|
|
if (!decls_to_partitions)
|
|
{
|
|
decls_to_partitions = pointer_map_create ();
|
|
cfun->gimple_df->decls_to_pointers = pointer_map_create ();
|
|
}
|
|
|
|
/* Create an SSA_NAME that points to the partition for use
|
|
as base during alias-oracle queries on RTL for bases that
|
|
have been partitioned. */
|
|
if (var == NULL_TREE)
|
|
var = create_tmp_var (ptr_type_node, NULL);
|
|
name = make_ssa_name (var, NULL);
|
|
|
|
/* Create bitmaps representing partitions. They will be used for
|
|
points-to sets later, so use GGC alloc. */
|
|
part = BITMAP_GGC_ALLOC ();
|
|
for (j = i; j != EOC; j = stack_vars[j].next)
|
|
{
|
|
tree decl = stack_vars[j].decl;
|
|
unsigned int uid = DECL_UID (decl);
|
|
/* We should never end up partitioning SSA names (though they
|
|
may end up on the stack). Neither should we allocate stack
|
|
space to something that is unused and thus unreferenced. */
|
|
gcc_assert (DECL_P (decl)
|
|
&& referenced_var_lookup (uid));
|
|
bitmap_set_bit (part, uid);
|
|
*((bitmap *) pointer_map_insert (decls_to_partitions,
|
|
(void *)(size_t) uid)) = part;
|
|
*((tree *) pointer_map_insert (cfun->gimple_df->decls_to_pointers,
|
|
decl)) = name;
|
|
}
|
|
|
|
/* Make the SSA name point to all partition members. */
|
|
pi = get_ptr_info (name);
|
|
pt_solution_set (&pi->pt, part);
|
|
}
|
|
|
|
/* Make all points-to sets that contain one member of a partition
|
|
contain all members of the partition. */
|
|
if (decls_to_partitions)
|
|
{
|
|
unsigned i;
|
|
struct pointer_set_t *visited = pointer_set_create ();
|
|
bitmap temp = BITMAP_ALLOC (NULL);
|
|
|
|
for (i = 1; i < num_ssa_names; i++)
|
|
{
|
|
tree name = ssa_name (i);
|
|
struct ptr_info_def *pi;
|
|
|
|
if (name
|
|
&& POINTER_TYPE_P (TREE_TYPE (name))
|
|
&& ((pi = SSA_NAME_PTR_INFO (name)) != NULL))
|
|
add_partitioned_vars_to_ptset (&pi->pt, decls_to_partitions,
|
|
visited, temp);
|
|
}
|
|
|
|
add_partitioned_vars_to_ptset (&cfun->gimple_df->escaped,
|
|
decls_to_partitions, visited, temp);
|
|
add_partitioned_vars_to_ptset (&cfun->gimple_df->callused,
|
|
decls_to_partitions, visited, temp);
|
|
|
|
pointer_set_destroy (visited);
|
|
pointer_map_destroy (decls_to_partitions);
|
|
BITMAP_FREE (temp);
|
|
}
|
|
}
|
|
|
|
/* A subroutine of partition_stack_vars. The UNION portion of a UNION/FIND
|
|
partitioning algorithm. Partitions A and B are known to be non-conflicting.
|
|
Merge them into a single partition A.
|
|
|
|
At the same time, add OFFSET to all variables in partition B. At the end
|
|
of the partitioning process we've have a nice block easy to lay out within
|
|
the stack frame. */
|
|
|
|
static void
|
|
union_stack_vars (size_t a, size_t b, HOST_WIDE_INT offset)
|
|
{
|
|
size_t i, last;
|
|
struct stack_var *vb = &stack_vars[b];
|
|
bitmap_iterator bi;
|
|
unsigned u;
|
|
|
|
/* Update each element of partition B with the given offset,
|
|
and merge them into partition A. */
|
|
for (last = i = b; i != EOC; last = i, i = stack_vars[i].next)
|
|
{
|
|
stack_vars[i].offset += offset;
|
|
stack_vars[i].representative = a;
|
|
}
|
|
stack_vars[last].next = stack_vars[a].next;
|
|
stack_vars[a].next = b;
|
|
|
|
/* Update the required alignment of partition A to account for B. */
|
|
if (stack_vars[a].alignb < stack_vars[b].alignb)
|
|
stack_vars[a].alignb = stack_vars[b].alignb;
|
|
|
|
/* Update the interference graph and merge the conflicts. */
|
|
if (vb->conflicts)
|
|
{
|
|
EXECUTE_IF_SET_IN_BITMAP (vb->conflicts, 0, u, bi)
|
|
add_stack_var_conflict (a, stack_vars[u].representative);
|
|
BITMAP_FREE (vb->conflicts);
|
|
}
|
|
}
|
|
|
|
/* A subroutine of expand_used_vars. Binpack the variables into
|
|
partitions constrained by the interference graph. The overall
|
|
algorithm used is as follows:
|
|
|
|
Sort the objects by size.
|
|
For each object A {
|
|
S = size(A)
|
|
O = 0
|
|
loop {
|
|
Look for the largest non-conflicting object B with size <= S.
|
|
UNION (A, B)
|
|
offset(B) = O
|
|
O += size(B)
|
|
S -= size(B)
|
|
}
|
|
}
|
|
*/
|
|
|
|
static void
|
|
partition_stack_vars (void)
|
|
{
|
|
size_t si, sj, n = stack_vars_num;
|
|
|
|
stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
|
|
for (si = 0; si < n; ++si)
|
|
stack_vars_sorted[si] = si;
|
|
|
|
if (n == 1)
|
|
return;
|
|
|
|
qsort (stack_vars_sorted, n, sizeof (size_t), stack_var_size_cmp);
|
|
|
|
for (si = 0; si < n; ++si)
|
|
{
|
|
size_t i = stack_vars_sorted[si];
|
|
HOST_WIDE_INT isize = stack_vars[i].size;
|
|
HOST_WIDE_INT offset = 0;
|
|
|
|
for (sj = si; sj-- > 0; )
|
|
{
|
|
size_t j = stack_vars_sorted[sj];
|
|
HOST_WIDE_INT jsize = stack_vars[j].size;
|
|
unsigned int jalign = stack_vars[j].alignb;
|
|
|
|
/* Ignore objects that aren't partition representatives. */
|
|
if (stack_vars[j].representative != j)
|
|
continue;
|
|
|
|
/* Ignore objects too large for the remaining space. */
|
|
if (isize < jsize)
|
|
continue;
|
|
|
|
/* Ignore conflicting objects. */
|
|
if (stack_var_conflict_p (i, j))
|
|
continue;
|
|
|
|
/* Refine the remaining space check to include alignment. */
|
|
if (offset & (jalign - 1))
|
|
{
|
|
HOST_WIDE_INT toff = offset;
|
|
toff += jalign - 1;
|
|
toff &= -(HOST_WIDE_INT)jalign;
|
|
if (isize - (toff - offset) < jsize)
|
|
continue;
|
|
|
|
isize -= toff - offset;
|
|
offset = toff;
|
|
}
|
|
|
|
/* UNION the objects, placing J at OFFSET. */
|
|
union_stack_vars (i, j, offset);
|
|
|
|
isize -= jsize;
|
|
if (isize == 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (optimize)
|
|
update_alias_info_with_stack_vars ();
|
|
}
|
|
|
|
/* A debugging aid for expand_used_vars. Dump the generated partitions. */
|
|
|
|
static void
|
|
dump_stack_var_partition (void)
|
|
{
|
|
size_t si, i, j, n = stack_vars_num;
|
|
|
|
for (si = 0; si < n; ++si)
|
|
{
|
|
i = stack_vars_sorted[si];
|
|
|
|
/* Skip variables that aren't partition representatives, for now. */
|
|
if (stack_vars[i].representative != i)
|
|
continue;
|
|
|
|
fprintf (dump_file, "Partition %lu: size " HOST_WIDE_INT_PRINT_DEC
|
|
" align %u\n", (unsigned long) i, stack_vars[i].size,
|
|
stack_vars[i].alignb);
|
|
|
|
for (j = i; j != EOC; j = stack_vars[j].next)
|
|
{
|
|
fputc ('\t', dump_file);
|
|
print_generic_expr (dump_file, stack_vars[j].decl, dump_flags);
|
|
fprintf (dump_file, ", offset " HOST_WIDE_INT_PRINT_DEC "\n",
|
|
stack_vars[j].offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Assign rtl to DECL at frame offset OFFSET. */
|
|
|
|
static void
|
|
expand_one_stack_var_at (tree decl, HOST_WIDE_INT offset)
|
|
{
|
|
/* Alignment is unsigned. */
|
|
unsigned HOST_WIDE_INT align;
|
|
rtx x;
|
|
|
|
/* If this fails, we've overflowed the stack frame. Error nicely? */
|
|
gcc_assert (offset == trunc_int_for_mode (offset, Pmode));
|
|
|
|
x = plus_constant (virtual_stack_vars_rtx, offset);
|
|
x = gen_rtx_MEM (DECL_MODE (SSAVAR (decl)), x);
|
|
|
|
if (TREE_CODE (decl) != SSA_NAME)
|
|
{
|
|
/* Set alignment we actually gave this decl if it isn't an SSA name.
|
|
If it is we generate stack slots only accidentally so it isn't as
|
|
important, we'll simply use the alignment that is already set. */
|
|
offset -= frame_phase;
|
|
align = offset & -offset;
|
|
align *= BITS_PER_UNIT;
|
|
if (align == 0)
|
|
align = STACK_BOUNDARY;
|
|
else if (align > MAX_SUPPORTED_STACK_ALIGNMENT)
|
|
align = MAX_SUPPORTED_STACK_ALIGNMENT;
|
|
|
|
DECL_ALIGN (decl) = align;
|
|
DECL_USER_ALIGN (decl) = 0;
|
|
}
|
|
|
|
set_mem_attributes (x, SSAVAR (decl), true);
|
|
set_rtl (decl, x);
|
|
}
|
|
|
|
/* A subroutine of expand_used_vars. Give each partition representative
|
|
a unique location within the stack frame. Update each partition member
|
|
with that location. */
|
|
|
|
static void
|
|
expand_stack_vars (bool (*pred) (tree))
|
|
{
|
|
size_t si, i, j, n = stack_vars_num;
|
|
|
|
for (si = 0; si < n; ++si)
|
|
{
|
|
HOST_WIDE_INT offset;
|
|
|
|
i = stack_vars_sorted[si];
|
|
|
|
/* Skip variables that aren't partition representatives, for now. */
|
|
if (stack_vars[i].representative != i)
|
|
continue;
|
|
|
|
/* Skip variables that have already had rtl assigned. See also
|
|
add_stack_var where we perpetrate this pc_rtx hack. */
|
|
if ((TREE_CODE (stack_vars[i].decl) == SSA_NAME
|
|
? SA.partition_to_pseudo[var_to_partition (SA.map, stack_vars[i].decl)]
|
|
: DECL_RTL (stack_vars[i].decl)) != pc_rtx)
|
|
continue;
|
|
|
|
/* Check the predicate to see whether this variable should be
|
|
allocated in this pass. */
|
|
if (pred && !pred (stack_vars[i].decl))
|
|
continue;
|
|
|
|
offset = alloc_stack_frame_space (stack_vars[i].size,
|
|
stack_vars[i].alignb);
|
|
|
|
/* Create rtl for each variable based on their location within the
|
|
partition. */
|
|
for (j = i; j != EOC; j = stack_vars[j].next)
|
|
{
|
|
gcc_assert (stack_vars[j].offset <= stack_vars[i].size);
|
|
expand_one_stack_var_at (stack_vars[j].decl,
|
|
stack_vars[j].offset + offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Take into account all sizes of partitions and reset DECL_RTLs. */
|
|
static HOST_WIDE_INT
|
|
account_stack_vars (void)
|
|
{
|
|
size_t si, j, i, n = stack_vars_num;
|
|
HOST_WIDE_INT size = 0;
|
|
|
|
for (si = 0; si < n; ++si)
|
|
{
|
|
i = stack_vars_sorted[si];
|
|
|
|
/* Skip variables that aren't partition representatives, for now. */
|
|
if (stack_vars[i].representative != i)
|
|
continue;
|
|
|
|
size += stack_vars[i].size;
|
|
for (j = i; j != EOC; j = stack_vars[j].next)
|
|
set_rtl (stack_vars[j].decl, NULL);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/* A subroutine of expand_one_var. Called to immediately assign rtl
|
|
to a variable to be allocated in the stack frame. */
|
|
|
|
static void
|
|
expand_one_stack_var (tree var)
|
|
{
|
|
HOST_WIDE_INT size, offset, align;
|
|
|
|
size = tree_low_cst (DECL_SIZE_UNIT (SSAVAR (var)), 1);
|
|
align = get_decl_align_unit (SSAVAR (var));
|
|
offset = alloc_stack_frame_space (size, align);
|
|
|
|
expand_one_stack_var_at (var, offset);
|
|
}
|
|
|
|
/* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL
|
|
that will reside in a hard register. */
|
|
|
|
static void
|
|
expand_one_hard_reg_var (tree var)
|
|
{
|
|
rest_of_decl_compilation (var, 0, 0);
|
|
}
|
|
|
|
/* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL
|
|
that will reside in a pseudo register. */
|
|
|
|
static void
|
|
expand_one_register_var (tree var)
|
|
{
|
|
tree decl = SSAVAR (var);
|
|
tree type = TREE_TYPE (decl);
|
|
enum machine_mode reg_mode = promote_decl_mode (decl, NULL);
|
|
rtx x = gen_reg_rtx (reg_mode);
|
|
|
|
set_rtl (var, x);
|
|
|
|
/* Note if the object is a user variable. */
|
|
if (!DECL_ARTIFICIAL (decl))
|
|
mark_user_reg (x);
|
|
|
|
if (POINTER_TYPE_P (type))
|
|
mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (type)));
|
|
}
|
|
|
|
/* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL that
|
|
has some associated error, e.g. its type is error-mark. We just need
|
|
to pick something that won't crash the rest of the compiler. */
|
|
|
|
static void
|
|
expand_one_error_var (tree var)
|
|
{
|
|
enum machine_mode mode = DECL_MODE (var);
|
|
rtx x;
|
|
|
|
if (mode == BLKmode)
|
|
x = gen_rtx_MEM (BLKmode, const0_rtx);
|
|
else if (mode == VOIDmode)
|
|
x = const0_rtx;
|
|
else
|
|
x = gen_reg_rtx (mode);
|
|
|
|
SET_DECL_RTL (var, x);
|
|
}
|
|
|
|
/* A subroutine of expand_one_var. VAR is a variable that will be
|
|
allocated to the local stack frame. Return true if we wish to
|
|
add VAR to STACK_VARS so that it will be coalesced with other
|
|
variables. Return false to allocate VAR immediately.
|
|
|
|
This function is used to reduce the number of variables considered
|
|
for coalescing, which reduces the size of the quadratic problem. */
|
|
|
|
static bool
|
|
defer_stack_allocation (tree var, bool toplevel)
|
|
{
|
|
/* If stack protection is enabled, *all* stack variables must be deferred,
|
|
so that we can re-order the strings to the top of the frame. */
|
|
if (flag_stack_protect)
|
|
return true;
|
|
|
|
/* Variables in the outermost scope automatically conflict with
|
|
every other variable. The only reason to want to defer them
|
|
at all is that, after sorting, we can more efficiently pack
|
|
small variables in the stack frame. Continue to defer at -O2. */
|
|
if (toplevel && optimize < 2)
|
|
return false;
|
|
|
|
/* Without optimization, *most* variables are allocated from the
|
|
stack, which makes the quadratic problem large exactly when we
|
|
want compilation to proceed as quickly as possible. On the
|
|
other hand, we don't want the function's stack frame size to
|
|
get completely out of hand. So we avoid adding scalars and
|
|
"small" aggregates to the list at all. */
|
|
if (optimize == 0 && tree_low_cst (DECL_SIZE_UNIT (var), 1) < 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* A subroutine of expand_used_vars. Expand one variable according to
|
|
its flavor. Variables to be placed on the stack are not actually
|
|
expanded yet, merely recorded.
|
|
When REALLY_EXPAND is false, only add stack values to be allocated.
|
|
Return stack usage this variable is supposed to take.
|
|
*/
|
|
|
|
static HOST_WIDE_INT
|
|
expand_one_var (tree var, bool toplevel, bool really_expand)
|
|
{
|
|
tree origvar = var;
|
|
var = SSAVAR (var);
|
|
|
|
if (SUPPORTS_STACK_ALIGNMENT
|
|
&& TREE_TYPE (var) != error_mark_node
|
|
&& TREE_CODE (var) == VAR_DECL)
|
|
{
|
|
unsigned int align;
|
|
|
|
/* Because we don't know if VAR will be in register or on stack,
|
|
we conservatively assume it will be on stack even if VAR is
|
|
eventually put into register after RA pass. For non-automatic
|
|
variables, which won't be on stack, we collect alignment of
|
|
type and ignore user specified alignment. */
|
|
if (TREE_STATIC (var) || DECL_EXTERNAL (var))
|
|
align = MINIMUM_ALIGNMENT (TREE_TYPE (var),
|
|
TYPE_MODE (TREE_TYPE (var)),
|
|
TYPE_ALIGN (TREE_TYPE (var)));
|
|
else
|
|
align = MINIMUM_ALIGNMENT (var, DECL_MODE (var), DECL_ALIGN (var));
|
|
|
|
if (crtl->stack_alignment_estimated < align)
|
|
{
|
|
/* stack_alignment_estimated shouldn't change after stack
|
|
realign decision made */
|
|
gcc_assert(!crtl->stack_realign_processed);
|
|
crtl->stack_alignment_estimated = align;
|
|
}
|
|
}
|
|
|
|
if (TREE_CODE (origvar) == SSA_NAME)
|
|
{
|
|
gcc_assert (TREE_CODE (var) != VAR_DECL
|
|
|| (!DECL_EXTERNAL (var)
|
|
&& !DECL_HAS_VALUE_EXPR_P (var)
|
|
&& !TREE_STATIC (var)
|
|
&& TREE_TYPE (var) != error_mark_node
|
|
&& !DECL_HARD_REGISTER (var)
|
|
&& really_expand));
|
|
}
|
|
if (TREE_CODE (var) != VAR_DECL && TREE_CODE (origvar) != SSA_NAME)
|
|
;
|
|
else if (DECL_EXTERNAL (var))
|
|
;
|
|
else if (DECL_HAS_VALUE_EXPR_P (var))
|
|
;
|
|
else if (TREE_STATIC (var))
|
|
;
|
|
else if (TREE_CODE (origvar) != SSA_NAME && DECL_RTL_SET_P (var))
|
|
;
|
|
else if (TREE_TYPE (var) == error_mark_node)
|
|
{
|
|
if (really_expand)
|
|
expand_one_error_var (var);
|
|
}
|
|
else if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
|
|
{
|
|
if (really_expand)
|
|
expand_one_hard_reg_var (var);
|
|
}
|
|
else if (use_register_for_decl (var))
|
|
{
|
|
if (really_expand)
|
|
expand_one_register_var (origvar);
|
|
}
|
|
else if (!host_integerp (DECL_SIZE_UNIT (var), 1))
|
|
{
|
|
if (really_expand)
|
|
{
|
|
error ("size of variable %q+D is too large", var);
|
|
expand_one_error_var (var);
|
|
}
|
|
}
|
|
else if (defer_stack_allocation (var, toplevel))
|
|
add_stack_var (origvar);
|
|
else
|
|
{
|
|
if (really_expand)
|
|
expand_one_stack_var (origvar);
|
|
return tree_low_cst (DECL_SIZE_UNIT (var), 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* A subroutine of expand_used_vars. Walk down through the BLOCK tree
|
|
expanding variables. Those variables that can be put into registers
|
|
are allocated pseudos; those that can't are put on the stack.
|
|
|
|
TOPLEVEL is true if this is the outermost BLOCK. */
|
|
|
|
static void
|
|
expand_used_vars_for_block (tree block, bool toplevel)
|
|
{
|
|
size_t i, j, old_sv_num, this_sv_num, new_sv_num;
|
|
tree t;
|
|
|
|
old_sv_num = toplevel ? 0 : stack_vars_num;
|
|
|
|
/* Expand all variables at this level. */
|
|
for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
|
|
if (TREE_USED (t))
|
|
expand_one_var (t, toplevel, true);
|
|
|
|
this_sv_num = stack_vars_num;
|
|
|
|
/* Expand all variables at containing levels. */
|
|
for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
|
|
expand_used_vars_for_block (t, false);
|
|
|
|
/* Since we do not track exact variable lifetimes (which is not even
|
|
possible for variables whose address escapes), we mirror the block
|
|
tree in the interference graph. Here we cause all variables at this
|
|
level, and all sublevels, to conflict. */
|
|
if (old_sv_num < this_sv_num)
|
|
{
|
|
new_sv_num = stack_vars_num;
|
|
|
|
for (i = old_sv_num; i < new_sv_num; ++i)
|
|
for (j = i < this_sv_num ? i : this_sv_num; j-- > old_sv_num ;)
|
|
add_stack_var_conflict (i, j);
|
|
}
|
|
}
|
|
|
|
/* A subroutine of expand_used_vars. Walk down through the BLOCK tree
|
|
and clear TREE_USED on all local variables. */
|
|
|
|
static void
|
|
clear_tree_used (tree block)
|
|
{
|
|
tree t;
|
|
|
|
for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
|
|
/* if (!TREE_STATIC (t) && !DECL_EXTERNAL (t)) */
|
|
TREE_USED (t) = 0;
|
|
|
|
for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
|
|
clear_tree_used (t);
|
|
}
|
|
|
|
/* Examine TYPE and determine a bit mask of the following features. */
|
|
|
|
#define SPCT_HAS_LARGE_CHAR_ARRAY 1
|
|
#define SPCT_HAS_SMALL_CHAR_ARRAY 2
|
|
#define SPCT_HAS_ARRAY 4
|
|
#define SPCT_HAS_AGGREGATE 8
|
|
|
|
static unsigned int
|
|
stack_protect_classify_type (tree type)
|
|
{
|
|
unsigned int ret = 0;
|
|
tree t;
|
|
|
|
switch (TREE_CODE (type))
|
|
{
|
|
case ARRAY_TYPE:
|
|
t = TYPE_MAIN_VARIANT (TREE_TYPE (type));
|
|
if (t == char_type_node
|
|
|| t == signed_char_type_node
|
|
|| t == unsigned_char_type_node)
|
|
{
|
|
unsigned HOST_WIDE_INT max = PARAM_VALUE (PARAM_SSP_BUFFER_SIZE);
|
|
unsigned HOST_WIDE_INT len;
|
|
|
|
if (!TYPE_SIZE_UNIT (type)
|
|
|| !host_integerp (TYPE_SIZE_UNIT (type), 1))
|
|
len = max;
|
|
else
|
|
len = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
|
|
|
|
if (len < max)
|
|
ret = SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_ARRAY;
|
|
else
|
|
ret = SPCT_HAS_LARGE_CHAR_ARRAY | SPCT_HAS_ARRAY;
|
|
}
|
|
else
|
|
ret = SPCT_HAS_ARRAY;
|
|
break;
|
|
|
|
case UNION_TYPE:
|
|
case QUAL_UNION_TYPE:
|
|
case RECORD_TYPE:
|
|
ret = SPCT_HAS_AGGREGATE;
|
|
for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
|
|
if (TREE_CODE (t) == FIELD_DECL)
|
|
ret |= stack_protect_classify_type (TREE_TYPE (t));
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Return nonzero if DECL should be segregated into the "vulnerable" upper
|
|
part of the local stack frame. Remember if we ever return nonzero for
|
|
any variable in this function. The return value is the phase number in
|
|
which the variable should be allocated. */
|
|
|
|
static int
|
|
stack_protect_decl_phase (tree decl)
|
|
{
|
|
unsigned int bits = stack_protect_classify_type (TREE_TYPE (decl));
|
|
int ret = 0;
|
|
|
|
if (bits & SPCT_HAS_SMALL_CHAR_ARRAY)
|
|
has_short_buffer = true;
|
|
|
|
if (flag_stack_protect == 2)
|
|
{
|
|
if ((bits & (SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_LARGE_CHAR_ARRAY))
|
|
&& !(bits & SPCT_HAS_AGGREGATE))
|
|
ret = 1;
|
|
else if (bits & SPCT_HAS_ARRAY)
|
|
ret = 2;
|
|
}
|
|
else
|
|
ret = (bits & SPCT_HAS_LARGE_CHAR_ARRAY) != 0;
|
|
|
|
if (ret)
|
|
has_protected_decls = true;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Two helper routines that check for phase 1 and phase 2. These are used
|
|
as callbacks for expand_stack_vars. */
|
|
|
|
static bool
|
|
stack_protect_decl_phase_1 (tree decl)
|
|
{
|
|
return stack_protect_decl_phase (decl) == 1;
|
|
}
|
|
|
|
static bool
|
|
stack_protect_decl_phase_2 (tree decl)
|
|
{
|
|
return stack_protect_decl_phase (decl) == 2;
|
|
}
|
|
|
|
/* Ensure that variables in different stack protection phases conflict
|
|
so that they are not merged and share the same stack slot. */
|
|
|
|
static void
|
|
add_stack_protection_conflicts (void)
|
|
{
|
|
size_t i, j, n = stack_vars_num;
|
|
unsigned char *phase;
|
|
|
|
phase = XNEWVEC (unsigned char, n);
|
|
for (i = 0; i < n; ++i)
|
|
phase[i] = stack_protect_decl_phase (stack_vars[i].decl);
|
|
|
|
for (i = 0; i < n; ++i)
|
|
{
|
|
unsigned char ph_i = phase[i];
|
|
for (j = 0; j < i; ++j)
|
|
if (ph_i != phase[j])
|
|
add_stack_var_conflict (i, j);
|
|
}
|
|
|
|
XDELETEVEC (phase);
|
|
}
|
|
|
|
/* Create a decl for the guard at the top of the stack frame. */
|
|
|
|
static void
|
|
create_stack_guard (void)
|
|
{
|
|
tree guard = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
|
|
VAR_DECL, NULL, ptr_type_node);
|
|
TREE_THIS_VOLATILE (guard) = 1;
|
|
TREE_USED (guard) = 1;
|
|
expand_one_stack_var (guard);
|
|
crtl->stack_protect_guard = guard;
|
|
}
|
|
|
|
/* A subroutine of expand_used_vars. Walk down through the BLOCK tree
|
|
expanding variables. Those variables that can be put into registers
|
|
are allocated pseudos; those that can't are put on the stack.
|
|
|
|
TOPLEVEL is true if this is the outermost BLOCK. */
|
|
|
|
static HOST_WIDE_INT
|
|
account_used_vars_for_block (tree block, bool toplevel)
|
|
{
|
|
tree t;
|
|
HOST_WIDE_INT size = 0;
|
|
|
|
/* Expand all variables at this level. */
|
|
for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
|
|
if (TREE_USED (t))
|
|
size += expand_one_var (t, toplevel, false);
|
|
|
|
/* Expand all variables at containing levels. */
|
|
for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
|
|
size += account_used_vars_for_block (t, false);
|
|
|
|
return size;
|
|
}
|
|
|
|
/* Prepare for expanding variables. */
|
|
static void
|
|
init_vars_expansion (void)
|
|
{
|
|
tree t;
|
|
/* Set TREE_USED on all variables in the local_decls. */
|
|
for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
|
|
TREE_USED (TREE_VALUE (t)) = 1;
|
|
|
|
/* Clear TREE_USED on all variables associated with a block scope. */
|
|
clear_tree_used (DECL_INITIAL (current_function_decl));
|
|
|
|
/* Initialize local stack smashing state. */
|
|
has_protected_decls = false;
|
|
has_short_buffer = false;
|
|
}
|
|
|
|
/* Free up stack variable graph data. */
|
|
static void
|
|
fini_vars_expansion (void)
|
|
{
|
|
size_t i, n = stack_vars_num;
|
|
for (i = 0; i < n; i++)
|
|
BITMAP_FREE (stack_vars[i].conflicts);
|
|
XDELETEVEC (stack_vars);
|
|
XDELETEVEC (stack_vars_sorted);
|
|
stack_vars = NULL;
|
|
stack_vars_alloc = stack_vars_num = 0;
|
|
}
|
|
|
|
/* Make a fair guess for the size of the stack frame of the current
|
|
function. This doesn't have to be exact, the result is only used
|
|
in the inline heuristics. So we don't want to run the full stack
|
|
var packing algorithm (which is quadratic in the number of stack
|
|
vars). Instead, we calculate the total size of all stack vars.
|
|
This turns out to be a pretty fair estimate -- packing of stack
|
|
vars doesn't happen very often. */
|
|
|
|
HOST_WIDE_INT
|
|
estimated_stack_frame_size (void)
|
|
{
|
|
HOST_WIDE_INT size = 0;
|
|
size_t i;
|
|
tree t, outer_block = DECL_INITIAL (current_function_decl);
|
|
|
|
init_vars_expansion ();
|
|
|
|
for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
|
|
{
|
|
tree var = TREE_VALUE (t);
|
|
|
|
if (TREE_USED (var))
|
|
size += expand_one_var (var, true, false);
|
|
TREE_USED (var) = 1;
|
|
}
|
|
size += account_used_vars_for_block (outer_block, true);
|
|
|
|
if (stack_vars_num > 0)
|
|
{
|
|
/* Fake sorting the stack vars for account_stack_vars (). */
|
|
stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
|
|
for (i = 0; i < stack_vars_num; ++i)
|
|
stack_vars_sorted[i] = i;
|
|
size += account_stack_vars ();
|
|
fini_vars_expansion ();
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/* Expand all variables used in the function. */
|
|
|
|
static void
|
|
expand_used_vars (void)
|
|
{
|
|
tree t, next, outer_block = DECL_INITIAL (current_function_decl);
|
|
tree maybe_local_decls = NULL_TREE;
|
|
unsigned i;
|
|
|
|
/* Compute the phase of the stack frame for this function. */
|
|
{
|
|
int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
|
|
int off = STARTING_FRAME_OFFSET % align;
|
|
frame_phase = off ? align - off : 0;
|
|
}
|
|
|
|
init_vars_expansion ();
|
|
|
|
for (i = 0; i < SA.map->num_partitions; i++)
|
|
{
|
|
tree var = partition_to_var (SA.map, i);
|
|
|
|
gcc_assert (is_gimple_reg (var));
|
|
if (TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
|
|
expand_one_var (var, true, true);
|
|
else
|
|
{
|
|
/* This is a PARM_DECL or RESULT_DECL. For those partitions that
|
|
contain the default def (representing the parm or result itself)
|
|
we don't do anything here. But those which don't contain the
|
|
default def (representing a temporary based on the parm/result)
|
|
we need to allocate space just like for normal VAR_DECLs. */
|
|
if (!bitmap_bit_p (SA.partition_has_default_def, i))
|
|
{
|
|
expand_one_var (var, true, true);
|
|
gcc_assert (SA.partition_to_pseudo[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* At this point all variables on the local_decls with TREE_USED
|
|
set are not associated with any block scope. Lay them out. */
|
|
t = cfun->local_decls;
|
|
cfun->local_decls = NULL_TREE;
|
|
for (; t; t = next)
|
|
{
|
|
tree var = TREE_VALUE (t);
|
|
bool expand_now = false;
|
|
|
|
next = TREE_CHAIN (t);
|
|
|
|
/* Expanded above already. */
|
|
if (is_gimple_reg (var))
|
|
{
|
|
TREE_USED (var) = 0;
|
|
goto next;
|
|
}
|
|
/* We didn't set a block for static or extern because it's hard
|
|
to tell the difference between a global variable (re)declared
|
|
in a local scope, and one that's really declared there to
|
|
begin with. And it doesn't really matter much, since we're
|
|
not giving them stack space. Expand them now. */
|
|
else if (TREE_STATIC (var) || DECL_EXTERNAL (var))
|
|
expand_now = true;
|
|
|
|
/* If the variable is not associated with any block, then it
|
|
was created by the optimizers, and could be live anywhere
|
|
in the function. */
|
|
else if (TREE_USED (var))
|
|
expand_now = true;
|
|
|
|
/* Finally, mark all variables on the list as used. We'll use
|
|
this in a moment when we expand those associated with scopes. */
|
|
TREE_USED (var) = 1;
|
|
|
|
if (expand_now)
|
|
expand_one_var (var, true, true);
|
|
|
|
next:
|
|
if (DECL_ARTIFICIAL (var) && !DECL_IGNORED_P (var))
|
|
{
|
|
rtx rtl = DECL_RTL_IF_SET (var);
|
|
|
|
/* Keep artificial non-ignored vars in cfun->local_decls
|
|
chain until instantiate_decls. */
|
|
if (rtl && (MEM_P (rtl) || GET_CODE (rtl) == CONCAT))
|
|
{
|
|
TREE_CHAIN (t) = cfun->local_decls;
|
|
cfun->local_decls = t;
|
|
continue;
|
|
}
|
|
else if (rtl == NULL_RTX)
|
|
{
|
|
/* If rtl isn't set yet, which can happen e.g. with
|
|
-fstack-protector, retry before returning from this
|
|
function. */
|
|
TREE_CHAIN (t) = maybe_local_decls;
|
|
maybe_local_decls = t;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ggc_free (t);
|
|
}
|
|
|
|
/* At this point, all variables within the block tree with TREE_USED
|
|
set are actually used by the optimized function. Lay them out. */
|
|
expand_used_vars_for_block (outer_block, true);
|
|
|
|
if (stack_vars_num > 0)
|
|
{
|
|
/* Due to the way alias sets work, no variables with non-conflicting
|
|
alias sets may be assigned the same address. Add conflicts to
|
|
reflect this. */
|
|
add_alias_set_conflicts ();
|
|
|
|
/* If stack protection is enabled, we don't share space between
|
|
vulnerable data and non-vulnerable data. */
|
|
if (flag_stack_protect)
|
|
add_stack_protection_conflicts ();
|
|
|
|
/* Now that we have collected all stack variables, and have computed a
|
|
minimal interference graph, attempt to save some stack space. */
|
|
partition_stack_vars ();
|
|
if (dump_file)
|
|
dump_stack_var_partition ();
|
|
}
|
|
|
|
/* There are several conditions under which we should create a
|
|
stack guard: protect-all, alloca used, protected decls present. */
|
|
if (flag_stack_protect == 2
|
|
|| (flag_stack_protect
|
|
&& (cfun->calls_alloca || has_protected_decls)))
|
|
create_stack_guard ();
|
|
|
|
/* Assign rtl to each variable based on these partitions. */
|
|
if (stack_vars_num > 0)
|
|
{
|
|
/* Reorder decls to be protected by iterating over the variables
|
|
array multiple times, and allocating out of each phase in turn. */
|
|
/* ??? We could probably integrate this into the qsort we did
|
|
earlier, such that we naturally see these variables first,
|
|
and thus naturally allocate things in the right order. */
|
|
if (has_protected_decls)
|
|
{
|
|
/* Phase 1 contains only character arrays. */
|
|
expand_stack_vars (stack_protect_decl_phase_1);
|
|
|
|
/* Phase 2 contains other kinds of arrays. */
|
|
if (flag_stack_protect == 2)
|
|
expand_stack_vars (stack_protect_decl_phase_2);
|
|
}
|
|
|
|
expand_stack_vars (NULL);
|
|
|
|
fini_vars_expansion ();
|
|
}
|
|
|
|
/* If there were any artificial non-ignored vars without rtl
|
|
found earlier, see if deferred stack allocation hasn't assigned
|
|
rtl to them. */
|
|
for (t = maybe_local_decls; t; t = next)
|
|
{
|
|
tree var = TREE_VALUE (t);
|
|
rtx rtl = DECL_RTL_IF_SET (var);
|
|
|
|
next = TREE_CHAIN (t);
|
|
|
|
/* Keep artificial non-ignored vars in cfun->local_decls
|
|
chain until instantiate_decls. */
|
|
if (rtl && (MEM_P (rtl) || GET_CODE (rtl) == CONCAT))
|
|
{
|
|
TREE_CHAIN (t) = cfun->local_decls;
|
|
cfun->local_decls = t;
|
|
continue;
|
|
}
|
|
|
|
ggc_free (t);
|
|
}
|
|
|
|
/* If the target requires that FRAME_OFFSET be aligned, do it. */
|
|
if (STACK_ALIGNMENT_NEEDED)
|
|
{
|
|
HOST_WIDE_INT align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
|
|
if (!FRAME_GROWS_DOWNWARD)
|
|
frame_offset += align - 1;
|
|
frame_offset &= -align;
|
|
}
|
|
}
|
|
|
|
|
|
/* If we need to produce a detailed dump, print the tree representation
|
|
for STMT to the dump file. SINCE is the last RTX after which the RTL
|
|
generated for STMT should have been appended. */
|
|
|
|
static void
|
|
maybe_dump_rtl_for_gimple_stmt (gimple stmt, rtx since)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\n;; ");
|
|
print_gimple_stmt (dump_file, stmt, 0,
|
|
TDF_SLIM | (dump_flags & TDF_LINENO));
|
|
fprintf (dump_file, "\n");
|
|
|
|
print_rtl (dump_file, since ? NEXT_INSN (since) : since);
|
|
}
|
|
}
|
|
|
|
/* Maps the blocks that do not contain tree labels to rtx labels. */
|
|
|
|
static struct pointer_map_t *lab_rtx_for_bb;
|
|
|
|
/* Returns the label_rtx expression for a label starting basic block BB. */
|
|
|
|
static rtx
|
|
label_rtx_for_bb (basic_block bb ATTRIBUTE_UNUSED)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
tree lab;
|
|
gimple lab_stmt;
|
|
void **elt;
|
|
|
|
if (bb->flags & BB_RTL)
|
|
return block_label (bb);
|
|
|
|
elt = pointer_map_contains (lab_rtx_for_bb, bb);
|
|
if (elt)
|
|
return (rtx) *elt;
|
|
|
|
/* Find the tree label if it is present. */
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
lab_stmt = gsi_stmt (gsi);
|
|
if (gimple_code (lab_stmt) != GIMPLE_LABEL)
|
|
break;
|
|
|
|
lab = gimple_label_label (lab_stmt);
|
|
if (DECL_NONLOCAL (lab))
|
|
break;
|
|
|
|
return label_rtx (lab);
|
|
}
|
|
|
|
elt = pointer_map_insert (lab_rtx_for_bb, bb);
|
|
*elt = gen_label_rtx ();
|
|
return (rtx) *elt;
|
|
}
|
|
|
|
|
|
/* A subroutine of expand_gimple_cond. Given E, a fallthrough edge
|
|
of a basic block where we just expanded the conditional at the end,
|
|
possibly clean up the CFG and instruction sequence. LAST is the
|
|
last instruction before the just emitted jump sequence. */
|
|
|
|
static void
|
|
maybe_cleanup_end_of_block (edge e, rtx last)
|
|
{
|
|
/* Special case: when jumpif decides that the condition is
|
|
trivial it emits an unconditional jump (and the necessary
|
|
barrier). But we still have two edges, the fallthru one is
|
|
wrong. purge_dead_edges would clean this up later. Unfortunately
|
|
we have to insert insns (and split edges) before
|
|
find_many_sub_basic_blocks and hence before purge_dead_edges.
|
|
But splitting edges might create new blocks which depend on the
|
|
fact that if there are two edges there's no barrier. So the
|
|
barrier would get lost and verify_flow_info would ICE. Instead
|
|
of auditing all edge splitters to care for the barrier (which
|
|
normally isn't there in a cleaned CFG), fix it here. */
|
|
if (BARRIER_P (get_last_insn ()))
|
|
{
|
|
rtx insn;
|
|
remove_edge (e);
|
|
/* Now, we have a single successor block, if we have insns to
|
|
insert on the remaining edge we potentially will insert
|
|
it at the end of this block (if the dest block isn't feasible)
|
|
in order to avoid splitting the edge. This insertion will take
|
|
place in front of the last jump. But we might have emitted
|
|
multiple jumps (conditional and one unconditional) to the
|
|
same destination. Inserting in front of the last one then
|
|
is a problem. See PR 40021. We fix this by deleting all
|
|
jumps except the last unconditional one. */
|
|
insn = PREV_INSN (get_last_insn ());
|
|
/* Make sure we have an unconditional jump. Otherwise we're
|
|
confused. */
|
|
gcc_assert (JUMP_P (insn) && !any_condjump_p (insn));
|
|
for (insn = PREV_INSN (insn); insn != last;)
|
|
{
|
|
insn = PREV_INSN (insn);
|
|
if (JUMP_P (NEXT_INSN (insn)))
|
|
delete_insn (NEXT_INSN (insn));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_COND.
|
|
Returns a new basic block if we've terminated the current basic
|
|
block and created a new one. */
|
|
|
|
static basic_block
|
|
expand_gimple_cond (basic_block bb, gimple stmt)
|
|
{
|
|
basic_block new_bb, dest;
|
|
edge new_edge;
|
|
edge true_edge;
|
|
edge false_edge;
|
|
rtx last2, last;
|
|
enum tree_code code;
|
|
tree op0, op1;
|
|
|
|
code = gimple_cond_code (stmt);
|
|
op0 = gimple_cond_lhs (stmt);
|
|
op1 = gimple_cond_rhs (stmt);
|
|
/* We're sometimes presented with such code:
|
|
D.123_1 = x < y;
|
|
if (D.123_1 != 0)
|
|
...
|
|
This would expand to two comparisons which then later might
|
|
be cleaned up by combine. But some pattern matchers like if-conversion
|
|
work better when there's only one compare, so make up for this
|
|
here as special exception if TER would have made the same change. */
|
|
if (gimple_cond_single_var_p (stmt)
|
|
&& SA.values
|
|
&& TREE_CODE (op0) == SSA_NAME
|
|
&& bitmap_bit_p (SA.values, SSA_NAME_VERSION (op0)))
|
|
{
|
|
gimple second = SSA_NAME_DEF_STMT (op0);
|
|
if (gimple_code (second) == GIMPLE_ASSIGN)
|
|
{
|
|
enum tree_code code2 = gimple_assign_rhs_code (second);
|
|
if (TREE_CODE_CLASS (code2) == tcc_comparison)
|
|
{
|
|
code = code2;
|
|
op0 = gimple_assign_rhs1 (second);
|
|
op1 = gimple_assign_rhs2 (second);
|
|
}
|
|
/* If jumps are cheap turn some more codes into
|
|
jumpy sequences. */
|
|
else if (BRANCH_COST (optimize_insn_for_speed_p (), false) < 4)
|
|
{
|
|
if ((code2 == BIT_AND_EXPR
|
|
&& TYPE_PRECISION (TREE_TYPE (op0)) == 1
|
|
&& TREE_CODE (gimple_assign_rhs2 (second)) != INTEGER_CST)
|
|
|| code2 == TRUTH_AND_EXPR)
|
|
{
|
|
code = TRUTH_ANDIF_EXPR;
|
|
op0 = gimple_assign_rhs1 (second);
|
|
op1 = gimple_assign_rhs2 (second);
|
|
}
|
|
else if (code2 == BIT_IOR_EXPR || code2 == TRUTH_OR_EXPR)
|
|
{
|
|
code = TRUTH_ORIF_EXPR;
|
|
op0 = gimple_assign_rhs1 (second);
|
|
op1 = gimple_assign_rhs2 (second);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
last2 = last = get_last_insn ();
|
|
|
|
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
|
|
if (gimple_has_location (stmt))
|
|
{
|
|
set_curr_insn_source_location (gimple_location (stmt));
|
|
set_curr_insn_block (gimple_block (stmt));
|
|
}
|
|
|
|
/* These flags have no purpose in RTL land. */
|
|
true_edge->flags &= ~EDGE_TRUE_VALUE;
|
|
false_edge->flags &= ~EDGE_FALSE_VALUE;
|
|
|
|
/* We can either have a pure conditional jump with one fallthru edge or
|
|
two-way jump that needs to be decomposed into two basic blocks. */
|
|
if (false_edge->dest == bb->next_bb)
|
|
{
|
|
jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest),
|
|
true_edge->probability);
|
|
maybe_dump_rtl_for_gimple_stmt (stmt, last);
|
|
if (true_edge->goto_locus)
|
|
{
|
|
set_curr_insn_source_location (true_edge->goto_locus);
|
|
set_curr_insn_block (true_edge->goto_block);
|
|
true_edge->goto_locus = curr_insn_locator ();
|
|
}
|
|
true_edge->goto_block = NULL;
|
|
false_edge->flags |= EDGE_FALLTHRU;
|
|
maybe_cleanup_end_of_block (false_edge, last);
|
|
return NULL;
|
|
}
|
|
if (true_edge->dest == bb->next_bb)
|
|
{
|
|
jumpifnot_1 (code, op0, op1, label_rtx_for_bb (false_edge->dest),
|
|
false_edge->probability);
|
|
maybe_dump_rtl_for_gimple_stmt (stmt, last);
|
|
if (false_edge->goto_locus)
|
|
{
|
|
set_curr_insn_source_location (false_edge->goto_locus);
|
|
set_curr_insn_block (false_edge->goto_block);
|
|
false_edge->goto_locus = curr_insn_locator ();
|
|
}
|
|
false_edge->goto_block = NULL;
|
|
true_edge->flags |= EDGE_FALLTHRU;
|
|
maybe_cleanup_end_of_block (true_edge, last);
|
|
return NULL;
|
|
}
|
|
|
|
jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest),
|
|
true_edge->probability);
|
|
last = get_last_insn ();
|
|
if (false_edge->goto_locus)
|
|
{
|
|
set_curr_insn_source_location (false_edge->goto_locus);
|
|
set_curr_insn_block (false_edge->goto_block);
|
|
false_edge->goto_locus = curr_insn_locator ();
|
|
}
|
|
false_edge->goto_block = NULL;
|
|
emit_jump (label_rtx_for_bb (false_edge->dest));
|
|
|
|
BB_END (bb) = last;
|
|
if (BARRIER_P (BB_END (bb)))
|
|
BB_END (bb) = PREV_INSN (BB_END (bb));
|
|
update_bb_for_insn (bb);
|
|
|
|
new_bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
|
|
dest = false_edge->dest;
|
|
redirect_edge_succ (false_edge, new_bb);
|
|
false_edge->flags |= EDGE_FALLTHRU;
|
|
new_bb->count = false_edge->count;
|
|
new_bb->frequency = EDGE_FREQUENCY (false_edge);
|
|
new_edge = make_edge (new_bb, dest, 0);
|
|
new_edge->probability = REG_BR_PROB_BASE;
|
|
new_edge->count = new_bb->count;
|
|
if (BARRIER_P (BB_END (new_bb)))
|
|
BB_END (new_bb) = PREV_INSN (BB_END (new_bb));
|
|
update_bb_for_insn (new_bb);
|
|
|
|
maybe_dump_rtl_for_gimple_stmt (stmt, last2);
|
|
|
|
if (true_edge->goto_locus)
|
|
{
|
|
set_curr_insn_source_location (true_edge->goto_locus);
|
|
set_curr_insn_block (true_edge->goto_block);
|
|
true_edge->goto_locus = curr_insn_locator ();
|
|
}
|
|
true_edge->goto_block = NULL;
|
|
|
|
return new_bb;
|
|
}
|
|
|
|
/* A subroutine of expand_gimple_stmt_1, expanding one GIMPLE_CALL
|
|
statement STMT. */
|
|
|
|
static void
|
|
expand_call_stmt (gimple stmt)
|
|
{
|
|
tree exp;
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
size_t i;
|
|
bool builtin_p;
|
|
tree decl;
|
|
|
|
exp = build_vl_exp (CALL_EXPR, gimple_call_num_args (stmt) + 3);
|
|
|
|
CALL_EXPR_FN (exp) = gimple_call_fn (stmt);
|
|
decl = gimple_call_fndecl (stmt);
|
|
builtin_p = decl && DECL_BUILT_IN (decl);
|
|
|
|
TREE_TYPE (exp) = gimple_call_return_type (stmt);
|
|
CALL_EXPR_STATIC_CHAIN (exp) = gimple_call_chain (stmt);
|
|
|
|
for (i = 0; i < gimple_call_num_args (stmt); i++)
|
|
{
|
|
tree arg = gimple_call_arg (stmt, i);
|
|
gimple def;
|
|
/* TER addresses into arguments of builtin functions so we have a
|
|
chance to infer more correct alignment information. See PR39954. */
|
|
if (builtin_p
|
|
&& TREE_CODE (arg) == SSA_NAME
|
|
&& (def = get_gimple_for_ssa_name (arg))
|
|
&& gimple_assign_rhs_code (def) == ADDR_EXPR)
|
|
arg = gimple_assign_rhs1 (def);
|
|
CALL_EXPR_ARG (exp, i) = arg;
|
|
}
|
|
|
|
if (gimple_has_side_effects (stmt))
|
|
TREE_SIDE_EFFECTS (exp) = 1;
|
|
|
|
if (gimple_call_nothrow_p (stmt))
|
|
TREE_NOTHROW (exp) = 1;
|
|
|
|
CALL_EXPR_TAILCALL (exp) = gimple_call_tail_p (stmt);
|
|
CALL_EXPR_RETURN_SLOT_OPT (exp) = gimple_call_return_slot_opt_p (stmt);
|
|
CALL_FROM_THUNK_P (exp) = gimple_call_from_thunk_p (stmt);
|
|
CALL_CANNOT_INLINE_P (exp) = gimple_call_cannot_inline_p (stmt);
|
|
CALL_EXPR_VA_ARG_PACK (exp) = gimple_call_va_arg_pack_p (stmt);
|
|
SET_EXPR_LOCATION (exp, gimple_location (stmt));
|
|
TREE_BLOCK (exp) = gimple_block (stmt);
|
|
|
|
if (lhs)
|
|
expand_assignment (lhs, exp, false);
|
|
else
|
|
expand_expr_real_1 (exp, const0_rtx, VOIDmode, EXPAND_NORMAL, NULL);
|
|
}
|
|
|
|
/* A subroutine of expand_gimple_stmt, expanding one gimple statement
|
|
STMT that doesn't require special handling for outgoing edges. That
|
|
is no tailcalls and no GIMPLE_COND. */
|
|
|
|
static void
|
|
expand_gimple_stmt_1 (gimple stmt)
|
|
{
|
|
tree op0;
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_GOTO:
|
|
op0 = gimple_goto_dest (stmt);
|
|
if (TREE_CODE (op0) == LABEL_DECL)
|
|
expand_goto (op0);
|
|
else
|
|
expand_computed_goto (op0);
|
|
break;
|
|
case GIMPLE_LABEL:
|
|
expand_label (gimple_label_label (stmt));
|
|
break;
|
|
case GIMPLE_NOP:
|
|
case GIMPLE_PREDICT:
|
|
break;
|
|
case GIMPLE_SWITCH:
|
|
expand_case (stmt);
|
|
break;
|
|
case GIMPLE_ASM:
|
|
expand_asm_stmt (stmt);
|
|
break;
|
|
case GIMPLE_CALL:
|
|
expand_call_stmt (stmt);
|
|
break;
|
|
|
|
case GIMPLE_RETURN:
|
|
op0 = gimple_return_retval (stmt);
|
|
|
|
if (op0 && op0 != error_mark_node)
|
|
{
|
|
tree result = DECL_RESULT (current_function_decl);
|
|
|
|
/* If we are not returning the current function's RESULT_DECL,
|
|
build an assignment to it. */
|
|
if (op0 != result)
|
|
{
|
|
/* I believe that a function's RESULT_DECL is unique. */
|
|
gcc_assert (TREE_CODE (op0) != RESULT_DECL);
|
|
|
|
/* ??? We'd like to use simply expand_assignment here,
|
|
but this fails if the value is of BLKmode but the return
|
|
decl is a register. expand_return has special handling
|
|
for this combination, which eventually should move
|
|
to common code. See comments there. Until then, let's
|
|
build a modify expression :-/ */
|
|
op0 = build2 (MODIFY_EXPR, TREE_TYPE (result),
|
|
result, op0);
|
|
}
|
|
}
|
|
if (!op0)
|
|
expand_null_return ();
|
|
else
|
|
expand_return (op0);
|
|
break;
|
|
|
|
case GIMPLE_ASSIGN:
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
|
|
/* Tree expand used to fiddle with |= and &= of two bitfield
|
|
COMPONENT_REFs here. This can't happen with gimple, the LHS
|
|
of binary assigns must be a gimple reg. */
|
|
|
|
if (TREE_CODE (lhs) != SSA_NAME
|
|
|| get_gimple_rhs_class (gimple_expr_code (stmt))
|
|
== GIMPLE_SINGLE_RHS)
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
gcc_assert (get_gimple_rhs_class (gimple_expr_code (stmt))
|
|
== GIMPLE_SINGLE_RHS);
|
|
if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (rhs))
|
|
SET_EXPR_LOCATION (rhs, gimple_location (stmt));
|
|
expand_assignment (lhs, rhs,
|
|
gimple_assign_nontemporal_move_p (stmt));
|
|
}
|
|
else
|
|
{
|
|
rtx target, temp;
|
|
bool nontemporal = gimple_assign_nontemporal_move_p (stmt);
|
|
struct separate_ops ops;
|
|
bool promoted = false;
|
|
|
|
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
|
if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
|
|
promoted = true;
|
|
|
|
ops.code = gimple_assign_rhs_code (stmt);
|
|
ops.type = TREE_TYPE (lhs);
|
|
switch (get_gimple_rhs_class (gimple_expr_code (stmt)))
|
|
{
|
|
case GIMPLE_BINARY_RHS:
|
|
ops.op1 = gimple_assign_rhs2 (stmt);
|
|
/* Fallthru */
|
|
case GIMPLE_UNARY_RHS:
|
|
ops.op0 = gimple_assign_rhs1 (stmt);
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
ops.location = gimple_location (stmt);
|
|
|
|
/* If we want to use a nontemporal store, force the value to
|
|
register first. If we store into a promoted register,
|
|
don't directly expand to target. */
|
|
temp = nontemporal || promoted ? NULL_RTX : target;
|
|
temp = expand_expr_real_2 (&ops, temp, GET_MODE (target),
|
|
EXPAND_NORMAL);
|
|
|
|
if (temp == target)
|
|
;
|
|
else if (promoted)
|
|
{
|
|
int unsignedp = SUBREG_PROMOTED_UNSIGNED_P (target);
|
|
/* If TEMP is a VOIDmode constant, use convert_modes to make
|
|
sure that we properly convert it. */
|
|
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
|
|
{
|
|
temp = convert_modes (GET_MODE (target),
|
|
TYPE_MODE (ops.type),
|
|
temp, unsignedp);
|
|
temp = convert_modes (GET_MODE (SUBREG_REG (target)),
|
|
GET_MODE (target), temp, unsignedp);
|
|
}
|
|
|
|
convert_move (SUBREG_REG (target), temp, unsignedp);
|
|
}
|
|
else if (nontemporal && emit_storent_insn (target, temp))
|
|
;
|
|
else
|
|
{
|
|
temp = force_operand (temp, target);
|
|
if (temp != target)
|
|
emit_move_insn (target, temp);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Expand one gimple statement STMT and return the last RTL instruction
|
|
before any of the newly generated ones.
|
|
|
|
In addition to generating the necessary RTL instructions this also
|
|
sets REG_EH_REGION notes if necessary and sets the current source
|
|
location for diagnostics. */
|
|
|
|
static rtx
|
|
expand_gimple_stmt (gimple stmt)
|
|
{
|
|
int lp_nr = 0;
|
|
rtx last = NULL;
|
|
location_t saved_location = input_location;
|
|
|
|
last = get_last_insn ();
|
|
|
|
/* If this is an expression of some kind and it has an associated line
|
|
number, then emit the line number before expanding the expression.
|
|
|
|
We need to save and restore the file and line information so that
|
|
errors discovered during expansion are emitted with the right
|
|
information. It would be better of the diagnostic routines
|
|
used the file/line information embedded in the tree nodes rather
|
|
than globals. */
|
|
gcc_assert (cfun);
|
|
|
|
if (gimple_has_location (stmt))
|
|
{
|
|
input_location = gimple_location (stmt);
|
|
set_curr_insn_source_location (input_location);
|
|
|
|
/* Record where the insns produced belong. */
|
|
set_curr_insn_block (gimple_block (stmt));
|
|
}
|
|
|
|
expand_gimple_stmt_1 (stmt);
|
|
/* Free any temporaries used to evaluate this statement. */
|
|
free_temp_slots ();
|
|
|
|
input_location = saved_location;
|
|
|
|
/* Mark all insns that may trap. */
|
|
lp_nr = lookup_stmt_eh_lp (stmt);
|
|
if (lp_nr)
|
|
{
|
|
rtx insn;
|
|
for (insn = next_real_insn (last); insn;
|
|
insn = next_real_insn (insn))
|
|
{
|
|
if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
|
|
/* If we want exceptions for non-call insns, any
|
|
may_trap_p instruction may throw. */
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
|
&& insn_could_throw_p (insn))
|
|
make_reg_eh_region_note (insn, 0, lp_nr);
|
|
}
|
|
}
|
|
|
|
return last;
|
|
}
|
|
|
|
/* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_CALL
|
|
that has CALL_EXPR_TAILCALL set. Returns non-null if we actually
|
|
generated a tail call (something that might be denied by the ABI
|
|
rules governing the call; see calls.c).
|
|
|
|
Sets CAN_FALLTHRU if we generated a *conditional* tail call, and
|
|
can still reach the rest of BB. The case here is __builtin_sqrt,
|
|
where the NaN result goes through the external function (with a
|
|
tailcall) and the normal result happens via a sqrt instruction. */
|
|
|
|
static basic_block
|
|
expand_gimple_tailcall (basic_block bb, gimple stmt, bool *can_fallthru)
|
|
{
|
|
rtx last2, last;
|
|
edge e;
|
|
edge_iterator ei;
|
|
int probability;
|
|
gcov_type count;
|
|
|
|
last2 = last = expand_gimple_stmt (stmt);
|
|
|
|
for (last = NEXT_INSN (last); last; last = NEXT_INSN (last))
|
|
if (CALL_P (last) && SIBLING_CALL_P (last))
|
|
goto found;
|
|
|
|
maybe_dump_rtl_for_gimple_stmt (stmt, last2);
|
|
|
|
*can_fallthru = true;
|
|
return NULL;
|
|
|
|
found:
|
|
/* ??? Wouldn't it be better to just reset any pending stack adjust?
|
|
Any instructions emitted here are about to be deleted. */
|
|
do_pending_stack_adjust ();
|
|
|
|
/* Remove any non-eh, non-abnormal edges that don't go to exit. */
|
|
/* ??? I.e. the fallthrough edge. HOWEVER! If there were to be
|
|
EH or abnormal edges, we shouldn't have created a tail call in
|
|
the first place. So it seems to me we should just be removing
|
|
all edges here, or redirecting the existing fallthru edge to
|
|
the exit block. */
|
|
|
|
probability = 0;
|
|
count = 0;
|
|
|
|
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
|
{
|
|
if (!(e->flags & (EDGE_ABNORMAL | EDGE_EH)))
|
|
{
|
|
if (e->dest != EXIT_BLOCK_PTR)
|
|
{
|
|
e->dest->count -= e->count;
|
|
e->dest->frequency -= EDGE_FREQUENCY (e);
|
|
if (e->dest->count < 0)
|
|
e->dest->count = 0;
|
|
if (e->dest->frequency < 0)
|
|
e->dest->frequency = 0;
|
|
}
|
|
count += e->count;
|
|
probability += e->probability;
|
|
remove_edge (e);
|
|
}
|
|
else
|
|
ei_next (&ei);
|
|
}
|
|
|
|
/* This is somewhat ugly: the call_expr expander often emits instructions
|
|
after the sibcall (to perform the function return). These confuse the
|
|
find_many_sub_basic_blocks code, so we need to get rid of these. */
|
|
last = NEXT_INSN (last);
|
|
gcc_assert (BARRIER_P (last));
|
|
|
|
*can_fallthru = false;
|
|
while (NEXT_INSN (last))
|
|
{
|
|
/* For instance an sqrt builtin expander expands if with
|
|
sibcall in the then and label for `else`. */
|
|
if (LABEL_P (NEXT_INSN (last)))
|
|
{
|
|
*can_fallthru = true;
|
|
break;
|
|
}
|
|
delete_insn (NEXT_INSN (last));
|
|
}
|
|
|
|
e = make_edge (bb, EXIT_BLOCK_PTR, EDGE_ABNORMAL | EDGE_SIBCALL);
|
|
e->probability += probability;
|
|
e->count += count;
|
|
BB_END (bb) = last;
|
|
update_bb_for_insn (bb);
|
|
|
|
if (NEXT_INSN (last))
|
|
{
|
|
bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
|
|
|
|
last = BB_END (bb);
|
|
if (BARRIER_P (last))
|
|
BB_END (bb) = PREV_INSN (last);
|
|
}
|
|
|
|
maybe_dump_rtl_for_gimple_stmt (stmt, last2);
|
|
|
|
return bb;
|
|
}
|
|
|
|
/* Return the difference between the floor and the truncated result of
|
|
a signed division by OP1 with remainder MOD. */
|
|
static rtx
|
|
floor_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
|
|
{
|
|
/* (mod != 0 ? (op1 / mod < 0 ? -1 : 0) : 0) */
|
|
return gen_rtx_IF_THEN_ELSE
|
|
(mode, gen_rtx_NE (BImode, mod, const0_rtx),
|
|
gen_rtx_IF_THEN_ELSE
|
|
(mode, gen_rtx_LT (BImode,
|
|
gen_rtx_DIV (mode, op1, mod),
|
|
const0_rtx),
|
|
constm1_rtx, const0_rtx),
|
|
const0_rtx);
|
|
}
|
|
|
|
/* Return the difference between the ceil and the truncated result of
|
|
a signed division by OP1 with remainder MOD. */
|
|
static rtx
|
|
ceil_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
|
|
{
|
|
/* (mod != 0 ? (op1 / mod > 0 ? 1 : 0) : 0) */
|
|
return gen_rtx_IF_THEN_ELSE
|
|
(mode, gen_rtx_NE (BImode, mod, const0_rtx),
|
|
gen_rtx_IF_THEN_ELSE
|
|
(mode, gen_rtx_GT (BImode,
|
|
gen_rtx_DIV (mode, op1, mod),
|
|
const0_rtx),
|
|
const1_rtx, const0_rtx),
|
|
const0_rtx);
|
|
}
|
|
|
|
/* Return the difference between the ceil and the truncated result of
|
|
an unsigned division by OP1 with remainder MOD. */
|
|
static rtx
|
|
ceil_udiv_adjust (enum machine_mode mode, rtx mod, rtx op1 ATTRIBUTE_UNUSED)
|
|
{
|
|
/* (mod != 0 ? 1 : 0) */
|
|
return gen_rtx_IF_THEN_ELSE
|
|
(mode, gen_rtx_NE (BImode, mod, const0_rtx),
|
|
const1_rtx, const0_rtx);
|
|
}
|
|
|
|
/* Return the difference between the rounded and the truncated result
|
|
of a signed division by OP1 with remainder MOD. Halfway cases are
|
|
rounded away from zero, rather than to the nearest even number. */
|
|
static rtx
|
|
round_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
|
|
{
|
|
/* (abs (mod) >= abs (op1) - abs (mod)
|
|
? (op1 / mod > 0 ? 1 : -1)
|
|
: 0) */
|
|
return gen_rtx_IF_THEN_ELSE
|
|
(mode, gen_rtx_GE (BImode, gen_rtx_ABS (mode, mod),
|
|
gen_rtx_MINUS (mode,
|
|
gen_rtx_ABS (mode, op1),
|
|
gen_rtx_ABS (mode, mod))),
|
|
gen_rtx_IF_THEN_ELSE
|
|
(mode, gen_rtx_GT (BImode,
|
|
gen_rtx_DIV (mode, op1, mod),
|
|
const0_rtx),
|
|
const1_rtx, constm1_rtx),
|
|
const0_rtx);
|
|
}
|
|
|
|
/* Return the difference between the rounded and the truncated result
|
|
of a unsigned division by OP1 with remainder MOD. Halfway cases
|
|
are rounded away from zero, rather than to the nearest even
|
|
number. */
|
|
static rtx
|
|
round_udiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
|
|
{
|
|
/* (mod >= op1 - mod ? 1 : 0) */
|
|
return gen_rtx_IF_THEN_ELSE
|
|
(mode, gen_rtx_GE (BImode, mod,
|
|
gen_rtx_MINUS (mode, op1, mod)),
|
|
const1_rtx, const0_rtx);
|
|
}
|
|
|
|
/* Convert X to MODE, that must be Pmode or ptr_mode, without emitting
|
|
any rtl. */
|
|
|
|
static rtx
|
|
convert_debug_memory_address (enum machine_mode mode, rtx x)
|
|
{
|
|
enum machine_mode xmode = GET_MODE (x);
|
|
|
|
#ifndef POINTERS_EXTEND_UNSIGNED
|
|
gcc_assert (mode == Pmode);
|
|
gcc_assert (xmode == mode || xmode == VOIDmode);
|
|
#else
|
|
gcc_assert (mode == Pmode || mode == ptr_mode);
|
|
|
|
if (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode)
|
|
return x;
|
|
|
|
if (GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (xmode))
|
|
x = simplify_gen_subreg (mode, x, xmode,
|
|
subreg_lowpart_offset
|
|
(mode, xmode));
|
|
else if (POINTERS_EXTEND_UNSIGNED > 0)
|
|
x = gen_rtx_ZERO_EXTEND (mode, x);
|
|
else if (!POINTERS_EXTEND_UNSIGNED)
|
|
x = gen_rtx_SIGN_EXTEND (mode, x);
|
|
else
|
|
gcc_unreachable ();
|
|
#endif /* POINTERS_EXTEND_UNSIGNED */
|
|
|
|
return x;
|
|
}
|
|
|
|
/* Return an RTX equivalent to the value of the tree expression
|
|
EXP. */
|
|
|
|
static rtx
|
|
expand_debug_expr (tree exp)
|
|
{
|
|
rtx op0 = NULL_RTX, op1 = NULL_RTX, op2 = NULL_RTX;
|
|
enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
|
|
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
|
|
addr_space_t as;
|
|
enum machine_mode address_mode;
|
|
|
|
switch (TREE_CODE_CLASS (TREE_CODE (exp)))
|
|
{
|
|
case tcc_expression:
|
|
switch (TREE_CODE (exp))
|
|
{
|
|
case COND_EXPR:
|
|
case DOT_PROD_EXPR:
|
|
goto ternary;
|
|
|
|
case TRUTH_ANDIF_EXPR:
|
|
case TRUTH_ORIF_EXPR:
|
|
case TRUTH_AND_EXPR:
|
|
case TRUTH_OR_EXPR:
|
|
case TRUTH_XOR_EXPR:
|
|
goto binary;
|
|
|
|
case TRUTH_NOT_EXPR:
|
|
goto unary;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
ternary:
|
|
op2 = expand_debug_expr (TREE_OPERAND (exp, 2));
|
|
if (!op2)
|
|
return NULL_RTX;
|
|
/* Fall through. */
|
|
|
|
binary:
|
|
case tcc_binary:
|
|
case tcc_comparison:
|
|
op1 = expand_debug_expr (TREE_OPERAND (exp, 1));
|
|
if (!op1)
|
|
return NULL_RTX;
|
|
/* Fall through. */
|
|
|
|
unary:
|
|
case tcc_unary:
|
|
op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
|
|
if (!op0)
|
|
return NULL_RTX;
|
|
break;
|
|
|
|
case tcc_type:
|
|
case tcc_statement:
|
|
gcc_unreachable ();
|
|
|
|
case tcc_constant:
|
|
case tcc_exceptional:
|
|
case tcc_declaration:
|
|
case tcc_reference:
|
|
case tcc_vl_exp:
|
|
break;
|
|
}
|
|
|
|
switch (TREE_CODE (exp))
|
|
{
|
|
case STRING_CST:
|
|
if (!lookup_constant_def (exp))
|
|
{
|
|
if (strlen (TREE_STRING_POINTER (exp)) + 1
|
|
!= (size_t) TREE_STRING_LENGTH (exp))
|
|
return NULL_RTX;
|
|
op0 = gen_rtx_CONST_STRING (Pmode, TREE_STRING_POINTER (exp));
|
|
op0 = gen_rtx_MEM (BLKmode, op0);
|
|
set_mem_attributes (op0, exp, 0);
|
|
return op0;
|
|
}
|
|
/* Fall through... */
|
|
|
|
case INTEGER_CST:
|
|
case REAL_CST:
|
|
case FIXED_CST:
|
|
op0 = expand_expr (exp, NULL_RTX, mode, EXPAND_INITIALIZER);
|
|
return op0;
|
|
|
|
case COMPLEX_CST:
|
|
gcc_assert (COMPLEX_MODE_P (mode));
|
|
op0 = expand_debug_expr (TREE_REALPART (exp));
|
|
op1 = expand_debug_expr (TREE_IMAGPART (exp));
|
|
return gen_rtx_CONCAT (mode, op0, op1);
|
|
|
|
case DEBUG_EXPR_DECL:
|
|
op0 = DECL_RTL_IF_SET (exp);
|
|
|
|
if (op0)
|
|
return op0;
|
|
|
|
op0 = gen_rtx_DEBUG_EXPR (mode);
|
|
DEBUG_EXPR_TREE_DECL (op0) = exp;
|
|
SET_DECL_RTL (exp, op0);
|
|
|
|
return op0;
|
|
|
|
case VAR_DECL:
|
|
case PARM_DECL:
|
|
case FUNCTION_DECL:
|
|
case LABEL_DECL:
|
|
case CONST_DECL:
|
|
case RESULT_DECL:
|
|
op0 = DECL_RTL_IF_SET (exp);
|
|
|
|
/* This decl was probably optimized away. */
|
|
if (!op0)
|
|
{
|
|
if (TREE_CODE (exp) != VAR_DECL
|
|
|| DECL_EXTERNAL (exp)
|
|
|| !TREE_STATIC (exp)
|
|
|| !DECL_NAME (exp)
|
|
|| DECL_HARD_REGISTER (exp)
|
|
|| mode == VOIDmode)
|
|
return NULL;
|
|
|
|
op0 = make_decl_rtl_for_debug (exp);
|
|
if (!MEM_P (op0)
|
|
|| GET_CODE (XEXP (op0, 0)) != SYMBOL_REF
|
|
|| SYMBOL_REF_DECL (XEXP (op0, 0)) != exp)
|
|
return NULL;
|
|
}
|
|
else
|
|
op0 = copy_rtx (op0);
|
|
|
|
if (GET_MODE (op0) == BLKmode
|
|
/* If op0 is not BLKmode, but BLKmode is, adjust_mode
|
|
below would ICE. While it is likely a FE bug,
|
|
try to be robust here. See PR43166. */
|
|
|| mode == BLKmode)
|
|
{
|
|
gcc_assert (MEM_P (op0));
|
|
op0 = adjust_address_nv (op0, mode, 0);
|
|
return op0;
|
|
}
|
|
|
|
/* Fall through. */
|
|
|
|
adjust_mode:
|
|
case PAREN_EXPR:
|
|
case NOP_EXPR:
|
|
case CONVERT_EXPR:
|
|
{
|
|
enum machine_mode inner_mode = GET_MODE (op0);
|
|
|
|
if (mode == inner_mode)
|
|
return op0;
|
|
|
|
if (inner_mode == VOIDmode)
|
|
{
|
|
if (TREE_CODE (exp) == SSA_NAME)
|
|
inner_mode = TYPE_MODE (TREE_TYPE (exp));
|
|
else
|
|
inner_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
|
if (mode == inner_mode)
|
|
return op0;
|
|
}
|
|
|
|
if (FLOAT_MODE_P (mode) && FLOAT_MODE_P (inner_mode))
|
|
{
|
|
if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (inner_mode))
|
|
op0 = simplify_gen_subreg (mode, op0, inner_mode, 0);
|
|
else if (GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (inner_mode))
|
|
op0 = simplify_gen_unary (FLOAT_TRUNCATE, mode, op0, inner_mode);
|
|
else
|
|
op0 = simplify_gen_unary (FLOAT_EXTEND, mode, op0, inner_mode);
|
|
}
|
|
else if (FLOAT_MODE_P (mode))
|
|
{
|
|
gcc_assert (TREE_CODE (exp) != SSA_NAME);
|
|
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
|
op0 = simplify_gen_unary (UNSIGNED_FLOAT, mode, op0, inner_mode);
|
|
else
|
|
op0 = simplify_gen_unary (FLOAT, mode, op0, inner_mode);
|
|
}
|
|
else if (FLOAT_MODE_P (inner_mode))
|
|
{
|
|
if (unsignedp)
|
|
op0 = simplify_gen_unary (UNSIGNED_FIX, mode, op0, inner_mode);
|
|
else
|
|
op0 = simplify_gen_unary (FIX, mode, op0, inner_mode);
|
|
}
|
|
else if (CONSTANT_P (op0)
|
|
|| GET_MODE_BITSIZE (mode) <= GET_MODE_BITSIZE (inner_mode))
|
|
op0 = simplify_gen_subreg (mode, op0, inner_mode,
|
|
subreg_lowpart_offset (mode,
|
|
inner_mode));
|
|
else if (unsignedp)
|
|
op0 = gen_rtx_ZERO_EXTEND (mode, op0);
|
|
else
|
|
op0 = gen_rtx_SIGN_EXTEND (mode, op0);
|
|
|
|
return op0;
|
|
}
|
|
|
|
case INDIRECT_REF:
|
|
case ALIGN_INDIRECT_REF:
|
|
case MISALIGNED_INDIRECT_REF:
|
|
op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
|
|
if (!op0)
|
|
return NULL;
|
|
|
|
if (POINTER_TYPE_P (TREE_TYPE (exp)))
|
|
{
|
|
as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
|
|
address_mode = targetm.addr_space.address_mode (as);
|
|
}
|
|
else
|
|
{
|
|
as = ADDR_SPACE_GENERIC;
|
|
address_mode = Pmode;
|
|
}
|
|
|
|
if (TREE_CODE (exp) == ALIGN_INDIRECT_REF)
|
|
{
|
|
int align = TYPE_ALIGN_UNIT (TREE_TYPE (exp));
|
|
op0 = gen_rtx_AND (address_mode, op0, GEN_INT (-align));
|
|
}
|
|
|
|
op0 = gen_rtx_MEM (mode, op0);
|
|
|
|
set_mem_attributes (op0, exp, 0);
|
|
set_mem_addr_space (op0, as);
|
|
|
|
return op0;
|
|
|
|
case TARGET_MEM_REF:
|
|
if (TMR_SYMBOL (exp) && !DECL_RTL_SET_P (TMR_SYMBOL (exp)))
|
|
return NULL;
|
|
|
|
op0 = expand_debug_expr
|
|
(tree_mem_ref_addr (build_pointer_type (TREE_TYPE (exp)), exp));
|
|
if (!op0)
|
|
return NULL;
|
|
|
|
as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
|
|
|
|
op0 = gen_rtx_MEM (mode, op0);
|
|
|
|
set_mem_attributes (op0, exp, 0);
|
|
set_mem_addr_space (op0, as);
|
|
|
|
return op0;
|
|
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
case COMPONENT_REF:
|
|
case BIT_FIELD_REF:
|
|
case REALPART_EXPR:
|
|
case IMAGPART_EXPR:
|
|
case VIEW_CONVERT_EXPR:
|
|
{
|
|
enum machine_mode mode1;
|
|
HOST_WIDE_INT bitsize, bitpos;
|
|
tree offset;
|
|
int volatilep = 0;
|
|
tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
|
|
&mode1, &unsignedp, &volatilep, false);
|
|
rtx orig_op0;
|
|
|
|
if (bitsize == 0)
|
|
return NULL;
|
|
|
|
orig_op0 = op0 = expand_debug_expr (tem);
|
|
|
|
if (!op0)
|
|
return NULL;
|
|
|
|
if (offset)
|
|
{
|
|
enum machine_mode addrmode, offmode;
|
|
|
|
gcc_assert (MEM_P (op0));
|
|
|
|
op0 = XEXP (op0, 0);
|
|
addrmode = GET_MODE (op0);
|
|
if (addrmode == VOIDmode)
|
|
addrmode = Pmode;
|
|
|
|
op1 = expand_debug_expr (offset);
|
|
if (!op1)
|
|
return NULL;
|
|
|
|
offmode = GET_MODE (op1);
|
|
if (offmode == VOIDmode)
|
|
offmode = TYPE_MODE (TREE_TYPE (offset));
|
|
|
|
if (addrmode != offmode)
|
|
op1 = simplify_gen_subreg (addrmode, op1, offmode,
|
|
subreg_lowpart_offset (addrmode,
|
|
offmode));
|
|
|
|
/* Don't use offset_address here, we don't need a
|
|
recognizable address, and we don't want to generate
|
|
code. */
|
|
op0 = gen_rtx_MEM (mode, gen_rtx_PLUS (addrmode, op0, op1));
|
|
}
|
|
|
|
if (MEM_P (op0))
|
|
{
|
|
if (mode1 == VOIDmode)
|
|
/* Bitfield. */
|
|
mode1 = smallest_mode_for_size (bitsize, MODE_INT);
|
|
if (bitpos >= BITS_PER_UNIT)
|
|
{
|
|
op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
|
|
bitpos %= BITS_PER_UNIT;
|
|
}
|
|
else if (bitpos < 0)
|
|
{
|
|
HOST_WIDE_INT units
|
|
= (-bitpos + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
|
|
op0 = adjust_address_nv (op0, mode1, units);
|
|
bitpos += units * BITS_PER_UNIT;
|
|
}
|
|
else if (bitpos == 0 && bitsize == GET_MODE_BITSIZE (mode))
|
|
op0 = adjust_address_nv (op0, mode, 0);
|
|
else if (GET_MODE (op0) != mode1)
|
|
op0 = adjust_address_nv (op0, mode1, 0);
|
|
else
|
|
op0 = copy_rtx (op0);
|
|
if (op0 == orig_op0)
|
|
op0 = shallow_copy_rtx (op0);
|
|
set_mem_attributes (op0, exp, 0);
|
|
}
|
|
|
|
if (bitpos == 0 && mode == GET_MODE (op0))
|
|
return op0;
|
|
|
|
if (bitpos < 0)
|
|
return NULL;
|
|
|
|
if ((bitpos % BITS_PER_UNIT) == 0
|
|
&& bitsize == GET_MODE_BITSIZE (mode1))
|
|
{
|
|
enum machine_mode opmode = GET_MODE (op0);
|
|
|
|
gcc_assert (opmode != BLKmode);
|
|
|
|
if (opmode == VOIDmode)
|
|
opmode = mode1;
|
|
|
|
/* This condition may hold if we're expanding the address
|
|
right past the end of an array that turned out not to
|
|
be addressable (i.e., the address was only computed in
|
|
debug stmts). The gen_subreg below would rightfully
|
|
crash, and the address doesn't really exist, so just
|
|
drop it. */
|
|
if (bitpos >= GET_MODE_BITSIZE (opmode))
|
|
return NULL;
|
|
|
|
if ((bitpos % GET_MODE_BITSIZE (mode)) == 0)
|
|
return simplify_gen_subreg (mode, op0, opmode,
|
|
bitpos / BITS_PER_UNIT);
|
|
}
|
|
|
|
return simplify_gen_ternary (SCALAR_INT_MODE_P (GET_MODE (op0))
|
|
&& TYPE_UNSIGNED (TREE_TYPE (exp))
|
|
? SIGN_EXTRACT
|
|
: ZERO_EXTRACT, mode,
|
|
GET_MODE (op0) != VOIDmode
|
|
? GET_MODE (op0) : mode1,
|
|
op0, GEN_INT (bitsize), GEN_INT (bitpos));
|
|
}
|
|
|
|
case ABS_EXPR:
|
|
return gen_rtx_ABS (mode, op0);
|
|
|
|
case NEGATE_EXPR:
|
|
return gen_rtx_NEG (mode, op0);
|
|
|
|
case BIT_NOT_EXPR:
|
|
return gen_rtx_NOT (mode, op0);
|
|
|
|
case FLOAT_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_UNSIGNED_FLOAT (mode, op0);
|
|
else
|
|
return gen_rtx_FLOAT (mode, op0);
|
|
|
|
case FIX_TRUNC_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_UNSIGNED_FIX (mode, op0);
|
|
else
|
|
return gen_rtx_FIX (mode, op0);
|
|
|
|
case POINTER_PLUS_EXPR:
|
|
case PLUS_EXPR:
|
|
return gen_rtx_PLUS (mode, op0, op1);
|
|
|
|
case MINUS_EXPR:
|
|
return gen_rtx_MINUS (mode, op0, op1);
|
|
|
|
case MULT_EXPR:
|
|
return gen_rtx_MULT (mode, op0, op1);
|
|
|
|
case RDIV_EXPR:
|
|
case TRUNC_DIV_EXPR:
|
|
case EXACT_DIV_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_UDIV (mode, op0, op1);
|
|
else
|
|
return gen_rtx_DIV (mode, op0, op1);
|
|
|
|
case TRUNC_MOD_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_UMOD (mode, op0, op1);
|
|
else
|
|
return gen_rtx_MOD (mode, op0, op1);
|
|
|
|
case FLOOR_DIV_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_UDIV (mode, op0, op1);
|
|
else
|
|
{
|
|
rtx div = gen_rtx_DIV (mode, op0, op1);
|
|
rtx mod = gen_rtx_MOD (mode, op0, op1);
|
|
rtx adj = floor_sdiv_adjust (mode, mod, op1);
|
|
return gen_rtx_PLUS (mode, div, adj);
|
|
}
|
|
|
|
case FLOOR_MOD_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_UMOD (mode, op0, op1);
|
|
else
|
|
{
|
|
rtx mod = gen_rtx_MOD (mode, op0, op1);
|
|
rtx adj = floor_sdiv_adjust (mode, mod, op1);
|
|
adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
|
|
return gen_rtx_PLUS (mode, mod, adj);
|
|
}
|
|
|
|
case CEIL_DIV_EXPR:
|
|
if (unsignedp)
|
|
{
|
|
rtx div = gen_rtx_UDIV (mode, op0, op1);
|
|
rtx mod = gen_rtx_UMOD (mode, op0, op1);
|
|
rtx adj = ceil_udiv_adjust (mode, mod, op1);
|
|
return gen_rtx_PLUS (mode, div, adj);
|
|
}
|
|
else
|
|
{
|
|
rtx div = gen_rtx_DIV (mode, op0, op1);
|
|
rtx mod = gen_rtx_MOD (mode, op0, op1);
|
|
rtx adj = ceil_sdiv_adjust (mode, mod, op1);
|
|
return gen_rtx_PLUS (mode, div, adj);
|
|
}
|
|
|
|
case CEIL_MOD_EXPR:
|
|
if (unsignedp)
|
|
{
|
|
rtx mod = gen_rtx_UMOD (mode, op0, op1);
|
|
rtx adj = ceil_udiv_adjust (mode, mod, op1);
|
|
adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
|
|
return gen_rtx_PLUS (mode, mod, adj);
|
|
}
|
|
else
|
|
{
|
|
rtx mod = gen_rtx_MOD (mode, op0, op1);
|
|
rtx adj = ceil_sdiv_adjust (mode, mod, op1);
|
|
adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
|
|
return gen_rtx_PLUS (mode, mod, adj);
|
|
}
|
|
|
|
case ROUND_DIV_EXPR:
|
|
if (unsignedp)
|
|
{
|
|
rtx div = gen_rtx_UDIV (mode, op0, op1);
|
|
rtx mod = gen_rtx_UMOD (mode, op0, op1);
|
|
rtx adj = round_udiv_adjust (mode, mod, op1);
|
|
return gen_rtx_PLUS (mode, div, adj);
|
|
}
|
|
else
|
|
{
|
|
rtx div = gen_rtx_DIV (mode, op0, op1);
|
|
rtx mod = gen_rtx_MOD (mode, op0, op1);
|
|
rtx adj = round_sdiv_adjust (mode, mod, op1);
|
|
return gen_rtx_PLUS (mode, div, adj);
|
|
}
|
|
|
|
case ROUND_MOD_EXPR:
|
|
if (unsignedp)
|
|
{
|
|
rtx mod = gen_rtx_UMOD (mode, op0, op1);
|
|
rtx adj = round_udiv_adjust (mode, mod, op1);
|
|
adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
|
|
return gen_rtx_PLUS (mode, mod, adj);
|
|
}
|
|
else
|
|
{
|
|
rtx mod = gen_rtx_MOD (mode, op0, op1);
|
|
rtx adj = round_sdiv_adjust (mode, mod, op1);
|
|
adj = gen_rtx_NEG (mode, gen_rtx_MULT (mode, adj, op1));
|
|
return gen_rtx_PLUS (mode, mod, adj);
|
|
}
|
|
|
|
case LSHIFT_EXPR:
|
|
return gen_rtx_ASHIFT (mode, op0, op1);
|
|
|
|
case RSHIFT_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_LSHIFTRT (mode, op0, op1);
|
|
else
|
|
return gen_rtx_ASHIFTRT (mode, op0, op1);
|
|
|
|
case LROTATE_EXPR:
|
|
return gen_rtx_ROTATE (mode, op0, op1);
|
|
|
|
case RROTATE_EXPR:
|
|
return gen_rtx_ROTATERT (mode, op0, op1);
|
|
|
|
case MIN_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_UMIN (mode, op0, op1);
|
|
else
|
|
return gen_rtx_SMIN (mode, op0, op1);
|
|
|
|
case MAX_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_UMAX (mode, op0, op1);
|
|
else
|
|
return gen_rtx_SMAX (mode, op0, op1);
|
|
|
|
case BIT_AND_EXPR:
|
|
case TRUTH_AND_EXPR:
|
|
return gen_rtx_AND (mode, op0, op1);
|
|
|
|
case BIT_IOR_EXPR:
|
|
case TRUTH_OR_EXPR:
|
|
return gen_rtx_IOR (mode, op0, op1);
|
|
|
|
case BIT_XOR_EXPR:
|
|
case TRUTH_XOR_EXPR:
|
|
return gen_rtx_XOR (mode, op0, op1);
|
|
|
|
case TRUTH_ANDIF_EXPR:
|
|
return gen_rtx_IF_THEN_ELSE (mode, op0, op1, const0_rtx);
|
|
|
|
case TRUTH_ORIF_EXPR:
|
|
return gen_rtx_IF_THEN_ELSE (mode, op0, const_true_rtx, op1);
|
|
|
|
case TRUTH_NOT_EXPR:
|
|
return gen_rtx_EQ (mode, op0, const0_rtx);
|
|
|
|
case LT_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_LTU (mode, op0, op1);
|
|
else
|
|
return gen_rtx_LT (mode, op0, op1);
|
|
|
|
case LE_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_LEU (mode, op0, op1);
|
|
else
|
|
return gen_rtx_LE (mode, op0, op1);
|
|
|
|
case GT_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_GTU (mode, op0, op1);
|
|
else
|
|
return gen_rtx_GT (mode, op0, op1);
|
|
|
|
case GE_EXPR:
|
|
if (unsignedp)
|
|
return gen_rtx_GEU (mode, op0, op1);
|
|
else
|
|
return gen_rtx_GE (mode, op0, op1);
|
|
|
|
case EQ_EXPR:
|
|
return gen_rtx_EQ (mode, op0, op1);
|
|
|
|
case NE_EXPR:
|
|
return gen_rtx_NE (mode, op0, op1);
|
|
|
|
case UNORDERED_EXPR:
|
|
return gen_rtx_UNORDERED (mode, op0, op1);
|
|
|
|
case ORDERED_EXPR:
|
|
return gen_rtx_ORDERED (mode, op0, op1);
|
|
|
|
case UNLT_EXPR:
|
|
return gen_rtx_UNLT (mode, op0, op1);
|
|
|
|
case UNLE_EXPR:
|
|
return gen_rtx_UNLE (mode, op0, op1);
|
|
|
|
case UNGT_EXPR:
|
|
return gen_rtx_UNGT (mode, op0, op1);
|
|
|
|
case UNGE_EXPR:
|
|
return gen_rtx_UNGE (mode, op0, op1);
|
|
|
|
case UNEQ_EXPR:
|
|
return gen_rtx_UNEQ (mode, op0, op1);
|
|
|
|
case LTGT_EXPR:
|
|
return gen_rtx_LTGT (mode, op0, op1);
|
|
|
|
case COND_EXPR:
|
|
return gen_rtx_IF_THEN_ELSE (mode, op0, op1, op2);
|
|
|
|
case COMPLEX_EXPR:
|
|
gcc_assert (COMPLEX_MODE_P (mode));
|
|
if (GET_MODE (op0) == VOIDmode)
|
|
op0 = gen_rtx_CONST (GET_MODE_INNER (mode), op0);
|
|
if (GET_MODE (op1) == VOIDmode)
|
|
op1 = gen_rtx_CONST (GET_MODE_INNER (mode), op1);
|
|
return gen_rtx_CONCAT (mode, op0, op1);
|
|
|
|
case CONJ_EXPR:
|
|
if (GET_CODE (op0) == CONCAT)
|
|
return gen_rtx_CONCAT (mode, XEXP (op0, 0),
|
|
gen_rtx_NEG (GET_MODE_INNER (mode),
|
|
XEXP (op0, 1)));
|
|
else
|
|
{
|
|
enum machine_mode imode = GET_MODE_INNER (mode);
|
|
rtx re, im;
|
|
|
|
if (MEM_P (op0))
|
|
{
|
|
re = adjust_address_nv (op0, imode, 0);
|
|
im = adjust_address_nv (op0, imode, GET_MODE_SIZE (imode));
|
|
}
|
|
else
|
|
{
|
|
enum machine_mode ifmode = int_mode_for_mode (mode);
|
|
enum machine_mode ihmode = int_mode_for_mode (imode);
|
|
rtx halfsize;
|
|
if (ifmode == BLKmode || ihmode == BLKmode)
|
|
return NULL;
|
|
halfsize = GEN_INT (GET_MODE_BITSIZE (ihmode));
|
|
re = op0;
|
|
if (mode != ifmode)
|
|
re = gen_rtx_SUBREG (ifmode, re, 0);
|
|
re = gen_rtx_ZERO_EXTRACT (ihmode, re, halfsize, const0_rtx);
|
|
if (imode != ihmode)
|
|
re = gen_rtx_SUBREG (imode, re, 0);
|
|
im = copy_rtx (op0);
|
|
if (mode != ifmode)
|
|
im = gen_rtx_SUBREG (ifmode, im, 0);
|
|
im = gen_rtx_ZERO_EXTRACT (ihmode, im, halfsize, halfsize);
|
|
if (imode != ihmode)
|
|
im = gen_rtx_SUBREG (imode, im, 0);
|
|
}
|
|
im = gen_rtx_NEG (imode, im);
|
|
return gen_rtx_CONCAT (mode, re, im);
|
|
}
|
|
|
|
case ADDR_EXPR:
|
|
op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
|
|
if (!op0 || !MEM_P (op0))
|
|
return NULL;
|
|
|
|
op0 = convert_debug_memory_address (mode, XEXP (op0, 0));
|
|
|
|
return op0;
|
|
|
|
case VECTOR_CST:
|
|
exp = build_constructor_from_list (TREE_TYPE (exp),
|
|
TREE_VECTOR_CST_ELTS (exp));
|
|
/* Fall through. */
|
|
|
|
case CONSTRUCTOR:
|
|
if (TREE_CODE (TREE_TYPE (exp)) == VECTOR_TYPE)
|
|
{
|
|
unsigned i;
|
|
tree val;
|
|
|
|
op0 = gen_rtx_CONCATN
|
|
(mode, rtvec_alloc (TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp))));
|
|
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), i, val)
|
|
{
|
|
op1 = expand_debug_expr (val);
|
|
if (!op1)
|
|
return NULL;
|
|
XVECEXP (op0, 0, i) = op1;
|
|
}
|
|
|
|
if (i < TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp)))
|
|
{
|
|
op1 = expand_debug_expr
|
|
(fold_convert (TREE_TYPE (TREE_TYPE (exp)), integer_zero_node));
|
|
|
|
if (!op1)
|
|
return NULL;
|
|
|
|
for (; i < TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp)); i++)
|
|
XVECEXP (op0, 0, i) = op1;
|
|
}
|
|
|
|
return op0;
|
|
}
|
|
else
|
|
goto flag_unsupported;
|
|
|
|
case CALL_EXPR:
|
|
/* ??? Maybe handle some builtins? */
|
|
return NULL;
|
|
|
|
case SSA_NAME:
|
|
{
|
|
gimple g = get_gimple_for_ssa_name (exp);
|
|
if (g)
|
|
{
|
|
op0 = expand_debug_expr (gimple_assign_rhs_to_tree (g));
|
|
if (!op0)
|
|
return NULL;
|
|
}
|
|
else
|
|
{
|
|
int part = var_to_partition (SA.map, exp);
|
|
|
|
if (part == NO_PARTITION)
|
|
return NULL;
|
|
|
|
gcc_assert (part >= 0 && (unsigned)part < SA.map->num_partitions);
|
|
|
|
op0 = SA.partition_to_pseudo[part];
|
|
}
|
|
goto adjust_mode;
|
|
}
|
|
|
|
case ERROR_MARK:
|
|
return NULL;
|
|
|
|
/* Vector stuff. For most of the codes we don't have rtl codes. */
|
|
case REALIGN_LOAD_EXPR:
|
|
case REDUC_MAX_EXPR:
|
|
case REDUC_MIN_EXPR:
|
|
case REDUC_PLUS_EXPR:
|
|
case VEC_COND_EXPR:
|
|
case VEC_EXTRACT_EVEN_EXPR:
|
|
case VEC_EXTRACT_ODD_EXPR:
|
|
case VEC_INTERLEAVE_HIGH_EXPR:
|
|
case VEC_INTERLEAVE_LOW_EXPR:
|
|
case VEC_LSHIFT_EXPR:
|
|
case VEC_PACK_FIX_TRUNC_EXPR:
|
|
case VEC_PACK_SAT_EXPR:
|
|
case VEC_PACK_TRUNC_EXPR:
|
|
case VEC_RSHIFT_EXPR:
|
|
case VEC_UNPACK_FLOAT_HI_EXPR:
|
|
case VEC_UNPACK_FLOAT_LO_EXPR:
|
|
case VEC_UNPACK_HI_EXPR:
|
|
case VEC_UNPACK_LO_EXPR:
|
|
case VEC_WIDEN_MULT_HI_EXPR:
|
|
case VEC_WIDEN_MULT_LO_EXPR:
|
|
return NULL;
|
|
|
|
/* Misc codes. */
|
|
case ADDR_SPACE_CONVERT_EXPR:
|
|
case FIXED_CONVERT_EXPR:
|
|
case OBJ_TYPE_REF:
|
|
case WITH_SIZE_EXPR:
|
|
return NULL;
|
|
|
|
case DOT_PROD_EXPR:
|
|
if (SCALAR_INT_MODE_P (GET_MODE (op0))
|
|
&& SCALAR_INT_MODE_P (mode))
|
|
{
|
|
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
|
op0 = gen_rtx_ZERO_EXTEND (mode, op0);
|
|
else
|
|
op0 = gen_rtx_SIGN_EXTEND (mode, op0);
|
|
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1))))
|
|
op1 = gen_rtx_ZERO_EXTEND (mode, op1);
|
|
else
|
|
op1 = gen_rtx_SIGN_EXTEND (mode, op1);
|
|
op0 = gen_rtx_MULT (mode, op0, op1);
|
|
return gen_rtx_PLUS (mode, op0, op2);
|
|
}
|
|
return NULL;
|
|
|
|
case WIDEN_MULT_EXPR:
|
|
if (SCALAR_INT_MODE_P (GET_MODE (op0))
|
|
&& SCALAR_INT_MODE_P (mode))
|
|
{
|
|
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
|
op0 = gen_rtx_ZERO_EXTEND (mode, op0);
|
|
else
|
|
op0 = gen_rtx_SIGN_EXTEND (mode, op0);
|
|
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1))))
|
|
op1 = gen_rtx_ZERO_EXTEND (mode, op1);
|
|
else
|
|
op1 = gen_rtx_SIGN_EXTEND (mode, op1);
|
|
return gen_rtx_MULT (mode, op0, op1);
|
|
}
|
|
return NULL;
|
|
|
|
case WIDEN_SUM_EXPR:
|
|
if (SCALAR_INT_MODE_P (GET_MODE (op0))
|
|
&& SCALAR_INT_MODE_P (mode))
|
|
{
|
|
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
|
op0 = gen_rtx_ZERO_EXTEND (mode, op0);
|
|
else
|
|
op0 = gen_rtx_SIGN_EXTEND (mode, op0);
|
|
return gen_rtx_PLUS (mode, op0, op1);
|
|
}
|
|
return NULL;
|
|
|
|
default:
|
|
flag_unsupported:
|
|
#ifdef ENABLE_CHECKING
|
|
debug_tree (exp);
|
|
gcc_unreachable ();
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Expand the _LOCs in debug insns. We run this after expanding all
|
|
regular insns, so that any variables referenced in the function
|
|
will have their DECL_RTLs set. */
|
|
|
|
static void
|
|
expand_debug_locations (void)
|
|
{
|
|
rtx insn;
|
|
rtx last = get_last_insn ();
|
|
int save_strict_alias = flag_strict_aliasing;
|
|
|
|
/* New alias sets while setting up memory attributes cause
|
|
-fcompare-debug failures, even though it doesn't bring about any
|
|
codegen changes. */
|
|
flag_strict_aliasing = 0;
|
|
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
|
if (DEBUG_INSN_P (insn))
|
|
{
|
|
tree value = (tree)INSN_VAR_LOCATION_LOC (insn);
|
|
rtx val;
|
|
enum machine_mode mode;
|
|
|
|
if (value == NULL_TREE)
|
|
val = NULL_RTX;
|
|
else
|
|
{
|
|
val = expand_debug_expr (value);
|
|
gcc_assert (last == get_last_insn ());
|
|
}
|
|
|
|
if (!val)
|
|
val = gen_rtx_UNKNOWN_VAR_LOC ();
|
|
else
|
|
{
|
|
mode = GET_MODE (INSN_VAR_LOCATION (insn));
|
|
|
|
gcc_assert (mode == GET_MODE (val)
|
|
|| (GET_MODE (val) == VOIDmode
|
|
&& (CONST_INT_P (val)
|
|
|| GET_CODE (val) == CONST_FIXED
|
|
|| GET_CODE (val) == CONST_DOUBLE
|
|
|| GET_CODE (val) == LABEL_REF)));
|
|
}
|
|
|
|
INSN_VAR_LOCATION_LOC (insn) = val;
|
|
}
|
|
|
|
flag_strict_aliasing = save_strict_alias;
|
|
}
|
|
|
|
/* Expand basic block BB from GIMPLE trees to RTL. */
|
|
|
|
static basic_block
|
|
expand_gimple_basic_block (basic_block bb)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
gimple_seq stmts;
|
|
gimple stmt = NULL;
|
|
rtx note, last;
|
|
edge e;
|
|
edge_iterator ei;
|
|
void **elt;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "\n;; Generating RTL for gimple basic block %d\n",
|
|
bb->index);
|
|
|
|
/* Note that since we are now transitioning from GIMPLE to RTL, we
|
|
cannot use the gsi_*_bb() routines because they expect the basic
|
|
block to be in GIMPLE, instead of RTL. Therefore, we need to
|
|
access the BB sequence directly. */
|
|
stmts = bb_seq (bb);
|
|
bb->il.gimple = NULL;
|
|
rtl_profile_for_bb (bb);
|
|
init_rtl_bb_info (bb);
|
|
bb->flags |= BB_RTL;
|
|
|
|
/* Remove the RETURN_EXPR if we may fall though to the exit
|
|
instead. */
|
|
gsi = gsi_last (stmts);
|
|
if (!gsi_end_p (gsi)
|
|
&& gimple_code (gsi_stmt (gsi)) == GIMPLE_RETURN)
|
|
{
|
|
gimple ret_stmt = gsi_stmt (gsi);
|
|
|
|
gcc_assert (single_succ_p (bb));
|
|
gcc_assert (single_succ (bb) == EXIT_BLOCK_PTR);
|
|
|
|
if (bb->next_bb == EXIT_BLOCK_PTR
|
|
&& !gimple_return_retval (ret_stmt))
|
|
{
|
|
gsi_remove (&gsi, false);
|
|
single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
|
|
}
|
|
}
|
|
|
|
gsi = gsi_start (stmts);
|
|
if (!gsi_end_p (gsi))
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
if (gimple_code (stmt) != GIMPLE_LABEL)
|
|
stmt = NULL;
|
|
}
|
|
|
|
elt = pointer_map_contains (lab_rtx_for_bb, bb);
|
|
|
|
if (stmt || elt)
|
|
{
|
|
last = get_last_insn ();
|
|
|
|
if (stmt)
|
|
{
|
|
expand_gimple_stmt (stmt);
|
|
gsi_next (&gsi);
|
|
}
|
|
|
|
if (elt)
|
|
emit_label ((rtx) *elt);
|
|
|
|
/* Java emits line number notes in the top of labels.
|
|
??? Make this go away once line number notes are obsoleted. */
|
|
BB_HEAD (bb) = NEXT_INSN (last);
|
|
if (NOTE_P (BB_HEAD (bb)))
|
|
BB_HEAD (bb) = NEXT_INSN (BB_HEAD (bb));
|
|
note = emit_note_after (NOTE_INSN_BASIC_BLOCK, BB_HEAD (bb));
|
|
|
|
maybe_dump_rtl_for_gimple_stmt (stmt, last);
|
|
}
|
|
else
|
|
note = BB_HEAD (bb) = emit_note (NOTE_INSN_BASIC_BLOCK);
|
|
|
|
NOTE_BASIC_BLOCK (note) = bb;
|
|
|
|
for (; !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
basic_block new_bb;
|
|
|
|
stmt = gsi_stmt (gsi);
|
|
|
|
/* If this statement is a non-debug one, and we generate debug
|
|
insns, then this one might be the last real use of a TERed
|
|
SSA_NAME, but where there are still some debug uses further
|
|
down. Expanding the current SSA name in such further debug
|
|
uses by their RHS might lead to wrong debug info, as coalescing
|
|
might make the operands of such RHS be placed into the same
|
|
pseudo as something else. Like so:
|
|
a_1 = a_0 + 1; // Assume a_1 is TERed and a_0 is dead
|
|
use(a_1);
|
|
a_2 = ...
|
|
#DEBUG ... => a_1
|
|
As a_0 and a_2 don't overlap in lifetime, assume they are coalesced.
|
|
If we now would expand a_1 by it's RHS (a_0 + 1) in the debug use,
|
|
the write to a_2 would actually have clobbered the place which
|
|
formerly held a_0.
|
|
|
|
So, instead of that, we recognize the situation, and generate
|
|
debug temporaries at the last real use of TERed SSA names:
|
|
a_1 = a_0 + 1;
|
|
#DEBUG #D1 => a_1
|
|
use(a_1);
|
|
a_2 = ...
|
|
#DEBUG ... => #D1
|
|
*/
|
|
if (MAY_HAVE_DEBUG_INSNS
|
|
&& SA.values
|
|
&& !is_gimple_debug (stmt))
|
|
{
|
|
ssa_op_iter iter;
|
|
tree op;
|
|
gimple def;
|
|
|
|
location_t sloc = get_curr_insn_source_location ();
|
|
tree sblock = get_curr_insn_block ();
|
|
|
|
/* Look for SSA names that have their last use here (TERed
|
|
names always have only one real use). */
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
|
|
if ((def = get_gimple_for_ssa_name (op)))
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
bool have_debug_uses = false;
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
|
|
{
|
|
if (gimple_debug_bind_p (USE_STMT (use_p)))
|
|
{
|
|
have_debug_uses = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (have_debug_uses)
|
|
{
|
|
/* OP is a TERed SSA name, with DEF it's defining
|
|
statement, and where OP is used in further debug
|
|
instructions. Generate a debug temporary, and
|
|
replace all uses of OP in debug insns with that
|
|
temporary. */
|
|
gimple debugstmt;
|
|
tree value = gimple_assign_rhs_to_tree (def);
|
|
tree vexpr = make_node (DEBUG_EXPR_DECL);
|
|
rtx val;
|
|
enum machine_mode mode;
|
|
|
|
set_curr_insn_source_location (gimple_location (def));
|
|
set_curr_insn_block (gimple_block (def));
|
|
|
|
DECL_ARTIFICIAL (vexpr) = 1;
|
|
TREE_TYPE (vexpr) = TREE_TYPE (value);
|
|
if (DECL_P (value))
|
|
mode = DECL_MODE (value);
|
|
else
|
|
mode = TYPE_MODE (TREE_TYPE (value));
|
|
DECL_MODE (vexpr) = mode;
|
|
|
|
val = gen_rtx_VAR_LOCATION
|
|
(mode, vexpr, (rtx)value, VAR_INIT_STATUS_INITIALIZED);
|
|
|
|
val = emit_debug_insn (val);
|
|
|
|
FOR_EACH_IMM_USE_STMT (debugstmt, imm_iter, op)
|
|
{
|
|
if (!gimple_debug_bind_p (debugstmt))
|
|
continue;
|
|
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
|
SET_USE (use_p, vexpr);
|
|
|
|
update_stmt (debugstmt);
|
|
}
|
|
}
|
|
}
|
|
set_curr_insn_source_location (sloc);
|
|
set_curr_insn_block (sblock);
|
|
}
|
|
|
|
currently_expanding_gimple_stmt = stmt;
|
|
|
|
/* Expand this statement, then evaluate the resulting RTL and
|
|
fixup the CFG accordingly. */
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
|
{
|
|
new_bb = expand_gimple_cond (bb, stmt);
|
|
if (new_bb)
|
|
return new_bb;
|
|
}
|
|
else if (gimple_debug_bind_p (stmt))
|
|
{
|
|
location_t sloc = get_curr_insn_source_location ();
|
|
tree sblock = get_curr_insn_block ();
|
|
gimple_stmt_iterator nsi = gsi;
|
|
|
|
for (;;)
|
|
{
|
|
tree var = gimple_debug_bind_get_var (stmt);
|
|
tree value;
|
|
rtx val;
|
|
enum machine_mode mode;
|
|
|
|
if (gimple_debug_bind_has_value_p (stmt))
|
|
value = gimple_debug_bind_get_value (stmt);
|
|
else
|
|
value = NULL_TREE;
|
|
|
|
last = get_last_insn ();
|
|
|
|
set_curr_insn_source_location (gimple_location (stmt));
|
|
set_curr_insn_block (gimple_block (stmt));
|
|
|
|
if (DECL_P (var))
|
|
mode = DECL_MODE (var);
|
|
else
|
|
mode = TYPE_MODE (TREE_TYPE (var));
|
|
|
|
val = gen_rtx_VAR_LOCATION
|
|
(mode, var, (rtx)value, VAR_INIT_STATUS_INITIALIZED);
|
|
|
|
val = emit_debug_insn (val);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
/* We can't dump the insn with a TREE where an RTX
|
|
is expected. */
|
|
INSN_VAR_LOCATION_LOC (val) = const0_rtx;
|
|
maybe_dump_rtl_for_gimple_stmt (stmt, last);
|
|
INSN_VAR_LOCATION_LOC (val) = (rtx)value;
|
|
}
|
|
|
|
/* In order not to generate too many debug temporaries,
|
|
we delink all uses of debug statements we already expanded.
|
|
Therefore debug statements between definition and real
|
|
use of TERed SSA names will continue to use the SSA name,
|
|
and not be replaced with debug temps. */
|
|
delink_stmt_imm_use (stmt);
|
|
|
|
gsi = nsi;
|
|
gsi_next (&nsi);
|
|
if (gsi_end_p (nsi))
|
|
break;
|
|
stmt = gsi_stmt (nsi);
|
|
if (!gimple_debug_bind_p (stmt))
|
|
break;
|
|
}
|
|
|
|
set_curr_insn_source_location (sloc);
|
|
set_curr_insn_block (sblock);
|
|
}
|
|
else
|
|
{
|
|
if (is_gimple_call (stmt) && gimple_call_tail_p (stmt))
|
|
{
|
|
bool can_fallthru;
|
|
new_bb = expand_gimple_tailcall (bb, stmt, &can_fallthru);
|
|
if (new_bb)
|
|
{
|
|
if (can_fallthru)
|
|
bb = new_bb;
|
|
else
|
|
return new_bb;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
def_operand_p def_p;
|
|
def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
|
|
|
|
if (def_p != NULL)
|
|
{
|
|
/* Ignore this stmt if it is in the list of
|
|
replaceable expressions. */
|
|
if (SA.values
|
|
&& bitmap_bit_p (SA.values,
|
|
SSA_NAME_VERSION (DEF_FROM_PTR (def_p))))
|
|
continue;
|
|
}
|
|
last = expand_gimple_stmt (stmt);
|
|
maybe_dump_rtl_for_gimple_stmt (stmt, last);
|
|
}
|
|
}
|
|
}
|
|
|
|
currently_expanding_gimple_stmt = NULL;
|
|
|
|
/* Expand implicit goto and convert goto_locus. */
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
if (e->goto_locus && e->goto_block)
|
|
{
|
|
set_curr_insn_source_location (e->goto_locus);
|
|
set_curr_insn_block (e->goto_block);
|
|
e->goto_locus = curr_insn_locator ();
|
|
}
|
|
e->goto_block = NULL;
|
|
if ((e->flags & EDGE_FALLTHRU) && e->dest != bb->next_bb)
|
|
{
|
|
emit_jump (label_rtx_for_bb (e->dest));
|
|
e->flags &= ~EDGE_FALLTHRU;
|
|
}
|
|
}
|
|
|
|
/* Expanded RTL can create a jump in the last instruction of block.
|
|
This later might be assumed to be a jump to successor and break edge insertion.
|
|
We need to insert dummy move to prevent this. PR41440. */
|
|
if (single_succ_p (bb)
|
|
&& (single_succ_edge (bb)->flags & EDGE_FALLTHRU)
|
|
&& (last = get_last_insn ())
|
|
&& JUMP_P (last))
|
|
{
|
|
rtx dummy = gen_reg_rtx (SImode);
|
|
emit_insn_after_noloc (gen_move_insn (dummy, dummy), last, NULL);
|
|
}
|
|
|
|
do_pending_stack_adjust ();
|
|
|
|
/* Find the block tail. The last insn in the block is the insn
|
|
before a barrier and/or table jump insn. */
|
|
last = get_last_insn ();
|
|
if (BARRIER_P (last))
|
|
last = PREV_INSN (last);
|
|
if (JUMP_TABLE_DATA_P (last))
|
|
last = PREV_INSN (PREV_INSN (last));
|
|
BB_END (bb) = last;
|
|
|
|
update_bb_for_insn (bb);
|
|
|
|
return bb;
|
|
}
|
|
|
|
|
|
/* Create a basic block for initialization code. */
|
|
|
|
static basic_block
|
|
construct_init_block (void)
|
|
{
|
|
basic_block init_block, first_block;
|
|
edge e = NULL;
|
|
int flags;
|
|
|
|
/* Multiple entry points not supported yet. */
|
|
gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
|
|
init_rtl_bb_info (ENTRY_BLOCK_PTR);
|
|
init_rtl_bb_info (EXIT_BLOCK_PTR);
|
|
ENTRY_BLOCK_PTR->flags |= BB_RTL;
|
|
EXIT_BLOCK_PTR->flags |= BB_RTL;
|
|
|
|
e = EDGE_SUCC (ENTRY_BLOCK_PTR, 0);
|
|
|
|
/* When entry edge points to first basic block, we don't need jump,
|
|
otherwise we have to jump into proper target. */
|
|
if (e && e->dest != ENTRY_BLOCK_PTR->next_bb)
|
|
{
|
|
tree label = gimple_block_label (e->dest);
|
|
|
|
emit_jump (label_rtx (label));
|
|
flags = 0;
|
|
}
|
|
else
|
|
flags = EDGE_FALLTHRU;
|
|
|
|
init_block = create_basic_block (NEXT_INSN (get_insns ()),
|
|
get_last_insn (),
|
|
ENTRY_BLOCK_PTR);
|
|
init_block->frequency = ENTRY_BLOCK_PTR->frequency;
|
|
init_block->count = ENTRY_BLOCK_PTR->count;
|
|
if (e)
|
|
{
|
|
first_block = e->dest;
|
|
redirect_edge_succ (e, init_block);
|
|
e = make_edge (init_block, first_block, flags);
|
|
}
|
|
else
|
|
e = make_edge (init_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
|
|
e->probability = REG_BR_PROB_BASE;
|
|
e->count = ENTRY_BLOCK_PTR->count;
|
|
|
|
update_bb_for_insn (init_block);
|
|
return init_block;
|
|
}
|
|
|
|
/* For each lexical block, set BLOCK_NUMBER to the depth at which it is
|
|
found in the block tree. */
|
|
|
|
static void
|
|
set_block_levels (tree block, int level)
|
|
{
|
|
while (block)
|
|
{
|
|
BLOCK_NUMBER (block) = level;
|
|
set_block_levels (BLOCK_SUBBLOCKS (block), level + 1);
|
|
block = BLOCK_CHAIN (block);
|
|
}
|
|
}
|
|
|
|
/* Create a block containing landing pads and similar stuff. */
|
|
|
|
static void
|
|
construct_exit_block (void)
|
|
{
|
|
rtx head = get_last_insn ();
|
|
rtx end;
|
|
basic_block exit_block;
|
|
edge e, e2;
|
|
unsigned ix;
|
|
edge_iterator ei;
|
|
rtx orig_end = BB_END (EXIT_BLOCK_PTR->prev_bb);
|
|
|
|
rtl_profile_for_bb (EXIT_BLOCK_PTR);
|
|
|
|
/* Make sure the locus is set to the end of the function, so that
|
|
epilogue line numbers and warnings are set properly. */
|
|
if (cfun->function_end_locus != UNKNOWN_LOCATION)
|
|
input_location = cfun->function_end_locus;
|
|
|
|
/* The following insns belong to the top scope. */
|
|
set_curr_insn_block (DECL_INITIAL (current_function_decl));
|
|
|
|
/* Generate rtl for function exit. */
|
|
expand_function_end ();
|
|
|
|
end = get_last_insn ();
|
|
if (head == end)
|
|
return;
|
|
/* While emitting the function end we could move end of the last basic block.
|
|
*/
|
|
BB_END (EXIT_BLOCK_PTR->prev_bb) = orig_end;
|
|
while (NEXT_INSN (head) && NOTE_P (NEXT_INSN (head)))
|
|
head = NEXT_INSN (head);
|
|
exit_block = create_basic_block (NEXT_INSN (head), end,
|
|
EXIT_BLOCK_PTR->prev_bb);
|
|
exit_block->frequency = EXIT_BLOCK_PTR->frequency;
|
|
exit_block->count = EXIT_BLOCK_PTR->count;
|
|
|
|
ix = 0;
|
|
while (ix < EDGE_COUNT (EXIT_BLOCK_PTR->preds))
|
|
{
|
|
e = EDGE_PRED (EXIT_BLOCK_PTR, ix);
|
|
if (!(e->flags & EDGE_ABNORMAL))
|
|
redirect_edge_succ (e, exit_block);
|
|
else
|
|
ix++;
|
|
}
|
|
|
|
e = make_edge (exit_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
|
|
e->probability = REG_BR_PROB_BASE;
|
|
e->count = EXIT_BLOCK_PTR->count;
|
|
FOR_EACH_EDGE (e2, ei, EXIT_BLOCK_PTR->preds)
|
|
if (e2 != e)
|
|
{
|
|
e->count -= e2->count;
|
|
exit_block->count -= e2->count;
|
|
exit_block->frequency -= EDGE_FREQUENCY (e2);
|
|
}
|
|
if (e->count < 0)
|
|
e->count = 0;
|
|
if (exit_block->count < 0)
|
|
exit_block->count = 0;
|
|
if (exit_block->frequency < 0)
|
|
exit_block->frequency = 0;
|
|
update_bb_for_insn (exit_block);
|
|
}
|
|
|
|
/* Helper function for discover_nonconstant_array_refs.
|
|
Look for ARRAY_REF nodes with non-constant indexes and mark them
|
|
addressable. */
|
|
|
|
static tree
|
|
discover_nonconstant_array_refs_r (tree * tp, int *walk_subtrees,
|
|
void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
tree t = *tp;
|
|
|
|
if (IS_TYPE_OR_DECL_P (t))
|
|
*walk_subtrees = 0;
|
|
else if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
|
|
{
|
|
while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
|
|
&& is_gimple_min_invariant (TREE_OPERAND (t, 1))
|
|
&& (!TREE_OPERAND (t, 2)
|
|
|| is_gimple_min_invariant (TREE_OPERAND (t, 2))))
|
|
|| (TREE_CODE (t) == COMPONENT_REF
|
|
&& (!TREE_OPERAND (t,2)
|
|
|| is_gimple_min_invariant (TREE_OPERAND (t, 2))))
|
|
|| TREE_CODE (t) == BIT_FIELD_REF
|
|
|| TREE_CODE (t) == REALPART_EXPR
|
|
|| TREE_CODE (t) == IMAGPART_EXPR
|
|
|| TREE_CODE (t) == VIEW_CONVERT_EXPR
|
|
|| CONVERT_EXPR_P (t))
|
|
t = TREE_OPERAND (t, 0);
|
|
|
|
if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
|
|
{
|
|
t = get_base_address (t);
|
|
if (t && DECL_P (t)
|
|
&& DECL_MODE (t) != BLKmode)
|
|
TREE_ADDRESSABLE (t) = 1;
|
|
}
|
|
|
|
*walk_subtrees = 0;
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* RTL expansion is not able to compile array references with variable
|
|
offsets for arrays stored in single register. Discover such
|
|
expressions and mark variables as addressable to avoid this
|
|
scenario. */
|
|
|
|
static void
|
|
discover_nonconstant_array_refs (void)
|
|
{
|
|
basic_block bb;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
FOR_EACH_BB (bb)
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
walk_gimple_op (stmt, discover_nonconstant_array_refs_r, NULL);
|
|
}
|
|
}
|
|
|
|
/* This function sets crtl->args.internal_arg_pointer to a virtual
|
|
register if DRAP is needed. Local register allocator will replace
|
|
virtual_incoming_args_rtx with the virtual register. */
|
|
|
|
static void
|
|
expand_stack_alignment (void)
|
|
{
|
|
rtx drap_rtx;
|
|
unsigned int preferred_stack_boundary;
|
|
|
|
if (! SUPPORTS_STACK_ALIGNMENT)
|
|
return;
|
|
|
|
if (cfun->calls_alloca
|
|
|| cfun->has_nonlocal_label
|
|
|| crtl->has_nonlocal_goto)
|
|
crtl->need_drap = true;
|
|
|
|
/* Call update_stack_boundary here again to update incoming stack
|
|
boundary. It may set incoming stack alignment to a different
|
|
value after RTL expansion. TARGET_FUNCTION_OK_FOR_SIBCALL may
|
|
use the minimum incoming stack alignment to check if it is OK
|
|
to perform sibcall optimization since sibcall optimization will
|
|
only align the outgoing stack to incoming stack boundary. */
|
|
if (targetm.calls.update_stack_boundary)
|
|
targetm.calls.update_stack_boundary ();
|
|
|
|
/* The incoming stack frame has to be aligned at least at
|
|
parm_stack_boundary. */
|
|
gcc_assert (crtl->parm_stack_boundary <= INCOMING_STACK_BOUNDARY);
|
|
|
|
/* Update crtl->stack_alignment_estimated and use it later to align
|
|
stack. We check PREFERRED_STACK_BOUNDARY if there may be non-call
|
|
exceptions since callgraph doesn't collect incoming stack alignment
|
|
in this case. */
|
|
if (flag_non_call_exceptions
|
|
&& PREFERRED_STACK_BOUNDARY > crtl->preferred_stack_boundary)
|
|
preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
|
|
else
|
|
preferred_stack_boundary = crtl->preferred_stack_boundary;
|
|
if (preferred_stack_boundary > crtl->stack_alignment_estimated)
|
|
crtl->stack_alignment_estimated = preferred_stack_boundary;
|
|
if (preferred_stack_boundary > crtl->stack_alignment_needed)
|
|
crtl->stack_alignment_needed = preferred_stack_boundary;
|
|
|
|
gcc_assert (crtl->stack_alignment_needed
|
|
<= crtl->stack_alignment_estimated);
|
|
|
|
crtl->stack_realign_needed
|
|
= INCOMING_STACK_BOUNDARY < crtl->stack_alignment_estimated;
|
|
crtl->stack_realign_tried = crtl->stack_realign_needed;
|
|
|
|
crtl->stack_realign_processed = true;
|
|
|
|
/* Target has to redefine TARGET_GET_DRAP_RTX to support stack
|
|
alignment. */
|
|
gcc_assert (targetm.calls.get_drap_rtx != NULL);
|
|
drap_rtx = targetm.calls.get_drap_rtx ();
|
|
|
|
/* stack_realign_drap and drap_rtx must match. */
|
|
gcc_assert ((stack_realign_drap != 0) == (drap_rtx != NULL));
|
|
|
|
/* Do nothing if NULL is returned, which means DRAP is not needed. */
|
|
if (NULL != drap_rtx)
|
|
{
|
|
crtl->args.internal_arg_pointer = drap_rtx;
|
|
|
|
/* Call fixup_tail_calls to clean up REG_EQUIV note if DRAP is
|
|
needed. */
|
|
fixup_tail_calls ();
|
|
}
|
|
}
|
|
|
|
/* Translate the intermediate representation contained in the CFG
|
|
from GIMPLE trees to RTL.
|
|
|
|
We do conversion per basic block and preserve/update the tree CFG.
|
|
This implies we have to do some magic as the CFG can simultaneously
|
|
consist of basic blocks containing RTL and GIMPLE trees. This can
|
|
confuse the CFG hooks, so be careful to not manipulate CFG during
|
|
the expansion. */
|
|
|
|
static unsigned int
|
|
gimple_expand_cfg (void)
|
|
{
|
|
basic_block bb, init_block;
|
|
sbitmap blocks;
|
|
edge_iterator ei;
|
|
edge e;
|
|
unsigned i;
|
|
|
|
rewrite_out_of_ssa (&SA);
|
|
SA.partition_to_pseudo = (rtx *)xcalloc (SA.map->num_partitions,
|
|
sizeof (rtx));
|
|
|
|
/* Some backends want to know that we are expanding to RTL. */
|
|
currently_expanding_to_rtl = 1;
|
|
|
|
rtl_profile_for_bb (ENTRY_BLOCK_PTR);
|
|
|
|
insn_locators_alloc ();
|
|
if (!DECL_IS_BUILTIN (current_function_decl))
|
|
{
|
|
/* Eventually, all FEs should explicitly set function_start_locus. */
|
|
if (cfun->function_start_locus == UNKNOWN_LOCATION)
|
|
set_curr_insn_source_location
|
|
(DECL_SOURCE_LOCATION (current_function_decl));
|
|
else
|
|
set_curr_insn_source_location (cfun->function_start_locus);
|
|
}
|
|
set_curr_insn_block (DECL_INITIAL (current_function_decl));
|
|
prologue_locator = curr_insn_locator ();
|
|
|
|
/* Make sure first insn is a note even if we don't want linenums.
|
|
This makes sure the first insn will never be deleted.
|
|
Also, final expects a note to appear there. */
|
|
emit_note (NOTE_INSN_DELETED);
|
|
|
|
/* Mark arrays indexed with non-constant indices with TREE_ADDRESSABLE. */
|
|
discover_nonconstant_array_refs ();
|
|
|
|
targetm.expand_to_rtl_hook ();
|
|
crtl->stack_alignment_needed = STACK_BOUNDARY;
|
|
crtl->max_used_stack_slot_alignment = STACK_BOUNDARY;
|
|
crtl->stack_alignment_estimated = 0;
|
|
crtl->preferred_stack_boundary = STACK_BOUNDARY;
|
|
cfun->cfg->max_jumptable_ents = 0;
|
|
|
|
|
|
/* Expand the variables recorded during gimple lowering. */
|
|
expand_used_vars ();
|
|
|
|
/* Honor stack protection warnings. */
|
|
if (warn_stack_protect)
|
|
{
|
|
if (cfun->calls_alloca)
|
|
warning (OPT_Wstack_protector,
|
|
"not protecting local variables: variable length buffer");
|
|
if (has_short_buffer && !crtl->stack_protect_guard)
|
|
warning (OPT_Wstack_protector,
|
|
"not protecting function: no buffer at least %d bytes long",
|
|
(int) PARAM_VALUE (PARAM_SSP_BUFFER_SIZE));
|
|
}
|
|
|
|
/* Set up parameters and prepare for return, for the function. */
|
|
expand_function_start (current_function_decl);
|
|
|
|
/* Now that we also have the parameter RTXs, copy them over to our
|
|
partitions. */
|
|
for (i = 0; i < SA.map->num_partitions; i++)
|
|
{
|
|
tree var = SSA_NAME_VAR (partition_to_var (SA.map, i));
|
|
|
|
if (TREE_CODE (var) != VAR_DECL
|
|
&& !SA.partition_to_pseudo[i])
|
|
SA.partition_to_pseudo[i] = DECL_RTL_IF_SET (var);
|
|
gcc_assert (SA.partition_to_pseudo[i]);
|
|
|
|
/* If this decl was marked as living in multiple places, reset
|
|
this now to NULL. */
|
|
if (DECL_RTL_IF_SET (var) == pc_rtx)
|
|
SET_DECL_RTL (var, NULL);
|
|
|
|
/* Some RTL parts really want to look at DECL_RTL(x) when x
|
|
was a decl marked in REG_ATTR or MEM_ATTR. We could use
|
|
SET_DECL_RTL here making this available, but that would mean
|
|
to select one of the potentially many RTLs for one DECL. Instead
|
|
of doing that we simply reset the MEM_EXPR of the RTL in question,
|
|
then nobody can get at it and hence nobody can call DECL_RTL on it. */
|
|
if (!DECL_RTL_SET_P (var))
|
|
{
|
|
if (MEM_P (SA.partition_to_pseudo[i]))
|
|
set_mem_expr (SA.partition_to_pseudo[i], NULL);
|
|
}
|
|
}
|
|
|
|
/* If this function is `main', emit a call to `__main'
|
|
to run global initializers, etc. */
|
|
if (DECL_NAME (current_function_decl)
|
|
&& MAIN_NAME_P (DECL_NAME (current_function_decl))
|
|
&& DECL_FILE_SCOPE_P (current_function_decl))
|
|
expand_main_function ();
|
|
|
|
/* Initialize the stack_protect_guard field. This must happen after the
|
|
call to __main (if any) so that the external decl is initialized. */
|
|
if (crtl->stack_protect_guard)
|
|
stack_protect_prologue ();
|
|
|
|
expand_phi_nodes (&SA);
|
|
|
|
/* Register rtl specific functions for cfg. */
|
|
rtl_register_cfg_hooks ();
|
|
|
|
init_block = construct_init_block ();
|
|
|
|
/* Clear EDGE_EXECUTABLE on the entry edge(s). It is cleaned from the
|
|
remaining edges later. */
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
|
e->flags &= ~EDGE_EXECUTABLE;
|
|
|
|
lab_rtx_for_bb = pointer_map_create ();
|
|
FOR_BB_BETWEEN (bb, init_block->next_bb, EXIT_BLOCK_PTR, next_bb)
|
|
bb = expand_gimple_basic_block (bb);
|
|
|
|
if (MAY_HAVE_DEBUG_INSNS)
|
|
expand_debug_locations ();
|
|
|
|
execute_free_datastructures ();
|
|
finish_out_of_ssa (&SA);
|
|
|
|
/* We are no longer in SSA form. */
|
|
cfun->gimple_df->in_ssa_p = false;
|
|
|
|
/* Expansion is used by optimization passes too, set maybe_hot_insn_p
|
|
conservatively to true until they are all profile aware. */
|
|
pointer_map_destroy (lab_rtx_for_bb);
|
|
free_histograms ();
|
|
|
|
construct_exit_block ();
|
|
set_curr_insn_block (DECL_INITIAL (current_function_decl));
|
|
insn_locators_finalize ();
|
|
|
|
/* Zap the tree EH table. */
|
|
set_eh_throw_stmt_table (cfun, NULL);
|
|
|
|
rebuild_jump_labels (get_insns ());
|
|
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
|
{
|
|
if (e->insns.r)
|
|
commit_one_edge_insertion (e);
|
|
else
|
|
ei_next (&ei);
|
|
}
|
|
}
|
|
|
|
/* We're done expanding trees to RTL. */
|
|
currently_expanding_to_rtl = 0;
|
|
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
|
{
|
|
/* Clear EDGE_EXECUTABLE. This flag is never used in the backend. */
|
|
e->flags &= ~EDGE_EXECUTABLE;
|
|
|
|
/* At the moment not all abnormal edges match the RTL
|
|
representation. It is safe to remove them here as
|
|
find_many_sub_basic_blocks will rediscover them.
|
|
In the future we should get this fixed properly. */
|
|
if ((e->flags & EDGE_ABNORMAL)
|
|
&& !(e->flags & EDGE_SIBCALL))
|
|
remove_edge (e);
|
|
else
|
|
ei_next (&ei);
|
|
}
|
|
}
|
|
|
|
blocks = sbitmap_alloc (last_basic_block);
|
|
sbitmap_ones (blocks);
|
|
find_many_sub_basic_blocks (blocks);
|
|
sbitmap_free (blocks);
|
|
purge_all_dead_edges ();
|
|
|
|
compact_blocks ();
|
|
|
|
expand_stack_alignment ();
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
verify_flow_info ();
|
|
#endif
|
|
|
|
/* There's no need to defer outputting this function any more; we
|
|
know we want to output it. */
|
|
DECL_DEFER_OUTPUT (current_function_decl) = 0;
|
|
|
|
/* Now that we're done expanding trees to RTL, we shouldn't have any
|
|
more CONCATs anywhere. */
|
|
generating_concat_p = 0;
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
"\n\n;;\n;; Full RTL generated for this function:\n;;\n");
|
|
/* And the pass manager will dump RTL for us. */
|
|
}
|
|
|
|
/* If we're emitting a nested function, make sure its parent gets
|
|
emitted as well. Doing otherwise confuses debug info. */
|
|
{
|
|
tree parent;
|
|
for (parent = DECL_CONTEXT (current_function_decl);
|
|
parent != NULL_TREE;
|
|
parent = get_containing_scope (parent))
|
|
if (TREE_CODE (parent) == FUNCTION_DECL)
|
|
TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (parent)) = 1;
|
|
}
|
|
|
|
/* We are now committed to emitting code for this function. Do any
|
|
preparation, such as emitting abstract debug info for the inline
|
|
before it gets mangled by optimization. */
|
|
if (cgraph_function_possibly_inlined_p (current_function_decl))
|
|
(*debug_hooks->outlining_inline_function) (current_function_decl);
|
|
|
|
TREE_ASM_WRITTEN (current_function_decl) = 1;
|
|
|
|
/* After expanding, the return labels are no longer needed. */
|
|
return_label = NULL;
|
|
naked_return_label = NULL;
|
|
/* Tag the blocks with a depth number so that change_scope can find
|
|
the common parent easily. */
|
|
set_block_levels (DECL_INITIAL (cfun->decl), 0);
|
|
default_rtl_profile ();
|
|
return 0;
|
|
}
|
|
|
|
struct rtl_opt_pass pass_expand =
|
|
{
|
|
{
|
|
RTL_PASS,
|
|
"expand", /* name */
|
|
NULL, /* gate */
|
|
gimple_expand_cfg, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_EXPAND, /* tv_id */
|
|
PROP_ssa | PROP_gimple_leh | PROP_cfg
|
|
| PROP_gimple_lcx, /* properties_required */
|
|
PROP_rtl, /* properties_provided */
|
|
PROP_ssa | PROP_trees, /* properties_destroyed */
|
|
TODO_verify_ssa | TODO_verify_flow
|
|
| TODO_verify_stmts, /* todo_flags_start */
|
|
TODO_dump_func
|
|
| TODO_ggc_collect /* todo_flags_finish */
|
|
}
|
|
};
|