1236 lines
31 KiB
C++
1236 lines
31 KiB
C++
// prims.cc - Code for core of runtime environment.
|
||
|
||
/* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation
|
||
|
||
This file is part of libgcj.
|
||
|
||
This software is copyrighted work licensed under the terms of the
|
||
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
|
||
details. */
|
||
|
||
#include <config.h>
|
||
#include <platform.h>
|
||
|
||
#include <stdlib.h>
|
||
#include <stdarg.h>
|
||
#include <stdio.h>
|
||
#include <string.h>
|
||
#include <signal.h>
|
||
|
||
#ifdef HAVE_UNISTD_H
|
||
#include <unistd.h>
|
||
#endif
|
||
|
||
#include <gcj/cni.h>
|
||
#include <jvm.h>
|
||
#include <java-signal.h>
|
||
#include <java-threads.h>
|
||
|
||
#ifdef ENABLE_JVMPI
|
||
#include <jvmpi.h>
|
||
#include <java/lang/ThreadGroup.h>
|
||
#endif
|
||
|
||
#ifndef DISABLE_GETENV_PROPERTIES
|
||
#include <ctype.h>
|
||
#include <java-props.h>
|
||
#define PROCESS_GCJ_PROPERTIES process_gcj_properties()
|
||
#else
|
||
#define PROCESS_GCJ_PROPERTIES
|
||
#endif // DISABLE_GETENV_PROPERTIES
|
||
|
||
#include <java/lang/Class.h>
|
||
#include <java/lang/ClassLoader.h>
|
||
#include <java/lang/Runtime.h>
|
||
#include <java/lang/String.h>
|
||
#include <java/lang/Thread.h>
|
||
#include <java/lang/ThreadGroup.h>
|
||
#include <java/lang/ArrayIndexOutOfBoundsException.h>
|
||
#include <java/lang/ArithmeticException.h>
|
||
#include <java/lang/ClassFormatError.h>
|
||
#include <java/lang/InternalError.h>
|
||
#include <java/lang/NegativeArraySizeException.h>
|
||
#include <java/lang/NullPointerException.h>
|
||
#include <java/lang/OutOfMemoryError.h>
|
||
#include <java/lang/System.h>
|
||
#include <java/lang/VMThrowable.h>
|
||
#include <java/lang/reflect/Modifier.h>
|
||
#include <java/io/PrintStream.h>
|
||
#include <java/lang/UnsatisfiedLinkError.h>
|
||
#include <java/lang/VirtualMachineError.h>
|
||
#include <gnu/gcj/runtime/VMClassLoader.h>
|
||
#include <gnu/gcj/runtime/FinalizerThread.h>
|
||
#include <gnu/gcj/runtime/FirstThread.h>
|
||
|
||
#ifdef USE_LTDL
|
||
#include <ltdl.h>
|
||
#endif
|
||
|
||
// We allocate a single OutOfMemoryError exception which we keep
|
||
// around for use if we run out of memory.
|
||
static java::lang::OutOfMemoryError *no_memory;
|
||
|
||
// Number of bytes in largest array object we create. This could be
|
||
// increased to the largest size_t value, so long as the appropriate
|
||
// functions are changed to take a size_t argument instead of jint.
|
||
#define MAX_OBJECT_SIZE ((1<<31) - 1)
|
||
|
||
static const char *no_properties[] = { NULL };
|
||
|
||
// Properties set at compile time.
|
||
const char **_Jv_Compiler_Properties = no_properties;
|
||
|
||
// The JAR file to add to the beginning of java.class.path.
|
||
const char *_Jv_Jar_Class_Path;
|
||
|
||
#ifndef DISABLE_GETENV_PROPERTIES
|
||
// Property key/value pairs.
|
||
property_pair *_Jv_Environment_Properties;
|
||
#endif
|
||
|
||
// Stash the argv pointer to benefit native libraries that need it.
|
||
const char **_Jv_argv;
|
||
int _Jv_argc;
|
||
|
||
// Argument support.
|
||
int
|
||
_Jv_GetNbArgs (void)
|
||
{
|
||
// _Jv_argc is 0 if not explicitly initialized.
|
||
return _Jv_argc;
|
||
}
|
||
|
||
const char *
|
||
_Jv_GetSafeArg (int index)
|
||
{
|
||
if (index >=0 && index < _Jv_GetNbArgs ())
|
||
return _Jv_argv[index];
|
||
else
|
||
return "";
|
||
}
|
||
|
||
void
|
||
_Jv_SetArgs (int argc, const char **argv)
|
||
{
|
||
_Jv_argc = argc;
|
||
_Jv_argv = argv;
|
||
}
|
||
|
||
#ifdef ENABLE_JVMPI
|
||
// Pointer to JVMPI notification functions.
|
||
void (*_Jv_JVMPI_Notify_OBJECT_ALLOC) (JVMPI_Event *event);
|
||
void (*_Jv_JVMPI_Notify_THREAD_START) (JVMPI_Event *event);
|
||
void (*_Jv_JVMPI_Notify_THREAD_END) (JVMPI_Event *event);
|
||
#endif
|
||
|
||
|
||
/* Unblock a signal. Unless we do this, the signal may only be sent
|
||
once. */
|
||
static void
|
||
unblock_signal (int signum)
|
||
{
|
||
#ifdef _POSIX_VERSION
|
||
sigset_t sigs;
|
||
|
||
sigemptyset (&sigs);
|
||
sigaddset (&sigs, signum);
|
||
sigprocmask (SIG_UNBLOCK, &sigs, NULL);
|
||
#endif
|
||
}
|
||
|
||
#ifdef HANDLE_SEGV
|
||
SIGNAL_HANDLER (catch_segv)
|
||
{
|
||
java::lang::NullPointerException *nullp
|
||
= new java::lang::NullPointerException;
|
||
unblock_signal (SIGSEGV);
|
||
MAKE_THROW_FRAME (nullp);
|
||
throw nullp;
|
||
}
|
||
#endif
|
||
|
||
#ifdef HANDLE_FPE
|
||
SIGNAL_HANDLER (catch_fpe)
|
||
{
|
||
java::lang::ArithmeticException *arithexception
|
||
= new java::lang::ArithmeticException (JvNewStringLatin1 ("/ by zero"));
|
||
unblock_signal (SIGFPE);
|
||
#ifdef HANDLE_DIVIDE_OVERFLOW
|
||
HANDLE_DIVIDE_OVERFLOW;
|
||
#else
|
||
MAKE_THROW_FRAME (arithexception);
|
||
#endif
|
||
throw arithexception;
|
||
}
|
||
#endif
|
||
|
||
|
||
|
||
jboolean
|
||
_Jv_equalUtf8Consts (const Utf8Const* a, const Utf8Const *b)
|
||
{
|
||
int len;
|
||
const _Jv_ushort *aptr, *bptr;
|
||
if (a == b)
|
||
return true;
|
||
if (a->hash != b->hash)
|
||
return false;
|
||
len = a->length;
|
||
if (b->length != len)
|
||
return false;
|
||
aptr = (const _Jv_ushort *)a->data;
|
||
bptr = (const _Jv_ushort *)b->data;
|
||
len = (len + 1) >> 1;
|
||
while (--len >= 0)
|
||
if (*aptr++ != *bptr++)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* True iff A is equal to STR.
|
||
HASH is STR->hashCode().
|
||
*/
|
||
|
||
jboolean
|
||
_Jv_equal (Utf8Const* a, jstring str, jint hash)
|
||
{
|
||
if (a->hash != (_Jv_ushort) hash)
|
||
return false;
|
||
jint len = str->length();
|
||
jint i = 0;
|
||
jchar *sptr = _Jv_GetStringChars (str);
|
||
unsigned char* ptr = (unsigned char*) a->data;
|
||
unsigned char* limit = ptr + a->length;
|
||
for (;; i++, sptr++)
|
||
{
|
||
int ch = UTF8_GET (ptr, limit);
|
||
if (i == len)
|
||
return ch < 0;
|
||
if (ch != *sptr)
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Like _Jv_equal, but stop after N characters. */
|
||
jboolean
|
||
_Jv_equaln (Utf8Const *a, jstring str, jint n)
|
||
{
|
||
jint len = str->length();
|
||
jint i = 0;
|
||
jchar *sptr = _Jv_GetStringChars (str);
|
||
unsigned char* ptr = (unsigned char*) a->data;
|
||
unsigned char* limit = ptr + a->length;
|
||
for (; n-- > 0; i++, sptr++)
|
||
{
|
||
int ch = UTF8_GET (ptr, limit);
|
||
if (i == len)
|
||
return ch < 0;
|
||
if (ch != *sptr)
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Count the number of Unicode chars encoded in a given Ut8 string. */
|
||
int
|
||
_Jv_strLengthUtf8(char* str, int len)
|
||
{
|
||
unsigned char* ptr;
|
||
unsigned char* limit;
|
||
int str_length;
|
||
|
||
ptr = (unsigned char*) str;
|
||
limit = ptr + len;
|
||
str_length = 0;
|
||
for (; ptr < limit; str_length++)
|
||
{
|
||
if (UTF8_GET (ptr, limit) < 0)
|
||
return (-1);
|
||
}
|
||
return (str_length);
|
||
}
|
||
|
||
/* Calculate a hash value for a string encoded in Utf8 format.
|
||
* This returns the same hash value as specified or java.lang.String.hashCode.
|
||
*/
|
||
static jint
|
||
hashUtf8String (char* str, int len)
|
||
{
|
||
unsigned char* ptr = (unsigned char*) str;
|
||
unsigned char* limit = ptr + len;
|
||
jint hash = 0;
|
||
|
||
for (; ptr < limit;)
|
||
{
|
||
int ch = UTF8_GET (ptr, limit);
|
||
/* Updated specification from
|
||
http://www.javasoft.com/docs/books/jls/clarify.html. */
|
||
hash = (31 * hash) + ch;
|
||
}
|
||
return hash;
|
||
}
|
||
|
||
_Jv_Utf8Const *
|
||
_Jv_makeUtf8Const (char* s, int len)
|
||
{
|
||
if (len < 0)
|
||
len = strlen (s);
|
||
Utf8Const* m = (Utf8Const*) _Jv_AllocBytes (sizeof(Utf8Const) + len + 1);
|
||
memcpy (m->data, s, len);
|
||
m->data[len] = 0;
|
||
m->length = len;
|
||
m->hash = hashUtf8String (s, len) & 0xFFFF;
|
||
return (m);
|
||
}
|
||
|
||
_Jv_Utf8Const *
|
||
_Jv_makeUtf8Const (jstring string)
|
||
{
|
||
jint hash = string->hashCode ();
|
||
jint len = _Jv_GetStringUTFLength (string);
|
||
|
||
Utf8Const* m = (Utf8Const*)
|
||
_Jv_AllocBytes (sizeof(Utf8Const) + len + 1);
|
||
|
||
m->hash = hash;
|
||
m->length = len;
|
||
|
||
_Jv_GetStringUTFRegion (string, 0, string->length (), m->data);
|
||
m->data[len] = 0;
|
||
|
||
return m;
|
||
}
|
||
|
||
|
||
|
||
#ifdef DEBUG
|
||
void
|
||
_Jv_Abort (const char *function, const char *file, int line,
|
||
const char *message)
|
||
#else
|
||
void
|
||
_Jv_Abort (const char *, const char *, int, const char *message)
|
||
#endif
|
||
{
|
||
#ifdef DEBUG
|
||
fprintf (stderr,
|
||
"libgcj failure: %s\n in function %s, file %s, line %d\n",
|
||
message, function, file, line);
|
||
#else
|
||
fprintf (stderr, "libgcj failure: %s\n", message);
|
||
#endif
|
||
abort ();
|
||
}
|
||
|
||
static void
|
||
fail_on_finalization (jobject)
|
||
{
|
||
JvFail ("object was finalized");
|
||
}
|
||
|
||
void
|
||
_Jv_GCWatch (jobject obj)
|
||
{
|
||
_Jv_RegisterFinalizer (obj, fail_on_finalization);
|
||
}
|
||
|
||
void
|
||
_Jv_ThrowBadArrayIndex(jint bad_index)
|
||
{
|
||
throw new java::lang::ArrayIndexOutOfBoundsException
|
||
(java::lang::String::valueOf (bad_index));
|
||
}
|
||
|
||
void
|
||
_Jv_ThrowNullPointerException ()
|
||
{
|
||
throw new java::lang::NullPointerException;
|
||
}
|
||
|
||
// Explicitly throw a no memory exception.
|
||
// The collector calls this when it encounters an out-of-memory condition.
|
||
void _Jv_ThrowNoMemory()
|
||
{
|
||
throw no_memory;
|
||
}
|
||
|
||
#ifdef ENABLE_JVMPI
|
||
static void
|
||
jvmpi_notify_alloc(jclass klass, jint size, jobject obj)
|
||
{
|
||
// Service JVMPI allocation request.
|
||
if (__builtin_expect (_Jv_JVMPI_Notify_OBJECT_ALLOC != 0, false))
|
||
{
|
||
JVMPI_Event event;
|
||
|
||
event.event_type = JVMPI_EVENT_OBJECT_ALLOC;
|
||
event.env_id = NULL;
|
||
event.u.obj_alloc.arena_id = 0;
|
||
event.u.obj_alloc.class_id = (jobjectID) klass;
|
||
event.u.obj_alloc.is_array = 0;
|
||
event.u.obj_alloc.size = size;
|
||
event.u.obj_alloc.obj_id = (jobjectID) obj;
|
||
|
||
// FIXME: This doesn't look right for the Boehm GC. A GC may
|
||
// already be in progress. _Jv_DisableGC () doesn't wait for it.
|
||
// More importantly, I don't see the need for disabling GC, since we
|
||
// blatantly have a pointer to obj on our stack, ensuring that the
|
||
// object can't be collected. Even for a nonconservative collector,
|
||
// it appears to me that this must be true, since we are about to
|
||
// return obj. Isn't this whole approach way too intrusive for
|
||
// a useful profiling interface? - HB
|
||
_Jv_DisableGC ();
|
||
(*_Jv_JVMPI_Notify_OBJECT_ALLOC) (&event);
|
||
_Jv_EnableGC ();
|
||
}
|
||
}
|
||
#else /* !ENABLE_JVMPI */
|
||
# define jvmpi_notify_alloc(klass,size,obj) /* do nothing */
|
||
#endif
|
||
|
||
// Allocate a new object of class KLASS.
|
||
// First a version that assumes that we have no finalizer, and that
|
||
// the class is already initialized.
|
||
// If we know that JVMPI is disabled, this can be replaced by a direct call
|
||
// to the allocator for the appropriate GC.
|
||
jobject
|
||
_Jv_AllocObjectNoInitNoFinalizer (jclass klass)
|
||
{
|
||
jint size = klass->size ();
|
||
jobject obj = (jobject) _Jv_AllocObj (size, klass);
|
||
jvmpi_notify_alloc (klass, size, obj);
|
||
return obj;
|
||
}
|
||
|
||
// And now a version that initializes if necessary.
|
||
jobject
|
||
_Jv_AllocObjectNoFinalizer (jclass klass)
|
||
{
|
||
_Jv_InitClass (klass);
|
||
jint size = klass->size ();
|
||
jobject obj = (jobject) _Jv_AllocObj (size, klass);
|
||
jvmpi_notify_alloc (klass, size, obj);
|
||
return obj;
|
||
}
|
||
|
||
// And now the general version that registers a finalizer if necessary.
|
||
jobject
|
||
_Jv_AllocObject (jclass klass)
|
||
{
|
||
jobject obj = _Jv_AllocObjectNoFinalizer (klass);
|
||
|
||
// We assume that the compiler only generates calls to this routine
|
||
// if there really is an interesting finalizer.
|
||
// Unfortunately, we still have to the dynamic test, since there may
|
||
// be cni calls to this routine.
|
||
// Note that on IA64 get_finalizer() returns the starting address of the
|
||
// function, not a function pointer. Thus this still works.
|
||
if (klass->vtable->get_finalizer ()
|
||
!= java::lang::Object::class$.vtable->get_finalizer ())
|
||
_Jv_RegisterFinalizer (obj, _Jv_FinalizeObject);
|
||
return obj;
|
||
}
|
||
|
||
// Allocate a String, including variable length storage.
|
||
jstring
|
||
_Jv_AllocString(jsize len)
|
||
{
|
||
using namespace java::lang;
|
||
|
||
jsize sz = sizeof(java::lang::String) + len * sizeof(jchar);
|
||
|
||
// We assert that for strings allocated this way, the data field
|
||
// will always point to the object itself. Thus there is no reason
|
||
// for the garbage collector to scan any of it.
|
||
// Furthermore, we're about to overwrite the string data, so
|
||
// initialization of the object is not an issue.
|
||
|
||
// String needs no initialization, and there is no finalizer, so
|
||
// we can go directly to the collector's allocator interface.
|
||
jstring obj = (jstring) _Jv_AllocPtrFreeObj(sz, &String::class$);
|
||
|
||
obj->data = obj;
|
||
obj->boffset = sizeof(java::lang::String);
|
||
obj->count = len;
|
||
obj->cachedHashCode = 0;
|
||
|
||
#ifdef ENABLE_JVMPI
|
||
// Service JVMPI request.
|
||
|
||
if (__builtin_expect (_Jv_JVMPI_Notify_OBJECT_ALLOC != 0, false))
|
||
{
|
||
JVMPI_Event event;
|
||
|
||
event.event_type = JVMPI_EVENT_OBJECT_ALLOC;
|
||
event.env_id = NULL;
|
||
event.u.obj_alloc.arena_id = 0;
|
||
event.u.obj_alloc.class_id = (jobjectID) &String::class$;
|
||
event.u.obj_alloc.is_array = 0;
|
||
event.u.obj_alloc.size = sz;
|
||
event.u.obj_alloc.obj_id = (jobjectID) obj;
|
||
|
||
_Jv_DisableGC ();
|
||
(*_Jv_JVMPI_Notify_OBJECT_ALLOC) (&event);
|
||
_Jv_EnableGC ();
|
||
}
|
||
#endif
|
||
|
||
return obj;
|
||
}
|
||
|
||
// A version of the above that assumes the object contains no pointers,
|
||
// and requires no finalization. This can't happen if we need pointers
|
||
// to locks.
|
||
#ifdef JV_HASH_SYNCHRONIZATION
|
||
jobject
|
||
_Jv_AllocPtrFreeObject (jclass klass)
|
||
{
|
||
_Jv_InitClass (klass);
|
||
jint size = klass->size ();
|
||
|
||
jobject obj = (jobject) _Jv_AllocPtrFreeObj (size, klass);
|
||
|
||
#ifdef ENABLE_JVMPI
|
||
// Service JVMPI request.
|
||
|
||
if (__builtin_expect (_Jv_JVMPI_Notify_OBJECT_ALLOC != 0, false))
|
||
{
|
||
JVMPI_Event event;
|
||
|
||
event.event_type = JVMPI_EVENT_OBJECT_ALLOC;
|
||
event.env_id = NULL;
|
||
event.u.obj_alloc.arena_id = 0;
|
||
event.u.obj_alloc.class_id = (jobjectID) klass;
|
||
event.u.obj_alloc.is_array = 0;
|
||
event.u.obj_alloc.size = size;
|
||
event.u.obj_alloc.obj_id = (jobjectID) obj;
|
||
|
||
_Jv_DisableGC ();
|
||
(*_Jv_JVMPI_Notify_OBJECT_ALLOC) (&event);
|
||
_Jv_EnableGC ();
|
||
}
|
||
#endif
|
||
|
||
return obj;
|
||
}
|
||
#endif /* JV_HASH_SYNCHRONIZATION */
|
||
|
||
|
||
// Allocate a new array of Java objects. Each object is of type
|
||
// `elementClass'. `init' is used to initialize each slot in the
|
||
// array.
|
||
jobjectArray
|
||
_Jv_NewObjectArray (jsize count, jclass elementClass, jobject init)
|
||
{
|
||
if (__builtin_expect (count < 0, false))
|
||
throw new java::lang::NegativeArraySizeException;
|
||
|
||
JvAssert (! elementClass->isPrimitive ());
|
||
|
||
// Ensure that elements pointer is properly aligned.
|
||
jobjectArray obj = NULL;
|
||
size_t size = (size_t) elements (obj);
|
||
// Check for overflow.
|
||
if (__builtin_expect ((size_t) count >
|
||
(MAX_OBJECT_SIZE - 1 - size) / sizeof (jobject), false))
|
||
throw no_memory;
|
||
|
||
size += count * sizeof (jobject);
|
||
|
||
jclass klass = _Jv_GetArrayClass (elementClass,
|
||
elementClass->getClassLoaderInternal());
|
||
|
||
obj = (jobjectArray) _Jv_AllocArray (size, klass);
|
||
// Cast away const.
|
||
jsize *lp = const_cast<jsize *> (&obj->length);
|
||
*lp = count;
|
||
// We know the allocator returns zeroed memory. So don't bother
|
||
// zeroing it again.
|
||
if (init)
|
||
{
|
||
jobject *ptr = elements(obj);
|
||
while (--count >= 0)
|
||
*ptr++ = init;
|
||
}
|
||
return obj;
|
||
}
|
||
|
||
// Allocate a new array of primitives. ELTYPE is the type of the
|
||
// element, COUNT is the size of the array.
|
||
jobject
|
||
_Jv_NewPrimArray (jclass eltype, jint count)
|
||
{
|
||
int elsize = eltype->size();
|
||
if (__builtin_expect (count < 0, false))
|
||
throw new java::lang::NegativeArraySizeException;
|
||
|
||
JvAssert (eltype->isPrimitive ());
|
||
jobject dummy = NULL;
|
||
size_t size = (size_t) _Jv_GetArrayElementFromElementType (dummy, eltype);
|
||
|
||
// Check for overflow.
|
||
if (__builtin_expect ((size_t) count >
|
||
(MAX_OBJECT_SIZE - size) / elsize, false))
|
||
throw no_memory;
|
||
|
||
jclass klass = _Jv_GetArrayClass (eltype, 0);
|
||
|
||
# ifdef JV_HASH_SYNCHRONIZATION
|
||
// Since the vtable is always statically allocated,
|
||
// these are completely pointerfree! Make sure the GC doesn't touch them.
|
||
__JArray *arr =
|
||
(__JArray*) _Jv_AllocPtrFreeObj (size + elsize * count, klass);
|
||
memset((char *)arr + size, 0, elsize * count);
|
||
# else
|
||
__JArray *arr = (__JArray*) _Jv_AllocObj (size + elsize * count, klass);
|
||
// Note that we assume we are given zeroed memory by the allocator.
|
||
# endif
|
||
// Cast away const.
|
||
jsize *lp = const_cast<jsize *> (&arr->length);
|
||
*lp = count;
|
||
|
||
return arr;
|
||
}
|
||
|
||
jobject
|
||
_Jv_NewArray (jint type, jint size)
|
||
{
|
||
switch (type)
|
||
{
|
||
case 4: return JvNewBooleanArray (size);
|
||
case 5: return JvNewCharArray (size);
|
||
case 6: return JvNewFloatArray (size);
|
||
case 7: return JvNewDoubleArray (size);
|
||
case 8: return JvNewByteArray (size);
|
||
case 9: return JvNewShortArray (size);
|
||
case 10: return JvNewIntArray (size);
|
||
case 11: return JvNewLongArray (size);
|
||
}
|
||
throw new java::lang::InternalError
|
||
(JvNewStringLatin1 ("invalid type code in _Jv_NewArray"));
|
||
}
|
||
|
||
// Allocate a possibly multi-dimensional array but don't check that
|
||
// any array length is <0.
|
||
static jobject
|
||
_Jv_NewMultiArrayUnchecked (jclass type, jint dimensions, jint *sizes)
|
||
{
|
||
JvAssert (type->isArray());
|
||
jclass element_type = type->getComponentType();
|
||
jobject result;
|
||
if (element_type->isPrimitive())
|
||
result = _Jv_NewPrimArray (element_type, sizes[0]);
|
||
else
|
||
result = _Jv_NewObjectArray (sizes[0], element_type, NULL);
|
||
|
||
if (dimensions > 1)
|
||
{
|
||
JvAssert (! element_type->isPrimitive());
|
||
JvAssert (element_type->isArray());
|
||
jobject *contents = elements ((jobjectArray) result);
|
||
for (int i = 0; i < sizes[0]; ++i)
|
||
contents[i] = _Jv_NewMultiArrayUnchecked (element_type, dimensions - 1,
|
||
sizes + 1);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
jobject
|
||
_Jv_NewMultiArray (jclass type, jint dimensions, jint *sizes)
|
||
{
|
||
for (int i = 0; i < dimensions; ++i)
|
||
if (sizes[i] < 0)
|
||
throw new java::lang::NegativeArraySizeException;
|
||
|
||
return _Jv_NewMultiArrayUnchecked (type, dimensions, sizes);
|
||
}
|
||
|
||
jobject
|
||
_Jv_NewMultiArray (jclass array_type, jint dimensions, ...)
|
||
{
|
||
va_list args;
|
||
jint sizes[dimensions];
|
||
va_start (args, dimensions);
|
||
for (int i = 0; i < dimensions; ++i)
|
||
{
|
||
jint size = va_arg (args, jint);
|
||
if (size < 0)
|
||
throw new java::lang::NegativeArraySizeException;
|
||
sizes[i] = size;
|
||
}
|
||
va_end (args);
|
||
|
||
return _Jv_NewMultiArrayUnchecked (array_type, dimensions, sizes);
|
||
}
|
||
|
||
|
||
|
||
// Ensure 8-byte alignment, for hash synchronization.
|
||
#define DECLARE_PRIM_TYPE(NAME) \
|
||
_Jv_ArrayVTable _Jv_##NAME##VTable; \
|
||
java::lang::Class _Jv_##NAME##Class __attribute__ ((aligned (8)));
|
||
|
||
DECLARE_PRIM_TYPE(byte)
|
||
DECLARE_PRIM_TYPE(short)
|
||
DECLARE_PRIM_TYPE(int)
|
||
DECLARE_PRIM_TYPE(long)
|
||
DECLARE_PRIM_TYPE(boolean)
|
||
DECLARE_PRIM_TYPE(char)
|
||
DECLARE_PRIM_TYPE(float)
|
||
DECLARE_PRIM_TYPE(double)
|
||
DECLARE_PRIM_TYPE(void)
|
||
|
||
void
|
||
_Jv_InitPrimClass (jclass cl, char *cname, char sig, int len,
|
||
_Jv_ArrayVTable *array_vtable)
|
||
{
|
||
using namespace java::lang::reflect;
|
||
|
||
// We must set the vtable for the class; the Java constructor
|
||
// doesn't do this.
|
||
(*(_Jv_VTable **) cl) = java::lang::Class::class$.vtable;
|
||
|
||
// Initialize the fields we care about. We do this in the same
|
||
// order they are declared in Class.h.
|
||
cl->name = _Jv_makeUtf8Const ((char *) cname, -1);
|
||
cl->accflags = Modifier::PUBLIC | Modifier::FINAL | Modifier::ABSTRACT;
|
||
cl->method_count = sig;
|
||
cl->size_in_bytes = len;
|
||
cl->vtable = JV_PRIMITIVE_VTABLE;
|
||
cl->state = JV_STATE_DONE;
|
||
cl->depth = -1;
|
||
if (sig != 'V')
|
||
_Jv_NewArrayClass (cl, NULL, (_Jv_VTable *) array_vtable);
|
||
}
|
||
|
||
jclass
|
||
_Jv_FindClassFromSignature (char *sig, java::lang::ClassLoader *loader)
|
||
{
|
||
switch (*sig)
|
||
{
|
||
case 'B':
|
||
return JvPrimClass (byte);
|
||
case 'S':
|
||
return JvPrimClass (short);
|
||
case 'I':
|
||
return JvPrimClass (int);
|
||
case 'J':
|
||
return JvPrimClass (long);
|
||
case 'Z':
|
||
return JvPrimClass (boolean);
|
||
case 'C':
|
||
return JvPrimClass (char);
|
||
case 'F':
|
||
return JvPrimClass (float);
|
||
case 'D':
|
||
return JvPrimClass (double);
|
||
case 'V':
|
||
return JvPrimClass (void);
|
||
case 'L':
|
||
{
|
||
int i;
|
||
for (i = 1; sig[i] && sig[i] != ';'; ++i)
|
||
;
|
||
_Jv_Utf8Const *name = _Jv_makeUtf8Const (&sig[1], i - 1);
|
||
return _Jv_FindClass (name, loader);
|
||
}
|
||
case '[':
|
||
{
|
||
jclass klass = _Jv_FindClassFromSignature (&sig[1], loader);
|
||
if (! klass)
|
||
return NULL;
|
||
return _Jv_GetArrayClass (klass, loader);
|
||
}
|
||
}
|
||
|
||
return NULL; // Placate compiler.
|
||
}
|
||
|
||
|
||
|
||
JArray<jstring> *
|
||
JvConvertArgv (int argc, const char **argv)
|
||
{
|
||
if (argc < 0)
|
||
argc = 0;
|
||
jobjectArray ar = JvNewObjectArray(argc, &StringClass, NULL);
|
||
jobject *ptr = elements(ar);
|
||
jbyteArray bytes = NULL;
|
||
for (int i = 0; i < argc; i++)
|
||
{
|
||
const char *arg = argv[i];
|
||
int len = strlen (arg);
|
||
if (bytes == NULL || bytes->length < len)
|
||
bytes = JvNewByteArray (len);
|
||
jbyte *bytePtr = elements (bytes);
|
||
// We assume jbyte == char.
|
||
memcpy (bytePtr, arg, len);
|
||
|
||
// Now convert using the default encoding.
|
||
*ptr++ = new java::lang::String (bytes, 0, len);
|
||
}
|
||
return (JArray<jstring>*) ar;
|
||
}
|
||
|
||
// FIXME: These variables are static so that they will be
|
||
// automatically scanned by the Boehm collector. This is needed
|
||
// because with qthreads the collector won't scan the initial stack --
|
||
// it will only scan the qthreads stacks.
|
||
|
||
// Command line arguments.
|
||
static JArray<jstring> *arg_vec;
|
||
|
||
// The primary thread.
|
||
static java::lang::Thread *main_thread;
|
||
|
||
#ifndef DISABLE_GETENV_PROPERTIES
|
||
|
||
static char *
|
||
next_property_key (char *s, size_t *length)
|
||
{
|
||
size_t l = 0;
|
||
|
||
JvAssert (s);
|
||
|
||
// Skip over whitespace
|
||
while (isspace (*s))
|
||
s++;
|
||
|
||
// If we've reached the end, return NULL. Also return NULL if for
|
||
// some reason we've come across a malformed property string.
|
||
if (*s == 0
|
||
|| *s == ':'
|
||
|| *s == '=')
|
||
return NULL;
|
||
|
||
// Determine the length of the property key.
|
||
while (s[l] != 0
|
||
&& ! isspace (s[l])
|
||
&& s[l] != ':'
|
||
&& s[l] != '=')
|
||
{
|
||
if (s[l] == '\\'
|
||
&& s[l+1] != 0)
|
||
l++;
|
||
l++;
|
||
}
|
||
|
||
*length = l;
|
||
|
||
return s;
|
||
}
|
||
|
||
static char *
|
||
next_property_value (char *s, size_t *length)
|
||
{
|
||
size_t l = 0;
|
||
|
||
JvAssert (s);
|
||
|
||
while (isspace (*s))
|
||
s++;
|
||
|
||
if (*s == ':'
|
||
|| *s == '=')
|
||
s++;
|
||
|
||
while (isspace (*s))
|
||
s++;
|
||
|
||
// If we've reached the end, return NULL.
|
||
if (*s == 0)
|
||
return NULL;
|
||
|
||
// Determine the length of the property value.
|
||
while (s[l] != 0
|
||
&& ! isspace (s[l])
|
||
&& s[l] != ':'
|
||
&& s[l] != '=')
|
||
{
|
||
if (s[l] == '\\'
|
||
&& s[l+1] != 0)
|
||
l += 2;
|
||
else
|
||
l++;
|
||
}
|
||
|
||
*length = l;
|
||
|
||
return s;
|
||
}
|
||
|
||
static void
|
||
process_gcj_properties ()
|
||
{
|
||
char *props = getenv("GCJ_PROPERTIES");
|
||
char *p = props;
|
||
size_t length;
|
||
size_t property_count = 0;
|
||
|
||
if (NULL == props)
|
||
return;
|
||
|
||
// Whip through props quickly in order to count the number of
|
||
// property values.
|
||
while (p && (p = next_property_key (p, &length)))
|
||
{
|
||
// Skip to the end of the key
|
||
p += length;
|
||
|
||
p = next_property_value (p, &length);
|
||
if (p)
|
||
p += length;
|
||
|
||
property_count++;
|
||
}
|
||
|
||
// Allocate an array of property value/key pairs.
|
||
_Jv_Environment_Properties =
|
||
(property_pair *) malloc (sizeof(property_pair)
|
||
* (property_count + 1));
|
||
|
||
// Go through the properties again, initializing _Jv_Properties
|
||
// along the way.
|
||
p = props;
|
||
property_count = 0;
|
||
while (p && (p = next_property_key (p, &length)))
|
||
{
|
||
_Jv_Environment_Properties[property_count].key = p;
|
||
_Jv_Environment_Properties[property_count].key_length = length;
|
||
|
||
// Skip to the end of the key
|
||
p += length;
|
||
|
||
p = next_property_value (p, &length);
|
||
|
||
_Jv_Environment_Properties[property_count].value = p;
|
||
_Jv_Environment_Properties[property_count].value_length = length;
|
||
|
||
if (p)
|
||
p += length;
|
||
|
||
property_count++;
|
||
}
|
||
memset ((void *) &_Jv_Environment_Properties[property_count],
|
||
0, sizeof (property_pair));
|
||
{
|
||
size_t i = 0;
|
||
|
||
// Null terminate the strings.
|
||
while (_Jv_Environment_Properties[i].key)
|
||
{
|
||
_Jv_Environment_Properties[i].key[_Jv_Environment_Properties[i].key_length] = 0;
|
||
_Jv_Environment_Properties[i++].value[_Jv_Environment_Properties[i].value_length] = 0;
|
||
}
|
||
}
|
||
}
|
||
#endif // DISABLE_GETENV_PROPERTIES
|
||
|
||
namespace gcj
|
||
{
|
||
_Jv_Utf8Const *void_signature;
|
||
_Jv_Utf8Const *clinit_name;
|
||
_Jv_Utf8Const *init_name;
|
||
_Jv_Utf8Const *finit_name;
|
||
|
||
bool runtimeInitialized = false;
|
||
}
|
||
|
||
jint
|
||
_Jv_CreateJavaVM (void* /*vm_args*/)
|
||
{
|
||
using namespace gcj;
|
||
|
||
if (runtimeInitialized)
|
||
return -1;
|
||
|
||
runtimeInitialized = true;
|
||
|
||
PROCESS_GCJ_PROPERTIES;
|
||
|
||
_Jv_InitThreads ();
|
||
_Jv_InitGC ();
|
||
_Jv_InitializeSyncMutex ();
|
||
|
||
/* Initialize Utf8 constants declared in jvm.h. */
|
||
void_signature = _Jv_makeUtf8Const ("()V", 3);
|
||
clinit_name = _Jv_makeUtf8Const ("<clinit>", 8);
|
||
init_name = _Jv_makeUtf8Const ("<init>", 6);
|
||
finit_name = _Jv_makeUtf8Const ("finit$", 6);
|
||
|
||
/* Initialize built-in classes to represent primitive TYPEs. */
|
||
_Jv_InitPrimClass (&_Jv_byteClass, "byte", 'B', 1, &_Jv_byteVTable);
|
||
_Jv_InitPrimClass (&_Jv_shortClass, "short", 'S', 2, &_Jv_shortVTable);
|
||
_Jv_InitPrimClass (&_Jv_intClass, "int", 'I', 4, &_Jv_intVTable);
|
||
_Jv_InitPrimClass (&_Jv_longClass, "long", 'J', 8, &_Jv_longVTable);
|
||
_Jv_InitPrimClass (&_Jv_booleanClass, "boolean", 'Z', 1, &_Jv_booleanVTable);
|
||
_Jv_InitPrimClass (&_Jv_charClass, "char", 'C', 2, &_Jv_charVTable);
|
||
_Jv_InitPrimClass (&_Jv_floatClass, "float", 'F', 4, &_Jv_floatVTable);
|
||
_Jv_InitPrimClass (&_Jv_doubleClass, "double", 'D', 8, &_Jv_doubleVTable);
|
||
_Jv_InitPrimClass (&_Jv_voidClass, "void", 'V', 0, &_Jv_voidVTable);
|
||
|
||
// Turn stack trace generation off while creating exception objects.
|
||
_Jv_InitClass (&java::lang::VMThrowable::class$);
|
||
java::lang::VMThrowable::trace_enabled = 0;
|
||
|
||
// We have to initialize this fairly early, to avoid circular class
|
||
// initialization. In particular we want to start the
|
||
// initialization of ClassLoader before we start the initialization
|
||
// of VMClassLoader.
|
||
_Jv_InitClass (&java::lang::ClassLoader::class$);
|
||
// Once the bootstrap loader is in place, change it into a kind of
|
||
// system loader, by having it read the class path.
|
||
gnu::gcj::runtime::VMClassLoader::initialize();
|
||
|
||
INIT_SEGV;
|
||
#ifdef HANDLE_FPE
|
||
INIT_FPE;
|
||
#endif
|
||
|
||
no_memory = new java::lang::OutOfMemoryError;
|
||
|
||
java::lang::VMThrowable::trace_enabled = 1;
|
||
|
||
#ifdef USE_LTDL
|
||
LTDL_SET_PRELOADED_SYMBOLS ();
|
||
#endif
|
||
|
||
_Jv_platform_initialize ();
|
||
|
||
_Jv_JNI_Init ();
|
||
|
||
_Jv_GCInitializeFinalizers (&::gnu::gcj::runtime::FinalizerThread::finalizerReady);
|
||
|
||
// Start the GC finalizer thread. A VirtualMachineError can be
|
||
// thrown by the runtime if, say, threads aren't available. In this
|
||
// case finalizers simply won't run.
|
||
try
|
||
{
|
||
using namespace gnu::gcj::runtime;
|
||
FinalizerThread *ft = new FinalizerThread ();
|
||
ft->start ();
|
||
}
|
||
catch (java::lang::VirtualMachineError *ignore)
|
||
{
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
_Jv_RunMain (jclass klass, const char *name, int argc, const char **argv,
|
||
bool is_jar)
|
||
{
|
||
_Jv_SetArgs (argc, argv);
|
||
|
||
java::lang::Runtime *runtime = NULL;
|
||
|
||
try
|
||
{
|
||
// Set this very early so that it is seen when java.lang.System
|
||
// is initialized.
|
||
if (is_jar)
|
||
_Jv_Jar_Class_Path = strdup (name);
|
||
_Jv_CreateJavaVM (NULL);
|
||
|
||
// Get the Runtime here. We want to initialize it before searching
|
||
// for `main'; that way it will be set up if `main' is a JNI method.
|
||
runtime = java::lang::Runtime::getRuntime ();
|
||
|
||
#ifdef DISABLE_MAIN_ARGS
|
||
arg_vec = JvConvertArgv (0, 0);
|
||
#else
|
||
arg_vec = JvConvertArgv (argc - 1, argv + 1);
|
||
#endif
|
||
|
||
using namespace gnu::gcj::runtime;
|
||
if (klass)
|
||
main_thread = new FirstThread (klass, arg_vec);
|
||
else
|
||
main_thread = new FirstThread (JvNewStringLatin1 (name),
|
||
arg_vec, is_jar);
|
||
}
|
||
catch (java::lang::Throwable *t)
|
||
{
|
||
java::lang::System::err->println (JvNewStringLatin1
|
||
("Exception during runtime initialization"));
|
||
t->printStackTrace();
|
||
runtime->exit (1);
|
||
}
|
||
|
||
_Jv_AttachCurrentThread (main_thread);
|
||
_Jv_ThreadRun (main_thread);
|
||
_Jv_ThreadWait ();
|
||
|
||
int status = (int) java::lang::ThreadGroup::had_uncaught_exception;
|
||
runtime->exit (status);
|
||
}
|
||
|
||
void
|
||
JvRunMain (jclass klass, int argc, const char **argv)
|
||
{
|
||
_Jv_RunMain (klass, NULL, argc, argv, false);
|
||
}
|
||
|
||
|
||
|
||
// Parse a string and return a heap size.
|
||
static size_t
|
||
parse_heap_size (const char *spec)
|
||
{
|
||
char *end;
|
||
unsigned long val = strtoul (spec, &end, 10);
|
||
if (*end == 'k' || *end == 'K')
|
||
val *= 1024;
|
||
else if (*end == 'm' || *end == 'M')
|
||
val *= 1048576;
|
||
return (size_t) val;
|
||
}
|
||
|
||
// Set the initial heap size. This might be ignored by the GC layer.
|
||
// This must be called before _Jv_RunMain.
|
||
void
|
||
_Jv_SetInitialHeapSize (const char *arg)
|
||
{
|
||
size_t size = parse_heap_size (arg);
|
||
_Jv_GCSetInitialHeapSize (size);
|
||
}
|
||
|
||
// Set the maximum heap size. This might be ignored by the GC layer.
|
||
// This must be called before _Jv_RunMain.
|
||
void
|
||
_Jv_SetMaximumHeapSize (const char *arg)
|
||
{
|
||
size_t size = parse_heap_size (arg);
|
||
_Jv_GCSetMaximumHeapSize (size);
|
||
}
|
||
|
||
|
||
|
||
void *
|
||
_Jv_Malloc (jsize size)
|
||
{
|
||
if (__builtin_expect (size == 0, false))
|
||
size = 1;
|
||
void *ptr = malloc ((size_t) size);
|
||
if (__builtin_expect (ptr == NULL, false))
|
||
throw no_memory;
|
||
return ptr;
|
||
}
|
||
|
||
void *
|
||
_Jv_Realloc (void *ptr, jsize size)
|
||
{
|
||
if (__builtin_expect (size == 0, false))
|
||
size = 1;
|
||
ptr = realloc (ptr, (size_t) size);
|
||
if (__builtin_expect (ptr == NULL, false))
|
||
throw no_memory;
|
||
return ptr;
|
||
}
|
||
|
||
void *
|
||
_Jv_MallocUnchecked (jsize size)
|
||
{
|
||
if (__builtin_expect (size == 0, false))
|
||
size = 1;
|
||
return malloc ((size_t) size);
|
||
}
|
||
|
||
void
|
||
_Jv_Free (void* ptr)
|
||
{
|
||
return free (ptr);
|
||
}
|
||
|
||
|
||
|
||
// In theory, these routines can be #ifdef'd away on machines which
|
||
// support divide overflow signals. However, we never know if some
|
||
// code might have been compiled with "-fuse-divide-subroutine", so we
|
||
// always include them in libgcj.
|
||
|
||
jint
|
||
_Jv_divI (jint dividend, jint divisor)
|
||
{
|
||
if (__builtin_expect (divisor == 0, false))
|
||
{
|
||
java::lang::ArithmeticException *arithexception
|
||
= new java::lang::ArithmeticException (JvNewStringLatin1 ("/ by zero"));
|
||
throw arithexception;
|
||
}
|
||
|
||
if (dividend == (jint) 0x80000000L && divisor == -1)
|
||
return dividend;
|
||
|
||
return dividend / divisor;
|
||
}
|
||
|
||
jint
|
||
_Jv_remI (jint dividend, jint divisor)
|
||
{
|
||
if (__builtin_expect (divisor == 0, false))
|
||
{
|
||
java::lang::ArithmeticException *arithexception
|
||
= new java::lang::ArithmeticException (JvNewStringLatin1 ("/ by zero"));
|
||
throw arithexception;
|
||
}
|
||
|
||
if (dividend == (jint) 0x80000000L && divisor == -1)
|
||
return 0;
|
||
|
||
return dividend % divisor;
|
||
}
|
||
|
||
jlong
|
||
_Jv_divJ (jlong dividend, jlong divisor)
|
||
{
|
||
if (__builtin_expect (divisor == 0, false))
|
||
{
|
||
java::lang::ArithmeticException *arithexception
|
||
= new java::lang::ArithmeticException (JvNewStringLatin1 ("/ by zero"));
|
||
throw arithexception;
|
||
}
|
||
|
||
if (dividend == (jlong) 0x8000000000000000LL && divisor == -1)
|
||
return dividend;
|
||
|
||
return dividend / divisor;
|
||
}
|
||
|
||
jlong
|
||
_Jv_remJ (jlong dividend, jlong divisor)
|
||
{
|
||
if (__builtin_expect (divisor == 0, false))
|
||
{
|
||
java::lang::ArithmeticException *arithexception
|
||
= new java::lang::ArithmeticException (JvNewStringLatin1 ("/ by zero"));
|
||
throw arithexception;
|
||
}
|
||
|
||
if (dividend == (jlong) 0x8000000000000000LL && divisor == -1)
|
||
return 0;
|
||
|
||
return dividend % divisor;
|
||
}
|
||
|
||
|
||
|
||
// Return true if SELF_KLASS can access a field or method in
|
||
// OTHER_KLASS. The field or method's access flags are specified in
|
||
// FLAGS.
|
||
jboolean
|
||
_Jv_CheckAccess (jclass self_klass, jclass other_klass, jint flags)
|
||
{
|
||
using namespace java::lang::reflect;
|
||
return ((self_klass == other_klass)
|
||
|| ((flags & Modifier::PUBLIC) != 0)
|
||
|| (((flags & Modifier::PROTECTED) != 0)
|
||
&& other_klass->isAssignableFrom (self_klass))
|
||
|| (((flags & Modifier::PRIVATE) == 0)
|
||
&& _Jv_ClassNameSamePackage (self_klass->name,
|
||
other_klass->name)));
|
||
}
|