79ebd55c85
* tree-data-ref.c (compute_estimated_nb_iterations, analyze_array_indexes, compute_overlap_steps_for_affine_1_2, analyze_subscript_affine_affine, find_data_references_in_loop): Fixed to use chrec_contains_undetermined to test the values of loop->estimated_nb_iterations. * tree-ssa-loop-niter.c (estimate_numbers_of_iterations_loop): Compute the estimation only when loop->estimated_nb_iterations has not yet been initialized. (convert_step_widening, scev_probably_wraps_p): Add a call to estimate_numbers_of_iterations_loop. * tree-vrp.c (execute_vrp): Don't call estimate_numbers_of_iterations. From-SVN: r100749
2542 lines
72 KiB
C
2542 lines
72 KiB
C
/* Data references and dependences detectors.
|
||
Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
Contributed by Sebastian Pop <s.pop@laposte.net>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
/* This pass walks a given loop structure searching for array
|
||
references. The information about the array accesses is recorded
|
||
in DATA_REFERENCE structures.
|
||
|
||
The basic test for determining the dependences is:
|
||
given two access functions chrec1 and chrec2 to a same array, and
|
||
x and y two vectors from the iteration domain, the same element of
|
||
the array is accessed twice at iterations x and y if and only if:
|
||
| chrec1 (x) == chrec2 (y).
|
||
|
||
The goals of this analysis are:
|
||
|
||
- to determine the independence: the relation between two
|
||
independent accesses is qualified with the chrec_known (this
|
||
information allows a loop parallelization),
|
||
|
||
- when two data references access the same data, to qualify the
|
||
dependence relation with classic dependence representations:
|
||
|
||
- distance vectors
|
||
- direction vectors
|
||
- loop carried level dependence
|
||
- polyhedron dependence
|
||
or with the chains of recurrences based representation,
|
||
|
||
- to define a knowledge base for storing the data dependence
|
||
information,
|
||
|
||
- to define an interface to access this data.
|
||
|
||
|
||
Definitions:
|
||
|
||
- subscript: given two array accesses a subscript is the tuple
|
||
composed of the access functions for a given dimension. Example:
|
||
Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
|
||
(f1, g1), (f2, g2), (f3, g3).
|
||
|
||
- Diophantine equation: an equation whose coefficients and
|
||
solutions are integer constants, for example the equation
|
||
| 3*x + 2*y = 1
|
||
has an integer solution x = 1 and y = -1.
|
||
|
||
References:
|
||
|
||
- "Advanced Compilation for High Performance Computing" by Randy
|
||
Allen and Ken Kennedy.
|
||
http://citeseer.ist.psu.edu/goff91practical.html
|
||
|
||
- "Loop Transformations for Restructuring Compilers - The Foundations"
|
||
by Utpal Banerjee.
|
||
|
||
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "ggc.h"
|
||
#include "tree.h"
|
||
|
||
/* These RTL headers are needed for basic-block.h. */
|
||
#include "rtl.h"
|
||
#include "basic-block.h"
|
||
#include "diagnostic.h"
|
||
#include "tree-flow.h"
|
||
#include "tree-dump.h"
|
||
#include "timevar.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-chrec.h"
|
||
#include "tree-data-ref.h"
|
||
#include "tree-scalar-evolution.h"
|
||
#include "tree-pass.h"
|
||
|
||
/* This is the simplest data dependence test: determines whether the
|
||
data references A and B access the same array/region. Returns
|
||
false when the property is not computable at compile time.
|
||
Otherwise return true, and DIFFER_P will record the result. This
|
||
utility will not be necessary when alias_sets_conflict_p will be
|
||
less conservative. */
|
||
|
||
bool
|
||
array_base_name_differ_p (struct data_reference *a,
|
||
struct data_reference *b,
|
||
bool *differ_p)
|
||
{
|
||
tree base_a = DR_BASE_NAME (a);
|
||
tree base_b = DR_BASE_NAME (b);
|
||
|
||
if (!base_a || !base_b)
|
||
return false;
|
||
|
||
/* Determine if same base. Example: for the array accesses
|
||
a[i], b[i] or pointer accesses *a, *b, bases are a, b. */
|
||
if (base_a == base_b)
|
||
{
|
||
*differ_p = false;
|
||
return true;
|
||
}
|
||
|
||
/* For pointer based accesses, (*p)[i], (*q)[j], the bases are (*p)
|
||
and (*q) */
|
||
if (TREE_CODE (base_a) == INDIRECT_REF && TREE_CODE (base_b) == INDIRECT_REF
|
||
&& TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0))
|
||
{
|
||
*differ_p = false;
|
||
return true;
|
||
}
|
||
|
||
/* Record/union based accesses - s.a[i], t.b[j]. bases are s.a,t.b. */
|
||
if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
|
||
&& TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0)
|
||
&& TREE_OPERAND (base_a, 1) == TREE_OPERAND (base_b, 1))
|
||
{
|
||
*differ_p = false;
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Determine if different bases. */
|
||
|
||
/* At this point we know that base_a != base_b. However, pointer
|
||
accesses of the form x=(*p) and y=(*q), whose bases are p and q,
|
||
may still be pointing to the same base. In SSAed GIMPLE p and q will
|
||
be SSA_NAMES in this case. Therefore, here we check if they are
|
||
really two different declarations. */
|
||
if (TREE_CODE (base_a) == VAR_DECL && TREE_CODE (base_b) == VAR_DECL)
|
||
{
|
||
*differ_p = true;
|
||
return true;
|
||
}
|
||
|
||
/* Compare two record/union bases s.a and t.b: s != t or (a != b and
|
||
s and t are not unions). */
|
||
if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
|
||
&& ((TREE_CODE (TREE_OPERAND (base_a, 0)) == VAR_DECL
|
||
&& TREE_CODE (TREE_OPERAND (base_b, 0)) == VAR_DECL
|
||
&& TREE_OPERAND (base_a, 0) != TREE_OPERAND (base_b, 0))
|
||
|| (TREE_CODE (TREE_TYPE (TREE_OPERAND (base_a, 0))) == RECORD_TYPE
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (base_b, 0))) == RECORD_TYPE
|
||
&& TREE_OPERAND (base_a, 1) != TREE_OPERAND (base_b, 1))))
|
||
{
|
||
*differ_p = true;
|
||
return true;
|
||
}
|
||
|
||
/* Compare a record/union access and an array access. */
|
||
if ((TREE_CODE (base_a) == VAR_DECL
|
||
&& (TREE_CODE (base_b) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_OPERAND (base_b, 0)) == VAR_DECL))
|
||
|| (TREE_CODE (base_b) == VAR_DECL
|
||
&& (TREE_CODE (base_a) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_OPERAND (base_a, 0)) == VAR_DECL)))
|
||
{
|
||
*differ_p = true;
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Returns true iff A divides B. */
|
||
|
||
static inline bool
|
||
tree_fold_divides_p (tree type,
|
||
tree a,
|
||
tree b)
|
||
{
|
||
/* Determines whether (A == gcd (A, B)). */
|
||
return integer_zerop
|
||
(fold (build (MINUS_EXPR, type, a, tree_fold_gcd (a, b))));
|
||
}
|
||
|
||
/* Compute the greatest common denominator of two numbers using
|
||
Euclid's algorithm. */
|
||
|
||
static int
|
||
gcd (int a, int b)
|
||
{
|
||
|
||
int x, y, z;
|
||
|
||
x = abs (a);
|
||
y = abs (b);
|
||
|
||
while (x>0)
|
||
{
|
||
z = y % x;
|
||
y = x;
|
||
x = z;
|
||
}
|
||
|
||
return (y);
|
||
}
|
||
|
||
/* Returns true iff A divides B. */
|
||
|
||
static inline bool
|
||
int_divides_p (int a, int b)
|
||
{
|
||
return ((b % a) == 0);
|
||
}
|
||
|
||
|
||
|
||
/* Dump into FILE all the data references from DATAREFS. */
|
||
|
||
void
|
||
dump_data_references (FILE *file,
|
||
varray_type datarefs)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (datarefs); i++)
|
||
dump_data_reference (file, VARRAY_GENERIC_PTR (datarefs, i));
|
||
}
|
||
|
||
/* Dump into FILE all the dependence relations from DDR. */
|
||
|
||
void
|
||
dump_data_dependence_relations (FILE *file,
|
||
varray_type ddr)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (ddr); i++)
|
||
dump_data_dependence_relation (file, VARRAY_GENERIC_PTR (ddr, i));
|
||
}
|
||
|
||
/* Dump function for a DATA_REFERENCE structure. */
|
||
|
||
void
|
||
dump_data_reference (FILE *outf,
|
||
struct data_reference *dr)
|
||
{
|
||
unsigned int i;
|
||
|
||
fprintf (outf, "(Data Ref: \n stmt: ");
|
||
print_generic_stmt (outf, DR_STMT (dr), 0);
|
||
fprintf (outf, " ref: ");
|
||
print_generic_stmt (outf, DR_REF (dr), 0);
|
||
fprintf (outf, " base_name: ");
|
||
print_generic_stmt (outf, DR_BASE_NAME (dr), 0);
|
||
|
||
for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
|
||
{
|
||
fprintf (outf, " Access function %d: ", i);
|
||
print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
|
||
}
|
||
fprintf (outf, ")\n");
|
||
}
|
||
|
||
/* Dump function for a SUBSCRIPT structure. */
|
||
|
||
void
|
||
dump_subscript (FILE *outf, struct subscript *subscript)
|
||
{
|
||
tree chrec = SUB_CONFLICTS_IN_A (subscript);
|
||
|
||
fprintf (outf, "\n (subscript \n");
|
||
fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
|
||
print_generic_stmt (outf, chrec, 0);
|
||
if (chrec == chrec_known)
|
||
fprintf (outf, " (no dependence)\n");
|
||
else if (chrec_contains_undetermined (chrec))
|
||
fprintf (outf, " (don't know)\n");
|
||
else
|
||
{
|
||
tree last_iteration = SUB_LAST_CONFLICT (subscript);
|
||
fprintf (outf, " last_conflict: ");
|
||
print_generic_stmt (outf, last_iteration, 0);
|
||
}
|
||
|
||
chrec = SUB_CONFLICTS_IN_B (subscript);
|
||
fprintf (outf, " iterations_that_access_an_element_twice_in_B: ");
|
||
print_generic_stmt (outf, chrec, 0);
|
||
if (chrec == chrec_known)
|
||
fprintf (outf, " (no dependence)\n");
|
||
else if (chrec_contains_undetermined (chrec))
|
||
fprintf (outf, " (don't know)\n");
|
||
else
|
||
{
|
||
tree last_iteration = SUB_LAST_CONFLICT (subscript);
|
||
fprintf (outf, " last_conflict: ");
|
||
print_generic_stmt (outf, last_iteration, 0);
|
||
}
|
||
|
||
fprintf (outf, " (Subscript distance: ");
|
||
print_generic_stmt (outf, SUB_DISTANCE (subscript), 0);
|
||
fprintf (outf, " )\n");
|
||
fprintf (outf, " )\n");
|
||
}
|
||
|
||
/* Dump function for a DATA_DEPENDENCE_RELATION structure. */
|
||
|
||
void
|
||
dump_data_dependence_relation (FILE *outf,
|
||
struct data_dependence_relation *ddr)
|
||
{
|
||
struct data_reference *dra, *drb;
|
||
|
||
dra = DDR_A (ddr);
|
||
drb = DDR_B (ddr);
|
||
fprintf (outf, "(Data Dep: \n");
|
||
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
||
fprintf (outf, " (don't know)\n");
|
||
|
||
else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
||
fprintf (outf, " (no dependence)\n");
|
||
|
||
else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
unsigned int i;
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
fprintf (outf, " access_fn_A: ");
|
||
print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
|
||
fprintf (outf, " access_fn_B: ");
|
||
print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
|
||
dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
|
||
}
|
||
if (DDR_DIST_VECT (ddr))
|
||
{
|
||
fprintf (outf, " distance_vect: ");
|
||
print_lambda_vector (outf, DDR_DIST_VECT (ddr), DDR_SIZE_VECT (ddr));
|
||
}
|
||
if (DDR_DIR_VECT (ddr))
|
||
{
|
||
fprintf (outf, " direction_vect: ");
|
||
print_lambda_vector (outf, DDR_DIR_VECT (ddr), DDR_SIZE_VECT (ddr));
|
||
}
|
||
}
|
||
|
||
fprintf (outf, ")\n");
|
||
}
|
||
|
||
|
||
|
||
/* Dump function for a DATA_DEPENDENCE_DIRECTION structure. */
|
||
|
||
void
|
||
dump_data_dependence_direction (FILE *file,
|
||
enum data_dependence_direction dir)
|
||
{
|
||
switch (dir)
|
||
{
|
||
case dir_positive:
|
||
fprintf (file, "+");
|
||
break;
|
||
|
||
case dir_negative:
|
||
fprintf (file, "-");
|
||
break;
|
||
|
||
case dir_equal:
|
||
fprintf (file, "=");
|
||
break;
|
||
|
||
case dir_positive_or_negative:
|
||
fprintf (file, "+-");
|
||
break;
|
||
|
||
case dir_positive_or_equal:
|
||
fprintf (file, "+=");
|
||
break;
|
||
|
||
case dir_negative_or_equal:
|
||
fprintf (file, "-=");
|
||
break;
|
||
|
||
case dir_star:
|
||
fprintf (file, "*");
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Dumps the distance and direction vectors in FILE. DDRS contains
|
||
the dependence relations, and VECT_SIZE is the size of the
|
||
dependence vectors, or in other words the number of loops in the
|
||
considered nest. */
|
||
|
||
void
|
||
dump_dist_dir_vectors (FILE *file, varray_type ddrs)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (ddrs); i++)
|
||
{
|
||
struct data_dependence_relation *ddr =
|
||
(struct data_dependence_relation *)
|
||
VARRAY_GENERIC_PTR (ddrs, i);
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
|
||
&& DDR_AFFINE_P (ddr))
|
||
{
|
||
fprintf (file, "DISTANCE_V (");
|
||
print_lambda_vector (file, DDR_DIST_VECT (ddr), DDR_SIZE_VECT (ddr));
|
||
fprintf (file, ")\n");
|
||
fprintf (file, "DIRECTION_V (");
|
||
print_lambda_vector (file, DDR_DIR_VECT (ddr), DDR_SIZE_VECT (ddr));
|
||
fprintf (file, ")\n");
|
||
}
|
||
}
|
||
fprintf (file, "\n\n");
|
||
}
|
||
|
||
/* Dumps the data dependence relations DDRS in FILE. */
|
||
|
||
void
|
||
dump_ddrs (FILE *file, varray_type ddrs)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (ddrs); i++)
|
||
{
|
||
struct data_dependence_relation *ddr =
|
||
(struct data_dependence_relation *)
|
||
VARRAY_GENERIC_PTR (ddrs, i);
|
||
dump_data_dependence_relation (file, ddr);
|
||
}
|
||
fprintf (file, "\n\n");
|
||
}
|
||
|
||
|
||
|
||
/* Initialize LOOP->ESTIMATED_NB_ITERATIONS with the lowest safe
|
||
approximation of the number of iterations for LOOP. */
|
||
|
||
static void
|
||
compute_estimated_nb_iterations (struct loop *loop)
|
||
{
|
||
struct nb_iter_bound *bound;
|
||
|
||
for (bound = loop->bounds; bound; bound = bound->next)
|
||
if (TREE_CODE (bound->bound) == INTEGER_CST
|
||
/* Update only when there is no previous estimation. */
|
||
&& (chrec_contains_undetermined (loop->estimated_nb_iterations)
|
||
/* Or when the current estimation is smaller. */
|
||
|| tree_int_cst_lt (bound->bound, loop->estimated_nb_iterations)))
|
||
loop->estimated_nb_iterations = bound->bound;
|
||
}
|
||
|
||
/* Estimate the number of iterations from the size of the data and the
|
||
access functions. */
|
||
|
||
static void
|
||
estimate_niter_from_size_of_data (struct loop *loop,
|
||
tree opnd0,
|
||
tree access_fn,
|
||
tree stmt)
|
||
{
|
||
tree estimation;
|
||
tree array_size, data_size, element_size;
|
||
tree init, step;
|
||
|
||
init = initial_condition (access_fn);
|
||
step = evolution_part_in_loop_num (access_fn, loop->num);
|
||
|
||
array_size = TYPE_SIZE (TREE_TYPE (opnd0));
|
||
element_size = TYPE_SIZE (TREE_TYPE (TREE_TYPE (opnd0)));
|
||
if (array_size == NULL_TREE
|
||
|| TREE_CODE (array_size) != INTEGER_CST
|
||
|| TREE_CODE (element_size) != INTEGER_CST)
|
||
return;
|
||
|
||
data_size = fold (build2 (EXACT_DIV_EXPR, integer_type_node,
|
||
array_size, element_size));
|
||
|
||
if (init != NULL_TREE
|
||
&& step != NULL_TREE
|
||
&& TREE_CODE (init) == INTEGER_CST
|
||
&& TREE_CODE (step) == INTEGER_CST)
|
||
{
|
||
estimation = fold (build2 (CEIL_DIV_EXPR, integer_type_node,
|
||
fold (build2 (MINUS_EXPR, integer_type_node,
|
||
data_size, init)), step));
|
||
|
||
record_estimate (loop, estimation, boolean_true_node, stmt);
|
||
}
|
||
}
|
||
|
||
/* Given an ARRAY_REF node REF, records its access functions.
|
||
Example: given A[i][3], record in ACCESS_FNS the opnd1 function,
|
||
i.e. the constant "3", then recursively call the function on opnd0,
|
||
i.e. the ARRAY_REF "A[i]". The function returns the base name:
|
||
"A". */
|
||
|
||
static tree
|
||
analyze_array_indexes (struct loop *loop,
|
||
VEC(tree,heap) **access_fns,
|
||
tree ref, tree stmt)
|
||
{
|
||
tree opnd0, opnd1;
|
||
tree access_fn;
|
||
|
||
opnd0 = TREE_OPERAND (ref, 0);
|
||
opnd1 = TREE_OPERAND (ref, 1);
|
||
|
||
/* The detection of the evolution function for this data access is
|
||
postponed until the dependence test. This lazy strategy avoids
|
||
the computation of access functions that are of no interest for
|
||
the optimizers. */
|
||
access_fn = instantiate_parameters
|
||
(loop, analyze_scalar_evolution (loop, opnd1));
|
||
|
||
if (chrec_contains_undetermined (loop->estimated_nb_iterations))
|
||
estimate_niter_from_size_of_data (loop, opnd0, access_fn, stmt);
|
||
|
||
VEC_safe_push (tree, heap, *access_fns, access_fn);
|
||
|
||
/* Recursively record other array access functions. */
|
||
if (TREE_CODE (opnd0) == ARRAY_REF)
|
||
return analyze_array_indexes (loop, access_fns, opnd0, stmt);
|
||
|
||
/* Return the base name of the data access. */
|
||
else
|
||
return opnd0;
|
||
}
|
||
|
||
/* For a data reference REF contained in the statement STMT, initialize
|
||
a DATA_REFERENCE structure, and return it. IS_READ flag has to be
|
||
set to true when REF is in the right hand side of an
|
||
assignment. */
|
||
|
||
struct data_reference *
|
||
analyze_array (tree stmt, tree ref, bool is_read)
|
||
{
|
||
struct data_reference *res;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(analyze_array \n");
|
||
fprintf (dump_file, " (ref = ");
|
||
print_generic_stmt (dump_file, ref, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
res = xmalloc (sizeof (struct data_reference));
|
||
|
||
DR_STMT (res) = stmt;
|
||
DR_REF (res) = ref;
|
||
DR_ACCESS_FNS (res) = VEC_alloc (tree, heap, 3);
|
||
DR_BASE_NAME (res) = analyze_array_indexes
|
||
(loop_containing_stmt (stmt), &(DR_ACCESS_FNS (res)), ref, stmt);
|
||
DR_IS_READ (res) = is_read;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
|
||
return res;
|
||
}
|
||
|
||
/* For a data reference REF contained in the statement STMT, initialize
|
||
a DATA_REFERENCE structure, and return it. */
|
||
|
||
struct data_reference *
|
||
init_data_ref (tree stmt,
|
||
tree ref,
|
||
tree base,
|
||
tree access_fn,
|
||
bool is_read)
|
||
{
|
||
struct data_reference *res;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(init_data_ref \n");
|
||
fprintf (dump_file, " (ref = ");
|
||
print_generic_stmt (dump_file, ref, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
res = xmalloc (sizeof (struct data_reference));
|
||
|
||
DR_STMT (res) = stmt;
|
||
DR_REF (res) = ref;
|
||
DR_ACCESS_FNS (res) = VEC_alloc (tree, heap, 5);
|
||
DR_BASE_NAME (res) = base;
|
||
VEC_quick_push (tree, DR_ACCESS_FNS (res), access_fn);
|
||
DR_IS_READ (res) = is_read;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
|
||
return res;
|
||
}
|
||
|
||
|
||
|
||
/* Returns true when all the functions of a tree_vec CHREC are the
|
||
same. */
|
||
|
||
static bool
|
||
all_chrecs_equal_p (tree chrec)
|
||
{
|
||
int j;
|
||
|
||
for (j = 0; j < TREE_VEC_LENGTH (chrec) - 1; j++)
|
||
{
|
||
tree chrec_j = TREE_VEC_ELT (chrec, j);
|
||
tree chrec_j_1 = TREE_VEC_ELT (chrec, j + 1);
|
||
if (!integer_zerop
|
||
(chrec_fold_minus
|
||
(integer_type_node, chrec_j, chrec_j_1)))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Determine for each subscript in the data dependence relation DDR
|
||
the distance. */
|
||
|
||
void
|
||
compute_subscript_distance (struct data_dependence_relation *ddr)
|
||
{
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
tree conflicts_a, conflicts_b, difference;
|
||
struct subscript *subscript;
|
||
|
||
subscript = DDR_SUBSCRIPT (ddr, i);
|
||
conflicts_a = SUB_CONFLICTS_IN_A (subscript);
|
||
conflicts_b = SUB_CONFLICTS_IN_B (subscript);
|
||
|
||
if (TREE_CODE (conflicts_a) == TREE_VEC)
|
||
{
|
||
if (!all_chrecs_equal_p (conflicts_a))
|
||
{
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
return;
|
||
}
|
||
else
|
||
conflicts_a = TREE_VEC_ELT (conflicts_a, 0);
|
||
}
|
||
|
||
if (TREE_CODE (conflicts_b) == TREE_VEC)
|
||
{
|
||
if (!all_chrecs_equal_p (conflicts_b))
|
||
{
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
return;
|
||
}
|
||
else
|
||
conflicts_b = TREE_VEC_ELT (conflicts_b, 0);
|
||
}
|
||
|
||
difference = chrec_fold_minus
|
||
(integer_type_node, conflicts_b, conflicts_a);
|
||
|
||
if (evolution_function_is_constant_p (difference))
|
||
SUB_DISTANCE (subscript) = difference;
|
||
|
||
else
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Initialize a ddr. */
|
||
|
||
struct data_dependence_relation *
|
||
initialize_data_dependence_relation (struct data_reference *a,
|
||
struct data_reference *b)
|
||
{
|
||
struct data_dependence_relation *res;
|
||
bool differ_p;
|
||
|
||
res = xmalloc (sizeof (struct data_dependence_relation));
|
||
DDR_A (res) = a;
|
||
DDR_B (res) = b;
|
||
|
||
if (a == NULL || b == NULL
|
||
|| DR_BASE_NAME (a) == NULL_TREE
|
||
|| DR_BASE_NAME (b) == NULL_TREE)
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
|
||
/* When the dimensions of A and B differ, we directly initialize
|
||
the relation to "there is no dependence": chrec_known. */
|
||
else if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b)
|
||
|| (array_base_name_differ_p (a, b, &differ_p) && differ_p))
|
||
DDR_ARE_DEPENDENT (res) = chrec_known;
|
||
|
||
else
|
||
{
|
||
unsigned int i;
|
||
DDR_AFFINE_P (res) = true;
|
||
DDR_ARE_DEPENDENT (res) = NULL_TREE;
|
||
DDR_SUBSCRIPTS_VECTOR_INIT (res, DR_NUM_DIMENSIONS (a));
|
||
DDR_SIZE_VECT (res) = 0;
|
||
DDR_DIST_VECT (res) = NULL;
|
||
DDR_DIR_VECT (res) = NULL;
|
||
|
||
for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
|
||
{
|
||
struct subscript *subscript;
|
||
|
||
subscript = xmalloc (sizeof (struct subscript));
|
||
SUB_CONFLICTS_IN_A (subscript) = chrec_dont_know;
|
||
SUB_CONFLICTS_IN_B (subscript) = chrec_dont_know;
|
||
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
VARRAY_PUSH_GENERIC_PTR (DDR_SUBSCRIPTS (res), subscript);
|
||
}
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
|
||
description. */
|
||
|
||
static inline void
|
||
finalize_ddr_dependent (struct data_dependence_relation *ddr,
|
||
tree chrec)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(dependence classified: ");
|
||
print_generic_expr (dump_file, chrec, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
DDR_ARE_DEPENDENT (ddr) = chrec;
|
||
varray_clear (DDR_SUBSCRIPTS (ddr));
|
||
}
|
||
|
||
/* The dependence relation DDR cannot be represented by a distance
|
||
vector. */
|
||
|
||
static inline void
|
||
non_affine_dependence_relation (struct data_dependence_relation *ddr)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
|
||
|
||
DDR_AFFINE_P (ddr) = false;
|
||
}
|
||
|
||
|
||
|
||
/* This section contains the classic Banerjee tests. */
|
||
|
||
/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
|
||
variables, i.e., if the ZIV (Zero Index Variable) test is true. */
|
||
|
||
static inline bool
|
||
ziv_subscript_p (tree chrec_a,
|
||
tree chrec_b)
|
||
{
|
||
return (evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_constant_p (chrec_b));
|
||
}
|
||
|
||
/* Returns true iff CHREC_A and CHREC_B are dependent on an index
|
||
variable, i.e., if the SIV (Single Index Variable) test is true. */
|
||
|
||
static bool
|
||
siv_subscript_p (tree chrec_a,
|
||
tree chrec_b)
|
||
{
|
||
if ((evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_univariate_p (chrec_b))
|
||
|| (evolution_function_is_constant_p (chrec_b)
|
||
&& evolution_function_is_univariate_p (chrec_a)))
|
||
return true;
|
||
|
||
if (evolution_function_is_univariate_p (chrec_a)
|
||
&& evolution_function_is_univariate_p (chrec_b))
|
||
{
|
||
switch (TREE_CODE (chrec_a))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
switch (TREE_CODE (chrec_b))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
|
||
return false;
|
||
|
||
default:
|
||
return true;
|
||
}
|
||
|
||
default:
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_ziv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlaps_a,
|
||
tree *overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
tree difference;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_ziv_subscript \n");
|
||
|
||
difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
|
||
|
||
switch (TREE_CODE (difference))
|
||
{
|
||
case INTEGER_CST:
|
||
if (integer_zerop (difference))
|
||
{
|
||
/* The difference is equal to zero: the accessed index
|
||
overlaps for each iteration in the loop. */
|
||
*overlaps_a = integer_zero_node;
|
||
*overlaps_b = integer_zero_node;
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
else
|
||
{
|
||
/* The accesses do not overlap. */
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* We're not sure whether the indexes overlap. For the moment,
|
||
conservatively answer "don't know". */
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
break;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
|
||
constant, and CHREC_B is an affine function. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_siv_subscript_cst_affine (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlaps_a,
|
||
tree *overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
bool value0, value1, value2;
|
||
tree difference = chrec_fold_minus
|
||
(integer_type_node, CHREC_LEFT (chrec_b), chrec_a);
|
||
|
||
if (!chrec_is_positive (initial_condition (difference), &value0))
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value0 == false)
|
||
{
|
||
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value1 == true)
|
||
{
|
||
/* Example:
|
||
chrec_a = 12
|
||
chrec_b = {10, +, 1}
|
||
*/
|
||
|
||
if (tree_fold_divides_p
|
||
(integer_type_node, CHREC_RIGHT (chrec_b), difference))
|
||
{
|
||
*overlaps_a = integer_zero_node;
|
||
*overlaps_b = fold
|
||
(build (EXACT_DIV_EXPR, integer_type_node,
|
||
fold (build1 (ABS_EXPR, integer_type_node, difference)),
|
||
CHREC_RIGHT (chrec_b)));
|
||
*last_conflicts = integer_one_node;
|
||
return;
|
||
}
|
||
|
||
/* When the step does not divides the difference, there are
|
||
no overlaps. */
|
||
else
|
||
{
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
*last_conflicts = integer_zero_node;
|
||
return;
|
||
}
|
||
}
|
||
|
||
else
|
||
{
|
||
/* Example:
|
||
chrec_a = 12
|
||
chrec_b = {10, +, -1}
|
||
|
||
In this case, chrec_a will not overlap with chrec_b. */
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
*last_conflicts = integer_zero_node;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value2 == false)
|
||
{
|
||
/* Example:
|
||
chrec_a = 3
|
||
chrec_b = {10, +, -1}
|
||
*/
|
||
if (tree_fold_divides_p
|
||
(integer_type_node, CHREC_RIGHT (chrec_b), difference))
|
||
{
|
||
*overlaps_a = integer_zero_node;
|
||
*overlaps_b = fold
|
||
(build (EXACT_DIV_EXPR, integer_type_node, difference,
|
||
CHREC_RIGHT (chrec_b)));
|
||
*last_conflicts = integer_one_node;
|
||
return;
|
||
}
|
||
|
||
/* When the step does not divides the difference, there
|
||
are no overlaps. */
|
||
else
|
||
{
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
*last_conflicts = integer_zero_node;
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Example:
|
||
chrec_a = 3
|
||
chrec_b = {4, +, 1}
|
||
|
||
In this case, chrec_a will not overlap with chrec_b. */
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
*last_conflicts = integer_zero_node;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Helper recursive function for initializing the matrix A. Returns
|
||
the initial value of CHREC. */
|
||
|
||
static int
|
||
initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
|
||
{
|
||
gcc_assert (chrec);
|
||
|
||
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
|
||
return int_cst_value (chrec);
|
||
|
||
A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
|
||
return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
|
||
}
|
||
|
||
#define FLOOR_DIV(x,y) ((x) / (y))
|
||
|
||
/* Solves the special case of the Diophantine equation:
|
||
| {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
|
||
|
||
Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
|
||
number of iterations that loops X and Y run. The overlaps will be
|
||
constructed as evolutions in dimension DIM. */
|
||
|
||
static void
|
||
compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
|
||
tree *overlaps_a, tree *overlaps_b,
|
||
tree *last_conflicts, int dim)
|
||
{
|
||
if (((step_a > 0 && step_b > 0)
|
||
|| (step_a < 0 && step_b < 0)))
|
||
{
|
||
int step_overlaps_a, step_overlaps_b;
|
||
int gcd_steps_a_b, last_conflict, tau2;
|
||
|
||
gcd_steps_a_b = gcd (step_a, step_b);
|
||
step_overlaps_a = step_b / gcd_steps_a_b;
|
||
step_overlaps_b = step_a / gcd_steps_a_b;
|
||
|
||
tau2 = FLOOR_DIV (niter, step_overlaps_a);
|
||
tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
|
||
last_conflict = tau2;
|
||
|
||
*overlaps_a = build_polynomial_chrec
|
||
(dim, integer_zero_node,
|
||
build_int_cst (NULL_TREE, step_overlaps_a));
|
||
*overlaps_b = build_polynomial_chrec
|
||
(dim, integer_zero_node,
|
||
build_int_cst (NULL_TREE, step_overlaps_b));
|
||
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
|
||
}
|
||
|
||
else
|
||
{
|
||
*overlaps_a = integer_zero_node;
|
||
*overlaps_b = integer_zero_node;
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
}
|
||
|
||
|
||
/* Solves the special case of a Diophantine equation where CHREC_A is
|
||
an affine bivariate function, and CHREC_B is an affine univariate
|
||
function. For example,
|
||
|
||
| {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
|
||
|
||
has the following overlapping functions:
|
||
|
||
| x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
|
||
| y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
|
||
| z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
|
||
|
||
FORNOW: This is a specialized implementation for a case occurring in
|
||
a common benchmark. Implement the general algorithm. */
|
||
|
||
static void
|
||
compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
|
||
tree *overlaps_a, tree *overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
bool xz_p, yz_p, xyz_p;
|
||
int step_x, step_y, step_z;
|
||
int niter_x, niter_y, niter_z, niter;
|
||
tree numiter_x, numiter_y, numiter_z;
|
||
tree overlaps_a_xz, overlaps_b_xz, last_conflicts_xz;
|
||
tree overlaps_a_yz, overlaps_b_yz, last_conflicts_yz;
|
||
tree overlaps_a_xyz, overlaps_b_xyz, last_conflicts_xyz;
|
||
|
||
step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
|
||
step_y = int_cst_value (CHREC_RIGHT (chrec_a));
|
||
step_z = int_cst_value (CHREC_RIGHT (chrec_b));
|
||
|
||
numiter_x = number_of_iterations_in_loop
|
||
(current_loops->parray[CHREC_VARIABLE (CHREC_LEFT (chrec_a))]);
|
||
numiter_y = number_of_iterations_in_loop
|
||
(current_loops->parray[CHREC_VARIABLE (chrec_a)]);
|
||
numiter_z = number_of_iterations_in_loop
|
||
(current_loops->parray[CHREC_VARIABLE (chrec_b)]);
|
||
|
||
if (TREE_CODE (numiter_x) != INTEGER_CST)
|
||
numiter_x = current_loops->parray[CHREC_VARIABLE (CHREC_LEFT (chrec_a))]
|
||
->estimated_nb_iterations;
|
||
if (TREE_CODE (numiter_y) != INTEGER_CST)
|
||
numiter_y = current_loops->parray[CHREC_VARIABLE (chrec_a)]
|
||
->estimated_nb_iterations;
|
||
if (TREE_CODE (numiter_z) != INTEGER_CST)
|
||
numiter_z = current_loops->parray[CHREC_VARIABLE (chrec_b)]
|
||
->estimated_nb_iterations;
|
||
|
||
if (chrec_contains_undetermined (numiter_x)
|
||
|| chrec_contains_undetermined (numiter_y)
|
||
|| chrec_contains_undetermined (numiter_z)
|
||
|| TREE_CODE (numiter_x) != INTEGER_CST
|
||
|| TREE_CODE (numiter_y) != INTEGER_CST
|
||
|| TREE_CODE (numiter_z) != INTEGER_CST)
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
|
||
niter_x = int_cst_value (numiter_x);
|
||
niter_y = int_cst_value (numiter_y);
|
||
niter_z = int_cst_value (numiter_z);
|
||
|
||
niter = MIN (niter_x, niter_z);
|
||
compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
|
||
&overlaps_a_xz,
|
||
&overlaps_b_xz,
|
||
&last_conflicts_xz, 1);
|
||
niter = MIN (niter_y, niter_z);
|
||
compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
|
||
&overlaps_a_yz,
|
||
&overlaps_b_yz,
|
||
&last_conflicts_yz, 2);
|
||
niter = MIN (niter_x, niter_z);
|
||
niter = MIN (niter_y, niter);
|
||
compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
|
||
&overlaps_a_xyz,
|
||
&overlaps_b_xyz,
|
||
&last_conflicts_xyz, 3);
|
||
|
||
xz_p = !integer_zerop (last_conflicts_xz);
|
||
yz_p = !integer_zerop (last_conflicts_yz);
|
||
xyz_p = !integer_zerop (last_conflicts_xyz);
|
||
|
||
if (xz_p || yz_p || xyz_p)
|
||
{
|
||
*overlaps_a = make_tree_vec (2);
|
||
TREE_VEC_ELT (*overlaps_a, 0) = integer_zero_node;
|
||
TREE_VEC_ELT (*overlaps_a, 1) = integer_zero_node;
|
||
*overlaps_b = integer_zero_node;
|
||
if (xz_p)
|
||
{
|
||
TREE_VEC_ELT (*overlaps_a, 0) =
|
||
chrec_fold_plus (integer_type_node, TREE_VEC_ELT (*overlaps_a, 0),
|
||
overlaps_a_xz);
|
||
*overlaps_b =
|
||
chrec_fold_plus (integer_type_node, *overlaps_b, overlaps_b_xz);
|
||
*last_conflicts = last_conflicts_xz;
|
||
}
|
||
if (yz_p)
|
||
{
|
||
TREE_VEC_ELT (*overlaps_a, 1) =
|
||
chrec_fold_plus (integer_type_node, TREE_VEC_ELT (*overlaps_a, 1),
|
||
overlaps_a_yz);
|
||
*overlaps_b =
|
||
chrec_fold_plus (integer_type_node, *overlaps_b, overlaps_b_yz);
|
||
*last_conflicts = last_conflicts_yz;
|
||
}
|
||
if (xyz_p)
|
||
{
|
||
TREE_VEC_ELT (*overlaps_a, 0) =
|
||
chrec_fold_plus (integer_type_node, TREE_VEC_ELT (*overlaps_a, 0),
|
||
overlaps_a_xyz);
|
||
TREE_VEC_ELT (*overlaps_a, 1) =
|
||
chrec_fold_plus (integer_type_node, TREE_VEC_ELT (*overlaps_a, 1),
|
||
overlaps_a_xyz);
|
||
*overlaps_b =
|
||
chrec_fold_plus (integer_type_node, *overlaps_b, overlaps_b_xyz);
|
||
*last_conflicts = last_conflicts_xyz;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
*overlaps_a = integer_zero_node;
|
||
*overlaps_b = integer_zero_node;
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
}
|
||
|
||
/* Determines the overlapping elements due to accesses CHREC_A and
|
||
CHREC_B, that are affine functions. This is a part of the
|
||
subscript analyzer. */
|
||
|
||
static void
|
||
analyze_subscript_affine_affine (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlaps_a,
|
||
tree *overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
unsigned nb_vars_a, nb_vars_b, dim;
|
||
int init_a, init_b, gamma, gcd_alpha_beta;
|
||
int tau1, tau2;
|
||
lambda_matrix A, U, S;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_subscript_affine_affine \n");
|
||
|
||
/* For determining the initial intersection, we have to solve a
|
||
Diophantine equation. This is the most time consuming part.
|
||
|
||
For answering to the question: "Is there a dependence?" we have
|
||
to prove that there exists a solution to the Diophantine
|
||
equation, and that the solution is in the iteration domain,
|
||
i.e. the solution is positive or zero, and that the solution
|
||
happens before the upper bound loop.nb_iterations. Otherwise
|
||
there is no dependence. This function outputs a description of
|
||
the iterations that hold the intersections. */
|
||
|
||
|
||
nb_vars_a = nb_vars_in_chrec (chrec_a);
|
||
nb_vars_b = nb_vars_in_chrec (chrec_b);
|
||
|
||
dim = nb_vars_a + nb_vars_b;
|
||
U = lambda_matrix_new (dim, dim);
|
||
A = lambda_matrix_new (dim, 1);
|
||
S = lambda_matrix_new (dim, 1);
|
||
|
||
init_a = initialize_matrix_A (A, chrec_a, 0, 1);
|
||
init_b = initialize_matrix_A (A, chrec_b, nb_vars_a, -1);
|
||
gamma = init_b - init_a;
|
||
|
||
/* Don't do all the hard work of solving the Diophantine equation
|
||
when we already know the solution: for example,
|
||
| {3, +, 1}_1
|
||
| {3, +, 4}_2
|
||
| gamma = 3 - 3 = 0.
|
||
Then the first overlap occurs during the first iterations:
|
||
| {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
|
||
*/
|
||
if (gamma == 0)
|
||
{
|
||
if (nb_vars_a == 1 && nb_vars_b == 1)
|
||
{
|
||
int step_a, step_b;
|
||
int niter, niter_a, niter_b;
|
||
tree numiter_a, numiter_b;
|
||
|
||
numiter_a = number_of_iterations_in_loop
|
||
(current_loops->parray[CHREC_VARIABLE (chrec_a)]);
|
||
numiter_b = number_of_iterations_in_loop
|
||
(current_loops->parray[CHREC_VARIABLE (chrec_b)]);
|
||
|
||
if (TREE_CODE (numiter_a) != INTEGER_CST)
|
||
numiter_a = current_loops->parray[CHREC_VARIABLE (chrec_a)]
|
||
->estimated_nb_iterations;
|
||
if (TREE_CODE (numiter_b) != INTEGER_CST)
|
||
numiter_b = current_loops->parray[CHREC_VARIABLE (chrec_b)]
|
||
->estimated_nb_iterations;
|
||
if (chrec_contains_undetermined (numiter_a)
|
||
|| chrec_contains_undetermined (numiter_b)
|
||
|| TREE_CODE (numiter_a) != INTEGER_CST
|
||
|| TREE_CODE (numiter_b) != INTEGER_CST)
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
|
||
niter_a = int_cst_value (numiter_a);
|
||
niter_b = int_cst_value (numiter_b);
|
||
niter = MIN (niter_a, niter_b);
|
||
|
||
step_a = int_cst_value (CHREC_RIGHT (chrec_a));
|
||
step_b = int_cst_value (CHREC_RIGHT (chrec_b));
|
||
|
||
compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
|
||
overlaps_a, overlaps_b,
|
||
last_conflicts, 1);
|
||
}
|
||
|
||
else if (nb_vars_a == 2 && nb_vars_b == 1)
|
||
compute_overlap_steps_for_affine_1_2
|
||
(chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
|
||
|
||
else if (nb_vars_a == 1 && nb_vars_b == 2)
|
||
compute_overlap_steps_for_affine_1_2
|
||
(chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
|
||
|
||
else
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* U.A = S */
|
||
lambda_matrix_right_hermite (A, dim, 1, S, U);
|
||
|
||
if (S[0][0] < 0)
|
||
{
|
||
S[0][0] *= -1;
|
||
lambda_matrix_row_negate (U, dim, 0);
|
||
}
|
||
gcd_alpha_beta = S[0][0];
|
||
|
||
/* The classic "gcd-test". */
|
||
if (!int_divides_p (gcd_alpha_beta, gamma))
|
||
{
|
||
/* The "gcd-test" has determined that there is no integer
|
||
solution, i.e. there is no dependence. */
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
|
||
/* Both access functions are univariate. This includes SIV and MIV cases. */
|
||
else if (nb_vars_a == 1 && nb_vars_b == 1)
|
||
{
|
||
/* Both functions should have the same evolution sign. */
|
||
if (((A[0][0] > 0 && -A[1][0] > 0)
|
||
|| (A[0][0] < 0 && -A[1][0] < 0)))
|
||
{
|
||
/* The solutions are given by:
|
||
|
|
||
| [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
|
||
| [u21 u22] [y0]
|
||
|
||
For a given integer t. Using the following variables,
|
||
|
||
| i0 = u11 * gamma / gcd_alpha_beta
|
||
| j0 = u12 * gamma / gcd_alpha_beta
|
||
| i1 = u21
|
||
| j1 = u22
|
||
|
||
the solutions are:
|
||
|
||
| x0 = i0 + i1 * t,
|
||
| y0 = j0 + j1 * t. */
|
||
|
||
int i0, j0, i1, j1;
|
||
|
||
/* X0 and Y0 are the first iterations for which there is a
|
||
dependence. X0, Y0 are two solutions of the Diophantine
|
||
equation: chrec_a (X0) = chrec_b (Y0). */
|
||
int x0, y0;
|
||
int niter, niter_a, niter_b;
|
||
tree numiter_a, numiter_b;
|
||
|
||
numiter_a = number_of_iterations_in_loop
|
||
(current_loops->parray[CHREC_VARIABLE (chrec_a)]);
|
||
numiter_b = number_of_iterations_in_loop
|
||
(current_loops->parray[CHREC_VARIABLE (chrec_b)]);
|
||
|
||
if (TREE_CODE (numiter_a) != INTEGER_CST)
|
||
numiter_a = current_loops->parray[CHREC_VARIABLE (chrec_a)]
|
||
->estimated_nb_iterations;
|
||
if (TREE_CODE (numiter_b) != INTEGER_CST)
|
||
numiter_b = current_loops->parray[CHREC_VARIABLE (chrec_b)]
|
||
->estimated_nb_iterations;
|
||
if (chrec_contains_undetermined (numiter_a)
|
||
|| chrec_contains_undetermined (numiter_b)
|
||
|| TREE_CODE (numiter_a) != INTEGER_CST
|
||
|| TREE_CODE (numiter_b) != INTEGER_CST)
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
|
||
niter_a = int_cst_value (numiter_a);
|
||
niter_b = int_cst_value (numiter_b);
|
||
niter = MIN (niter_a, niter_b);
|
||
|
||
i0 = U[0][0] * gamma / gcd_alpha_beta;
|
||
j0 = U[0][1] * gamma / gcd_alpha_beta;
|
||
i1 = U[1][0];
|
||
j1 = U[1][1];
|
||
|
||
if ((i1 == 0 && i0 < 0)
|
||
|| (j1 == 0 && j0 < 0))
|
||
{
|
||
/* There is no solution.
|
||
FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
|
||
falls in here, but for the moment we don't look at the
|
||
upper bound of the iteration domain. */
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
|
||
else
|
||
{
|
||
if (i1 > 0)
|
||
{
|
||
tau1 = CEIL (-i0, i1);
|
||
tau2 = FLOOR_DIV (niter - i0, i1);
|
||
|
||
if (j1 > 0)
|
||
{
|
||
int last_conflict, min_multiple;
|
||
tau1 = MAX (tau1, CEIL (-j0, j1));
|
||
tau2 = MIN (tau2, FLOOR_DIV (niter - j0, j1));
|
||
|
||
x0 = i1 * tau1 + i0;
|
||
y0 = j1 * tau1 + j0;
|
||
|
||
/* At this point (x0, y0) is one of the
|
||
solutions to the Diophantine equation. The
|
||
next step has to compute the smallest
|
||
positive solution: the first conflicts. */
|
||
min_multiple = MIN (x0 / i1, y0 / j1);
|
||
x0 -= i1 * min_multiple;
|
||
y0 -= j1 * min_multiple;
|
||
|
||
tau1 = (x0 - i0)/i1;
|
||
last_conflict = tau2 - tau1;
|
||
|
||
*overlaps_a = build_polynomial_chrec
|
||
(1,
|
||
build_int_cst (NULL_TREE, x0),
|
||
build_int_cst (NULL_TREE, i1));
|
||
*overlaps_b = build_polynomial_chrec
|
||
(1,
|
||
build_int_cst (NULL_TREE, y0),
|
||
build_int_cst (NULL_TREE, j1));
|
||
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
|
||
}
|
||
else
|
||
{
|
||
/* FIXME: For the moment, the upper bound of the
|
||
iteration domain for j is not checked. */
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
}
|
||
|
||
else
|
||
{
|
||
/* FIXME: For the moment, the upper bound of the
|
||
iteration domain for i is not checked. */
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
}
|
||
|
||
else
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, " (overlaps_a = ");
|
||
print_generic_expr (dump_file, *overlaps_a, 0);
|
||
fprintf (dump_file, ")\n (overlaps_b = ");
|
||
print_generic_expr (dump_file, *overlaps_b, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_siv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlaps_a,
|
||
tree *overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_siv_subscript \n");
|
||
|
||
if (evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_affine_p (chrec_b))
|
||
analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b, last_conflicts);
|
||
|
||
else if (evolution_function_is_affine_p (chrec_a)
|
||
&& evolution_function_is_constant_p (chrec_b))
|
||
analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
|
||
overlaps_b, overlaps_a, last_conflicts);
|
||
|
||
else if (evolution_function_is_affine_p (chrec_a)
|
||
&& evolution_function_is_affine_p (chrec_b))
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b, last_conflicts);
|
||
else
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Return true when the evolution steps of an affine CHREC divide the
|
||
constant CST. */
|
||
|
||
static bool
|
||
chrec_steps_divide_constant_p (tree chrec,
|
||
tree cst)
|
||
{
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
return (tree_fold_divides_p (integer_type_node, CHREC_RIGHT (chrec), cst)
|
||
&& chrec_steps_divide_constant_p (CHREC_LEFT (chrec), cst));
|
||
|
||
default:
|
||
/* On the initial condition, return true. */
|
||
return true;
|
||
}
|
||
}
|
||
|
||
/* Analyze a MIV (Multiple Index Variable) subscript. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_miv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlaps_a,
|
||
tree *overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
/* FIXME: This is a MIV subscript, not yet handled.
|
||
Example: (A[{1, +, 1}_1] vs. A[{1, +, 1}_2]) that comes from
|
||
(A[i] vs. A[j]).
|
||
|
||
In the SIV test we had to solve a Diophantine equation with two
|
||
variables. In the MIV case we have to solve a Diophantine
|
||
equation with 2*n variables (if the subscript uses n IVs).
|
||
*/
|
||
tree difference;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_miv_subscript \n");
|
||
|
||
difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
|
||
|
||
if (chrec_zerop (difference))
|
||
{
|
||
/* Access functions are the same: all the elements are accessed
|
||
in the same order. */
|
||
*overlaps_a = integer_zero_node;
|
||
*overlaps_b = integer_zero_node;
|
||
*last_conflicts = number_of_iterations_in_loop
|
||
(current_loops->parray[CHREC_VARIABLE (chrec_a)]);
|
||
}
|
||
|
||
else if (evolution_function_is_constant_p (difference)
|
||
/* For the moment, the following is verified:
|
||
evolution_function_is_affine_multivariate_p (chrec_a) */
|
||
&& !chrec_steps_divide_constant_p (chrec_a, difference))
|
||
{
|
||
/* testsuite/.../ssa-chrec-33.c
|
||
{{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
|
||
|
||
The difference is 1, and the evolution steps are equal to 2,
|
||
consequently there are no overlapping elements. */
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
|
||
else if (evolution_function_is_affine_multivariate_p (chrec_a)
|
||
&& evolution_function_is_affine_multivariate_p (chrec_b))
|
||
{
|
||
/* testsuite/.../ssa-chrec-35.c
|
||
{0, +, 1}_2 vs. {0, +, 1}_3
|
||
the overlapping elements are respectively located at iterations:
|
||
{0, +, 1}_x and {0, +, 1}_x,
|
||
in other words, we have the equality:
|
||
{0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
|
||
|
||
Other examples:
|
||
{{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
|
||
{0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
|
||
|
||
{{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
|
||
{{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
|
||
*/
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b, last_conflicts);
|
||
}
|
||
|
||
else
|
||
{
|
||
/* When the analysis is too difficult, answer "don't know". */
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Determines the iterations for which CHREC_A is equal to CHREC_B.
|
||
OVERLAP_ITERATIONS_A and OVERLAP_ITERATIONS_B are initialized with
|
||
two functions that describe the iterations that contain conflicting
|
||
elements.
|
||
|
||
Remark: For an integer k >= 0, the following equality is true:
|
||
|
||
CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
|
||
*/
|
||
|
||
static void
|
||
analyze_overlapping_iterations (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlap_iterations_a,
|
||
tree *overlap_iterations_b,
|
||
tree *last_conflicts)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(analyze_overlapping_iterations \n");
|
||
fprintf (dump_file, " (chrec_a = ");
|
||
print_generic_expr (dump_file, chrec_a, 0);
|
||
fprintf (dump_file, ")\n chrec_b = ");
|
||
print_generic_expr (dump_file, chrec_b, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
if (chrec_a == NULL_TREE
|
||
|| chrec_b == NULL_TREE
|
||
|| chrec_contains_undetermined (chrec_a)
|
||
|| chrec_contains_undetermined (chrec_b)
|
||
|| chrec_contains_symbols (chrec_a)
|
||
|| chrec_contains_symbols (chrec_b))
|
||
{
|
||
*overlap_iterations_a = chrec_dont_know;
|
||
*overlap_iterations_b = chrec_dont_know;
|
||
}
|
||
|
||
else if (ziv_subscript_p (chrec_a, chrec_b))
|
||
analyze_ziv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b,
|
||
last_conflicts);
|
||
|
||
else if (siv_subscript_p (chrec_a, chrec_b))
|
||
analyze_siv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b,
|
||
last_conflicts);
|
||
|
||
else
|
||
analyze_miv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b,
|
||
last_conflicts);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, " (overlap_iterations_a = ");
|
||
print_generic_expr (dump_file, *overlap_iterations_a, 0);
|
||
fprintf (dump_file, ")\n (overlap_iterations_b = ");
|
||
print_generic_expr (dump_file, *overlap_iterations_b, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* This section contains the affine functions dependences detector. */
|
||
|
||
/* Computes the conflicting iterations, and initialize DDR. */
|
||
|
||
static void
|
||
subscript_dependence_tester (struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned int i;
|
||
struct data_reference *dra = DDR_A (ddr);
|
||
struct data_reference *drb = DDR_B (ddr);
|
||
tree last_conflicts;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(subscript_dependence_tester \n");
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
tree overlaps_a, overlaps_b;
|
||
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
||
|
||
analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
|
||
DR_ACCESS_FN (drb, i),
|
||
&overlaps_a, &overlaps_b,
|
||
&last_conflicts);
|
||
|
||
if (chrec_contains_undetermined (overlaps_a)
|
||
|| chrec_contains_undetermined (overlaps_b))
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_dont_know);
|
||
break;
|
||
}
|
||
|
||
else if (overlaps_a == chrec_known
|
||
|| overlaps_b == chrec_known)
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_known);
|
||
break;
|
||
}
|
||
|
||
else
|
||
{
|
||
SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
|
||
SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
|
||
SUB_LAST_CONFLICT (subscript) = last_conflicts;
|
||
}
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Compute the classic per loop distance vector.
|
||
|
||
DDR is the data dependence relation to build a vector from.
|
||
NB_LOOPS is the total number of loops we are considering.
|
||
FIRST_LOOP_DEPTH is the loop->depth of the first loop in the analyzed
|
||
loop nest.
|
||
Return FALSE if the dependence relation is outside of the loop nest
|
||
starting at FIRST_LOOP_DEPTH.
|
||
Return TRUE otherwise. */
|
||
|
||
bool
|
||
build_classic_dist_vector (struct data_dependence_relation *ddr,
|
||
int nb_loops, int first_loop_depth)
|
||
{
|
||
unsigned i;
|
||
lambda_vector dist_v, init_v;
|
||
|
||
dist_v = lambda_vector_new (nb_loops);
|
||
init_v = lambda_vector_new (nb_loops);
|
||
lambda_vector_clear (dist_v, nb_loops);
|
||
lambda_vector_clear (init_v, nb_loops);
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
|
||
return true;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
tree access_fn_a, access_fn_b;
|
||
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
||
|
||
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
||
{
|
||
non_affine_dependence_relation (ddr);
|
||
return true;
|
||
}
|
||
|
||
access_fn_a = DR_ACCESS_FN (DDR_A (ddr), i);
|
||
access_fn_b = DR_ACCESS_FN (DDR_B (ddr), i);
|
||
|
||
if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
|
||
&& TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
|
||
{
|
||
int dist, loop_nb, loop_depth;
|
||
int loop_nb_a = CHREC_VARIABLE (access_fn_a);
|
||
int loop_nb_b = CHREC_VARIABLE (access_fn_b);
|
||
struct loop *loop_a = current_loops->parray[loop_nb_a];
|
||
struct loop *loop_b = current_loops->parray[loop_nb_b];
|
||
|
||
/* If the loop for either variable is at a lower depth than
|
||
the first_loop's depth, then we can't possibly have a
|
||
dependency at this level of the loop. */
|
||
|
||
if (loop_a->depth < first_loop_depth
|
||
|| loop_b->depth < first_loop_depth)
|
||
return false;
|
||
|
||
if (loop_nb_a != loop_nb_b
|
||
&& !flow_loop_nested_p (loop_a, loop_b)
|
||
&& !flow_loop_nested_p (loop_b, loop_a))
|
||
{
|
||
/* Example: when there are two consecutive loops,
|
||
|
||
| loop_1
|
||
| A[{0, +, 1}_1]
|
||
| endloop_1
|
||
| loop_2
|
||
| A[{0, +, 1}_2]
|
||
| endloop_2
|
||
|
||
the dependence relation cannot be captured by the
|
||
distance abstraction. */
|
||
non_affine_dependence_relation (ddr);
|
||
return true;
|
||
}
|
||
|
||
/* The dependence is carried by the outermost loop. Example:
|
||
| loop_1
|
||
| A[{4, +, 1}_1]
|
||
| loop_2
|
||
| A[{5, +, 1}_2]
|
||
| endloop_2
|
||
| endloop_1
|
||
In this case, the dependence is carried by loop_1. */
|
||
loop_nb = loop_nb_a < loop_nb_b ? loop_nb_a : loop_nb_b;
|
||
loop_depth = current_loops->parray[loop_nb]->depth - first_loop_depth;
|
||
|
||
/* If the loop number is still greater than the number of
|
||
loops we've been asked to analyze, or negative,
|
||
something is borked. */
|
||
gcc_assert (loop_depth >= 0);
|
||
gcc_assert (loop_depth < nb_loops);
|
||
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
||
{
|
||
non_affine_dependence_relation (ddr);
|
||
return true;
|
||
}
|
||
|
||
dist = int_cst_value (SUB_DISTANCE (subscript));
|
||
|
||
/* This is the subscript coupling test.
|
||
| loop i = 0, N, 1
|
||
| T[i+1][i] = ...
|
||
| ... = T[i][i]
|
||
| endloop
|
||
There is no dependence. */
|
||
if (init_v[loop_depth] != 0
|
||
&& dist_v[loop_depth] != dist)
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_known);
|
||
return true;
|
||
}
|
||
|
||
dist_v[loop_depth] = dist;
|
||
init_v[loop_depth] = 1;
|
||
}
|
||
}
|
||
|
||
/* There is a distance of 1 on all the outer loops:
|
||
|
||
Example: there is a dependence of distance 1 on loop_1 for the array A.
|
||
| loop_1
|
||
| A[5] = ...
|
||
| endloop
|
||
*/
|
||
{
|
||
struct loop *lca, *loop_a, *loop_b;
|
||
struct data_reference *a = DDR_A (ddr);
|
||
struct data_reference *b = DDR_B (ddr);
|
||
int lca_depth;
|
||
loop_a = loop_containing_stmt (DR_STMT (a));
|
||
loop_b = loop_containing_stmt (DR_STMT (b));
|
||
|
||
/* Get the common ancestor loop. */
|
||
lca = find_common_loop (loop_a, loop_b);
|
||
|
||
lca_depth = lca->depth;
|
||
lca_depth -= first_loop_depth;
|
||
gcc_assert (lca_depth >= 0);
|
||
gcc_assert (lca_depth < nb_loops);
|
||
|
||
/* For each outer loop where init_v is not set, the accesses are
|
||
in dependence of distance 1 in the loop. */
|
||
if (lca != loop_a
|
||
&& lca != loop_b
|
||
&& init_v[lca_depth] == 0)
|
||
dist_v[lca_depth] = 1;
|
||
|
||
lca = lca->outer;
|
||
|
||
if (lca)
|
||
{
|
||
lca_depth = lca->depth - first_loop_depth;
|
||
while (lca->depth != 0)
|
||
{
|
||
/* If we're considering just a sub-nest, then don't record
|
||
any information on the outer loops. */
|
||
if (lca_depth < 0)
|
||
break;
|
||
|
||
gcc_assert (lca_depth < nb_loops);
|
||
|
||
if (init_v[lca_depth] == 0)
|
||
dist_v[lca_depth] = 1;
|
||
lca = lca->outer;
|
||
lca_depth = lca->depth - first_loop_depth;
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
DDR_DIST_VECT (ddr) = dist_v;
|
||
DDR_SIZE_VECT (ddr) = nb_loops;
|
||
return true;
|
||
}
|
||
|
||
/* Compute the classic per loop direction vector.
|
||
|
||
DDR is the data dependence relation to build a vector from.
|
||
NB_LOOPS is the total number of loops we are considering.
|
||
FIRST_LOOP_DEPTH is the loop->depth of the first loop in the analyzed
|
||
loop nest.
|
||
Return FALSE if the dependence relation is outside of the loop nest
|
||
at FIRST_LOOP_DEPTH.
|
||
Return TRUE otherwise. */
|
||
|
||
static bool
|
||
build_classic_dir_vector (struct data_dependence_relation *ddr,
|
||
int nb_loops, int first_loop_depth)
|
||
{
|
||
unsigned i;
|
||
lambda_vector dir_v, init_v;
|
||
|
||
dir_v = lambda_vector_new (nb_loops);
|
||
init_v = lambda_vector_new (nb_loops);
|
||
lambda_vector_clear (dir_v, nb_loops);
|
||
lambda_vector_clear (init_v, nb_loops);
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
|
||
return true;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
tree access_fn_a, access_fn_b;
|
||
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
||
|
||
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
||
{
|
||
non_affine_dependence_relation (ddr);
|
||
return true;
|
||
}
|
||
|
||
access_fn_a = DR_ACCESS_FN (DDR_A (ddr), i);
|
||
access_fn_b = DR_ACCESS_FN (DDR_B (ddr), i);
|
||
if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
|
||
&& TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
|
||
{
|
||
int dist, loop_nb, loop_depth;
|
||
enum data_dependence_direction dir = dir_star;
|
||
int loop_nb_a = CHREC_VARIABLE (access_fn_a);
|
||
int loop_nb_b = CHREC_VARIABLE (access_fn_b);
|
||
struct loop *loop_a = current_loops->parray[loop_nb_a];
|
||
struct loop *loop_b = current_loops->parray[loop_nb_b];
|
||
|
||
/* If the loop for either variable is at a lower depth than
|
||
the first_loop's depth, then we can't possibly have a
|
||
dependency at this level of the loop. */
|
||
|
||
if (loop_a->depth < first_loop_depth
|
||
|| loop_b->depth < first_loop_depth)
|
||
return false;
|
||
|
||
if (loop_nb_a != loop_nb_b
|
||
&& !flow_loop_nested_p (loop_a, loop_b)
|
||
&& !flow_loop_nested_p (loop_b, loop_a))
|
||
{
|
||
/* Example: when there are two consecutive loops,
|
||
|
||
| loop_1
|
||
| A[{0, +, 1}_1]
|
||
| endloop_1
|
||
| loop_2
|
||
| A[{0, +, 1}_2]
|
||
| endloop_2
|
||
|
||
the dependence relation cannot be captured by the
|
||
distance abstraction. */
|
||
non_affine_dependence_relation (ddr);
|
||
return true;
|
||
}
|
||
|
||
/* The dependence is carried by the outermost loop. Example:
|
||
| loop_1
|
||
| A[{4, +, 1}_1]
|
||
| loop_2
|
||
| A[{5, +, 1}_2]
|
||
| endloop_2
|
||
| endloop_1
|
||
In this case, the dependence is carried by loop_1. */
|
||
loop_nb = loop_nb_a < loop_nb_b ? loop_nb_a : loop_nb_b;
|
||
loop_depth = current_loops->parray[loop_nb]->depth - first_loop_depth;
|
||
|
||
/* If the loop number is still greater than the number of
|
||
loops we've been asked to analyze, or negative,
|
||
something is borked. */
|
||
gcc_assert (loop_depth >= 0);
|
||
gcc_assert (loop_depth < nb_loops);
|
||
|
||
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
||
{
|
||
non_affine_dependence_relation (ddr);
|
||
return true;
|
||
}
|
||
|
||
dist = int_cst_value (SUB_DISTANCE (subscript));
|
||
|
||
if (dist == 0)
|
||
dir = dir_equal;
|
||
else if (dist > 0)
|
||
dir = dir_positive;
|
||
else if (dist < 0)
|
||
dir = dir_negative;
|
||
|
||
/* This is the subscript coupling test.
|
||
| loop i = 0, N, 1
|
||
| T[i+1][i] = ...
|
||
| ... = T[i][i]
|
||
| endloop
|
||
There is no dependence. */
|
||
if (init_v[loop_depth] != 0
|
||
&& dir != dir_star
|
||
&& (enum data_dependence_direction) dir_v[loop_depth] != dir
|
||
&& (enum data_dependence_direction) dir_v[loop_depth] != dir_star)
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_known);
|
||
return true;
|
||
}
|
||
|
||
dir_v[loop_depth] = dir;
|
||
init_v[loop_depth] = 1;
|
||
}
|
||
}
|
||
|
||
/* There is a distance of 1 on all the outer loops:
|
||
|
||
Example: there is a dependence of distance 1 on loop_1 for the array A.
|
||
| loop_1
|
||
| A[5] = ...
|
||
| endloop
|
||
*/
|
||
{
|
||
struct loop *lca, *loop_a, *loop_b;
|
||
struct data_reference *a = DDR_A (ddr);
|
||
struct data_reference *b = DDR_B (ddr);
|
||
int lca_depth;
|
||
loop_a = loop_containing_stmt (DR_STMT (a));
|
||
loop_b = loop_containing_stmt (DR_STMT (b));
|
||
|
||
/* Get the common ancestor loop. */
|
||
lca = find_common_loop (loop_a, loop_b);
|
||
lca_depth = lca->depth - first_loop_depth;
|
||
|
||
gcc_assert (lca_depth >= 0);
|
||
gcc_assert (lca_depth < nb_loops);
|
||
|
||
/* For each outer loop where init_v is not set, the accesses are
|
||
in dependence of distance 1 in the loop. */
|
||
if (lca != loop_a
|
||
&& lca != loop_b
|
||
&& init_v[lca_depth] == 0)
|
||
dir_v[lca_depth] = dir_positive;
|
||
|
||
lca = lca->outer;
|
||
if (lca)
|
||
{
|
||
lca_depth = lca->depth - first_loop_depth;
|
||
while (lca->depth != 0)
|
||
{
|
||
/* If we're considering just a sub-nest, then don't record
|
||
any information on the outer loops. */
|
||
if (lca_depth < 0)
|
||
break;
|
||
|
||
gcc_assert (lca_depth < nb_loops);
|
||
|
||
if (init_v[lca_depth] == 0)
|
||
dir_v[lca_depth] = dir_positive;
|
||
lca = lca->outer;
|
||
lca_depth = lca->depth - first_loop_depth;
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
DDR_DIR_VECT (ddr) = dir_v;
|
||
DDR_SIZE_VECT (ddr) = nb_loops;
|
||
return true;
|
||
}
|
||
|
||
/* Returns true when all the access functions of A are affine or
|
||
constant. */
|
||
|
||
static bool
|
||
access_functions_are_affine_or_constant_p (struct data_reference *a)
|
||
{
|
||
unsigned int i;
|
||
VEC(tree,heap) **fns = &DR_ACCESS_FNS (a);
|
||
tree t;
|
||
|
||
for (i = 0; VEC_iterate (tree, *fns, i, t); i++)
|
||
if (!evolution_function_is_constant_p (t)
|
||
&& !evolution_function_is_affine_multivariate_p (t))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* This computes the affine dependence relation between A and B.
|
||
CHREC_KNOWN is used for representing the independence between two
|
||
accesses, while CHREC_DONT_KNOW is used for representing the unknown
|
||
relation.
|
||
|
||
Note that it is possible to stop the computation of the dependence
|
||
relation the first time we detect a CHREC_KNOWN element for a given
|
||
subscript. */
|
||
|
||
void
|
||
compute_affine_dependence (struct data_dependence_relation *ddr)
|
||
{
|
||
struct data_reference *dra = DDR_A (ddr);
|
||
struct data_reference *drb = DDR_B (ddr);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(compute_affine_dependence\n");
|
||
fprintf (dump_file, " (stmt_a = \n");
|
||
print_generic_expr (dump_file, DR_STMT (dra), 0);
|
||
fprintf (dump_file, ")\n (stmt_b = \n");
|
||
print_generic_expr (dump_file, DR_STMT (drb), 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Analyze only when the dependence relation is not yet known. */
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
if (access_functions_are_affine_or_constant_p (dra)
|
||
&& access_functions_are_affine_or_constant_p (drb))
|
||
subscript_dependence_tester (ddr);
|
||
|
||
/* As a last case, if the dependence cannot be determined, or if
|
||
the dependence is considered too difficult to determine, answer
|
||
"don't know". */
|
||
else
|
||
finalize_ddr_dependent (ddr, chrec_dont_know);
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* This computes the dependence relation for the same data
|
||
reference into DDR. */
|
||
|
||
static void
|
||
compute_self_dependence (struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
||
|
||
/* The accessed index overlaps for each iteration. */
|
||
SUB_CONFLICTS_IN_A (subscript) = integer_zero_node;
|
||
SUB_CONFLICTS_IN_B (subscript) = integer_zero_node;
|
||
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
|
||
}
|
||
}
|
||
|
||
|
||
typedef struct data_dependence_relation *ddr_p;
|
||
DEF_VEC_P(ddr_p);
|
||
DEF_VEC_ALLOC_P(ddr_p,heap);
|
||
|
||
/* Compute a subset of the data dependence relation graph. Don't
|
||
compute read-read relations, and avoid the computation of the
|
||
opposite relation, i.e. when AB has been computed, don't compute BA.
|
||
DATAREFS contains a list of data references, and the result is set
|
||
in DEPENDENCE_RELATIONS. */
|
||
|
||
static void
|
||
compute_all_dependences (varray_type datarefs,
|
||
VEC(ddr_p,heap) **dependence_relations)
|
||
{
|
||
unsigned int i, j, N;
|
||
|
||
N = VARRAY_ACTIVE_SIZE (datarefs);
|
||
|
||
/* Note that we specifically skip i == j because it's a self dependence, and
|
||
use compute_self_dependence below. */
|
||
|
||
for (i = 0; i < N; i++)
|
||
for (j = i + 1; j < N; j++)
|
||
{
|
||
struct data_reference *a, *b;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
a = VARRAY_GENERIC_PTR (datarefs, i);
|
||
b = VARRAY_GENERIC_PTR (datarefs, j);
|
||
ddr = initialize_data_dependence_relation (a, b);
|
||
|
||
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
|
||
compute_affine_dependence (ddr);
|
||
compute_subscript_distance (ddr);
|
||
}
|
||
|
||
/* Compute self dependence relation of each dataref to itself. */
|
||
|
||
for (i = 0; i < N; i++)
|
||
{
|
||
struct data_reference *a, *b;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
a = VARRAY_GENERIC_PTR (datarefs, i);
|
||
b = VARRAY_GENERIC_PTR (datarefs, i);
|
||
ddr = initialize_data_dependence_relation (a, b);
|
||
|
||
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
|
||
compute_self_dependence (ddr);
|
||
compute_subscript_distance (ddr);
|
||
}
|
||
}
|
||
|
||
/* Search the data references in LOOP, and record the information into
|
||
DATAREFS. Returns chrec_dont_know when failing to analyze a
|
||
difficult case, returns NULL_TREE otherwise.
|
||
|
||
TODO: This function should be made smarter so that it can handle address
|
||
arithmetic as if they were array accesses, etc. */
|
||
|
||
tree
|
||
find_data_references_in_loop (struct loop *loop, varray_type *datarefs)
|
||
{
|
||
basic_block bb, *bbs;
|
||
unsigned int i;
|
||
block_stmt_iterator bsi;
|
||
|
||
bbs = get_loop_body (loop);
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
{
|
||
bb = bbs[i];
|
||
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree stmt = bsi_stmt (bsi);
|
||
|
||
/* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
|
||
Calls have side-effects, except those to const or pure
|
||
functions. */
|
||
if ((TREE_CODE (stmt) == CALL_EXPR
|
||
&& !(call_expr_flags (stmt) & (ECF_CONST | ECF_PURE)))
|
||
|| (TREE_CODE (stmt) == ASM_EXPR
|
||
&& ASM_VOLATILE_P (stmt)))
|
||
goto insert_dont_know_node;
|
||
|
||
if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
|
||
continue;
|
||
|
||
switch (TREE_CODE (stmt))
|
||
{
|
||
case MODIFY_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (stmt, 0)) == ARRAY_REF)
|
||
VARRAY_PUSH_GENERIC_PTR
|
||
(*datarefs, analyze_array (stmt, TREE_OPERAND (stmt, 0),
|
||
false));
|
||
|
||
if (TREE_CODE (TREE_OPERAND (stmt, 1)) == ARRAY_REF)
|
||
VARRAY_PUSH_GENERIC_PTR
|
||
(*datarefs, analyze_array (stmt, TREE_OPERAND (stmt, 1),
|
||
true));
|
||
|
||
if (TREE_CODE (TREE_OPERAND (stmt, 0)) != ARRAY_REF
|
||
&& TREE_CODE (TREE_OPERAND (stmt, 1)) != ARRAY_REF)
|
||
goto insert_dont_know_node;
|
||
|
||
break;
|
||
|
||
case CALL_EXPR:
|
||
{
|
||
tree args;
|
||
bool one_inserted = false;
|
||
|
||
for (args = TREE_OPERAND (stmt, 1); args; args = TREE_CHAIN (args))
|
||
if (TREE_CODE (TREE_VALUE (args)) == ARRAY_REF)
|
||
{
|
||
VARRAY_PUSH_GENERIC_PTR
|
||
(*datarefs, analyze_array (stmt, TREE_VALUE (args), true));
|
||
one_inserted = true;
|
||
}
|
||
|
||
if (!one_inserted)
|
||
goto insert_dont_know_node;
|
||
|
||
break;
|
||
}
|
||
|
||
default:
|
||
{
|
||
struct data_reference *res;
|
||
|
||
insert_dont_know_node:;
|
||
res = xmalloc (sizeof (struct data_reference));
|
||
DR_STMT (res) = NULL_TREE;
|
||
DR_REF (res) = NULL_TREE;
|
||
DR_ACCESS_FNS (res) = NULL;
|
||
DR_BASE_NAME (res) = NULL;
|
||
DR_IS_READ (res) = false;
|
||
VARRAY_PUSH_GENERIC_PTR (*datarefs, res);
|
||
|
||
free (bbs);
|
||
return chrec_dont_know;
|
||
}
|
||
}
|
||
|
||
/* When there are no defs in the loop, the loop is parallel. */
|
||
if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
|
||
loop->parallel_p = false;
|
||
}
|
||
|
||
if (chrec_contains_undetermined (loop->estimated_nb_iterations))
|
||
compute_estimated_nb_iterations (loop);
|
||
}
|
||
|
||
free (bbs);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
|
||
/* This section contains all the entry points. */
|
||
|
||
/* Given a loop nest LOOP, the following vectors are returned:
|
||
*DATAREFS is initialized to all the array elements contained in this loop,
|
||
*DEPENDENCE_RELATIONS contains the relations between the data references. */
|
||
|
||
void
|
||
compute_data_dependences_for_loop (unsigned nb_loops,
|
||
struct loop *loop,
|
||
varray_type *datarefs,
|
||
varray_type *dependence_relations)
|
||
{
|
||
unsigned int i;
|
||
VEC(ddr_p,heap) *allrelations;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
/* If one of the data references is not computable, give up without
|
||
spending time to compute other dependences. */
|
||
if (find_data_references_in_loop (loop, datarefs) == chrec_dont_know)
|
||
{
|
||
struct data_dependence_relation *ddr;
|
||
|
||
/* Insert a single relation into dependence_relations:
|
||
chrec_dont_know. */
|
||
ddr = initialize_data_dependence_relation (NULL, NULL);
|
||
VARRAY_PUSH_GENERIC_PTR (*dependence_relations, ddr);
|
||
build_classic_dist_vector (ddr, nb_loops, loop->depth);
|
||
build_classic_dir_vector (ddr, nb_loops, loop->depth);
|
||
return;
|
||
}
|
||
|
||
allrelations = NULL;
|
||
compute_all_dependences (*datarefs, &allrelations);
|
||
|
||
for (i = 0; VEC_iterate (ddr_p, allrelations, i, ddr); i++)
|
||
{
|
||
if (build_classic_dist_vector (ddr, nb_loops, loop->depth))
|
||
{
|
||
VARRAY_PUSH_GENERIC_PTR (*dependence_relations, ddr);
|
||
build_classic_dir_vector (ddr, nb_loops, loop->depth);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Entry point (for testing only). Analyze all the data references
|
||
and the dependence relations.
|
||
|
||
The data references are computed first.
|
||
|
||
A relation on these nodes is represented by a complete graph. Some
|
||
of the relations could be of no interest, thus the relations can be
|
||
computed on demand.
|
||
|
||
In the following function we compute all the relations. This is
|
||
just a first implementation that is here for:
|
||
- for showing how to ask for the dependence relations,
|
||
- for the debugging the whole dependence graph,
|
||
- for the dejagnu testcases and maintenance.
|
||
|
||
It is possible to ask only for a part of the graph, avoiding to
|
||
compute the whole dependence graph. The computed dependences are
|
||
stored in a knowledge base (KB) such that later queries don't
|
||
recompute the same information. The implementation of this KB is
|
||
transparent to the optimizer, and thus the KB can be changed with a
|
||
more efficient implementation, or the KB could be disabled. */
|
||
|
||
void
|
||
analyze_all_data_dependences (struct loops *loops)
|
||
{
|
||
unsigned int i;
|
||
varray_type datarefs;
|
||
varray_type dependence_relations;
|
||
int nb_data_refs = 10;
|
||
|
||
VARRAY_GENERIC_PTR_INIT (datarefs, nb_data_refs, "datarefs");
|
||
VARRAY_GENERIC_PTR_INIT (dependence_relations,
|
||
nb_data_refs * nb_data_refs,
|
||
"dependence_relations");
|
||
|
||
/* Compute DDs on the whole function. */
|
||
compute_data_dependences_for_loop (loops->num, loops->parray[0],
|
||
&datarefs, &dependence_relations);
|
||
|
||
if (dump_file)
|
||
{
|
||
dump_data_dependence_relations (dump_file, dependence_relations);
|
||
fprintf (dump_file, "\n\n");
|
||
|
||
if (dump_flags & TDF_DETAILS)
|
||
dump_dist_dir_vectors (dump_file, dependence_relations);
|
||
|
||
if (dump_flags & TDF_STATS)
|
||
{
|
||
unsigned nb_top_relations = 0;
|
||
unsigned nb_bot_relations = 0;
|
||
unsigned nb_basename_differ = 0;
|
||
unsigned nb_chrec_relations = 0;
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
|
||
{
|
||
struct data_dependence_relation *ddr;
|
||
ddr = VARRAY_GENERIC_PTR (dependence_relations, i);
|
||
|
||
if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
|
||
nb_top_relations++;
|
||
|
||
else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
||
{
|
||
struct data_reference *a = DDR_A (ddr);
|
||
struct data_reference *b = DDR_B (ddr);
|
||
bool differ_p;
|
||
|
||
if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b)
|
||
|| (array_base_name_differ_p (a, b, &differ_p) && differ_p))
|
||
nb_basename_differ++;
|
||
else
|
||
nb_bot_relations++;
|
||
}
|
||
|
||
else
|
||
nb_chrec_relations++;
|
||
}
|
||
|
||
gather_stats_on_scev_database ();
|
||
}
|
||
}
|
||
|
||
free_dependence_relations (dependence_relations);
|
||
free_data_refs (datarefs);
|
||
}
|
||
|
||
/* Free the memory used by a data dependence relation DDR. */
|
||
|
||
void
|
||
free_dependence_relation (struct data_dependence_relation *ddr)
|
||
{
|
||
if (ddr == NULL)
|
||
return;
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_SUBSCRIPTS (ddr))
|
||
varray_clear (DDR_SUBSCRIPTS (ddr));
|
||
free (ddr);
|
||
}
|
||
|
||
/* Free the memory used by the data dependence relations from
|
||
DEPENDENCE_RELATIONS. */
|
||
|
||
void
|
||
free_dependence_relations (varray_type dependence_relations)
|
||
{
|
||
unsigned int i;
|
||
if (dependence_relations == NULL)
|
||
return;
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
|
||
free_dependence_relation (VARRAY_GENERIC_PTR (dependence_relations, i));
|
||
varray_clear (dependence_relations);
|
||
}
|
||
|
||
/* Free the memory used by the data references from DATAREFS. */
|
||
|
||
void
|
||
free_data_refs (varray_type datarefs)
|
||
{
|
||
unsigned int i;
|
||
|
||
if (datarefs == NULL)
|
||
return;
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (datarefs); i++)
|
||
{
|
||
struct data_reference *dr = (struct data_reference *)
|
||
VARRAY_GENERIC_PTR (datarefs, i);
|
||
if (dr)
|
||
{
|
||
VEC_free (tree, heap, DR_ACCESS_FNS (dr));
|
||
free (dr);
|
||
}
|
||
}
|
||
varray_clear (datarefs);
|
||
}
|
||
|