gcc/libstdc++-v3/include/bits/stl_algobase.h
Benjamin Kosnik 14bc1c0e15 stl_algobase.h (std::equal): avoid use of possibly-undefined operator != (one line patch).
2001-04-06  Joe Buck  <jbuck@welsh-buck.org>

        * stl_algobase.h (std::equal): avoid use of possibly-undefined
        operator != (one line patch).

From-SVN: r41170
2001-04-06 22:21:29 +00:00

708 lines
24 KiB
C++

/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996-1998
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_ALGOBASE_H
#define __SGI_STL_INTERNAL_ALGOBASE_H
#include <bits/c++config.h>
#ifndef __SGI_STL_INTERNAL_PAIR_H
#include <bits/stl_pair.h>
#endif
#ifndef _CPP_BITS_TYPE_TRAITS_H
#include <bits/type_traits.h>
#endif
#include <bits/std_cstring.h>
#include <bits/std_climits.h>
#include <bits/std_cstdlib.h>
#include <bits/std_cstddef.h>
#include <new>
#include <bits/std_iosfwd.h>
#include <bits/stl_iterator_base_types.h>
#include <bits/stl_iterator_base_funcs.h>
#include <bits/stl_iterator.h>
#include <bits/concept_check.h>
namespace std
{
// swap and iter_swap
template <class _ForwardIter1, class _ForwardIter2, class _Tp>
inline void __iter_swap(_ForwardIter1 __a, _ForwardIter2 __b, _Tp*)
{
_Tp __tmp = *__a;
*__a = *__b;
*__b = __tmp;
}
template <class _ForwardIter1, class _ForwardIter2>
inline void iter_swap(_ForwardIter1 __a, _ForwardIter2 __b)
{
// concept requirements
glibcpp_function_requires(Mutable_ForwardIteratorConcept<_ForwardIter1>);
glibcpp_function_requires(Mutable_ForwardIteratorConcept<_ForwardIter2>);
glibcpp_function_requires(ConvertibleConcept<
typename iterator_traits<_ForwardIter1>::value_type,
typename iterator_traits<_ForwardIter2>::value_type>);
glibcpp_function_requires(ConvertibleConcept<
typename iterator_traits<_ForwardIter2>::value_type,
typename iterator_traits<_ForwardIter1>::value_type>);
__iter_swap(__a, __b, __value_type(__a));
}
template <class _Tp>
inline void swap(_Tp& __a, _Tp& __b)
{
// concept requirements
glibcpp_function_requires(SGIAssignableConcept<_Tp>);
_Tp __tmp = __a;
__a = __b;
__b = __tmp;
}
//--------------------------------------------------
// min and max
#undef min
#undef max
template <class _Tp>
inline const _Tp& min(const _Tp& __a, const _Tp& __b) {
// concept requirements
glibcpp_function_requires(LessThanComparableConcept<_Tp>);
//return __b < __a ? __b : __a;
if (__b < __a) return __b; return __a;
}
template <class _Tp>
inline const _Tp& max(const _Tp& __a, const _Tp& __b) {
// concept requirements
glibcpp_function_requires(LessThanComparableConcept<_Tp>);
//return __a < __b ? __b : __a;
if (__a < __b) return __b; return __a;
}
template <class _Tp, class _Compare>
inline const _Tp& min(const _Tp& __a, const _Tp& __b, _Compare __comp) {
//return __comp(__b, __a) ? __b : __a;
if (__comp(__b, __a)) return __b; return __a;
}
template <class _Tp, class _Compare>
inline const _Tp& max(const _Tp& __a, const _Tp& __b, _Compare __comp) {
//return __comp(__a, __b) ? __b : __a;
if (__comp(__a, __b)) return __b; return __a;
}
//--------------------------------------------------
// copy
// All of these auxiliary functions serve two purposes. (1) Replace
// calls to copy with memmove whenever possible. (Memmove, not memcpy,
// because the input and output ranges are permitted to overlap.)
// (2) If we're using random access iterators, then write the loop as
// a for loop with an explicit count.
template <class _InputIter, class _OutputIter, class _Distance>
inline _OutputIter __copy(_InputIter __first, _InputIter __last,
_OutputIter __result,
input_iterator_tag, _Distance*)
{
for ( ; __first != __last; ++__result, ++__first)
*__result = *__first;
return __result;
}
template <class _RandomAccessIter, class _OutputIter, class _Distance>
inline _OutputIter
__copy(_RandomAccessIter __first, _RandomAccessIter __last,
_OutputIter __result, random_access_iterator_tag, _Distance*)
{
for (_Distance __n = __last - __first; __n > 0; --__n) {
*__result = *__first;
++__first;
++__result;
}
return __result;
}
template <class _Tp>
inline _Tp*
__copy_trivial(const _Tp* __first, const _Tp* __last, _Tp* __result)
{
memmove(__result, __first, sizeof(_Tp) * (__last - __first));
return __result + (__last - __first);
}
template <class _InputIter, class _OutputIter>
inline _OutputIter __copy_aux2(_InputIter __first, _InputIter __last,
_OutputIter __result, __false_type)
{
return __copy(__first, __last, __result,
__iterator_category(__first),
__distance_type(__first));
}
template <class _InputIter, class _OutputIter>
inline _OutputIter __copy_aux2(_InputIter __first, _InputIter __last,
_OutputIter __result, __true_type)
{
return __copy(__first, __last, __result,
__iterator_category(__first),
__distance_type(__first));
}
template <class _Tp>
inline _Tp* __copy_aux2(_Tp* __first, _Tp* __last, _Tp* __result,
__true_type)
{
return __copy_trivial(__first, __last, __result);
}
template <class _Tp>
inline _Tp* __copy_aux2(const _Tp* __first, const _Tp* __last, _Tp* __result,
__true_type)
{
return __copy_trivial(__first, __last, __result);
}
template <class _InputIter, class _OutputIter, class _Tp>
inline _OutputIter __copy_aux(_InputIter __first, _InputIter __last,
_OutputIter __result, _Tp*)
{
typedef typename __type_traits<_Tp>::has_trivial_assignment_operator
_Trivial;
return __copy_aux2(__first, __last, __result, _Trivial());
}
template<typename _InputIter, typename _OutputIter>
inline _OutputIter __copy_ni2(_InputIter __first, _InputIter __last,
_OutputIter __result, __true_type)
{
return _OutputIter(__copy_aux(__first, __last, __result.base(),
__value_type(__first)));
}
template<typename _InputIter, typename _OutputIter>
inline _OutputIter __copy_ni2(_InputIter __first, _InputIter __last,
_OutputIter __result, __false_type)
{
return __copy_aux(__first, __last, __result, __value_type(__first));
}
template<typename _InputIter, typename _OutputIter>
inline _OutputIter __copy_ni1(_InputIter __first, _InputIter __last,
_OutputIter __result, __true_type)
{
typedef typename _Is_normal_iterator<_OutputIter>::_Normal __Normal;
return __copy_ni2(__first.base(), __last.base(), __result, __Normal());
}
template<typename _InputIter, typename _OutputIter>
inline _OutputIter __copy_ni1(_InputIter __first, _InputIter __last,
_OutputIter __result, __false_type)
{
typedef typename _Is_normal_iterator<_OutputIter>::_Normal __Normal;
return __copy_ni2(__first, __last, __result, __Normal());
}
template <class _InputIter, class _OutputIter>
inline _OutputIter copy(_InputIter __first, _InputIter __last,
_OutputIter __result)
{
// concept requirements
glibcpp_function_requires(InputIteratorConcept<_InputIter>);
glibcpp_function_requires(OutputIteratorConcept<_OutputIter,
typename iterator_traits<_InputIter>::value_type>);
typedef typename _Is_normal_iterator<_InputIter>::_Normal __Normal;
return __copy_ni1(__first, __last, __result, __Normal());
}
//--------------------------------------------------
// copy_backward
template <class _BidirectionalIter1, class _BidirectionalIter2,
class _Distance>
inline _BidirectionalIter2 __copy_backward(_BidirectionalIter1 __first,
_BidirectionalIter1 __last,
_BidirectionalIter2 __result,
bidirectional_iterator_tag,
_Distance*)
{
while (__first != __last)
*--__result = *--__last;
return __result;
}
template <class _RandomAccessIter, class _BidirectionalIter, class _Distance>
inline _BidirectionalIter __copy_backward(_RandomAccessIter __first,
_RandomAccessIter __last,
_BidirectionalIter __result,
random_access_iterator_tag,
_Distance*)
{
for (_Distance __n = __last - __first; __n > 0; --__n)
*--__result = *--__last;
return __result;
}
// This dispatch class is a workaround for compilers that do not
// have partial ordering of function templates. All we're doing is
// creating a specialization so that we can turn a call to copy_backward
// into a memmove whenever possible.
template <class _BidirectionalIter1, class _BidirectionalIter2,
class _BoolType>
struct __copy_backward_dispatch
{
typedef typename iterator_traits<_BidirectionalIter1>::iterator_category
_Cat;
typedef typename iterator_traits<_BidirectionalIter1>::difference_type
_Distance;
static _BidirectionalIter2 copy(_BidirectionalIter1 __first,
_BidirectionalIter1 __last,
_BidirectionalIter2 __result) {
return __copy_backward(__first, __last, __result, _Cat(), (_Distance*) 0);
}
};
template <class _Tp>
struct __copy_backward_dispatch<_Tp*, _Tp*, __true_type>
{
static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) {
const ptrdiff_t _Num = __last - __first;
memmove(__result - _Num, __first, sizeof(_Tp) * _Num);
return __result - _Num;
}
};
template <class _Tp>
struct __copy_backward_dispatch<const _Tp*, _Tp*, __true_type>
{
static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) {
return __copy_backward_dispatch<_Tp*, _Tp*, __true_type>
::copy(__first, __last, __result);
}
};
template <class _BI1, class _BI2>
inline _BI2 __copy_backward_aux(_BI1 __first, _BI1 __last, _BI2 __result) {
typedef typename __type_traits<typename iterator_traits<_BI2>::value_type>
::has_trivial_assignment_operator
_Trivial;
return __copy_backward_dispatch<_BI1, _BI2, _Trivial>
::copy(__first, __last, __result);
}
template <typename _BI1, typename _BI2>
inline _BI2 __copy_backward_output_normal_iterator(_BI1 __first, _BI1 __last,
_BI2 __result, __true_type) {
return _BI2(__copy_backward_aux(__first, __last, __result.base()));
}
template <typename _BI1, typename _BI2>
inline _BI2 __copy_backward_output_normal_iterator(_BI1 __first, _BI1 __last,
_BI2 __result, __false_type){
return __copy_backward_aux(__first, __last, __result);
}
template <typename _BI1, typename _BI2>
inline _BI2 __copy_backward_input_normal_iterator(_BI1 __first, _BI1 __last,
_BI2 __result, __true_type) {
typedef typename _Is_normal_iterator<_BI2>::_Normal __Normal;
return __copy_backward_output_normal_iterator(__first.base(), __last.base(),
__result, __Normal());
}
template <typename _BI1, typename _BI2>
inline _BI2 __copy_backward_input_normal_iterator(_BI1 __first, _BI1 __last,
_BI2 __result, __false_type) {
typedef typename _Is_normal_iterator<_BI2>::_Normal __Normal;
return __copy_backward_output_normal_iterator(__first, __last, __result,
__Normal());
}
template <typename _BI1, typename _BI2>
inline _BI2 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result)
{
// concept requirements
glibcpp_function_requires(BidirectionalIteratorConcept<_BI1>);
glibcpp_function_requires(Mutable_BidirectionalIteratorConcept<_BI2>);
glibcpp_function_requires(ConvertibleConcept<
typename iterator_traits<_BI1>::value_type,
typename iterator_traits<_BI2>::value_type>);
typedef typename _Is_normal_iterator<_BI1>::_Normal __Normal;
return __copy_backward_input_normal_iterator(__first, __last, __result,
__Normal());
}
//--------------------------------------------------
// copy_n (not part of the C++ standard)
template <class _InputIter, class _Size, class _OutputIter>
pair<_InputIter, _OutputIter> __copy_n(_InputIter __first, _Size __count,
_OutputIter __result,
input_iterator_tag) {
for ( ; __count > 0; --__count) {
*__result = *__first;
++__first;
++__result;
}
return pair<_InputIter, _OutputIter>(__first, __result);
}
template <class _RAIter, class _Size, class _OutputIter>
inline pair<_RAIter, _OutputIter>
__copy_n(_RAIter __first, _Size __count,
_OutputIter __result,
random_access_iterator_tag) {
_RAIter __last = __first + __count;
return pair<_RAIter, _OutputIter>(__last, copy(__first, __last, __result));
}
template <class _InputIter, class _Size, class _OutputIter>
inline pair<_InputIter, _OutputIter>
__copy_n(_InputIter __first, _Size __count, _OutputIter __result) {
return __copy_n(__first, __count, __result,
__iterator_category(__first));
}
template <class _InputIter, class _Size, class _OutputIter>
inline pair<_InputIter, _OutputIter>
copy_n(_InputIter __first, _Size __count, _OutputIter __result)
{
// concept requirements
glibcpp_function_requires(InputIteratorConcept<_InputIter>);
glibcpp_function_requires(OutputIteratorConcept<_OutputIter,
typename iterator_traits<_InputIter>::value_type>);
return __copy_n(__first, __count, __result);
}
//--------------------------------------------------
// fill and fill_n
template <class _ForwardIter, class _Tp>
void fill(_ForwardIter __first, _ForwardIter __last, const _Tp& __value)
{
// concept requirements
glibcpp_function_requires(Mutable_ForwardIteratorConcept<_ForwardIter>);
for ( ; __first != __last; ++__first)
*__first = __value;
}
template <class _OutputIter, class _Size, class _Tp>
_OutputIter fill_n(_OutputIter __first, _Size __n, const _Tp& __value)
{
// concept requirements
glibcpp_function_requires(OutputIteratorConcept<_OutputIter,_Tp>);
for ( ; __n > 0; --__n, ++__first)
*__first = __value;
return __first;
}
// Specialization: for one-byte types we can use memset.
inline void fill(unsigned char* __first, unsigned char* __last,
const unsigned char& __c)
{
unsigned char __tmp = __c;
memset(__first, __tmp, __last - __first);
}
inline void fill(signed char* __first, signed char* __last,
const signed char& __c)
{
signed char __tmp = __c;
memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
}
inline void fill(char* __first, char* __last, const char& __c)
{
char __tmp = __c;
memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
}
template <class _Size>
inline unsigned char* fill_n(unsigned char* __first, _Size __n,
const unsigned char& __c)
{
fill(__first, __first + __n, __c);
return __first + __n;
}
template <class _Size>
inline signed char* fill_n(char* __first, _Size __n,
const signed char& __c)
{
fill(__first, __first + __n, __c);
return __first + __n;
}
template <class _Size>
inline char* fill_n(char* __first, _Size __n, const char& __c)
{
fill(__first, __first + __n, __c);
return __first + __n;
}
//--------------------------------------------------
// equal and mismatch
template <class _InputIter1, class _InputIter2>
pair<_InputIter1, _InputIter2> mismatch(_InputIter1 __first1,
_InputIter1 __last1,
_InputIter2 __first2)
{
// concept requirements
glibcpp_function_requires(InputIteratorConcept<_InputIter1>);
glibcpp_function_requires(InputIteratorConcept<_InputIter2>);
glibcpp_function_requires(EqualityComparableConcept<
typename iterator_traits<_InputIter1>::value_type>);
glibcpp_function_requires(EqualityComparableConcept<
typename iterator_traits<_InputIter2>::value_type>);
while (__first1 != __last1 && *__first1 == *__first2) {
++__first1;
++__first2;
}
return pair<_InputIter1, _InputIter2>(__first1, __first2);
}
template <class _InputIter1, class _InputIter2, class _BinaryPredicate>
pair<_InputIter1, _InputIter2> mismatch(_InputIter1 __first1,
_InputIter1 __last1,
_InputIter2 __first2,
_BinaryPredicate __binary_pred)
{
// concept requirements
glibcpp_function_requires(InputIteratorConcept<_InputIter1>);
glibcpp_function_requires(InputIteratorConcept<_InputIter2>);
while (__first1 != __last1 && __binary_pred(*__first1, *__first2)) {
++__first1;
++__first2;
}
return pair<_InputIter1, _InputIter2>(__first1, __first2);
}
template <class _InputIter1, class _InputIter2>
inline bool equal(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2)
{
// concept requirements
glibcpp_function_requires(InputIteratorConcept<_InputIter1>);
glibcpp_function_requires(InputIteratorConcept<_InputIter2>);
glibcpp_function_requires(EqualityComparableConcept<
typename iterator_traits<_InputIter1>::value_type>);
glibcpp_function_requires(EqualityComparableConcept<
typename iterator_traits<_InputIter2>::value_type>);
for ( ; __first1 != __last1; ++__first1, ++__first2)
if (!(*__first1 == *__first2))
return false;
return true;
}
template <class _InputIter1, class _InputIter2, class _BinaryPredicate>
inline bool equal(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _BinaryPredicate __binary_pred)
{
// concept requirements
glibcpp_function_requires(InputIteratorConcept<_InputIter1>);
glibcpp_function_requires(InputIteratorConcept<_InputIter2>);
for ( ; __first1 != __last1; ++__first1, ++__first2)
if (!__binary_pred(*__first1, *__first2))
return false;
return true;
}
//--------------------------------------------------
// lexicographical_compare and lexicographical_compare_3way.
// (the latter is not part of the C++ standard.)
template <class _InputIter1, class _InputIter2>
bool lexicographical_compare(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2)
{
// concept requirements
glibcpp_function_requires(InputIteratorConcept<_InputIter1>);
glibcpp_function_requires(InputIteratorConcept<_InputIter2>);
glibcpp_function_requires(LessThanComparableConcept<
typename iterator_traits<_InputIter1>::value_type>);
glibcpp_function_requires(LessThanComparableConcept<
typename iterator_traits<_InputIter2>::value_type>);
for ( ; __first1 != __last1 && __first2 != __last2
; ++__first1, ++__first2) {
if (*__first1 < *__first2)
return true;
if (*__first2 < *__first1)
return false;
}
return __first1 == __last1 && __first2 != __last2;
}
template <class _InputIter1, class _InputIter2, class _Compare>
bool lexicographical_compare(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_Compare __comp)
{
// concept requirements
glibcpp_function_requires(InputIteratorConcept<_InputIter1>);
glibcpp_function_requires(InputIteratorConcept<_InputIter2>);
for ( ; __first1 != __last1 && __first2 != __last2
; ++__first1, ++__first2) {
if (__comp(*__first1, *__first2))
return true;
if (__comp(*__first2, *__first1))
return false;
}
return __first1 == __last1 && __first2 != __last2;
}
inline bool
lexicographical_compare(const unsigned char* __first1,
const unsigned char* __last1,
const unsigned char* __first2,
const unsigned char* __last2)
{
const size_t __len1 = __last1 - __first1;
const size_t __len2 = __last2 - __first2;
const int __result = memcmp(__first1, __first2, min(__len1, __len2));
return __result != 0 ? __result < 0 : __len1 < __len2;
}
inline bool lexicographical_compare(const char* __first1, const char* __last1,
const char* __first2, const char* __last2)
{
#if CHAR_MAX == SCHAR_MAX
return lexicographical_compare((const signed char*) __first1,
(const signed char*) __last1,
(const signed char*) __first2,
(const signed char*) __last2);
#else /* CHAR_MAX == SCHAR_MAX */
return lexicographical_compare((const unsigned char*) __first1,
(const unsigned char*) __last1,
(const unsigned char*) __first2,
(const unsigned char*) __last2);
#endif /* CHAR_MAX == SCHAR_MAX */
}
template <class _InputIter1, class _InputIter2>
int __lexicographical_compare_3way(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2)
{
while (__first1 != __last1 && __first2 != __last2) {
if (*__first1 < *__first2)
return -1;
if (*__first2 < *__first1)
return 1;
++__first1;
++__first2;
}
if (__first2 == __last2) {
return !(__first1 == __last1);
}
else {
return -1;
}
}
inline int
__lexicographical_compare_3way(const unsigned char* __first1,
const unsigned char* __last1,
const unsigned char* __first2,
const unsigned char* __last2)
{
const ptrdiff_t __len1 = __last1 - __first1;
const ptrdiff_t __len2 = __last2 - __first2;
const int __result = memcmp(__first1, __first2, min(__len1, __len2));
return __result != 0 ? __result
: (__len1 == __len2 ? 0 : (__len1 < __len2 ? -1 : 1));
}
inline int
__lexicographical_compare_3way(const char* __first1, const char* __last1,
const char* __first2, const char* __last2)
{
#if CHAR_MAX == SCHAR_MAX
return __lexicographical_compare_3way(
(const signed char*) __first1,
(const signed char*) __last1,
(const signed char*) __first2,
(const signed char*) __last2);
#else
return __lexicographical_compare_3way((const unsigned char*) __first1,
(const unsigned char*) __last1,
(const unsigned char*) __first2,
(const unsigned char*) __last2);
#endif
}
template <class _InputIter1, class _InputIter2>
int lexicographical_compare_3way(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2)
{
// concept requirements
glibcpp_function_requires(InputIteratorConcept<_InputIter1>);
glibcpp_function_requires(InputIteratorConcept<_InputIter2>);
glibcpp_function_requires(LessThanComparableConcept<
typename iterator_traits<_InputIter1>::value_type>);
glibcpp_function_requires(LessThanComparableConcept<
typename iterator_traits<_InputIter2>::value_type>);
return __lexicographical_compare_3way(__first1, __last1, __first2, __last2);
}
} // namespace std
#endif /* __SGI_STL_INTERNAL_ALGOBASE_H */
// Local Variables:
// mode:C++
// End: