c59ffc4195
* hwint.c: New. Extracted from toplev.c. * hwint.h (clz_hwi, ctz_hwi, ffs_hwi, exact_log2, floor_log2): Move from toplev.h. * toplev.c (clz_hwi, ctz_hwi, ffs_hwi, exact_log2, floor_log2): Move to hwint.c. * toplev.h (clz_hwi, ctz_hwi, ffs_hwi, exact_log2, floor_log2): Move to hwint.h. * builtins.c, combine.c, config/i386/winnt.c, double-int.c, explow.c, expmed.c, fold-const.c, ggc-page.c, ggc-zone.c, ifcvt.c, ipa-struct-reorg.c, ira-color.c, matrix-reorg.c, omp-low.c, real.c, recog.c, reload.c, rtlanal.c, simplify-rtx.c, stor-layout.c, tree-dfa.c, tree-ssa-alias.c, tree-ssa-loop-niter.c, tree-vect-data-refs.c, tree-vect-loop-manip.c, tree-vect-loop.c, tree-vect-stmts.c, tree-vrp.c: Don't include toplev.h. * genattrtab.c, genconditions.c, genemit.c, genextract.c, genoutput.c, genpeep.c, genpreds.c, genrecog.c: Don't include toplev.h in generated output. * Makefile.in (OBJS-common): Add hwint.o. Dependencies for above files changed to remove toplev.h. (hwint.o): New. (insn-attrtab.o, insn-emit.o, insn-extract.o, insn-output.o, insn-peep.o, insn-preds.o, insn-recog.o): Don't depend on toplev.h. * config/i386/t-cygming (winnt.o): Don't depend on toplev.h. * config/i386/t-interix (winnt.o): Don't depend on toplev.h. fortran: * trans-common.c: Don't include toplev.h. java: * boehm.c: Don't include toplev.h. * Make-lang.in (java/boehm.o): Don't depend on toplev.h. lto: * lto-object.c: Don't include toplev.h. * Make-lang.in (lto/lto-object.o): Don't depend on toplev.h. From-SVN: r167301
1151 lines
30 KiB
C
1151 lines
30 KiB
C
/* Operations with long integers.
|
|
Copyright (C) 2006, 2007, 2009, 2010 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h" /* For SHIFT_COUNT_TRUNCATED. */
|
|
#include "tree.h"
|
|
|
|
/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
|
|
overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
|
|
and SUM1. Then this yields nonzero if overflow occurred during the
|
|
addition.
|
|
|
|
Overflow occurs if A and B have the same sign, but A and SUM differ in
|
|
sign. Use `^' to test whether signs differ, and `< 0' to isolate the
|
|
sign. */
|
|
#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
|
|
|
|
/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
|
|
We do that by representing the two-word integer in 4 words, with only
|
|
HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
|
|
number. The value of the word is LOWPART + HIGHPART * BASE. */
|
|
|
|
#define LOWPART(x) \
|
|
((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
|
|
#define HIGHPART(x) \
|
|
((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
|
|
#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
|
|
|
|
/* Unpack a two-word integer into 4 words.
|
|
LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
|
|
WORDS points to the array of HOST_WIDE_INTs. */
|
|
|
|
static void
|
|
encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
|
|
{
|
|
words[0] = LOWPART (low);
|
|
words[1] = HIGHPART (low);
|
|
words[2] = LOWPART (hi);
|
|
words[3] = HIGHPART (hi);
|
|
}
|
|
|
|
/* Pack an array of 4 words into a two-word integer.
|
|
WORDS points to the array of words.
|
|
The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
|
|
|
|
static void
|
|
decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
|
|
HOST_WIDE_INT *hi)
|
|
{
|
|
*low = words[0] + words[1] * BASE;
|
|
*hi = words[2] + words[3] * BASE;
|
|
}
|
|
|
|
/* Add two doubleword integers with doubleword result.
|
|
Return nonzero if the operation overflows according to UNSIGNED_P.
|
|
Each argument is given as two `HOST_WIDE_INT' pieces.
|
|
One argument is L1 and H1; the other, L2 and H2.
|
|
The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
|
|
|
int
|
|
add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
|
unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
|
|
bool unsigned_p)
|
|
{
|
|
unsigned HOST_WIDE_INT l;
|
|
HOST_WIDE_INT h;
|
|
|
|
l = l1 + l2;
|
|
h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
|
|
+ (unsigned HOST_WIDE_INT) h2
|
|
+ (l < l1));
|
|
|
|
*lv = l;
|
|
*hv = h;
|
|
|
|
if (unsigned_p)
|
|
return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
|
|
|| (h == h1
|
|
&& l < l1));
|
|
else
|
|
return OVERFLOW_SUM_SIGN (h1, h2, h);
|
|
}
|
|
|
|
/* Negate a doubleword integer with doubleword result.
|
|
Return nonzero if the operation overflows, assuming it's signed.
|
|
The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
|
|
The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
|
|
|
int
|
|
neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
|
|
{
|
|
if (l1 == 0)
|
|
{
|
|
*lv = 0;
|
|
*hv = - h1;
|
|
return (*hv & h1) < 0;
|
|
}
|
|
else
|
|
{
|
|
*lv = -l1;
|
|
*hv = ~h1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Multiply two doubleword integers with doubleword result.
|
|
Return nonzero if the operation overflows according to UNSIGNED_P.
|
|
Each argument is given as two `HOST_WIDE_INT' pieces.
|
|
One argument is L1 and H1; the other, L2 and H2.
|
|
The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
|
|
|
int
|
|
mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
|
unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
|
|
bool unsigned_p)
|
|
{
|
|
HOST_WIDE_INT arg1[4];
|
|
HOST_WIDE_INT arg2[4];
|
|
HOST_WIDE_INT prod[4 * 2];
|
|
unsigned HOST_WIDE_INT carry;
|
|
int i, j, k;
|
|
unsigned HOST_WIDE_INT toplow, neglow;
|
|
HOST_WIDE_INT tophigh, neghigh;
|
|
|
|
encode (arg1, l1, h1);
|
|
encode (arg2, l2, h2);
|
|
|
|
memset (prod, 0, sizeof prod);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
carry = 0;
|
|
for (j = 0; j < 4; j++)
|
|
{
|
|
k = i + j;
|
|
/* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
|
|
carry += arg1[i] * arg2[j];
|
|
/* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
|
|
carry += prod[k];
|
|
prod[k] = LOWPART (carry);
|
|
carry = HIGHPART (carry);
|
|
}
|
|
prod[i + 4] = carry;
|
|
}
|
|
|
|
decode (prod, lv, hv);
|
|
decode (prod + 4, &toplow, &tophigh);
|
|
|
|
/* Unsigned overflow is immediate. */
|
|
if (unsigned_p)
|
|
return (toplow | tophigh) != 0;
|
|
|
|
/* Check for signed overflow by calculating the signed representation of the
|
|
top half of the result; it should agree with the low half's sign bit. */
|
|
if (h1 < 0)
|
|
{
|
|
neg_double (l2, h2, &neglow, &neghigh);
|
|
add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
|
|
}
|
|
if (h2 < 0)
|
|
{
|
|
neg_double (l1, h1, &neglow, &neghigh);
|
|
add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
|
|
}
|
|
return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
|
|
}
|
|
|
|
/* Shift the doubleword integer in L1, H1 left by COUNT places
|
|
keeping only PREC bits of result.
|
|
Shift right if COUNT is negative.
|
|
ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
|
|
Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
|
|
|
void
|
|
lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
|
HOST_WIDE_INT count, unsigned int prec,
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, bool arith)
|
|
{
|
|
unsigned HOST_WIDE_INT signmask;
|
|
|
|
if (count < 0)
|
|
{
|
|
rshift_double (l1, h1, -count, prec, lv, hv, arith);
|
|
return;
|
|
}
|
|
|
|
if (SHIFT_COUNT_TRUNCATED)
|
|
count %= prec;
|
|
|
|
if (count >= 2 * HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
/* Shifting by the host word size is undefined according to the
|
|
ANSI standard, so we must handle this as a special case. */
|
|
*hv = 0;
|
|
*lv = 0;
|
|
}
|
|
else if (count >= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
*hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
|
|
*lv = 0;
|
|
}
|
|
else
|
|
{
|
|
*hv = (((unsigned HOST_WIDE_INT) h1 << count)
|
|
| (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
|
|
*lv = l1 << count;
|
|
}
|
|
|
|
/* Sign extend all bits that are beyond the precision. */
|
|
|
|
signmask = -((prec > HOST_BITS_PER_WIDE_INT
|
|
? ((unsigned HOST_WIDE_INT) *hv
|
|
>> (prec - HOST_BITS_PER_WIDE_INT - 1))
|
|
: (*lv >> (prec - 1))) & 1);
|
|
|
|
if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
|
|
;
|
|
else if (prec >= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
*hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
|
|
*hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
|
|
}
|
|
else
|
|
{
|
|
*hv = signmask;
|
|
*lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
|
|
*lv |= signmask << prec;
|
|
}
|
|
}
|
|
|
|
/* Shift the doubleword integer in L1, H1 right by COUNT places
|
|
keeping only PREC bits of result. Shift left if COUNT is negative.
|
|
ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
|
|
Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
|
|
|
void
|
|
rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
|
HOST_WIDE_INT count, unsigned int prec,
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
|
|
bool arith)
|
|
{
|
|
unsigned HOST_WIDE_INT signmask;
|
|
|
|
if (count < 0)
|
|
{
|
|
lshift_double (l1, h1, -count, prec, lv, hv, arith);
|
|
return;
|
|
}
|
|
|
|
signmask = (arith
|
|
? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
|
|
: 0);
|
|
|
|
if (SHIFT_COUNT_TRUNCATED)
|
|
count %= prec;
|
|
|
|
if (count >= 2 * HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
/* Shifting by the host word size is undefined according to the
|
|
ANSI standard, so we must handle this as a special case. */
|
|
*hv = 0;
|
|
*lv = 0;
|
|
}
|
|
else if (count >= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
*hv = 0;
|
|
*lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
|
|
}
|
|
else
|
|
{
|
|
*hv = (unsigned HOST_WIDE_INT) h1 >> count;
|
|
*lv = ((l1 >> count)
|
|
| ((unsigned HOST_WIDE_INT) h1
|
|
<< (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
|
|
}
|
|
|
|
/* Zero / sign extend all bits that are beyond the precision. */
|
|
|
|
if (count >= (HOST_WIDE_INT)prec)
|
|
{
|
|
*hv = signmask;
|
|
*lv = signmask;
|
|
}
|
|
else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
|
|
;
|
|
else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
*hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
|
|
*hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
|
|
}
|
|
else
|
|
{
|
|
*hv = signmask;
|
|
*lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
|
|
*lv |= signmask << (prec - count);
|
|
}
|
|
}
|
|
|
|
/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
|
|
for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
|
|
CODE is a tree code for a kind of division, one of
|
|
TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
|
|
or EXACT_DIV_EXPR
|
|
It controls how the quotient is rounded to an integer.
|
|
Return nonzero if the operation overflows.
|
|
UNS nonzero says do unsigned division. */
|
|
|
|
int
|
|
div_and_round_double (unsigned code, int uns,
|
|
/* num == numerator == dividend */
|
|
unsigned HOST_WIDE_INT lnum_orig,
|
|
HOST_WIDE_INT hnum_orig,
|
|
/* den == denominator == divisor */
|
|
unsigned HOST_WIDE_INT lden_orig,
|
|
HOST_WIDE_INT hden_orig,
|
|
unsigned HOST_WIDE_INT *lquo,
|
|
HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
|
|
HOST_WIDE_INT *hrem)
|
|
{
|
|
int quo_neg = 0;
|
|
HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
|
|
HOST_WIDE_INT den[4], quo[4];
|
|
int i, j;
|
|
unsigned HOST_WIDE_INT work;
|
|
unsigned HOST_WIDE_INT carry = 0;
|
|
unsigned HOST_WIDE_INT lnum = lnum_orig;
|
|
HOST_WIDE_INT hnum = hnum_orig;
|
|
unsigned HOST_WIDE_INT lden = lden_orig;
|
|
HOST_WIDE_INT hden = hden_orig;
|
|
int overflow = 0;
|
|
|
|
if (hden == 0 && lden == 0)
|
|
overflow = 1, lden = 1;
|
|
|
|
/* Calculate quotient sign and convert operands to unsigned. */
|
|
if (!uns)
|
|
{
|
|
if (hnum < 0)
|
|
{
|
|
quo_neg = ~ quo_neg;
|
|
/* (minimum integer) / (-1) is the only overflow case. */
|
|
if (neg_double (lnum, hnum, &lnum, &hnum)
|
|
&& ((HOST_WIDE_INT) lden & hden) == -1)
|
|
overflow = 1;
|
|
}
|
|
if (hden < 0)
|
|
{
|
|
quo_neg = ~ quo_neg;
|
|
neg_double (lden, hden, &lden, &hden);
|
|
}
|
|
}
|
|
|
|
if (hnum == 0 && hden == 0)
|
|
{ /* single precision */
|
|
*hquo = *hrem = 0;
|
|
/* This unsigned division rounds toward zero. */
|
|
*lquo = lnum / lden;
|
|
goto finish_up;
|
|
}
|
|
|
|
if (hnum == 0)
|
|
{ /* trivial case: dividend < divisor */
|
|
/* hden != 0 already checked. */
|
|
*hquo = *lquo = 0;
|
|
*hrem = hnum;
|
|
*lrem = lnum;
|
|
goto finish_up;
|
|
}
|
|
|
|
memset (quo, 0, sizeof quo);
|
|
|
|
memset (num, 0, sizeof num); /* to zero 9th element */
|
|
memset (den, 0, sizeof den);
|
|
|
|
encode (num, lnum, hnum);
|
|
encode (den, lden, hden);
|
|
|
|
/* Special code for when the divisor < BASE. */
|
|
if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
|
|
{
|
|
/* hnum != 0 already checked. */
|
|
for (i = 4 - 1; i >= 0; i--)
|
|
{
|
|
work = num[i] + carry * BASE;
|
|
quo[i] = work / lden;
|
|
carry = work % lden;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Full double precision division,
|
|
with thanks to Don Knuth's "Seminumerical Algorithms". */
|
|
int num_hi_sig, den_hi_sig;
|
|
unsigned HOST_WIDE_INT quo_est, scale;
|
|
|
|
/* Find the highest nonzero divisor digit. */
|
|
for (i = 4 - 1;; i--)
|
|
if (den[i] != 0)
|
|
{
|
|
den_hi_sig = i;
|
|
break;
|
|
}
|
|
|
|
/* Insure that the first digit of the divisor is at least BASE/2.
|
|
This is required by the quotient digit estimation algorithm. */
|
|
|
|
scale = BASE / (den[den_hi_sig] + 1);
|
|
if (scale > 1)
|
|
{ /* scale divisor and dividend */
|
|
carry = 0;
|
|
for (i = 0; i <= 4 - 1; i++)
|
|
{
|
|
work = (num[i] * scale) + carry;
|
|
num[i] = LOWPART (work);
|
|
carry = HIGHPART (work);
|
|
}
|
|
|
|
num[4] = carry;
|
|
carry = 0;
|
|
for (i = 0; i <= 4 - 1; i++)
|
|
{
|
|
work = (den[i] * scale) + carry;
|
|
den[i] = LOWPART (work);
|
|
carry = HIGHPART (work);
|
|
if (den[i] != 0) den_hi_sig = i;
|
|
}
|
|
}
|
|
|
|
num_hi_sig = 4;
|
|
|
|
/* Main loop */
|
|
for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
|
|
{
|
|
/* Guess the next quotient digit, quo_est, by dividing the first
|
|
two remaining dividend digits by the high order quotient digit.
|
|
quo_est is never low and is at most 2 high. */
|
|
unsigned HOST_WIDE_INT tmp;
|
|
|
|
num_hi_sig = i + den_hi_sig + 1;
|
|
work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
|
|
if (num[num_hi_sig] != den[den_hi_sig])
|
|
quo_est = work / den[den_hi_sig];
|
|
else
|
|
quo_est = BASE - 1;
|
|
|
|
/* Refine quo_est so it's usually correct, and at most one high. */
|
|
tmp = work - quo_est * den[den_hi_sig];
|
|
if (tmp < BASE
|
|
&& (den[den_hi_sig - 1] * quo_est
|
|
> (tmp * BASE + num[num_hi_sig - 2])))
|
|
quo_est--;
|
|
|
|
/* Try QUO_EST as the quotient digit, by multiplying the
|
|
divisor by QUO_EST and subtracting from the remaining dividend.
|
|
Keep in mind that QUO_EST is the I - 1st digit. */
|
|
|
|
carry = 0;
|
|
for (j = 0; j <= den_hi_sig; j++)
|
|
{
|
|
work = quo_est * den[j] + carry;
|
|
carry = HIGHPART (work);
|
|
work = num[i + j] - LOWPART (work);
|
|
num[i + j] = LOWPART (work);
|
|
carry += HIGHPART (work) != 0;
|
|
}
|
|
|
|
/* If quo_est was high by one, then num[i] went negative and
|
|
we need to correct things. */
|
|
if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
|
|
{
|
|
quo_est--;
|
|
carry = 0; /* add divisor back in */
|
|
for (j = 0; j <= den_hi_sig; j++)
|
|
{
|
|
work = num[i + j] + den[j] + carry;
|
|
carry = HIGHPART (work);
|
|
num[i + j] = LOWPART (work);
|
|
}
|
|
|
|
num [num_hi_sig] += carry;
|
|
}
|
|
|
|
/* Store the quotient digit. */
|
|
quo[i] = quo_est;
|
|
}
|
|
}
|
|
|
|
decode (quo, lquo, hquo);
|
|
|
|
finish_up:
|
|
/* If result is negative, make it so. */
|
|
if (quo_neg)
|
|
neg_double (*lquo, *hquo, lquo, hquo);
|
|
|
|
/* Compute trial remainder: rem = num - (quo * den) */
|
|
mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
|
|
neg_double (*lrem, *hrem, lrem, hrem);
|
|
add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
|
|
|
|
switch (code)
|
|
{
|
|
case TRUNC_DIV_EXPR:
|
|
case TRUNC_MOD_EXPR: /* round toward zero */
|
|
case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
|
|
return overflow;
|
|
|
|
case FLOOR_DIV_EXPR:
|
|
case FLOOR_MOD_EXPR: /* round toward negative infinity */
|
|
if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
|
|
{
|
|
/* quo = quo - 1; */
|
|
add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
|
|
lquo, hquo);
|
|
}
|
|
else
|
|
return overflow;
|
|
break;
|
|
|
|
case CEIL_DIV_EXPR:
|
|
case CEIL_MOD_EXPR: /* round toward positive infinity */
|
|
if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
|
|
{
|
|
add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
|
|
lquo, hquo);
|
|
}
|
|
else
|
|
return overflow;
|
|
break;
|
|
|
|
case ROUND_DIV_EXPR:
|
|
case ROUND_MOD_EXPR: /* round to closest integer */
|
|
{
|
|
unsigned HOST_WIDE_INT labs_rem = *lrem;
|
|
HOST_WIDE_INT habs_rem = *hrem;
|
|
unsigned HOST_WIDE_INT labs_den = lden, ltwice;
|
|
HOST_WIDE_INT habs_den = hden, htwice;
|
|
|
|
/* Get absolute values. */
|
|
if (*hrem < 0)
|
|
neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
|
|
if (hden < 0)
|
|
neg_double (lden, hden, &labs_den, &habs_den);
|
|
|
|
/* If (2 * abs (lrem) >= abs (lden)), adjust the quotient. */
|
|
mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
|
|
labs_rem, habs_rem, <wice, &htwice);
|
|
|
|
if (((unsigned HOST_WIDE_INT) habs_den
|
|
< (unsigned HOST_WIDE_INT) htwice)
|
|
|| (((unsigned HOST_WIDE_INT) habs_den
|
|
== (unsigned HOST_WIDE_INT) htwice)
|
|
&& (labs_den <= ltwice)))
|
|
{
|
|
if (*hquo < 0)
|
|
/* quo = quo - 1; */
|
|
add_double (*lquo, *hquo,
|
|
(HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
|
|
else
|
|
/* quo = quo + 1; */
|
|
add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
|
|
lquo, hquo);
|
|
}
|
|
else
|
|
return overflow;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Compute true remainder: rem = num - (quo * den) */
|
|
mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
|
|
neg_double (*lrem, *hrem, lrem, hrem);
|
|
add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
|
|
return overflow;
|
|
}
|
|
|
|
|
|
/* Returns mask for PREC bits. */
|
|
|
|
double_int
|
|
double_int_mask (unsigned prec)
|
|
{
|
|
unsigned HOST_WIDE_INT m;
|
|
double_int mask;
|
|
|
|
if (prec > HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
prec -= HOST_BITS_PER_WIDE_INT;
|
|
m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
|
|
mask.high = (HOST_WIDE_INT) m;
|
|
mask.low = ALL_ONES;
|
|
}
|
|
else
|
|
{
|
|
mask.high = 0;
|
|
mask.low = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
/* Clears the bits of CST over the precision PREC. If UNS is false, the bits
|
|
outside of the precision are set to the sign bit (i.e., the PREC-th one),
|
|
otherwise they are set to zero.
|
|
|
|
This corresponds to returning the value represented by PREC lowermost bits
|
|
of CST, with the given signedness. */
|
|
|
|
double_int
|
|
double_int_ext (double_int cst, unsigned prec, bool uns)
|
|
{
|
|
if (uns)
|
|
return double_int_zext (cst, prec);
|
|
else
|
|
return double_int_sext (cst, prec);
|
|
}
|
|
|
|
/* The same as double_int_ext with UNS = true. */
|
|
|
|
double_int
|
|
double_int_zext (double_int cst, unsigned prec)
|
|
{
|
|
double_int mask = double_int_mask (prec);
|
|
double_int r;
|
|
|
|
r.low = cst.low & mask.low;
|
|
r.high = cst.high & mask.high;
|
|
|
|
return r;
|
|
}
|
|
|
|
/* The same as double_int_ext with UNS = false. */
|
|
|
|
double_int
|
|
double_int_sext (double_int cst, unsigned prec)
|
|
{
|
|
double_int mask = double_int_mask (prec);
|
|
double_int r;
|
|
unsigned HOST_WIDE_INT snum;
|
|
|
|
if (prec <= HOST_BITS_PER_WIDE_INT)
|
|
snum = cst.low;
|
|
else
|
|
{
|
|
prec -= HOST_BITS_PER_WIDE_INT;
|
|
snum = (unsigned HOST_WIDE_INT) cst.high;
|
|
}
|
|
if (((snum >> (prec - 1)) & 1) == 1)
|
|
{
|
|
r.low = cst.low | ~mask.low;
|
|
r.high = cst.high | ~mask.high;
|
|
}
|
|
else
|
|
{
|
|
r.low = cst.low & mask.low;
|
|
r.high = cst.high & mask.high;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Returns true if CST fits in signed HOST_WIDE_INT. */
|
|
|
|
bool
|
|
double_int_fits_in_shwi_p (double_int cst)
|
|
{
|
|
if (cst.high == 0)
|
|
return (HOST_WIDE_INT) cst.low >= 0;
|
|
else if (cst.high == -1)
|
|
return (HOST_WIDE_INT) cst.low < 0;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
|
|
unsigned HOST_WIDE_INT if UNS is true. */
|
|
|
|
bool
|
|
double_int_fits_in_hwi_p (double_int cst, bool uns)
|
|
{
|
|
if (uns)
|
|
return double_int_fits_in_uhwi_p (cst);
|
|
else
|
|
return double_int_fits_in_shwi_p (cst);
|
|
}
|
|
|
|
/* Returns A * B. */
|
|
|
|
double_int
|
|
double_int_mul (double_int a, double_int b)
|
|
{
|
|
double_int ret;
|
|
mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
|
|
return ret;
|
|
}
|
|
|
|
/* Returns A * B. If the operation overflows according to UNSIGNED_P,
|
|
*OVERFLOW is set to nonzero. */
|
|
|
|
double_int
|
|
double_int_mul_with_sign (double_int a, double_int b,
|
|
bool unsigned_p, int *overflow)
|
|
{
|
|
double_int ret;
|
|
*overflow = mul_double_with_sign (a.low, a.high, b.low, b.high,
|
|
&ret.low, &ret.high, unsigned_p);
|
|
return ret;
|
|
}
|
|
|
|
/* Returns A + B. */
|
|
|
|
double_int
|
|
double_int_add (double_int a, double_int b)
|
|
{
|
|
double_int ret;
|
|
add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
|
|
return ret;
|
|
}
|
|
|
|
/* Returns A - B. */
|
|
|
|
double_int
|
|
double_int_sub (double_int a, double_int b)
|
|
{
|
|
double_int ret;
|
|
neg_double (b.low, b.high, &b.low, &b.high);
|
|
add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
|
|
return ret;
|
|
}
|
|
|
|
/* Returns -A. */
|
|
|
|
double_int
|
|
double_int_neg (double_int a)
|
|
{
|
|
double_int ret;
|
|
neg_double (a.low, a.high, &ret.low, &ret.high);
|
|
return ret;
|
|
}
|
|
|
|
/* Returns A / B (computed as unsigned depending on UNS, and rounded as
|
|
specified by CODE). CODE is enum tree_code in fact, but double_int.h
|
|
must be included before tree.h. The remainder after the division is
|
|
stored to MOD. */
|
|
|
|
double_int
|
|
double_int_divmod (double_int a, double_int b, bool uns, unsigned code,
|
|
double_int *mod)
|
|
{
|
|
double_int ret;
|
|
|
|
div_and_round_double (code, uns, a.low, a.high,
|
|
b.low, b.high, &ret.low, &ret.high,
|
|
&mod->low, &mod->high);
|
|
return ret;
|
|
}
|
|
|
|
/* The same as double_int_divmod with UNS = false. */
|
|
|
|
double_int
|
|
double_int_sdivmod (double_int a, double_int b, unsigned code, double_int *mod)
|
|
{
|
|
return double_int_divmod (a, b, false, code, mod);
|
|
}
|
|
|
|
/* The same as double_int_divmod with UNS = true. */
|
|
|
|
double_int
|
|
double_int_udivmod (double_int a, double_int b, unsigned code, double_int *mod)
|
|
{
|
|
return double_int_divmod (a, b, true, code, mod);
|
|
}
|
|
|
|
/* Returns A / B (computed as unsigned depending on UNS, and rounded as
|
|
specified by CODE). CODE is enum tree_code in fact, but double_int.h
|
|
must be included before tree.h. */
|
|
|
|
double_int
|
|
double_int_div (double_int a, double_int b, bool uns, unsigned code)
|
|
{
|
|
double_int mod;
|
|
|
|
return double_int_divmod (a, b, uns, code, &mod);
|
|
}
|
|
|
|
/* The same as double_int_div with UNS = false. */
|
|
|
|
double_int
|
|
double_int_sdiv (double_int a, double_int b, unsigned code)
|
|
{
|
|
return double_int_div (a, b, false, code);
|
|
}
|
|
|
|
/* The same as double_int_div with UNS = true. */
|
|
|
|
double_int
|
|
double_int_udiv (double_int a, double_int b, unsigned code)
|
|
{
|
|
return double_int_div (a, b, true, code);
|
|
}
|
|
|
|
/* Returns A % B (computed as unsigned depending on UNS, and rounded as
|
|
specified by CODE). CODE is enum tree_code in fact, but double_int.h
|
|
must be included before tree.h. */
|
|
|
|
double_int
|
|
double_int_mod (double_int a, double_int b, bool uns, unsigned code)
|
|
{
|
|
double_int mod;
|
|
|
|
double_int_divmod (a, b, uns, code, &mod);
|
|
return mod;
|
|
}
|
|
|
|
/* The same as double_int_mod with UNS = false. */
|
|
|
|
double_int
|
|
double_int_smod (double_int a, double_int b, unsigned code)
|
|
{
|
|
return double_int_mod (a, b, false, code);
|
|
}
|
|
|
|
/* The same as double_int_mod with UNS = true. */
|
|
|
|
double_int
|
|
double_int_umod (double_int a, double_int b, unsigned code)
|
|
{
|
|
return double_int_mod (a, b, true, code);
|
|
}
|
|
|
|
/* Set BITPOS bit in A. */
|
|
double_int
|
|
double_int_setbit (double_int a, unsigned bitpos)
|
|
{
|
|
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
|
a.low |= (unsigned HOST_WIDE_INT) 1 << bitpos;
|
|
else
|
|
a.high |= (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
|
|
|
|
return a;
|
|
}
|
|
|
|
/* Count trailing zeros in A. */
|
|
int
|
|
double_int_ctz (double_int a)
|
|
{
|
|
unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
|
|
unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
|
|
if (!w)
|
|
return HOST_BITS_PER_DOUBLE_INT;
|
|
bits += ctz_hwi (w);
|
|
return bits;
|
|
}
|
|
|
|
/* Shift A left by COUNT places keeping only PREC bits of result. Shift
|
|
right if COUNT is negative. ARITH true specifies arithmetic shifting;
|
|
otherwise use logical shift. */
|
|
|
|
double_int
|
|
double_int_lshift (double_int a, HOST_WIDE_INT count, unsigned int prec, bool arith)
|
|
{
|
|
double_int ret;
|
|
lshift_double (a.low, a.high, count, prec, &ret.low, &ret.high, arith);
|
|
return ret;
|
|
}
|
|
|
|
/* Shift A rigth by COUNT places keeping only PREC bits of result. Shift
|
|
left if COUNT is negative. ARITH true specifies arithmetic shifting;
|
|
otherwise use logical shift. */
|
|
|
|
double_int
|
|
double_int_rshift (double_int a, HOST_WIDE_INT count, unsigned int prec, bool arith)
|
|
{
|
|
double_int ret;
|
|
rshift_double (a.low, a.high, count, prec, &ret.low, &ret.high, arith);
|
|
return ret;
|
|
}
|
|
|
|
/* Rotate A left by COUNT places keeping only PREC bits of result.
|
|
Rotate right if COUNT is negative. */
|
|
|
|
double_int
|
|
double_int_lrotate (double_int a, HOST_WIDE_INT count, unsigned int prec)
|
|
{
|
|
double_int t1, t2;
|
|
|
|
count %= prec;
|
|
if (count < 0)
|
|
count += prec;
|
|
|
|
t1 = double_int_lshift (a, count, prec, false);
|
|
t2 = double_int_rshift (a, prec - count, prec, false);
|
|
|
|
return double_int_ior (t1, t2);
|
|
}
|
|
|
|
/* Rotate A rigth by COUNT places keeping only PREC bits of result.
|
|
Rotate right if COUNT is negative. */
|
|
|
|
double_int
|
|
double_int_rrotate (double_int a, HOST_WIDE_INT count, unsigned int prec)
|
|
{
|
|
double_int t1, t2;
|
|
|
|
count %= prec;
|
|
if (count < 0)
|
|
count += prec;
|
|
|
|
t1 = double_int_rshift (a, count, prec, false);
|
|
t2 = double_int_lshift (a, prec - count, prec, false);
|
|
|
|
return double_int_ior (t1, t2);
|
|
}
|
|
|
|
/* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the
|
|
comparison is given by UNS. */
|
|
|
|
int
|
|
double_int_cmp (double_int a, double_int b, bool uns)
|
|
{
|
|
if (uns)
|
|
return double_int_ucmp (a, b);
|
|
else
|
|
return double_int_scmp (a, b);
|
|
}
|
|
|
|
/* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B,
|
|
and 1 if A > B. */
|
|
|
|
int
|
|
double_int_ucmp (double_int a, double_int b)
|
|
{
|
|
if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
|
|
return -1;
|
|
if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
|
|
return 1;
|
|
if (a.low < b.low)
|
|
return -1;
|
|
if (a.low > b.low)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B,
|
|
and 1 if A > B. */
|
|
|
|
int
|
|
double_int_scmp (double_int a, double_int b)
|
|
{
|
|
if (a.high < b.high)
|
|
return -1;
|
|
if (a.high > b.high)
|
|
return 1;
|
|
if (a.low < b.low)
|
|
return -1;
|
|
if (a.low > b.low)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compares two values A and B. Returns max value. Signedness of the
|
|
comparison is given by UNS. */
|
|
|
|
double_int
|
|
double_int_max (double_int a, double_int b, bool uns)
|
|
{
|
|
return (double_int_cmp (a, b, uns) == 1) ? a : b;
|
|
}
|
|
|
|
/* Compares two signed values A and B. Returns max value. */
|
|
|
|
double_int double_int_smax (double_int a, double_int b)
|
|
{
|
|
return (double_int_scmp (a, b) == 1) ? a : b;
|
|
}
|
|
|
|
/* Compares two unsigned values A and B. Returns max value. */
|
|
|
|
double_int double_int_umax (double_int a, double_int b)
|
|
{
|
|
return (double_int_ucmp (a, b) == 1) ? a : b;
|
|
}
|
|
|
|
/* Compares two values A and B. Returns mix value. Signedness of the
|
|
comparison is given by UNS. */
|
|
|
|
double_int double_int_min (double_int a, double_int b, bool uns)
|
|
{
|
|
return (double_int_cmp (a, b, uns) == -1) ? a : b;
|
|
}
|
|
|
|
/* Compares two signed values A and B. Returns min value. */
|
|
|
|
double_int double_int_smin (double_int a, double_int b)
|
|
{
|
|
return (double_int_scmp (a, b) == -1) ? a : b;
|
|
}
|
|
|
|
/* Compares two unsigned values A and B. Returns min value. */
|
|
|
|
double_int double_int_umin (double_int a, double_int b)
|
|
{
|
|
return (double_int_ucmp (a, b) == -1) ? a : b;
|
|
}
|
|
|
|
/* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */
|
|
|
|
static unsigned
|
|
double_int_split_digit (double_int *cst, unsigned base)
|
|
{
|
|
unsigned HOST_WIDE_INT resl, reml;
|
|
HOST_WIDE_INT resh, remh;
|
|
|
|
div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0,
|
|
&resl, &resh, &reml, &remh);
|
|
cst->high = resh;
|
|
cst->low = resl;
|
|
|
|
return reml;
|
|
}
|
|
|
|
/* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned,
|
|
otherwise it is signed. */
|
|
|
|
void
|
|
dump_double_int (FILE *file, double_int cst, bool uns)
|
|
{
|
|
unsigned digits[100], n;
|
|
int i;
|
|
|
|
if (double_int_zero_p (cst))
|
|
{
|
|
fprintf (file, "0");
|
|
return;
|
|
}
|
|
|
|
if (!uns && double_int_negative_p (cst))
|
|
{
|
|
fprintf (file, "-");
|
|
cst = double_int_neg (cst);
|
|
}
|
|
|
|
for (n = 0; !double_int_zero_p (cst); n++)
|
|
digits[n] = double_int_split_digit (&cst, 10);
|
|
for (i = n - 1; i >= 0; i--)
|
|
fprintf (file, "%u", digits[i]);
|
|
}
|
|
|
|
|
|
/* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
|
|
otherwise. */
|
|
|
|
void
|
|
mpz_set_double_int (mpz_t result, double_int val, bool uns)
|
|
{
|
|
bool negate = false;
|
|
unsigned HOST_WIDE_INT vp[2];
|
|
|
|
if (!uns && double_int_negative_p (val))
|
|
{
|
|
negate = true;
|
|
val = double_int_neg (val);
|
|
}
|
|
|
|
vp[0] = val.low;
|
|
vp[1] = (unsigned HOST_WIDE_INT) val.high;
|
|
mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
|
|
|
|
if (negate)
|
|
mpz_neg (result, result);
|
|
}
|
|
|
|
/* Returns VAL converted to TYPE. If WRAP is true, then out-of-range
|
|
values of VAL will be wrapped; otherwise, they will be set to the
|
|
appropriate minimum or maximum TYPE bound. */
|
|
|
|
double_int
|
|
mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
|
|
{
|
|
unsigned HOST_WIDE_INT *vp;
|
|
size_t count, numb;
|
|
double_int res;
|
|
|
|
if (!wrap)
|
|
{
|
|
mpz_t min, max;
|
|
|
|
mpz_init (min);
|
|
mpz_init (max);
|
|
get_type_static_bounds (type, min, max);
|
|
|
|
if (mpz_cmp (val, min) < 0)
|
|
mpz_set (val, min);
|
|
else if (mpz_cmp (val, max) > 0)
|
|
mpz_set (val, max);
|
|
|
|
mpz_clear (min);
|
|
mpz_clear (max);
|
|
}
|
|
|
|
/* Determine the number of unsigned HOST_WIDE_INT that are required
|
|
for representing the value. The code to calculate count is
|
|
extracted from the GMP manual, section "Integer Import and Export":
|
|
http://gmplib.org/manual/Integer-Import-and-Export.html */
|
|
numb = 8*sizeof(HOST_WIDE_INT);
|
|
count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
|
|
if (count < 2)
|
|
count = 2;
|
|
vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof(HOST_WIDE_INT));
|
|
|
|
vp[0] = 0;
|
|
vp[1] = 0;
|
|
mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
|
|
|
|
gcc_assert (wrap || count <= 2);
|
|
|
|
res.low = vp[0];
|
|
res.high = (HOST_WIDE_INT) vp[1];
|
|
|
|
res = double_int_ext (res, TYPE_PRECISION (type), TYPE_UNSIGNED (type));
|
|
if (mpz_sgn (val) < 0)
|
|
res = double_int_neg (res);
|
|
|
|
return res;
|
|
}
|