e9e1d143b5
2011-09-02 Richard Guenther <rguenther@suse.de> PR tree-optimization/27460 PR middle-end/29269 * doc/md.texi (vcond): Document. * genopinit.c (optabs): Turn vcond{,u}_optab into a conversion optab with two modes. * optabs.h (enum convert_optab_index): Add COI_vcond, COI_vcondu. (enum direct_optab_index): Remove DOI_vcond, DOI_vcondu. (vcond_optab): Adjust. (vcondu_optab): Likewise. (expand_vec_cond_expr_p): Adjust prototype. * optabs.c (get_vcond_icode): Adjust. (expand_vec_cond_expr_p): Likewise. (expand_vec_cond_expr): Likewise. * tree-vect-stmts.c (vect_is_simple_cond): Return the comparison vector type. (vectorizable_condition): Allow differing types for comparison and result. * config/i386/i386.c (ix86_expand_sse_cmp): Use proper mode for the comparison. * config/i386/sse.md (vcond<mode>): Split to vcond<V_256:mode><VF_256:mode>, vcond<V_128:mode><VF_128:mode>, vcond<V_128:mode><VI124_128:mode> and vcondu<V_128:mode><VI124_128:mode>. (vcondv2di): Change to vcond<VI8F_128:mode>v2di. (vconduv2di): Likewise. * config/arm/neon.md (vcond<mode>): Change to vcond*<mode><mode>. (vcondu<mode>): Likewise. * config/ia64/vect.md (vcond<mode>): Likewise. (vcondu<mode>): Likewise. (vcondv2sf): Likewise. * config/mips/mips-ps-3d.md (vcondv2sf): Likewise. * config/rs6000/paired.md (vcondv2sf): Likewise. * config/rs6000/vector.md (vcond<mode>): Likewise. (vcondu<mode>): Likewise. * config/spu/spu.md (vcond<mode>): Likewise. (vcondu<mode>): Likewise. * gcc.dg/vect/vect-cond-7.c: New testcase. From-SVN: r178480
6017 lines
190 KiB
C
6017 lines
190 KiB
C
/* Statement Analysis and Transformation for Vectorization
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
|
|
Free Software Foundation, Inc.
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com>
|
|
and Ira Rosen <irar@il.ibm.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "ggc.h"
|
|
#include "tree.h"
|
|
#include "target.h"
|
|
#include "basic-block.h"
|
|
#include "tree-pretty-print.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-dump.h"
|
|
#include "cfgloop.h"
|
|
#include "cfglayout.h"
|
|
#include "expr.h"
|
|
#include "recog.h"
|
|
#include "optabs.h"
|
|
#include "diagnostic-core.h"
|
|
#include "tree-vectorizer.h"
|
|
#include "langhooks.h"
|
|
|
|
|
|
/* Return a variable of type ELEM_TYPE[NELEMS]. */
|
|
|
|
static tree
|
|
create_vector_array (tree elem_type, unsigned HOST_WIDE_INT nelems)
|
|
{
|
|
return create_tmp_var (build_array_type_nelts (elem_type, nelems),
|
|
"vect_array");
|
|
}
|
|
|
|
/* ARRAY is an array of vectors created by create_vector_array.
|
|
Return an SSA_NAME for the vector in index N. The reference
|
|
is part of the vectorization of STMT and the vector is associated
|
|
with scalar destination SCALAR_DEST. */
|
|
|
|
static tree
|
|
read_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree scalar_dest,
|
|
tree array, unsigned HOST_WIDE_INT n)
|
|
{
|
|
tree vect_type, vect, vect_name, array_ref;
|
|
gimple new_stmt;
|
|
|
|
gcc_assert (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE);
|
|
vect_type = TREE_TYPE (TREE_TYPE (array));
|
|
vect = vect_create_destination_var (scalar_dest, vect_type);
|
|
array_ref = build4 (ARRAY_REF, vect_type, array,
|
|
build_int_cst (size_type_node, n),
|
|
NULL_TREE, NULL_TREE);
|
|
|
|
new_stmt = gimple_build_assign (vect, array_ref);
|
|
vect_name = make_ssa_name (vect, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, vect_name);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
mark_symbols_for_renaming (new_stmt);
|
|
|
|
return vect_name;
|
|
}
|
|
|
|
/* ARRAY is an array of vectors created by create_vector_array.
|
|
Emit code to store SSA_NAME VECT in index N of the array.
|
|
The store is part of the vectorization of STMT. */
|
|
|
|
static void
|
|
write_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree vect,
|
|
tree array, unsigned HOST_WIDE_INT n)
|
|
{
|
|
tree array_ref;
|
|
gimple new_stmt;
|
|
|
|
array_ref = build4 (ARRAY_REF, TREE_TYPE (vect), array,
|
|
build_int_cst (size_type_node, n),
|
|
NULL_TREE, NULL_TREE);
|
|
|
|
new_stmt = gimple_build_assign (array_ref, vect);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
mark_symbols_for_renaming (new_stmt);
|
|
}
|
|
|
|
/* PTR is a pointer to an array of type TYPE. Return a representation
|
|
of *PTR. The memory reference replaces those in FIRST_DR
|
|
(and its group). */
|
|
|
|
static tree
|
|
create_array_ref (tree type, tree ptr, struct data_reference *first_dr)
|
|
{
|
|
struct ptr_info_def *pi;
|
|
tree mem_ref, alias_ptr_type;
|
|
|
|
alias_ptr_type = reference_alias_ptr_type (DR_REF (first_dr));
|
|
mem_ref = build2 (MEM_REF, type, ptr, build_int_cst (alias_ptr_type, 0));
|
|
/* Arrays have the same alignment as their type. */
|
|
pi = get_ptr_info (ptr);
|
|
pi->align = TYPE_ALIGN_UNIT (type);
|
|
pi->misalign = 0;
|
|
return mem_ref;
|
|
}
|
|
|
|
/* Utility functions used by vect_mark_stmts_to_be_vectorized. */
|
|
|
|
/* Function vect_mark_relevant.
|
|
|
|
Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
|
|
|
|
static void
|
|
vect_mark_relevant (VEC(gimple,heap) **worklist, gimple stmt,
|
|
enum vect_relevant relevant, bool live_p,
|
|
bool used_in_pattern)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
|
|
bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
|
|
gimple pattern_stmt;
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "mark relevant %d, live %d.", relevant, live_p);
|
|
|
|
/* If this stmt is an original stmt in a pattern, we might need to mark its
|
|
related pattern stmt instead of the original stmt. However, such stmts
|
|
may have their own uses that are not in any pattern, in such cases the
|
|
stmt itself should be marked. */
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
|
|
{
|
|
bool found = false;
|
|
if (!used_in_pattern)
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
gimple use_stmt;
|
|
tree lhs;
|
|
|
|
if (is_gimple_assign (stmt))
|
|
lhs = gimple_assign_lhs (stmt);
|
|
else
|
|
lhs = gimple_call_lhs (stmt);
|
|
|
|
/* This use is out of pattern use, if LHS has other uses that are
|
|
pattern uses, we should mark the stmt itself, and not the pattern
|
|
stmt. */
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
|
|
{
|
|
if (is_gimple_debug (USE_STMT (use_p)))
|
|
continue;
|
|
use_stmt = USE_STMT (use_p);
|
|
|
|
if (vinfo_for_stmt (use_stmt)
|
|
&& STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
{
|
|
/* This is the last stmt in a sequence that was detected as a
|
|
pattern that can potentially be vectorized. Don't mark the stmt
|
|
as relevant/live because it's not going to be vectorized.
|
|
Instead mark the pattern-stmt that replaces it. */
|
|
|
|
pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "last stmt in pattern. don't mark"
|
|
" relevant/live.");
|
|
stmt_info = vinfo_for_stmt (pattern_stmt);
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
|
|
save_relevant = STMT_VINFO_RELEVANT (stmt_info);
|
|
save_live_p = STMT_VINFO_LIVE_P (stmt_info);
|
|
stmt = pattern_stmt;
|
|
}
|
|
}
|
|
|
|
STMT_VINFO_LIVE_P (stmt_info) |= live_p;
|
|
if (relevant > STMT_VINFO_RELEVANT (stmt_info))
|
|
STMT_VINFO_RELEVANT (stmt_info) = relevant;
|
|
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
|
|
&& STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "already marked relevant/live.");
|
|
return;
|
|
}
|
|
|
|
VEC_safe_push (gimple, heap, *worklist, stmt);
|
|
}
|
|
|
|
|
|
/* Function vect_stmt_relevant_p.
|
|
|
|
Return true if STMT in loop that is represented by LOOP_VINFO is
|
|
"relevant for vectorization".
|
|
|
|
A stmt is considered "relevant for vectorization" if:
|
|
- it has uses outside the loop.
|
|
- it has vdefs (it alters memory).
|
|
- control stmts in the loop (except for the exit condition).
|
|
|
|
CHECKME: what other side effects would the vectorizer allow? */
|
|
|
|
static bool
|
|
vect_stmt_relevant_p (gimple stmt, loop_vec_info loop_vinfo,
|
|
enum vect_relevant *relevant, bool *live_p)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
ssa_op_iter op_iter;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
def_operand_p def_p;
|
|
|
|
*relevant = vect_unused_in_scope;
|
|
*live_p = false;
|
|
|
|
/* cond stmt other than loop exit cond. */
|
|
if (is_ctrl_stmt (stmt)
|
|
&& STMT_VINFO_TYPE (vinfo_for_stmt (stmt))
|
|
!= loop_exit_ctrl_vec_info_type)
|
|
*relevant = vect_used_in_scope;
|
|
|
|
/* changing memory. */
|
|
if (gimple_code (stmt) != GIMPLE_PHI)
|
|
if (gimple_vdef (stmt))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "vec_stmt_relevant_p: stmt has vdefs.");
|
|
*relevant = vect_used_in_scope;
|
|
}
|
|
|
|
/* uses outside the loop. */
|
|
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
|
|
{
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
|
|
{
|
|
basic_block bb = gimple_bb (USE_STMT (use_p));
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "vec_stmt_relevant_p: used out of loop.");
|
|
|
|
if (is_gimple_debug (USE_STMT (use_p)))
|
|
continue;
|
|
|
|
/* We expect all such uses to be in the loop exit phis
|
|
(because of loop closed form) */
|
|
gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
|
|
gcc_assert (bb == single_exit (loop)->dest);
|
|
|
|
*live_p = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (*live_p || *relevant);
|
|
}
|
|
|
|
|
|
/* Function exist_non_indexing_operands_for_use_p
|
|
|
|
USE is one of the uses attached to STMT. Check if USE is
|
|
used in STMT for anything other than indexing an array. */
|
|
|
|
static bool
|
|
exist_non_indexing_operands_for_use_p (tree use, gimple stmt)
|
|
{
|
|
tree operand;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
/* USE corresponds to some operand in STMT. If there is no data
|
|
reference in STMT, then any operand that corresponds to USE
|
|
is not indexing an array. */
|
|
if (!STMT_VINFO_DATA_REF (stmt_info))
|
|
return true;
|
|
|
|
/* STMT has a data_ref. FORNOW this means that its of one of
|
|
the following forms:
|
|
-1- ARRAY_REF = var
|
|
-2- var = ARRAY_REF
|
|
(This should have been verified in analyze_data_refs).
|
|
|
|
'var' in the second case corresponds to a def, not a use,
|
|
so USE cannot correspond to any operands that are not used
|
|
for array indexing.
|
|
|
|
Therefore, all we need to check is if STMT falls into the
|
|
first case, and whether var corresponds to USE. */
|
|
|
|
if (!gimple_assign_copy_p (stmt))
|
|
return false;
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
|
|
return false;
|
|
operand = gimple_assign_rhs1 (stmt);
|
|
if (TREE_CODE (operand) != SSA_NAME)
|
|
return false;
|
|
|
|
if (operand == use)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
Function process_use.
|
|
|
|
Inputs:
|
|
- a USE in STMT in a loop represented by LOOP_VINFO
|
|
- LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt
|
|
that defined USE. This is done by calling mark_relevant and passing it
|
|
the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).
|
|
|
|
Outputs:
|
|
Generally, LIVE_P and RELEVANT are used to define the liveness and
|
|
relevance info of the DEF_STMT of this USE:
|
|
STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
|
|
STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
|
|
Exceptions:
|
|
- case 1: If USE is used only for address computations (e.g. array indexing),
|
|
which does not need to be directly vectorized, then the liveness/relevance
|
|
of the respective DEF_STMT is left unchanged.
|
|
- case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we
|
|
skip DEF_STMT cause it had already been processed.
|
|
- case 3: If DEF_STMT and STMT are in different nests, then "relevant" will
|
|
be modified accordingly.
|
|
|
|
Return true if everything is as expected. Return false otherwise. */
|
|
|
|
static bool
|
|
process_use (gimple stmt, tree use, loop_vec_info loop_vinfo, bool live_p,
|
|
enum vect_relevant relevant, VEC(gimple,heap) **worklist)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
|
stmt_vec_info dstmt_vinfo;
|
|
basic_block bb, def_bb;
|
|
tree def;
|
|
gimple def_stmt;
|
|
enum vect_def_type dt;
|
|
|
|
/* case 1: we are only interested in uses that need to be vectorized. Uses
|
|
that are used for address computation are not considered relevant. */
|
|
if (!exist_non_indexing_operands_for_use_p (use, stmt))
|
|
return true;
|
|
|
|
if (!vect_is_simple_use (use, loop_vinfo, NULL, &def_stmt, &def, &dt))
|
|
{
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
|
fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
|
|
return false;
|
|
}
|
|
|
|
if (!def_stmt || gimple_nop_p (def_stmt))
|
|
return true;
|
|
|
|
def_bb = gimple_bb (def_stmt);
|
|
if (!flow_bb_inside_loop_p (loop, def_bb))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "def_stmt is out of loop.");
|
|
return true;
|
|
}
|
|
|
|
/* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT).
|
|
DEF_STMT must have already been processed, because this should be the
|
|
only way that STMT, which is a reduction-phi, was put in the worklist,
|
|
as there should be no other uses for DEF_STMT in the loop. So we just
|
|
check that everything is as expected, and we are done. */
|
|
dstmt_vinfo = vinfo_for_stmt (def_stmt);
|
|
bb = gimple_bb (stmt);
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
|
&& STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
|
|
&& gimple_code (def_stmt) != GIMPLE_PHI
|
|
&& STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
|
|
&& bb->loop_father == def_bb->loop_father)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "reduc-stmt defining reduc-phi in the same nest.");
|
|
if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
|
|
dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
|
|
gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
|
|
gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo)
|
|
|| STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
|
|
return true;
|
|
}
|
|
|
|
/* case 3a: outer-loop stmt defining an inner-loop stmt:
|
|
outer-loop-header-bb:
|
|
d = def_stmt
|
|
inner-loop:
|
|
stmt # use (d)
|
|
outer-loop-tail-bb:
|
|
... */
|
|
if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "outer-loop def-stmt defining inner-loop stmt.");
|
|
|
|
switch (relevant)
|
|
{
|
|
case vect_unused_in_scope:
|
|
relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ?
|
|
vect_used_in_scope : vect_unused_in_scope;
|
|
break;
|
|
|
|
case vect_used_in_outer_by_reduction:
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
|
|
relevant = vect_used_by_reduction;
|
|
break;
|
|
|
|
case vect_used_in_outer:
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
|
|
relevant = vect_used_in_scope;
|
|
break;
|
|
|
|
case vect_used_in_scope:
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* case 3b: inner-loop stmt defining an outer-loop stmt:
|
|
outer-loop-header-bb:
|
|
...
|
|
inner-loop:
|
|
d = def_stmt
|
|
outer-loop-tail-bb (or outer-loop-exit-bb in double reduction):
|
|
stmt # use (d) */
|
|
else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "inner-loop def-stmt defining outer-loop stmt.");
|
|
|
|
switch (relevant)
|
|
{
|
|
case vect_unused_in_scope:
|
|
relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
|
|
|| STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ?
|
|
vect_used_in_outer_by_reduction : vect_unused_in_scope;
|
|
break;
|
|
|
|
case vect_used_by_reduction:
|
|
relevant = vect_used_in_outer_by_reduction;
|
|
break;
|
|
|
|
case vect_used_in_scope:
|
|
relevant = vect_used_in_outer;
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
vect_mark_relevant (worklist, def_stmt, relevant, live_p,
|
|
is_pattern_stmt_p (stmt_vinfo));
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_mark_stmts_to_be_vectorized.
|
|
|
|
Not all stmts in the loop need to be vectorized. For example:
|
|
|
|
for i...
|
|
for j...
|
|
1. T0 = i + j
|
|
2. T1 = a[T0]
|
|
|
|
3. j = j + 1
|
|
|
|
Stmt 1 and 3 do not need to be vectorized, because loop control and
|
|
addressing of vectorized data-refs are handled differently.
|
|
|
|
This pass detects such stmts. */
|
|
|
|
bool
|
|
vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
|
|
{
|
|
VEC(gimple,heap) *worklist;
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
unsigned int nbbs = loop->num_nodes;
|
|
gimple_stmt_iterator si;
|
|
gimple stmt;
|
|
unsigned int i;
|
|
stmt_vec_info stmt_vinfo;
|
|
basic_block bb;
|
|
gimple phi;
|
|
bool live_p;
|
|
enum vect_relevant relevant, tmp_relevant;
|
|
enum vect_def_type def_type;
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "=== vect_mark_stmts_to_be_vectorized ===");
|
|
|
|
worklist = VEC_alloc (gimple, heap, 64);
|
|
|
|
/* 1. Init worklist. */
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
bb = bbs[i];
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
phi = gsi_stmt (si);
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "init: phi relevant? ");
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
|
}
|
|
|
|
if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
|
|
vect_mark_relevant (&worklist, phi, relevant, live_p, false);
|
|
}
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
stmt = gsi_stmt (si);
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "init: stmt relevant? ");
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
|
|
vect_mark_relevant (&worklist, stmt, relevant, live_p, false);
|
|
}
|
|
}
|
|
|
|
/* 2. Process_worklist */
|
|
while (VEC_length (gimple, worklist) > 0)
|
|
{
|
|
use_operand_p use_p;
|
|
ssa_op_iter iter;
|
|
|
|
stmt = VEC_pop (gimple, worklist);
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "worklist: examine stmt: ");
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
/* Examine the USEs of STMT. For each USE, mark the stmt that defines it
|
|
(DEF_STMT) as relevant/irrelevant and live/dead according to the
|
|
liveness and relevance properties of STMT. */
|
|
stmt_vinfo = vinfo_for_stmt (stmt);
|
|
relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
|
|
live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
|
|
|
|
/* Generally, the liveness and relevance properties of STMT are
|
|
propagated as is to the DEF_STMTs of its USEs:
|
|
live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO)
|
|
relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO)
|
|
|
|
One exception is when STMT has been identified as defining a reduction
|
|
variable; in this case we set the liveness/relevance as follows:
|
|
live_p = false
|
|
relevant = vect_used_by_reduction
|
|
This is because we distinguish between two kinds of relevant stmts -
|
|
those that are used by a reduction computation, and those that are
|
|
(also) used by a regular computation. This allows us later on to
|
|
identify stmts that are used solely by a reduction, and therefore the
|
|
order of the results that they produce does not have to be kept. */
|
|
|
|
def_type = STMT_VINFO_DEF_TYPE (stmt_vinfo);
|
|
tmp_relevant = relevant;
|
|
switch (def_type)
|
|
{
|
|
case vect_reduction_def:
|
|
switch (tmp_relevant)
|
|
{
|
|
case vect_unused_in_scope:
|
|
relevant = vect_used_by_reduction;
|
|
break;
|
|
|
|
case vect_used_by_reduction:
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
break;
|
|
/* fall through */
|
|
|
|
default:
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "unsupported use of reduction.");
|
|
|
|
VEC_free (gimple, heap, worklist);
|
|
return false;
|
|
}
|
|
|
|
live_p = false;
|
|
break;
|
|
|
|
case vect_nested_cycle:
|
|
if (tmp_relevant != vect_unused_in_scope
|
|
&& tmp_relevant != vect_used_in_outer_by_reduction
|
|
&& tmp_relevant != vect_used_in_outer)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "unsupported use of nested cycle.");
|
|
|
|
VEC_free (gimple, heap, worklist);
|
|
return false;
|
|
}
|
|
|
|
live_p = false;
|
|
break;
|
|
|
|
case vect_double_reduction_def:
|
|
if (tmp_relevant != vect_unused_in_scope
|
|
&& tmp_relevant != vect_used_by_reduction)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "unsupported use of double reduction.");
|
|
|
|
VEC_free (gimple, heap, worklist);
|
|
return false;
|
|
}
|
|
|
|
live_p = false;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (is_pattern_stmt_p (vinfo_for_stmt (stmt)))
|
|
{
|
|
/* Pattern statements are not inserted into the code, so
|
|
FOR_EACH_PHI_OR_STMT_USE optimizes their operands out, and we
|
|
have to scan the RHS or function arguments instead. */
|
|
if (is_gimple_assign (stmt))
|
|
{
|
|
for (i = 1; i < gimple_num_ops (stmt); i++)
|
|
{
|
|
tree op = gimple_op (stmt, i);
|
|
if (!process_use (stmt, op, loop_vinfo, live_p, relevant,
|
|
&worklist))
|
|
{
|
|
VEC_free (gimple, heap, worklist);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else if (is_gimple_call (stmt))
|
|
{
|
|
for (i = 0; i < gimple_call_num_args (stmt); i++)
|
|
{
|
|
tree arg = gimple_call_arg (stmt, i);
|
|
if (!process_use (stmt, arg, loop_vinfo, live_p, relevant,
|
|
&worklist))
|
|
{
|
|
VEC_free (gimple, heap, worklist);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
|
|
{
|
|
tree op = USE_FROM_PTR (use_p);
|
|
if (!process_use (stmt, op, loop_vinfo, live_p, relevant,
|
|
&worklist))
|
|
{
|
|
VEC_free (gimple, heap, worklist);
|
|
return false;
|
|
}
|
|
}
|
|
} /* while worklist */
|
|
|
|
VEC_free (gimple, heap, worklist);
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Get cost by calling cost target builtin. */
|
|
|
|
static inline
|
|
int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
|
|
{
|
|
tree dummy_type = NULL;
|
|
int dummy = 0;
|
|
|
|
return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
|
|
dummy_type, dummy);
|
|
}
|
|
|
|
|
|
/* Get cost for STMT. */
|
|
|
|
int
|
|
cost_for_stmt (gimple stmt)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
switch (STMT_VINFO_TYPE (stmt_info))
|
|
{
|
|
case load_vec_info_type:
|
|
return vect_get_stmt_cost (scalar_load);
|
|
case store_vec_info_type:
|
|
return vect_get_stmt_cost (scalar_store);
|
|
case op_vec_info_type:
|
|
case condition_vec_info_type:
|
|
case assignment_vec_info_type:
|
|
case reduc_vec_info_type:
|
|
case induc_vec_info_type:
|
|
case type_promotion_vec_info_type:
|
|
case type_demotion_vec_info_type:
|
|
case type_conversion_vec_info_type:
|
|
case call_vec_info_type:
|
|
return vect_get_stmt_cost (scalar_stmt);
|
|
case undef_vec_info_type:
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Function vect_model_simple_cost.
|
|
|
|
Models cost for simple operations, i.e. those that only emit ncopies of a
|
|
single op. Right now, this does not account for multiple insns that could
|
|
be generated for the single vector op. We will handle that shortly. */
|
|
|
|
void
|
|
vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
|
|
enum vect_def_type *dt, slp_tree slp_node)
|
|
{
|
|
int i;
|
|
int inside_cost = 0, outside_cost = 0;
|
|
|
|
/* The SLP costs were already calculated during SLP tree build. */
|
|
if (PURE_SLP_STMT (stmt_info))
|
|
return;
|
|
|
|
inside_cost = ncopies * vect_get_stmt_cost (vector_stmt);
|
|
|
|
/* FORNOW: Assuming maximum 2 args per stmts. */
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
|
|
outside_cost += vect_get_stmt_cost (vector_stmt);
|
|
}
|
|
|
|
if (vect_print_dump_info (REPORT_COST))
|
|
fprintf (vect_dump, "vect_model_simple_cost: inside_cost = %d, "
|
|
"outside_cost = %d .", inside_cost, outside_cost);
|
|
|
|
/* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
|
|
stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
|
|
stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
|
|
}
|
|
|
|
|
|
/* Function vect_cost_strided_group_size
|
|
|
|
For strided load or store, return the group_size only if it is the first
|
|
load or store of a group, else return 1. This ensures that group size is
|
|
only returned once per group. */
|
|
|
|
static int
|
|
vect_cost_strided_group_size (stmt_vec_info stmt_info)
|
|
{
|
|
gimple first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
|
|
|
if (first_stmt == STMT_VINFO_STMT (stmt_info))
|
|
return GROUP_SIZE (stmt_info);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Function vect_model_store_cost
|
|
|
|
Models cost for stores. In the case of strided accesses, one access
|
|
has the overhead of the strided access attributed to it. */
|
|
|
|
void
|
|
vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
|
|
bool store_lanes_p, enum vect_def_type dt,
|
|
slp_tree slp_node)
|
|
{
|
|
int group_size;
|
|
unsigned int inside_cost = 0, outside_cost = 0;
|
|
struct data_reference *first_dr;
|
|
gimple first_stmt;
|
|
|
|
/* The SLP costs were already calculated during SLP tree build. */
|
|
if (PURE_SLP_STMT (stmt_info))
|
|
return;
|
|
|
|
if (dt == vect_constant_def || dt == vect_external_def)
|
|
outside_cost = vect_get_stmt_cost (scalar_to_vec);
|
|
|
|
/* Strided access? */
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
|
{
|
|
if (slp_node)
|
|
{
|
|
first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0);
|
|
group_size = 1;
|
|
}
|
|
else
|
|
{
|
|
first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
|
group_size = vect_cost_strided_group_size (stmt_info);
|
|
}
|
|
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
|
}
|
|
/* Not a strided access. */
|
|
else
|
|
{
|
|
group_size = 1;
|
|
first_dr = STMT_VINFO_DATA_REF (stmt_info);
|
|
}
|
|
|
|
/* We assume that the cost of a single store-lanes instruction is
|
|
equivalent to the cost of GROUP_SIZE separate stores. If a strided
|
|
access is instead being provided by a permute-and-store operation,
|
|
include the cost of the permutes. */
|
|
if (!store_lanes_p && group_size > 1)
|
|
{
|
|
/* Uses a high and low interleave operation for each needed permute. */
|
|
inside_cost = ncopies * exact_log2(group_size) * group_size
|
|
* vect_get_stmt_cost (vector_stmt);
|
|
|
|
if (vect_print_dump_info (REPORT_COST))
|
|
fprintf (vect_dump, "vect_model_store_cost: strided group_size = %d .",
|
|
group_size);
|
|
|
|
}
|
|
|
|
/* Costs of the stores. */
|
|
vect_get_store_cost (first_dr, ncopies, &inside_cost);
|
|
|
|
if (vect_print_dump_info (REPORT_COST))
|
|
fprintf (vect_dump, "vect_model_store_cost: inside_cost = %d, "
|
|
"outside_cost = %d .", inside_cost, outside_cost);
|
|
|
|
/* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
|
|
stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
|
|
stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
|
|
}
|
|
|
|
|
|
/* Calculate cost of DR's memory access. */
|
|
void
|
|
vect_get_store_cost (struct data_reference *dr, int ncopies,
|
|
unsigned int *inside_cost)
|
|
{
|
|
int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
|
|
|
|
switch (alignment_support_scheme)
|
|
{
|
|
case dr_aligned:
|
|
{
|
|
*inside_cost += ncopies * vect_get_stmt_cost (vector_store);
|
|
|
|
if (vect_print_dump_info (REPORT_COST))
|
|
fprintf (vect_dump, "vect_model_store_cost: aligned.");
|
|
|
|
break;
|
|
}
|
|
|
|
case dr_unaligned_supported:
|
|
{
|
|
gimple stmt = DR_STMT (dr);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
|
|
/* Here, we assign an additional cost for the unaligned store. */
|
|
*inside_cost += ncopies
|
|
* targetm.vectorize.builtin_vectorization_cost (unaligned_store,
|
|
vectype, DR_MISALIGNMENT (dr));
|
|
|
|
if (vect_print_dump_info (REPORT_COST))
|
|
fprintf (vect_dump, "vect_model_store_cost: unaligned supported by "
|
|
"hardware.");
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
|
|
/* Function vect_model_load_cost
|
|
|
|
Models cost for loads. In the case of strided accesses, the last access
|
|
has the overhead of the strided access attributed to it. Since unaligned
|
|
accesses are supported for loads, we also account for the costs of the
|
|
access scheme chosen. */
|
|
|
|
void
|
|
vect_model_load_cost (stmt_vec_info stmt_info, int ncopies, bool load_lanes_p,
|
|
slp_tree slp_node)
|
|
{
|
|
int group_size;
|
|
gimple first_stmt;
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
|
|
unsigned int inside_cost = 0, outside_cost = 0;
|
|
|
|
/* The SLP costs were already calculated during SLP tree build. */
|
|
if (PURE_SLP_STMT (stmt_info))
|
|
return;
|
|
|
|
/* Strided accesses? */
|
|
first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info) && first_stmt && !slp_node)
|
|
{
|
|
group_size = vect_cost_strided_group_size (stmt_info);
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
|
}
|
|
/* Not a strided access. */
|
|
else
|
|
{
|
|
group_size = 1;
|
|
first_dr = dr;
|
|
}
|
|
|
|
/* We assume that the cost of a single load-lanes instruction is
|
|
equivalent to the cost of GROUP_SIZE separate loads. If a strided
|
|
access is instead being provided by a load-and-permute operation,
|
|
include the cost of the permutes. */
|
|
if (!load_lanes_p && group_size > 1)
|
|
{
|
|
/* Uses an even and odd extract operations for each needed permute. */
|
|
inside_cost = ncopies * exact_log2(group_size) * group_size
|
|
* vect_get_stmt_cost (vector_stmt);
|
|
|
|
if (vect_print_dump_info (REPORT_COST))
|
|
fprintf (vect_dump, "vect_model_load_cost: strided group_size = %d .",
|
|
group_size);
|
|
}
|
|
|
|
/* The loads themselves. */
|
|
vect_get_load_cost (first_dr, ncopies,
|
|
((!STMT_VINFO_STRIDED_ACCESS (stmt_info)) || group_size > 1
|
|
|| slp_node),
|
|
&inside_cost, &outside_cost);
|
|
|
|
if (vect_print_dump_info (REPORT_COST))
|
|
fprintf (vect_dump, "vect_model_load_cost: inside_cost = %d, "
|
|
"outside_cost = %d .", inside_cost, outside_cost);
|
|
|
|
/* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
|
|
stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
|
|
stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
|
|
}
|
|
|
|
|
|
/* Calculate cost of DR's memory access. */
|
|
void
|
|
vect_get_load_cost (struct data_reference *dr, int ncopies,
|
|
bool add_realign_cost, unsigned int *inside_cost,
|
|
unsigned int *outside_cost)
|
|
{
|
|
int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
|
|
|
|
switch (alignment_support_scheme)
|
|
{
|
|
case dr_aligned:
|
|
{
|
|
*inside_cost += ncopies * vect_get_stmt_cost (vector_load);
|
|
|
|
if (vect_print_dump_info (REPORT_COST))
|
|
fprintf (vect_dump, "vect_model_load_cost: aligned.");
|
|
|
|
break;
|
|
}
|
|
case dr_unaligned_supported:
|
|
{
|
|
gimple stmt = DR_STMT (dr);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
|
|
/* Here, we assign an additional cost for the unaligned load. */
|
|
*inside_cost += ncopies
|
|
* targetm.vectorize.builtin_vectorization_cost (unaligned_load,
|
|
vectype, DR_MISALIGNMENT (dr));
|
|
if (vect_print_dump_info (REPORT_COST))
|
|
fprintf (vect_dump, "vect_model_load_cost: unaligned supported by "
|
|
"hardware.");
|
|
|
|
break;
|
|
}
|
|
case dr_explicit_realign:
|
|
{
|
|
*inside_cost += ncopies * (2 * vect_get_stmt_cost (vector_load)
|
|
+ vect_get_stmt_cost (vector_stmt));
|
|
|
|
/* FIXME: If the misalignment remains fixed across the iterations of
|
|
the containing loop, the following cost should be added to the
|
|
outside costs. */
|
|
if (targetm.vectorize.builtin_mask_for_load)
|
|
*inside_cost += vect_get_stmt_cost (vector_stmt);
|
|
|
|
break;
|
|
}
|
|
case dr_explicit_realign_optimized:
|
|
{
|
|
if (vect_print_dump_info (REPORT_COST))
|
|
fprintf (vect_dump, "vect_model_load_cost: unaligned software "
|
|
"pipelined.");
|
|
|
|
/* Unaligned software pipeline has a load of an address, an initial
|
|
load, and possibly a mask operation to "prime" the loop. However,
|
|
if this is an access in a group of loads, which provide strided
|
|
access, then the above cost should only be considered for one
|
|
access in the group. Inside the loop, there is a load op
|
|
and a realignment op. */
|
|
|
|
if (add_realign_cost)
|
|
{
|
|
*outside_cost = 2 * vect_get_stmt_cost (vector_stmt);
|
|
if (targetm.vectorize.builtin_mask_for_load)
|
|
*outside_cost += vect_get_stmt_cost (vector_stmt);
|
|
}
|
|
|
|
*inside_cost += ncopies * (vect_get_stmt_cost (vector_load)
|
|
+ vect_get_stmt_cost (vector_stmt));
|
|
break;
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
|
|
/* Function vect_init_vector.
|
|
|
|
Insert a new stmt (INIT_STMT) that initializes a new vector variable with
|
|
the vector elements of VECTOR_VAR. Place the initialization at BSI if it
|
|
is not NULL. Otherwise, place the initialization at the loop preheader.
|
|
Return the DEF of INIT_STMT.
|
|
It will be used in the vectorization of STMT. */
|
|
|
|
tree
|
|
vect_init_vector (gimple stmt, tree vector_var, tree vector_type,
|
|
gimple_stmt_iterator *gsi)
|
|
{
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
|
tree new_var;
|
|
gimple init_stmt;
|
|
tree vec_oprnd;
|
|
edge pe;
|
|
tree new_temp;
|
|
basic_block new_bb;
|
|
|
|
new_var = vect_get_new_vect_var (vector_type, vect_simple_var, "cst_");
|
|
add_referenced_var (new_var);
|
|
init_stmt = gimple_build_assign (new_var, vector_var);
|
|
new_temp = make_ssa_name (new_var, init_stmt);
|
|
gimple_assign_set_lhs (init_stmt, new_temp);
|
|
|
|
if (gsi)
|
|
vect_finish_stmt_generation (stmt, init_stmt, gsi);
|
|
else
|
|
{
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
|
|
if (loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
|
loop = loop->inner;
|
|
|
|
pe = loop_preheader_edge (loop);
|
|
new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
else
|
|
{
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
|
|
basic_block bb;
|
|
gimple_stmt_iterator gsi_bb_start;
|
|
|
|
gcc_assert (bb_vinfo);
|
|
bb = BB_VINFO_BB (bb_vinfo);
|
|
gsi_bb_start = gsi_after_labels (bb);
|
|
gsi_insert_before (&gsi_bb_start, init_stmt, GSI_SAME_STMT);
|
|
}
|
|
}
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "created new init_stmt: ");
|
|
print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
vec_oprnd = gimple_assign_lhs (init_stmt);
|
|
return vec_oprnd;
|
|
}
|
|
|
|
|
|
/* Function vect_get_vec_def_for_operand.
|
|
|
|
OP is an operand in STMT. This function returns a (vector) def that will be
|
|
used in the vectorized stmt for STMT.
|
|
|
|
In the case that OP is an SSA_NAME which is defined in the loop, then
|
|
STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
|
|
|
|
In case OP is an invariant or constant, a new stmt that creates a vector def
|
|
needs to be introduced. */
|
|
|
|
tree
|
|
vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def)
|
|
{
|
|
tree vec_oprnd;
|
|
gimple vec_stmt;
|
|
gimple def_stmt;
|
|
stmt_vec_info def_stmt_info = NULL;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
|
unsigned int nunits;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
tree vec_inv;
|
|
tree vec_cst;
|
|
tree t = NULL_TREE;
|
|
tree def;
|
|
int i;
|
|
enum vect_def_type dt;
|
|
bool is_simple_use;
|
|
tree vector_type;
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
|
|
print_generic_expr (vect_dump, op, TDF_SLIM);
|
|
}
|
|
|
|
is_simple_use = vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def,
|
|
&dt);
|
|
gcc_assert (is_simple_use);
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
if (def)
|
|
{
|
|
fprintf (vect_dump, "def = ");
|
|
print_generic_expr (vect_dump, def, TDF_SLIM);
|
|
}
|
|
if (def_stmt)
|
|
{
|
|
fprintf (vect_dump, " def_stmt = ");
|
|
print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
|
|
}
|
|
}
|
|
|
|
switch (dt)
|
|
{
|
|
/* Case 1: operand is a constant. */
|
|
case vect_constant_def:
|
|
{
|
|
vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
|
|
gcc_assert (vector_type);
|
|
nunits = TYPE_VECTOR_SUBPARTS (vector_type);
|
|
|
|
if (scalar_def)
|
|
*scalar_def = op;
|
|
|
|
/* Create 'vect_cst_ = {cst,cst,...,cst}' */
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
|
|
|
|
vec_cst = build_vector_from_val (vector_type, op);
|
|
return vect_init_vector (stmt, vec_cst, vector_type, NULL);
|
|
}
|
|
|
|
/* Case 2: operand is defined outside the loop - loop invariant. */
|
|
case vect_external_def:
|
|
{
|
|
vector_type = get_vectype_for_scalar_type (TREE_TYPE (def));
|
|
gcc_assert (vector_type);
|
|
nunits = TYPE_VECTOR_SUBPARTS (vector_type);
|
|
|
|
if (scalar_def)
|
|
*scalar_def = def;
|
|
|
|
/* Create 'vec_inv = {inv,inv,..,inv}' */
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "Create vector_inv.");
|
|
|
|
for (i = nunits - 1; i >= 0; --i)
|
|
{
|
|
t = tree_cons (NULL_TREE, def, t);
|
|
}
|
|
|
|
/* FIXME: use build_constructor directly. */
|
|
vec_inv = build_constructor_from_list (vector_type, t);
|
|
return vect_init_vector (stmt, vec_inv, vector_type, NULL);
|
|
}
|
|
|
|
/* Case 3: operand is defined inside the loop. */
|
|
case vect_internal_def:
|
|
{
|
|
if (scalar_def)
|
|
*scalar_def = NULL/* FIXME tuples: def_stmt*/;
|
|
|
|
/* Get the def from the vectorized stmt. */
|
|
def_stmt_info = vinfo_for_stmt (def_stmt);
|
|
|
|
vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
|
|
/* Get vectorized pattern statement. */
|
|
if (!vec_stmt
|
|
&& STMT_VINFO_IN_PATTERN_P (def_stmt_info)
|
|
&& !STMT_VINFO_RELEVANT (def_stmt_info))
|
|
vec_stmt = STMT_VINFO_VEC_STMT (vinfo_for_stmt (
|
|
STMT_VINFO_RELATED_STMT (def_stmt_info)));
|
|
gcc_assert (vec_stmt);
|
|
if (gimple_code (vec_stmt) == GIMPLE_PHI)
|
|
vec_oprnd = PHI_RESULT (vec_stmt);
|
|
else if (is_gimple_call (vec_stmt))
|
|
vec_oprnd = gimple_call_lhs (vec_stmt);
|
|
else
|
|
vec_oprnd = gimple_assign_lhs (vec_stmt);
|
|
return vec_oprnd;
|
|
}
|
|
|
|
/* Case 4: operand is defined by a loop header phi - reduction */
|
|
case vect_reduction_def:
|
|
case vect_double_reduction_def:
|
|
case vect_nested_cycle:
|
|
{
|
|
struct loop *loop;
|
|
|
|
gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
|
|
loop = (gimple_bb (def_stmt))->loop_father;
|
|
|
|
/* Get the def before the loop */
|
|
op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
|
|
return get_initial_def_for_reduction (stmt, op, scalar_def);
|
|
}
|
|
|
|
/* Case 5: operand is defined by loop-header phi - induction. */
|
|
case vect_induction_def:
|
|
{
|
|
gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
|
|
|
|
/* Get the def from the vectorized stmt. */
|
|
def_stmt_info = vinfo_for_stmt (def_stmt);
|
|
vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
|
|
if (gimple_code (vec_stmt) == GIMPLE_PHI)
|
|
vec_oprnd = PHI_RESULT (vec_stmt);
|
|
else
|
|
vec_oprnd = gimple_get_lhs (vec_stmt);
|
|
return vec_oprnd;
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
|
|
/* Function vect_get_vec_def_for_stmt_copy
|
|
|
|
Return a vector-def for an operand. This function is used when the
|
|
vectorized stmt to be created (by the caller to this function) is a "copy"
|
|
created in case the vectorized result cannot fit in one vector, and several
|
|
copies of the vector-stmt are required. In this case the vector-def is
|
|
retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
|
|
of the stmt that defines VEC_OPRND.
|
|
DT is the type of the vector def VEC_OPRND.
|
|
|
|
Context:
|
|
In case the vectorization factor (VF) is bigger than the number
|
|
of elements that can fit in a vectype (nunits), we have to generate
|
|
more than one vector stmt to vectorize the scalar stmt. This situation
|
|
arises when there are multiple data-types operated upon in the loop; the
|
|
smallest data-type determines the VF, and as a result, when vectorizing
|
|
stmts operating on wider types we need to create 'VF/nunits' "copies" of the
|
|
vector stmt (each computing a vector of 'nunits' results, and together
|
|
computing 'VF' results in each iteration). This function is called when
|
|
vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
|
|
which VF=16 and nunits=4, so the number of copies required is 4):
|
|
|
|
scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
|
|
|
|
S1: x = load VS1.0: vx.0 = memref0 VS1.1
|
|
VS1.1: vx.1 = memref1 VS1.2
|
|
VS1.2: vx.2 = memref2 VS1.3
|
|
VS1.3: vx.3 = memref3
|
|
|
|
S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
|
|
VSnew.1: vz1 = vx.1 + ... VSnew.2
|
|
VSnew.2: vz2 = vx.2 + ... VSnew.3
|
|
VSnew.3: vz3 = vx.3 + ...
|
|
|
|
The vectorization of S1 is explained in vectorizable_load.
|
|
The vectorization of S2:
|
|
To create the first vector-stmt out of the 4 copies - VSnew.0 -
|
|
the function 'vect_get_vec_def_for_operand' is called to
|
|
get the relevant vector-def for each operand of S2. For operand x it
|
|
returns the vector-def 'vx.0'.
|
|
|
|
To create the remaining copies of the vector-stmt (VSnew.j), this
|
|
function is called to get the relevant vector-def for each operand. It is
|
|
obtained from the respective VS1.j stmt, which is recorded in the
|
|
STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
|
|
|
|
For example, to obtain the vector-def 'vx.1' in order to create the
|
|
vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
|
|
Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
|
|
STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
|
|
and return its def ('vx.1').
|
|
Overall, to create the above sequence this function will be called 3 times:
|
|
vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
|
|
vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
|
|
vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
|
|
|
|
tree
|
|
vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
|
|
{
|
|
gimple vec_stmt_for_operand;
|
|
stmt_vec_info def_stmt_info;
|
|
|
|
/* Do nothing; can reuse same def. */
|
|
if (dt == vect_external_def || dt == vect_constant_def )
|
|
return vec_oprnd;
|
|
|
|
vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
|
|
def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
|
|
gcc_assert (def_stmt_info);
|
|
vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
|
|
gcc_assert (vec_stmt_for_operand);
|
|
vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
|
|
if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
|
|
vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
|
|
else
|
|
vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
|
|
return vec_oprnd;
|
|
}
|
|
|
|
|
|
/* Get vectorized definitions for the operands to create a copy of an original
|
|
stmt. See vect_get_vec_def_for_stmt_copy () for details. */
|
|
|
|
static void
|
|
vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
|
|
VEC(tree,heap) **vec_oprnds0,
|
|
VEC(tree,heap) **vec_oprnds1)
|
|
{
|
|
tree vec_oprnd = VEC_pop (tree, *vec_oprnds0);
|
|
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
|
|
VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);
|
|
|
|
if (vec_oprnds1 && *vec_oprnds1)
|
|
{
|
|
vec_oprnd = VEC_pop (tree, *vec_oprnds1);
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
|
|
VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
|
|
}
|
|
}
|
|
|
|
|
|
/* Get vectorized definitions for OP0 and OP1, or SLP_NODE if it is not
|
|
NULL. */
|
|
|
|
static void
|
|
vect_get_vec_defs (tree op0, tree op1, gimple stmt,
|
|
VEC(tree,heap) **vec_oprnds0, VEC(tree,heap) **vec_oprnds1,
|
|
slp_tree slp_node)
|
|
{
|
|
if (slp_node)
|
|
vect_get_slp_defs (op0, op1, slp_node, vec_oprnds0, vec_oprnds1, -1);
|
|
else
|
|
{
|
|
tree vec_oprnd;
|
|
|
|
*vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
|
vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL);
|
|
VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);
|
|
|
|
if (op1)
|
|
{
|
|
*vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
|
vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL);
|
|
VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Function vect_finish_stmt_generation.
|
|
|
|
Insert a new stmt. */
|
|
|
|
void
|
|
vect_finish_stmt_generation (gimple stmt, gimple vec_stmt,
|
|
gimple_stmt_iterator *gsi)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
|
|
|
gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
|
|
|
|
gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
|
|
|
|
set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo,
|
|
bb_vinfo));
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "add new stmt: ");
|
|
print_gimple_stmt (vect_dump, vec_stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
gimple_set_location (vec_stmt, gimple_location (stmt));
|
|
}
|
|
|
|
/* Checks if CALL can be vectorized in type VECTYPE. Returns
|
|
a function declaration if the target has a vectorized version
|
|
of the function, or NULL_TREE if the function cannot be vectorized. */
|
|
|
|
tree
|
|
vectorizable_function (gimple call, tree vectype_out, tree vectype_in)
|
|
{
|
|
tree fndecl = gimple_call_fndecl (call);
|
|
|
|
/* We only handle functions that do not read or clobber memory -- i.e.
|
|
const or novops ones. */
|
|
if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS)))
|
|
return NULL_TREE;
|
|
|
|
if (!fndecl
|
|
|| TREE_CODE (fndecl) != FUNCTION_DECL
|
|
|| !DECL_BUILT_IN (fndecl))
|
|
return NULL_TREE;
|
|
|
|
return targetm.vectorize.builtin_vectorized_function (fndecl, vectype_out,
|
|
vectype_in);
|
|
}
|
|
|
|
/* Function vectorizable_call.
|
|
|
|
Check if STMT performs a function call that can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
|
|
|
static bool
|
|
vectorizable_call (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt)
|
|
{
|
|
tree vec_dest;
|
|
tree scalar_dest;
|
|
tree op, type;
|
|
tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
|
|
tree vectype_out, vectype_in;
|
|
int nunits_in;
|
|
int nunits_out;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
tree fndecl, new_temp, def, rhs_type;
|
|
gimple def_stmt;
|
|
enum vect_def_type dt[3]
|
|
= {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
|
|
gimple new_stmt = NULL;
|
|
int ncopies, j;
|
|
VEC(tree, heap) *vargs = NULL;
|
|
enum { NARROW, NONE, WIDEN } modifier;
|
|
size_t i, nargs;
|
|
tree lhs;
|
|
|
|
/* FORNOW: unsupported in basic block SLP. */
|
|
gcc_assert (loop_vinfo);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
|
return false;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
|
return false;
|
|
|
|
/* FORNOW: SLP not supported. */
|
|
if (STMT_SLP_TYPE (stmt_info))
|
|
return false;
|
|
|
|
/* Is STMT a vectorizable call? */
|
|
if (!is_gimple_call (stmt))
|
|
return false;
|
|
|
|
if (TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
|
|
return false;
|
|
|
|
if (stmt_can_throw_internal (stmt))
|
|
return false;
|
|
|
|
vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
|
|
/* Process function arguments. */
|
|
rhs_type = NULL_TREE;
|
|
vectype_in = NULL_TREE;
|
|
nargs = gimple_call_num_args (stmt);
|
|
|
|
/* Bail out if the function has more than three arguments, we do not have
|
|
interesting builtin functions to vectorize with more than two arguments
|
|
except for fma. No arguments is also not good. */
|
|
if (nargs == 0 || nargs > 3)
|
|
return false;
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
tree opvectype;
|
|
|
|
op = gimple_call_arg (stmt, i);
|
|
|
|
/* We can only handle calls with arguments of the same type. */
|
|
if (rhs_type
|
|
&& !types_compatible_p (rhs_type, TREE_TYPE (op)))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "argument types differ.");
|
|
return false;
|
|
}
|
|
if (!rhs_type)
|
|
rhs_type = TREE_TYPE (op);
|
|
|
|
if (!vect_is_simple_use_1 (op, loop_vinfo, NULL,
|
|
&def_stmt, &def, &dt[i], &opvectype))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
|
|
if (!vectype_in)
|
|
vectype_in = opvectype;
|
|
else if (opvectype
|
|
&& opvectype != vectype_in)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "argument vector types differ.");
|
|
return false;
|
|
}
|
|
}
|
|
/* If all arguments are external or constant defs use a vector type with
|
|
the same size as the output vector type. */
|
|
if (!vectype_in)
|
|
vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
|
|
if (vec_stmt)
|
|
gcc_assert (vectype_in);
|
|
if (!vectype_in)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "no vectype for scalar type ");
|
|
print_generic_expr (vect_dump, rhs_type, TDF_SLIM);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* FORNOW */
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
|
if (nunits_in == nunits_out / 2)
|
|
modifier = NARROW;
|
|
else if (nunits_out == nunits_in)
|
|
modifier = NONE;
|
|
else if (nunits_out == nunits_in / 2)
|
|
modifier = WIDEN;
|
|
else
|
|
return false;
|
|
|
|
/* For now, we only vectorize functions if a target specific builtin
|
|
is available. TODO -- in some cases, it might be profitable to
|
|
insert the calls for pieces of the vector, in order to be able
|
|
to vectorize other operations in the loop. */
|
|
fndecl = vectorizable_function (stmt, vectype_out, vectype_in);
|
|
if (fndecl == NULL_TREE)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "function is not vectorizable.");
|
|
|
|
return false;
|
|
}
|
|
|
|
gcc_assert (!gimple_vuse (stmt));
|
|
|
|
if (modifier == NARROW)
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
|
|
else
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
|
|
|
/* Sanity check: make sure that at least one copy of the vectorized stmt
|
|
needs to be generated. */
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "=== vectorizable_call ===");
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
|
return true;
|
|
}
|
|
|
|
/** Transform. **/
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "transform call.");
|
|
|
|
/* Handle def. */
|
|
scalar_dest = gimple_call_lhs (stmt);
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
|
|
|
prev_stmt_info = NULL;
|
|
switch (modifier)
|
|
{
|
|
case NONE:
|
|
for (j = 0; j < ncopies; ++j)
|
|
{
|
|
/* Build argument list for the vectorized call. */
|
|
if (j == 0)
|
|
vargs = VEC_alloc (tree, heap, nargs);
|
|
else
|
|
VEC_truncate (tree, vargs, 0);
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
op = gimple_call_arg (stmt, i);
|
|
if (j == 0)
|
|
vec_oprnd0
|
|
= vect_get_vec_def_for_operand (op, stmt, NULL);
|
|
else
|
|
{
|
|
vec_oprnd0 = gimple_call_arg (new_stmt, i);
|
|
vec_oprnd0
|
|
= vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
|
|
}
|
|
|
|
VEC_quick_push (tree, vargs, vec_oprnd0);
|
|
}
|
|
|
|
new_stmt = gimple_build_call_vec (fndecl, vargs);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
|
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
mark_symbols_for_renaming (new_stmt);
|
|
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
|
|
break;
|
|
|
|
case NARROW:
|
|
for (j = 0; j < ncopies; ++j)
|
|
{
|
|
/* Build argument list for the vectorized call. */
|
|
if (j == 0)
|
|
vargs = VEC_alloc (tree, heap, nargs * 2);
|
|
else
|
|
VEC_truncate (tree, vargs, 0);
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
op = gimple_call_arg (stmt, i);
|
|
if (j == 0)
|
|
{
|
|
vec_oprnd0
|
|
= vect_get_vec_def_for_operand (op, stmt, NULL);
|
|
vec_oprnd1
|
|
= vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
|
|
}
|
|
else
|
|
{
|
|
vec_oprnd1 = gimple_call_arg (new_stmt, 2*i + 1);
|
|
vec_oprnd0
|
|
= vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1);
|
|
vec_oprnd1
|
|
= vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
|
|
}
|
|
|
|
VEC_quick_push (tree, vargs, vec_oprnd0);
|
|
VEC_quick_push (tree, vargs, vec_oprnd1);
|
|
}
|
|
|
|
new_stmt = gimple_build_call_vec (fndecl, vargs);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
|
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
mark_symbols_for_renaming (new_stmt);
|
|
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
|
|
|
break;
|
|
|
|
case WIDEN:
|
|
/* No current target implements this case. */
|
|
return false;
|
|
}
|
|
|
|
VEC_free (tree, heap, vargs);
|
|
|
|
/* Update the exception handling table with the vector stmt if necessary. */
|
|
if (maybe_clean_or_replace_eh_stmt (stmt, *vec_stmt))
|
|
gimple_purge_dead_eh_edges (gimple_bb (stmt));
|
|
|
|
/* The call in STMT might prevent it from being removed in dce.
|
|
We however cannot remove it here, due to the way the ssa name
|
|
it defines is mapped to the new definition. So just replace
|
|
rhs of the statement with something harmless. */
|
|
|
|
type = TREE_TYPE (scalar_dest);
|
|
if (is_pattern_stmt_p (stmt_info))
|
|
lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
|
|
else
|
|
lhs = gimple_call_lhs (stmt);
|
|
new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
|
|
set_vinfo_for_stmt (new_stmt, stmt_info);
|
|
set_vinfo_for_stmt (stmt, NULL);
|
|
STMT_VINFO_STMT (stmt_info) = new_stmt;
|
|
gsi_replace (gsi, new_stmt, false);
|
|
SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_gen_widened_results_half
|
|
|
|
Create a vector stmt whose code, type, number of arguments, and result
|
|
variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
|
|
VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
|
|
In the case that CODE is a CALL_EXPR, this means that a call to DECL
|
|
needs to be created (DECL is a function-decl of a target-builtin).
|
|
STMT is the original scalar stmt that we are vectorizing. */
|
|
|
|
static gimple
|
|
vect_gen_widened_results_half (enum tree_code code,
|
|
tree decl,
|
|
tree vec_oprnd0, tree vec_oprnd1, int op_type,
|
|
tree vec_dest, gimple_stmt_iterator *gsi,
|
|
gimple stmt)
|
|
{
|
|
gimple new_stmt;
|
|
tree new_temp;
|
|
|
|
/* Generate half of the widened result: */
|
|
if (code == CALL_EXPR)
|
|
{
|
|
/* Target specific support */
|
|
if (op_type == binary_op)
|
|
new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
|
|
else
|
|
new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
|
}
|
|
else
|
|
{
|
|
/* Generic support */
|
|
gcc_assert (op_type == TREE_CODE_LENGTH (code));
|
|
if (op_type != binary_op)
|
|
vec_oprnd1 = NULL;
|
|
new_stmt = gimple_build_assign_with_ops (code, vec_dest, vec_oprnd0,
|
|
vec_oprnd1);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
}
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
|
|
return new_stmt;
|
|
}
|
|
|
|
|
|
/* Check if STMT performs a conversion operation, that can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
|
|
|
static bool
|
|
vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi,
|
|
gimple *vec_stmt, slp_tree slp_node)
|
|
{
|
|
tree vec_dest;
|
|
tree scalar_dest;
|
|
tree op0;
|
|
tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
|
|
tree decl1 = NULL_TREE, decl2 = NULL_TREE;
|
|
tree new_temp;
|
|
tree def;
|
|
gimple def_stmt;
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
|
gimple new_stmt = NULL;
|
|
stmt_vec_info prev_stmt_info;
|
|
int nunits_in;
|
|
int nunits_out;
|
|
tree vectype_out, vectype_in;
|
|
int ncopies, j;
|
|
tree rhs_type;
|
|
tree builtin_decl;
|
|
enum { NARROW, NONE, WIDEN } modifier;
|
|
int i;
|
|
VEC(tree,heap) *vec_oprnds0 = NULL;
|
|
tree vop0;
|
|
VEC(tree,heap) *dummy = NULL;
|
|
int dummy_int;
|
|
|
|
/* Is STMT a vectorizable conversion? */
|
|
|
|
/* FORNOW: unsupported in basic block SLP. */
|
|
gcc_assert (loop_vinfo);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
|
return false;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
|
return false;
|
|
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
|
|
return false;
|
|
|
|
/* Check types of lhs and rhs. */
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
|
|
op0 = gimple_assign_rhs1 (stmt);
|
|
rhs_type = TREE_TYPE (op0);
|
|
/* Check the operands of the operation. */
|
|
if (!vect_is_simple_use_1 (op0, loop_vinfo, NULL,
|
|
&def_stmt, &def, &dt[0], &vectype_in))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
/* If op0 is an external or constant defs use a vector type of
|
|
the same size as the output vector type. */
|
|
if (!vectype_in)
|
|
vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
|
|
if (vec_stmt)
|
|
gcc_assert (vectype_in);
|
|
if (!vectype_in)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "no vectype for scalar type ");
|
|
print_generic_expr (vect_dump, rhs_type, TDF_SLIM);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* FORNOW */
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
|
if (nunits_in == nunits_out / 2)
|
|
modifier = NARROW;
|
|
else if (nunits_out == nunits_in)
|
|
modifier = NONE;
|
|
else if (nunits_out == nunits_in / 2)
|
|
modifier = WIDEN;
|
|
else
|
|
return false;
|
|
|
|
if (modifier == NARROW)
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
|
|
else
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
|
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
|
case of SLP. */
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
|
ncopies = 1;
|
|
|
|
/* Sanity check: make sure that at least one copy of the vectorized stmt
|
|
needs to be generated. */
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
/* Supportable by target? */
|
|
if ((modifier == NONE
|
|
&& !targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
|
|
|| (modifier == WIDEN
|
|
&& !supportable_widening_operation (code, stmt,
|
|
vectype_out, vectype_in,
|
|
&decl1, &decl2,
|
|
&code1, &code2,
|
|
&dummy_int, &dummy))
|
|
|| (modifier == NARROW
|
|
&& !supportable_narrowing_operation (code, vectype_out, vectype_in,
|
|
&code1, &dummy_int, &dummy)))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "conversion not supported by target.");
|
|
return false;
|
|
}
|
|
|
|
if (modifier != NONE)
|
|
{
|
|
/* FORNOW: SLP not supported. */
|
|
if (STMT_SLP_TYPE (stmt_info))
|
|
return false;
|
|
}
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
|
|
return true;
|
|
}
|
|
|
|
/** Transform. **/
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "transform conversion.");
|
|
|
|
/* Handle def. */
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
|
|
|
if (modifier == NONE && !slp_node)
|
|
vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
|
|
|
prev_stmt_info = NULL;
|
|
switch (modifier)
|
|
{
|
|
case NONE:
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
if (j == 0)
|
|
vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node);
|
|
else
|
|
vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
|
|
|
|
builtin_decl =
|
|
targetm.vectorize.builtin_conversion (code,
|
|
vectype_out, vectype_in);
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0)
|
|
{
|
|
/* Arguments are ready. create the new vector stmt. */
|
|
new_stmt = gimple_build_call (builtin_decl, 1, vop0);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
if (slp_node)
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
|
}
|
|
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
break;
|
|
|
|
case WIDEN:
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to
|
|
generate more than one vector stmt - i.e - we need to "unroll"
|
|
the vector stmt by a factor VF/nunits. */
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
if (j == 0)
|
|
vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
|
|
else
|
|
vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
|
|
|
|
/* Generate first half of the widened result: */
|
|
new_stmt
|
|
= vect_gen_widened_results_half (code1, decl1,
|
|
vec_oprnd0, vec_oprnd1,
|
|
unary_op, vec_dest, gsi, stmt);
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
|
|
/* Generate second half of the widened result: */
|
|
new_stmt
|
|
= vect_gen_widened_results_half (code2, decl2,
|
|
vec_oprnd0, vec_oprnd1,
|
|
unary_op, vec_dest, gsi, stmt);
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
break;
|
|
|
|
case NARROW:
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to
|
|
generate more than one vector stmt - i.e - we need to "unroll"
|
|
the vector stmt by a factor VF/nunits. */
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
/* Handle uses. */
|
|
if (j == 0)
|
|
{
|
|
vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
|
|
vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
|
|
}
|
|
else
|
|
{
|
|
vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd1);
|
|
vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
|
|
}
|
|
|
|
/* Arguments are ready. Create the new vector stmt. */
|
|
new_stmt = gimple_build_assign_with_ops (code1, vec_dest, vec_oprnd0,
|
|
vec_oprnd1);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
|
}
|
|
|
|
if (vec_oprnds0)
|
|
VEC_free (tree, heap, vec_oprnds0);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vectorizable_assignment.
|
|
|
|
Check if STMT performs an assignment (copy) that can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
|
|
|
static bool
|
|
vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi,
|
|
gimple *vec_stmt, slp_tree slp_node)
|
|
{
|
|
tree vec_dest;
|
|
tree scalar_dest;
|
|
tree op;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
tree new_temp;
|
|
tree def;
|
|
gimple def_stmt;
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
|
unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
int ncopies;
|
|
int i, j;
|
|
VEC(tree,heap) *vec_oprnds = NULL;
|
|
tree vop;
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
|
gimple new_stmt = NULL;
|
|
stmt_vec_info prev_stmt_info = NULL;
|
|
enum tree_code code;
|
|
tree vectype_in;
|
|
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
|
case of SLP. */
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
|
ncopies = 1;
|
|
else
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
|
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
|
return false;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
|
return false;
|
|
|
|
/* Is vectorizable assignment? */
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
if (TREE_CODE (scalar_dest) != SSA_NAME)
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (gimple_assign_single_p (stmt)
|
|
|| code == PAREN_EXPR
|
|
|| CONVERT_EXPR_CODE_P (code))
|
|
op = gimple_assign_rhs1 (stmt);
|
|
else
|
|
return false;
|
|
|
|
if (code == VIEW_CONVERT_EXPR)
|
|
op = TREE_OPERAND (op, 0);
|
|
|
|
if (!vect_is_simple_use_1 (op, loop_vinfo, bb_vinfo,
|
|
&def_stmt, &def, &dt[0], &vectype_in))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
|
|
/* We can handle NOP_EXPR conversions that do not change the number
|
|
of elements or the vector size. */
|
|
if ((CONVERT_EXPR_CODE_P (code)
|
|
|| code == VIEW_CONVERT_EXPR)
|
|
&& (!vectype_in
|
|
|| TYPE_VECTOR_SUBPARTS (vectype_in) != nunits
|
|
|| (GET_MODE_SIZE (TYPE_MODE (vectype))
|
|
!= GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
|
|
return false;
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "=== vectorizable_assignment ===");
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
|
return true;
|
|
}
|
|
|
|
/** Transform. **/
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "transform assignment.");
|
|
|
|
/* Handle def. */
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
|
|
/* Handle use. */
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
/* Handle uses. */
|
|
if (j == 0)
|
|
vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node);
|
|
else
|
|
vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
|
|
|
|
/* Arguments are ready. create the new vector stmt. */
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds, i, vop)
|
|
{
|
|
if (CONVERT_EXPR_CODE_P (code)
|
|
|| code == VIEW_CONVERT_EXPR)
|
|
vop = build1 (VIEW_CONVERT_EXPR, vectype, vop);
|
|
new_stmt = gimple_build_assign (vec_dest, vop);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
if (slp_node)
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
|
}
|
|
|
|
if (slp_node)
|
|
continue;
|
|
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
|
|
VEC_free (tree, heap, vec_oprnds);
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Return TRUE if CODE (a shift operation) is supported for SCALAR_TYPE
|
|
either as shift by a scalar or by a vector. */
|
|
|
|
bool
|
|
vect_supportable_shift (enum tree_code code, tree scalar_type)
|
|
{
|
|
|
|
enum machine_mode vec_mode;
|
|
optab optab;
|
|
int icode;
|
|
tree vectype;
|
|
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
|
if (!vectype)
|
|
return false;
|
|
|
|
optab = optab_for_tree_code (code, vectype, optab_scalar);
|
|
if (!optab
|
|
|| optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
|
|
{
|
|
optab = optab_for_tree_code (code, vectype, optab_vector);
|
|
if (!optab
|
|
|| (optab_handler (optab, TYPE_MODE (vectype))
|
|
== CODE_FOR_nothing))
|
|
return false;
|
|
}
|
|
|
|
vec_mode = TYPE_MODE (vectype);
|
|
icode = (int) optab_handler (optab, vec_mode);
|
|
if (icode == CODE_FOR_nothing)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vectorizable_shift.
|
|
|
|
Check if STMT performs a shift operation that can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
|
|
|
static bool
|
|
vectorizable_shift (gimple stmt, gimple_stmt_iterator *gsi,
|
|
gimple *vec_stmt, slp_tree slp_node)
|
|
{
|
|
tree vec_dest;
|
|
tree scalar_dest;
|
|
tree op0, op1 = NULL;
|
|
tree vec_oprnd1 = NULL_TREE;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
tree vectype;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
enum tree_code code;
|
|
enum machine_mode vec_mode;
|
|
tree new_temp;
|
|
optab optab;
|
|
int icode;
|
|
enum machine_mode optab_op2_mode;
|
|
tree def;
|
|
gimple def_stmt;
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
|
gimple new_stmt = NULL;
|
|
stmt_vec_info prev_stmt_info;
|
|
int nunits_in;
|
|
int nunits_out;
|
|
tree vectype_out;
|
|
int ncopies;
|
|
int j, i;
|
|
VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
|
|
tree vop0, vop1;
|
|
unsigned int k;
|
|
bool scalar_shift_arg = true;
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
|
int vf;
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
|
return false;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
|
return false;
|
|
|
|
/* Is STMT a vectorizable binary/unary operation? */
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
|
|
if (!(code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
|
|
|| code == RROTATE_EXPR))
|
|
return false;
|
|
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
|
|
op0 = gimple_assign_rhs1 (stmt);
|
|
if (!vect_is_simple_use_1 (op0, loop_vinfo, bb_vinfo,
|
|
&def_stmt, &def, &dt[0], &vectype))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
/* If op0 is an external or constant def use a vector type with
|
|
the same size as the output vector type. */
|
|
if (!vectype)
|
|
vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
|
|
if (vec_stmt)
|
|
gcc_assert (vectype);
|
|
if (!vectype)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "no vectype for scalar type ");
|
|
print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
|
|
if (nunits_out != nunits_in)
|
|
return false;
|
|
|
|
op1 = gimple_assign_rhs2 (stmt);
|
|
if (!vect_is_simple_use (op1, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt[1]))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
|
|
if (loop_vinfo)
|
|
vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
else
|
|
vf = 1;
|
|
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
|
case of SLP. */
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
|
ncopies = 1;
|
|
else
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
|
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
/* Determine whether the shift amount is a vector, or scalar. If the
|
|
shift/rotate amount is a vector, use the vector/vector shift optabs. */
|
|
|
|
if (dt[1] == vect_internal_def && !slp_node)
|
|
scalar_shift_arg = false;
|
|
else if (dt[1] == vect_constant_def
|
|
|| dt[1] == vect_external_def
|
|
|| dt[1] == vect_internal_def)
|
|
{
|
|
/* In SLP, need to check whether the shift count is the same,
|
|
in loops if it is a constant or invariant, it is always
|
|
a scalar shift. */
|
|
if (slp_node)
|
|
{
|
|
VEC (gimple, heap) *stmts = SLP_TREE_SCALAR_STMTS (slp_node);
|
|
gimple slpstmt;
|
|
|
|
FOR_EACH_VEC_ELT (gimple, stmts, k, slpstmt)
|
|
if (!operand_equal_p (gimple_assign_rhs2 (slpstmt), op1, 0))
|
|
scalar_shift_arg = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "operand mode requires invariant argument.");
|
|
return false;
|
|
}
|
|
|
|
/* Vector shifted by vector. */
|
|
if (!scalar_shift_arg)
|
|
{
|
|
optab = optab_for_tree_code (code, vectype, optab_vector);
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "vector/vector shift/rotate found.");
|
|
}
|
|
/* See if the machine has a vector shifted by scalar insn and if not
|
|
then see if it has a vector shifted by vector insn. */
|
|
else
|
|
{
|
|
optab = optab_for_tree_code (code, vectype, optab_scalar);
|
|
if (optab
|
|
&& optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "vector/scalar shift/rotate found.");
|
|
}
|
|
else
|
|
{
|
|
optab = optab_for_tree_code (code, vectype, optab_vector);
|
|
if (optab
|
|
&& (optab_handler (optab, TYPE_MODE (vectype))
|
|
!= CODE_FOR_nothing))
|
|
{
|
|
scalar_shift_arg = false;
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "vector/vector shift/rotate found.");
|
|
|
|
/* Unlike the other binary operators, shifts/rotates have
|
|
the rhs being int, instead of the same type as the lhs,
|
|
so make sure the scalar is the right type if we are
|
|
dealing with vectors of short/char. */
|
|
if (dt[1] == vect_constant_def)
|
|
op1 = fold_convert (TREE_TYPE (vectype), op1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Supportable by target? */
|
|
if (!optab)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "no optab.");
|
|
return false;
|
|
}
|
|
vec_mode = TYPE_MODE (vectype);
|
|
icode = (int) optab_handler (optab, vec_mode);
|
|
if (icode == CODE_FOR_nothing)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "op not supported by target.");
|
|
/* Check only during analysis. */
|
|
if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
|
|
|| (vf < vect_min_worthwhile_factor (code)
|
|
&& !vec_stmt))
|
|
return false;
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "proceeding using word mode.");
|
|
}
|
|
|
|
/* Worthwhile without SIMD support? Check only during analysis. */
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype))
|
|
&& vf < vect_min_worthwhile_factor (code)
|
|
&& !vec_stmt)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "not worthwhile without SIMD support.");
|
|
return false;
|
|
}
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = shift_vec_info_type;
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "=== vectorizable_shift ===");
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
|
return true;
|
|
}
|
|
|
|
/** Transform. **/
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "transform binary/unary operation.");
|
|
|
|
/* Handle def. */
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
|
|
/* Allocate VECs for vector operands. In case of SLP, vector operands are
|
|
created in the previous stages of the recursion, so no allocation is
|
|
needed, except for the case of shift with scalar shift argument. In that
|
|
case we store the scalar operand in VEC_OPRNDS1 for every vector stmt to
|
|
be created to vectorize the SLP group, i.e., SLP_NODE->VEC_STMTS_SIZE.
|
|
In case of loop-based vectorization we allocate VECs of size 1. We
|
|
allocate VEC_OPRNDS1 only in case of binary operation. */
|
|
if (!slp_node)
|
|
{
|
|
vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
|
vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
|
}
|
|
else if (scalar_shift_arg)
|
|
vec_oprnds1 = VEC_alloc (tree, heap, slp_node->vec_stmts_size);
|
|
|
|
prev_stmt_info = NULL;
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
/* Handle uses. */
|
|
if (j == 0)
|
|
{
|
|
if (scalar_shift_arg)
|
|
{
|
|
/* Vector shl and shr insn patterns can be defined with scalar
|
|
operand 2 (shift operand). In this case, use constant or loop
|
|
invariant op1 directly, without extending it to vector mode
|
|
first. */
|
|
optab_op2_mode = insn_data[icode].operand[2].mode;
|
|
if (!VECTOR_MODE_P (optab_op2_mode))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "operand 1 using scalar mode.");
|
|
vec_oprnd1 = op1;
|
|
VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
|
|
if (slp_node)
|
|
{
|
|
/* Store vec_oprnd1 for every vector stmt to be created
|
|
for SLP_NODE. We check during the analysis that all
|
|
the shift arguments are the same.
|
|
TODO: Allow different constants for different vector
|
|
stmts generated for an SLP instance. */
|
|
for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
|
|
VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* vec_oprnd1 is available if operand 1 should be of a scalar-type
|
|
(a special case for certain kind of vector shifts); otherwise,
|
|
operand 1 should be of a vector type (the usual case). */
|
|
if (vec_oprnd1)
|
|
vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
|
|
slp_node);
|
|
else
|
|
vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
|
|
slp_node);
|
|
}
|
|
else
|
|
vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
|
|
|
|
/* Arguments are ready. Create the new vector stmt. */
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0)
|
|
{
|
|
vop1 = VEC_index (tree, vec_oprnds1, i);
|
|
new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
if (slp_node)
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
|
}
|
|
|
|
if (slp_node)
|
|
continue;
|
|
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
|
|
VEC_free (tree, heap, vec_oprnds0);
|
|
VEC_free (tree, heap, vec_oprnds1);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vectorizable_operation.
|
|
|
|
Check if STMT performs a binary, unary or ternary operation that can
|
|
be vectorized.
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
|
|
|
static bool
|
|
vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi,
|
|
gimple *vec_stmt, slp_tree slp_node)
|
|
{
|
|
tree vec_dest;
|
|
tree scalar_dest;
|
|
tree op0, op1 = NULL_TREE, op2 = NULL_TREE;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
tree vectype;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
enum tree_code code;
|
|
enum machine_mode vec_mode;
|
|
tree new_temp;
|
|
int op_type;
|
|
optab optab;
|
|
int icode;
|
|
tree def;
|
|
gimple def_stmt;
|
|
enum vect_def_type dt[3]
|
|
= {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
|
|
gimple new_stmt = NULL;
|
|
stmt_vec_info prev_stmt_info;
|
|
int nunits_in;
|
|
int nunits_out;
|
|
tree vectype_out;
|
|
int ncopies;
|
|
int j, i;
|
|
VEC(tree,heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL, *vec_oprnds2 = NULL;
|
|
tree vop0, vop1, vop2;
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
|
int vf;
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
|
return false;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
|
return false;
|
|
|
|
/* Is STMT a vectorizable binary/unary operation? */
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
|
|
/* For pointer addition, we should use the normal plus for
|
|
the vector addition. */
|
|
if (code == POINTER_PLUS_EXPR)
|
|
code = PLUS_EXPR;
|
|
|
|
/* Support only unary or binary operations. */
|
|
op_type = TREE_CODE_LENGTH (code);
|
|
if (op_type != unary_op && op_type != binary_op && op_type != ternary_op)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "num. args = %d (not unary/binary/ternary op).",
|
|
op_type);
|
|
return false;
|
|
}
|
|
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
|
|
op0 = gimple_assign_rhs1 (stmt);
|
|
if (!vect_is_simple_use_1 (op0, loop_vinfo, bb_vinfo,
|
|
&def_stmt, &def, &dt[0], &vectype))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
/* If op0 is an external or constant def use a vector type with
|
|
the same size as the output vector type. */
|
|
if (!vectype)
|
|
vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
|
|
if (vec_stmt)
|
|
gcc_assert (vectype);
|
|
if (!vectype)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "no vectype for scalar type ");
|
|
print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
|
|
if (nunits_out != nunits_in)
|
|
return false;
|
|
|
|
if (op_type == binary_op || op_type == ternary_op)
|
|
{
|
|
op1 = gimple_assign_rhs2 (stmt);
|
|
if (!vect_is_simple_use (op1, loop_vinfo, bb_vinfo, &def_stmt, &def,
|
|
&dt[1]))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
}
|
|
if (op_type == ternary_op)
|
|
{
|
|
op2 = gimple_assign_rhs3 (stmt);
|
|
if (!vect_is_simple_use (op2, loop_vinfo, bb_vinfo, &def_stmt, &def,
|
|
&dt[2]))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (loop_vinfo)
|
|
vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
else
|
|
vf = 1;
|
|
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
|
case of SLP. */
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
|
ncopies = 1;
|
|
else
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
|
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
/* Shifts are handled in vectorizable_shift (). */
|
|
if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
|
|
|| code == RROTATE_EXPR)
|
|
return false;
|
|
|
|
optab = optab_for_tree_code (code, vectype, optab_default);
|
|
|
|
/* Supportable by target? */
|
|
if (!optab)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "no optab.");
|
|
return false;
|
|
}
|
|
vec_mode = TYPE_MODE (vectype);
|
|
icode = (int) optab_handler (optab, vec_mode);
|
|
if (icode == CODE_FOR_nothing)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "op not supported by target.");
|
|
/* Check only during analysis. */
|
|
if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
|
|
|| (vf < vect_min_worthwhile_factor (code)
|
|
&& !vec_stmt))
|
|
return false;
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "proceeding using word mode.");
|
|
}
|
|
|
|
/* Worthwhile without SIMD support? Check only during analysis. */
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype))
|
|
&& vf < vect_min_worthwhile_factor (code)
|
|
&& !vec_stmt)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "not worthwhile without SIMD support.");
|
|
return false;
|
|
}
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "=== vectorizable_operation ===");
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
|
return true;
|
|
}
|
|
|
|
/** Transform. **/
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "transform binary/unary operation.");
|
|
|
|
/* Handle def. */
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
|
|
/* Allocate VECs for vector operands. In case of SLP, vector operands are
|
|
created in the previous stages of the recursion, so no allocation is
|
|
needed, except for the case of shift with scalar shift argument. In that
|
|
case we store the scalar operand in VEC_OPRNDS1 for every vector stmt to
|
|
be created to vectorize the SLP group, i.e., SLP_NODE->VEC_STMTS_SIZE.
|
|
In case of loop-based vectorization we allocate VECs of size 1. We
|
|
allocate VEC_OPRNDS1 only in case of binary operation. */
|
|
if (!slp_node)
|
|
{
|
|
vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
|
if (op_type == binary_op || op_type == ternary_op)
|
|
vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
|
if (op_type == ternary_op)
|
|
vec_oprnds2 = VEC_alloc (tree, heap, 1);
|
|
}
|
|
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
|
vector stmt by a factor VF/nunits. In doing so, we record a pointer
|
|
from one copy of the vector stmt to the next, in the field
|
|
STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
|
|
stages to find the correct vector defs to be used when vectorizing
|
|
stmts that use the defs of the current stmt. The example below
|
|
illustrates the vectorization process when VF=16 and nunits=4 (i.e.,
|
|
we need to create 4 vectorized stmts):
|
|
|
|
before vectorization:
|
|
RELATED_STMT VEC_STMT
|
|
S1: x = memref - -
|
|
S2: z = x + 1 - -
|
|
|
|
step 1: vectorize stmt S1 (done in vectorizable_load. See more details
|
|
there):
|
|
RELATED_STMT VEC_STMT
|
|
VS1_0: vx0 = memref0 VS1_1 -
|
|
VS1_1: vx1 = memref1 VS1_2 -
|
|
VS1_2: vx2 = memref2 VS1_3 -
|
|
VS1_3: vx3 = memref3 - -
|
|
S1: x = load - VS1_0
|
|
S2: z = x + 1 - -
|
|
|
|
step2: vectorize stmt S2 (done here):
|
|
To vectorize stmt S2 we first need to find the relevant vector
|
|
def for the first operand 'x'. This is, as usual, obtained from
|
|
the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
|
|
that defines 'x' (S1). This way we find the stmt VS1_0, and the
|
|
relevant vector def 'vx0'. Having found 'vx0' we can generate
|
|
the vector stmt VS2_0, and as usual, record it in the
|
|
STMT_VINFO_VEC_STMT of stmt S2.
|
|
When creating the second copy (VS2_1), we obtain the relevant vector
|
|
def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
|
|
stmt VS1_0. This way we find the stmt VS1_1 and the relevant
|
|
vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
|
|
pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
|
|
Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
|
|
chain of stmts and pointers:
|
|
RELATED_STMT VEC_STMT
|
|
VS1_0: vx0 = memref0 VS1_1 -
|
|
VS1_1: vx1 = memref1 VS1_2 -
|
|
VS1_2: vx2 = memref2 VS1_3 -
|
|
VS1_3: vx3 = memref3 - -
|
|
S1: x = load - VS1_0
|
|
VS2_0: vz0 = vx0 + v1 VS2_1 -
|
|
VS2_1: vz1 = vx1 + v1 VS2_2 -
|
|
VS2_2: vz2 = vx2 + v1 VS2_3 -
|
|
VS2_3: vz3 = vx3 + v1 - -
|
|
S2: z = x + 1 - VS2_0 */
|
|
|
|
prev_stmt_info = NULL;
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
/* Handle uses. */
|
|
if (j == 0)
|
|
{
|
|
if (op_type == binary_op || op_type == ternary_op)
|
|
vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
|
|
slp_node);
|
|
else
|
|
vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
|
|
slp_node);
|
|
if (op_type == ternary_op)
|
|
{
|
|
vec_oprnds2 = VEC_alloc (tree, heap, 1);
|
|
VEC_quick_push (tree, vec_oprnds2,
|
|
vect_get_vec_def_for_operand (op2, stmt, NULL));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
|
|
if (op_type == ternary_op)
|
|
{
|
|
tree vec_oprnd = VEC_pop (tree, vec_oprnds2);
|
|
VEC_quick_push (tree, vec_oprnds2,
|
|
vect_get_vec_def_for_stmt_copy (dt[2],
|
|
vec_oprnd));
|
|
}
|
|
}
|
|
|
|
/* Arguments are ready. Create the new vector stmt. */
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0)
|
|
{
|
|
vop1 = ((op_type == binary_op || op_type == ternary_op)
|
|
? VEC_index (tree, vec_oprnds1, i) : NULL_TREE);
|
|
vop2 = ((op_type == ternary_op)
|
|
? VEC_index (tree, vec_oprnds2, i) : NULL_TREE);
|
|
new_stmt = gimple_build_assign_with_ops3 (code, vec_dest,
|
|
vop0, vop1, vop2);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
if (slp_node)
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
|
}
|
|
|
|
if (slp_node)
|
|
continue;
|
|
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
|
|
VEC_free (tree, heap, vec_oprnds0);
|
|
if (vec_oprnds1)
|
|
VEC_free (tree, heap, vec_oprnds1);
|
|
if (vec_oprnds2)
|
|
VEC_free (tree, heap, vec_oprnds2);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Get vectorized definitions for loop-based vectorization. For the first
|
|
operand we call vect_get_vec_def_for_operand() (with OPRND containing
|
|
scalar operand), and for the rest we get a copy with
|
|
vect_get_vec_def_for_stmt_copy() using the previous vector definition
|
|
(stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
|
|
The vectors are collected into VEC_OPRNDS. */
|
|
|
|
static void
|
|
vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt,
|
|
VEC (tree, heap) **vec_oprnds, int multi_step_cvt)
|
|
{
|
|
tree vec_oprnd;
|
|
|
|
/* Get first vector operand. */
|
|
/* All the vector operands except the very first one (that is scalar oprnd)
|
|
are stmt copies. */
|
|
if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
|
|
vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL);
|
|
else
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
|
|
|
|
VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
|
|
|
|
/* Get second vector operand. */
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
|
|
VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
|
|
|
|
*oprnd = vec_oprnd;
|
|
|
|
/* For conversion in multiple steps, continue to get operands
|
|
recursively. */
|
|
if (multi_step_cvt)
|
|
vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
|
|
}
|
|
|
|
|
|
/* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
|
|
For multi-step conversions store the resulting vectors and call the function
|
|
recursively. */
|
|
|
|
static void
|
|
vect_create_vectorized_demotion_stmts (VEC (tree, heap) **vec_oprnds,
|
|
int multi_step_cvt, gimple stmt,
|
|
VEC (tree, heap) *vec_dsts,
|
|
gimple_stmt_iterator *gsi,
|
|
slp_tree slp_node, enum tree_code code,
|
|
stmt_vec_info *prev_stmt_info)
|
|
{
|
|
unsigned int i;
|
|
tree vop0, vop1, new_tmp, vec_dest;
|
|
gimple new_stmt;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
vec_dest = VEC_pop (tree, vec_dsts);
|
|
|
|
for (i = 0; i < VEC_length (tree, *vec_oprnds); i += 2)
|
|
{
|
|
/* Create demotion operation. */
|
|
vop0 = VEC_index (tree, *vec_oprnds, i);
|
|
vop1 = VEC_index (tree, *vec_oprnds, i + 1);
|
|
new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
|
|
new_tmp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_tmp);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
|
|
if (multi_step_cvt)
|
|
/* Store the resulting vector for next recursive call. */
|
|
VEC_replace (tree, *vec_oprnds, i/2, new_tmp);
|
|
else
|
|
{
|
|
/* This is the last step of the conversion sequence. Store the
|
|
vectors in SLP_NODE or in vector info of the scalar statement
|
|
(or in STMT_VINFO_RELATED_STMT chain). */
|
|
if (slp_node)
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
|
else
|
|
{
|
|
if (!*prev_stmt_info)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
|
|
|
|
*prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* For multi-step demotion operations we first generate demotion operations
|
|
from the source type to the intermediate types, and then combine the
|
|
results (stored in VEC_OPRNDS) in demotion operation to the destination
|
|
type. */
|
|
if (multi_step_cvt)
|
|
{
|
|
/* At each level of recursion we have have of the operands we had at the
|
|
previous level. */
|
|
VEC_truncate (tree, *vec_oprnds, (i+1)/2);
|
|
vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
|
|
stmt, vec_dsts, gsi, slp_node,
|
|
code, prev_stmt_info);
|
|
}
|
|
}
|
|
|
|
|
|
/* Function vectorizable_type_demotion
|
|
|
|
Check if STMT performs a binary or unary operation that involves
|
|
type demotion, and if it can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
|
|
|
static bool
|
|
vectorizable_type_demotion (gimple stmt, gimple_stmt_iterator *gsi,
|
|
gimple *vec_stmt, slp_tree slp_node)
|
|
{
|
|
tree vec_dest;
|
|
tree scalar_dest;
|
|
tree op0;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
enum tree_code code, code1 = ERROR_MARK;
|
|
tree def;
|
|
gimple def_stmt;
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
|
stmt_vec_info prev_stmt_info;
|
|
int nunits_in;
|
|
int nunits_out;
|
|
tree vectype_out;
|
|
int ncopies;
|
|
int j, i;
|
|
tree vectype_in;
|
|
int multi_step_cvt = 0;
|
|
VEC (tree, heap) *vec_oprnds0 = NULL;
|
|
VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL;
|
|
tree last_oprnd, intermediate_type;
|
|
|
|
/* FORNOW: not supported by basic block SLP vectorization. */
|
|
gcc_assert (loop_vinfo);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
|
return false;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
|
return false;
|
|
|
|
/* Is STMT a vectorizable type-demotion operation? */
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (!CONVERT_EXPR_CODE_P (code))
|
|
return false;
|
|
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
|
|
/* Check the operands of the operation. */
|
|
op0 = gimple_assign_rhs1 (stmt);
|
|
if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (op0)))
|
|
|| (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
|
|
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
|
|
&& CONVERT_EXPR_CODE_P (code))))
|
|
return false;
|
|
if (!vect_is_simple_use_1 (op0, loop_vinfo, NULL,
|
|
&def_stmt, &def, &dt[0], &vectype_in))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
/* If op0 is an external def use a vector type with the
|
|
same size as the output vector type if possible. */
|
|
if (!vectype_in)
|
|
vectype_in = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
|
|
if (vec_stmt)
|
|
gcc_assert (vectype_in);
|
|
if (!vectype_in)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "no vectype for scalar type ");
|
|
print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
|
if (nunits_in >= nunits_out)
|
|
return false;
|
|
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
|
case of SLP. */
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
|
ncopies = 1;
|
|
else
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
/* Supportable by target? */
|
|
if (!supportable_narrowing_operation (code, vectype_out, vectype_in,
|
|
&code1, &multi_step_cvt, &interm_types))
|
|
return false;
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "=== vectorizable_demotion ===");
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
|
return true;
|
|
}
|
|
|
|
/** Transform. **/
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "transform type demotion operation. ncopies = %d.",
|
|
ncopies);
|
|
|
|
/* In case of multi-step demotion, we first generate demotion operations to
|
|
the intermediate types, and then from that types to the final one.
|
|
We create vector destinations for the intermediate type (TYPES) received
|
|
from supportable_narrowing_operation, and store them in the correct order
|
|
for future use in vect_create_vectorized_demotion_stmts(). */
|
|
if (multi_step_cvt)
|
|
vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
|
|
else
|
|
vec_dsts = VEC_alloc (tree, heap, 1);
|
|
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
|
VEC_quick_push (tree, vec_dsts, vec_dest);
|
|
|
|
if (multi_step_cvt)
|
|
{
|
|
for (i = VEC_length (tree, interm_types) - 1;
|
|
VEC_iterate (tree, interm_types, i, intermediate_type); i--)
|
|
{
|
|
vec_dest = vect_create_destination_var (scalar_dest,
|
|
intermediate_type);
|
|
VEC_quick_push (tree, vec_dsts, vec_dest);
|
|
}
|
|
}
|
|
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
|
vector stmt by a factor VF/nunits. */
|
|
last_oprnd = op0;
|
|
prev_stmt_info = NULL;
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
/* Handle uses. */
|
|
if (slp_node)
|
|
vect_get_slp_defs (op0, NULL_TREE, slp_node, &vec_oprnds0, NULL, -1);
|
|
else
|
|
{
|
|
VEC_free (tree, heap, vec_oprnds0);
|
|
vec_oprnds0 = VEC_alloc (tree, heap,
|
|
(multi_step_cvt ? vect_pow2 (multi_step_cvt) * 2 : 2));
|
|
vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
|
|
vect_pow2 (multi_step_cvt) - 1);
|
|
}
|
|
|
|
/* Arguments are ready. Create the new vector stmts. */
|
|
tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts);
|
|
vect_create_vectorized_demotion_stmts (&vec_oprnds0,
|
|
multi_step_cvt, stmt, tmp_vec_dsts,
|
|
gsi, slp_node, code1,
|
|
&prev_stmt_info);
|
|
}
|
|
|
|
VEC_free (tree, heap, vec_oprnds0);
|
|
VEC_free (tree, heap, vec_dsts);
|
|
VEC_free (tree, heap, tmp_vec_dsts);
|
|
VEC_free (tree, heap, interm_types);
|
|
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
|
|
and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
|
|
the resulting vectors and call the function recursively. */
|
|
|
|
static void
|
|
vect_create_vectorized_promotion_stmts (VEC (tree, heap) **vec_oprnds0,
|
|
VEC (tree, heap) **vec_oprnds1,
|
|
int multi_step_cvt, gimple stmt,
|
|
VEC (tree, heap) *vec_dsts,
|
|
gimple_stmt_iterator *gsi,
|
|
slp_tree slp_node, enum tree_code code1,
|
|
enum tree_code code2, tree decl1,
|
|
tree decl2, int op_type,
|
|
stmt_vec_info *prev_stmt_info)
|
|
{
|
|
int i;
|
|
tree vop0, vop1, new_tmp1, new_tmp2, vec_dest;
|
|
gimple new_stmt1, new_stmt2;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
VEC (tree, heap) *vec_tmp;
|
|
|
|
vec_dest = VEC_pop (tree, vec_dsts);
|
|
vec_tmp = VEC_alloc (tree, heap, VEC_length (tree, *vec_oprnds0) * 2);
|
|
|
|
FOR_EACH_VEC_ELT (tree, *vec_oprnds0, i, vop0)
|
|
{
|
|
if (op_type == binary_op)
|
|
vop1 = VEC_index (tree, *vec_oprnds1, i);
|
|
else
|
|
vop1 = NULL_TREE;
|
|
|
|
/* Generate the two halves of promotion operation. */
|
|
new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
|
|
op_type, vec_dest, gsi, stmt);
|
|
new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
|
|
op_type, vec_dest, gsi, stmt);
|
|
if (is_gimple_call (new_stmt1))
|
|
{
|
|
new_tmp1 = gimple_call_lhs (new_stmt1);
|
|
new_tmp2 = gimple_call_lhs (new_stmt2);
|
|
}
|
|
else
|
|
{
|
|
new_tmp1 = gimple_assign_lhs (new_stmt1);
|
|
new_tmp2 = gimple_assign_lhs (new_stmt2);
|
|
}
|
|
|
|
if (multi_step_cvt)
|
|
{
|
|
/* Store the results for the recursive call. */
|
|
VEC_quick_push (tree, vec_tmp, new_tmp1);
|
|
VEC_quick_push (tree, vec_tmp, new_tmp2);
|
|
}
|
|
else
|
|
{
|
|
/* Last step of promotion sequience - store the results. */
|
|
if (slp_node)
|
|
{
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt1);
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt2);
|
|
}
|
|
else
|
|
{
|
|
if (!*prev_stmt_info)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt1;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt1;
|
|
|
|
*prev_stmt_info = vinfo_for_stmt (new_stmt1);
|
|
STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt2;
|
|
*prev_stmt_info = vinfo_for_stmt (new_stmt2);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (multi_step_cvt)
|
|
{
|
|
/* For multi-step promotion operation we first generate we call the
|
|
function recurcively for every stage. We start from the input type,
|
|
create promotion operations to the intermediate types, and then
|
|
create promotions to the output type. */
|
|
*vec_oprnds0 = VEC_copy (tree, heap, vec_tmp);
|
|
vect_create_vectorized_promotion_stmts (vec_oprnds0, vec_oprnds1,
|
|
multi_step_cvt - 1, stmt,
|
|
vec_dsts, gsi, slp_node, code1,
|
|
code2, decl2, decl2, op_type,
|
|
prev_stmt_info);
|
|
}
|
|
|
|
VEC_free (tree, heap, vec_tmp);
|
|
}
|
|
|
|
|
|
/* Function vectorizable_type_promotion
|
|
|
|
Check if STMT performs a binary or unary operation that involves
|
|
type promotion, and if it can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
|
|
|
static bool
|
|
vectorizable_type_promotion (gimple stmt, gimple_stmt_iterator *gsi,
|
|
gimple *vec_stmt, slp_tree slp_node)
|
|
{
|
|
tree vec_dest;
|
|
tree scalar_dest;
|
|
tree op0, op1 = NULL;
|
|
tree vec_oprnd0=NULL, vec_oprnd1=NULL;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
|
|
tree decl1 = NULL_TREE, decl2 = NULL_TREE;
|
|
int op_type;
|
|
tree def;
|
|
gimple def_stmt;
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
|
stmt_vec_info prev_stmt_info;
|
|
int nunits_in;
|
|
int nunits_out;
|
|
tree vectype_out;
|
|
int ncopies;
|
|
int j, i;
|
|
tree vectype_in;
|
|
tree intermediate_type = NULL_TREE;
|
|
int multi_step_cvt = 0;
|
|
VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
|
|
VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL;
|
|
|
|
/* FORNOW: not supported by basic block SLP vectorization. */
|
|
gcc_assert (loop_vinfo);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
|
return false;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
|
return false;
|
|
|
|
/* Is STMT a vectorizable type-promotion operation? */
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (!CONVERT_EXPR_CODE_P (code)
|
|
&& code != WIDEN_MULT_EXPR)
|
|
return false;
|
|
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
|
|
/* Check the operands of the operation. */
|
|
op0 = gimple_assign_rhs1 (stmt);
|
|
if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (op0)))
|
|
|| (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
|
|
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
|
|
&& CONVERT_EXPR_CODE_P (code))))
|
|
return false;
|
|
if (!vect_is_simple_use_1 (op0, loop_vinfo, NULL,
|
|
&def_stmt, &def, &dt[0], &vectype_in))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
|
|
op_type = TREE_CODE_LENGTH (code);
|
|
if (op_type == binary_op)
|
|
{
|
|
bool ok;
|
|
|
|
op1 = gimple_assign_rhs2 (stmt);
|
|
if (code == WIDEN_MULT_EXPR)
|
|
{
|
|
/* For WIDEN_MULT_EXPR, if OP0 is a constant, use the type of
|
|
OP1. */
|
|
if (CONSTANT_CLASS_P (op0))
|
|
ok = vect_is_simple_use_1 (op1, loop_vinfo, NULL,
|
|
&def_stmt, &def, &dt[1], &vectype_in);
|
|
else
|
|
ok = vect_is_simple_use (op1, loop_vinfo, NULL, &def_stmt, &def,
|
|
&dt[1]);
|
|
|
|
if (!ok)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If op0 is an external or constant def use a vector type with
|
|
the same size as the output vector type. */
|
|
if (!vectype_in)
|
|
vectype_in = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
|
|
if (vec_stmt)
|
|
gcc_assert (vectype_in);
|
|
if (!vectype_in)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "no vectype for scalar type ");
|
|
print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
|
if (nunits_in <= nunits_out)
|
|
return false;
|
|
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
|
case of SLP. */
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
|
ncopies = 1;
|
|
else
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
|
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
/* Supportable by target? */
|
|
if (!supportable_widening_operation (code, stmt, vectype_out, vectype_in,
|
|
&decl1, &decl2, &code1, &code2,
|
|
&multi_step_cvt, &interm_types))
|
|
return false;
|
|
|
|
/* Binary widening operation can only be supported directly by the
|
|
architecture. */
|
|
gcc_assert (!(multi_step_cvt && op_type == binary_op));
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "=== vectorizable_promotion ===");
|
|
vect_model_simple_cost (stmt_info, 2*ncopies, dt, NULL);
|
|
return true;
|
|
}
|
|
|
|
/** Transform. **/
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "transform type promotion operation. ncopies = %d.",
|
|
ncopies);
|
|
|
|
if (code == WIDEN_MULT_EXPR)
|
|
{
|
|
if (CONSTANT_CLASS_P (op0))
|
|
op0 = fold_convert (TREE_TYPE (op1), op0);
|
|
else if (CONSTANT_CLASS_P (op1))
|
|
op1 = fold_convert (TREE_TYPE (op0), op1);
|
|
}
|
|
|
|
/* Handle def. */
|
|
/* In case of multi-step promotion, we first generate promotion operations
|
|
to the intermediate types, and then from that types to the final one.
|
|
We store vector destination in VEC_DSTS in the correct order for
|
|
recursive creation of promotion operations in
|
|
vect_create_vectorized_promotion_stmts(). Vector destinations are created
|
|
according to TYPES recieved from supportable_widening_operation(). */
|
|
if (multi_step_cvt)
|
|
vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
|
|
else
|
|
vec_dsts = VEC_alloc (tree, heap, 1);
|
|
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
|
VEC_quick_push (tree, vec_dsts, vec_dest);
|
|
|
|
if (multi_step_cvt)
|
|
{
|
|
for (i = VEC_length (tree, interm_types) - 1;
|
|
VEC_iterate (tree, interm_types, i, intermediate_type); i--)
|
|
{
|
|
vec_dest = vect_create_destination_var (scalar_dest,
|
|
intermediate_type);
|
|
VEC_quick_push (tree, vec_dsts, vec_dest);
|
|
}
|
|
}
|
|
|
|
if (!slp_node)
|
|
{
|
|
vec_oprnds0 = VEC_alloc (tree, heap,
|
|
(multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
|
|
if (op_type == binary_op)
|
|
vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
|
}
|
|
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
|
vector stmt by a factor VF/nunits. */
|
|
|
|
prev_stmt_info = NULL;
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
/* Handle uses. */
|
|
if (j == 0)
|
|
{
|
|
if (slp_node)
|
|
vect_get_slp_defs (op0, op1, slp_node, &vec_oprnds0,
|
|
&vec_oprnds1, -1);
|
|
else
|
|
{
|
|
vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
|
|
VEC_quick_push (tree, vec_oprnds0, vec_oprnd0);
|
|
if (op_type == binary_op)
|
|
{
|
|
vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
|
|
VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
|
|
VEC_replace (tree, vec_oprnds0, 0, vec_oprnd0);
|
|
if (op_type == binary_op)
|
|
{
|
|
vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd1);
|
|
VEC_replace (tree, vec_oprnds1, 0, vec_oprnd1);
|
|
}
|
|
}
|
|
|
|
/* Arguments are ready. Create the new vector stmts. */
|
|
tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts);
|
|
vect_create_vectorized_promotion_stmts (&vec_oprnds0, &vec_oprnds1,
|
|
multi_step_cvt, stmt,
|
|
tmp_vec_dsts,
|
|
gsi, slp_node, code1, code2,
|
|
decl1, decl2, op_type,
|
|
&prev_stmt_info);
|
|
}
|
|
|
|
VEC_free (tree, heap, vec_dsts);
|
|
VEC_free (tree, heap, tmp_vec_dsts);
|
|
VEC_free (tree, heap, interm_types);
|
|
VEC_free (tree, heap, vec_oprnds0);
|
|
VEC_free (tree, heap, vec_oprnds1);
|
|
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vectorizable_store.
|
|
|
|
Check if STMT defines a non scalar data-ref (array/pointer/structure) that
|
|
can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
|
|
|
static bool
|
|
vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
|
|
slp_tree slp_node)
|
|
{
|
|
tree scalar_dest;
|
|
tree data_ref;
|
|
tree op;
|
|
tree vec_oprnd = NULL_TREE;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
tree elem_type;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = NULL;
|
|
enum machine_mode vec_mode;
|
|
tree dummy;
|
|
enum dr_alignment_support alignment_support_scheme;
|
|
tree def;
|
|
gimple def_stmt;
|
|
enum vect_def_type dt;
|
|
stmt_vec_info prev_stmt_info = NULL;
|
|
tree dataref_ptr = NULL_TREE;
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
int ncopies;
|
|
int j;
|
|
gimple next_stmt, first_stmt = NULL;
|
|
bool strided_store = false;
|
|
bool store_lanes_p = false;
|
|
unsigned int group_size, i;
|
|
VEC(tree,heap) *dr_chain = NULL, *oprnds = NULL, *result_chain = NULL;
|
|
bool inv_p;
|
|
VEC(tree,heap) *vec_oprnds = NULL;
|
|
bool slp = (slp_node != NULL);
|
|
unsigned int vec_num;
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
|
tree aggr_type;
|
|
|
|
if (loop_vinfo)
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
|
case of SLP. */
|
|
if (slp || PURE_SLP_STMT (stmt_info))
|
|
ncopies = 1;
|
|
else
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
|
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
/* FORNOW. This restriction should be relaxed. */
|
|
if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "multiple types in nested loop.");
|
|
return false;
|
|
}
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
|
return false;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
|
return false;
|
|
|
|
/* Is vectorizable store? */
|
|
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
if (TREE_CODE (scalar_dest) != ARRAY_REF
|
|
&& TREE_CODE (scalar_dest) != INDIRECT_REF
|
|
&& TREE_CODE (scalar_dest) != COMPONENT_REF
|
|
&& TREE_CODE (scalar_dest) != IMAGPART_EXPR
|
|
&& TREE_CODE (scalar_dest) != REALPART_EXPR
|
|
&& TREE_CODE (scalar_dest) != MEM_REF)
|
|
return false;
|
|
|
|
gcc_assert (gimple_assign_single_p (stmt));
|
|
op = gimple_assign_rhs1 (stmt);
|
|
if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
|
|
/* The scalar rhs type needs to be trivially convertible to the vector
|
|
component type. This should always be the case. */
|
|
elem_type = TREE_TYPE (vectype);
|
|
if (!useless_type_conversion_p (elem_type, TREE_TYPE (op)))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "??? operands of different types");
|
|
return false;
|
|
}
|
|
|
|
vec_mode = TYPE_MODE (vectype);
|
|
/* FORNOW. In some cases can vectorize even if data-type not supported
|
|
(e.g. - array initialization with 0). */
|
|
if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing)
|
|
return false;
|
|
|
|
if (!STMT_VINFO_DATA_REF (stmt_info))
|
|
return false;
|
|
|
|
if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "negative step for store.");
|
|
return false;
|
|
}
|
|
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
|
{
|
|
strided_store = true;
|
|
first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
|
if (!slp && !PURE_SLP_STMT (stmt_info))
|
|
{
|
|
group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
|
|
if (vect_store_lanes_supported (vectype, group_size))
|
|
store_lanes_p = true;
|
|
else if (!vect_strided_store_supported (vectype, group_size))
|
|
return false;
|
|
}
|
|
|
|
if (first_stmt == stmt)
|
|
{
|
|
/* STMT is the leader of the group. Check the operands of all the
|
|
stmts of the group. */
|
|
next_stmt = GROUP_NEXT_ELEMENT (stmt_info);
|
|
while (next_stmt)
|
|
{
|
|
gcc_assert (gimple_assign_single_p (next_stmt));
|
|
op = gimple_assign_rhs1 (next_stmt);
|
|
if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt,
|
|
&def, &dt))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "use not simple.");
|
|
return false;
|
|
}
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
|
|
vect_model_store_cost (stmt_info, ncopies, store_lanes_p, dt, NULL);
|
|
return true;
|
|
}
|
|
|
|
/** Transform. **/
|
|
|
|
if (strided_store)
|
|
{
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
|
group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
|
|
|
|
GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
|
|
|
|
/* FORNOW */
|
|
gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));
|
|
|
|
/* We vectorize all the stmts of the interleaving group when we
|
|
reach the last stmt in the group. */
|
|
if (GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
|
|
< GROUP_SIZE (vinfo_for_stmt (first_stmt))
|
|
&& !slp)
|
|
{
|
|
*vec_stmt = NULL;
|
|
return true;
|
|
}
|
|
|
|
if (slp)
|
|
{
|
|
strided_store = false;
|
|
/* VEC_NUM is the number of vect stmts to be created for this
|
|
group. */
|
|
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
|
first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0);
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
|
}
|
|
else
|
|
/* VEC_NUM is the number of vect stmts to be created for this
|
|
group. */
|
|
vec_num = group_size;
|
|
}
|
|
else
|
|
{
|
|
first_stmt = stmt;
|
|
first_dr = dr;
|
|
group_size = vec_num = 1;
|
|
}
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "transform store. ncopies = %d",ncopies);
|
|
|
|
dr_chain = VEC_alloc (tree, heap, group_size);
|
|
oprnds = VEC_alloc (tree, heap, group_size);
|
|
|
|
alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
|
|
gcc_assert (alignment_support_scheme);
|
|
/* Targets with store-lane instructions must not require explicit
|
|
realignment. */
|
|
gcc_assert (!store_lanes_p
|
|
|| alignment_support_scheme == dr_aligned
|
|
|| alignment_support_scheme == dr_unaligned_supported);
|
|
|
|
if (store_lanes_p)
|
|
aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
|
|
else
|
|
aggr_type = vectype;
|
|
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
|
vector stmt by a factor VF/nunits. For more details see documentation in
|
|
vect_get_vec_def_for_copy_stmt. */
|
|
|
|
/* In case of interleaving (non-unit strided access):
|
|
|
|
S1: &base + 2 = x2
|
|
S2: &base = x0
|
|
S3: &base + 1 = x1
|
|
S4: &base + 3 = x3
|
|
|
|
We create vectorized stores starting from base address (the access of the
|
|
first stmt in the chain (S2 in the above example), when the last store stmt
|
|
of the chain (S4) is reached:
|
|
|
|
VS1: &base = vx2
|
|
VS2: &base + vec_size*1 = vx0
|
|
VS3: &base + vec_size*2 = vx1
|
|
VS4: &base + vec_size*3 = vx3
|
|
|
|
Then permutation statements are generated:
|
|
|
|
VS5: vx5 = VEC_INTERLEAVE_HIGH_EXPR < vx0, vx3 >
|
|
VS6: vx6 = VEC_INTERLEAVE_LOW_EXPR < vx0, vx3 >
|
|
...
|
|
|
|
And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
|
|
(the order of the data-refs in the output of vect_permute_store_chain
|
|
corresponds to the order of scalar stmts in the interleaving chain - see
|
|
the documentation of vect_permute_store_chain()).
|
|
|
|
In case of both multiple types and interleaving, above vector stores and
|
|
permutation stmts are created for every copy. The result vector stmts are
|
|
put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
|
|
STMT_VINFO_RELATED_STMT for the next copies.
|
|
*/
|
|
|
|
prev_stmt_info = NULL;
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
gimple new_stmt;
|
|
gimple ptr_incr;
|
|
|
|
if (j == 0)
|
|
{
|
|
if (slp)
|
|
{
|
|
/* Get vectorized arguments for SLP_NODE. */
|
|
vect_get_slp_defs (NULL_TREE, NULL_TREE, slp_node, &vec_oprnds,
|
|
NULL, -1);
|
|
|
|
vec_oprnd = VEC_index (tree, vec_oprnds, 0);
|
|
}
|
|
else
|
|
{
|
|
/* For interleaved stores we collect vectorized defs for all the
|
|
stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
|
|
used as an input to vect_permute_store_chain(), and OPRNDS as
|
|
an input to vect_get_vec_def_for_stmt_copy() for the next copy.
|
|
|
|
If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
|
|
OPRNDS are of size 1. */
|
|
next_stmt = first_stmt;
|
|
for (i = 0; i < group_size; i++)
|
|
{
|
|
/* Since gaps are not supported for interleaved stores,
|
|
GROUP_SIZE is the exact number of stmts in the chain.
|
|
Therefore, NEXT_STMT can't be NULL_TREE. In case that
|
|
there is no interleaving, GROUP_SIZE is 1, and only one
|
|
iteration of the loop will be executed. */
|
|
gcc_assert (next_stmt
|
|
&& gimple_assign_single_p (next_stmt));
|
|
op = gimple_assign_rhs1 (next_stmt);
|
|
|
|
vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt,
|
|
NULL);
|
|
VEC_quick_push(tree, dr_chain, vec_oprnd);
|
|
VEC_quick_push(tree, oprnds, vec_oprnd);
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
|
}
|
|
}
|
|
|
|
/* We should have catched mismatched types earlier. */
|
|
gcc_assert (useless_type_conversion_p (vectype,
|
|
TREE_TYPE (vec_oprnd)));
|
|
dataref_ptr = vect_create_data_ref_ptr (first_stmt, aggr_type, NULL,
|
|
NULL_TREE, &dummy, gsi,
|
|
&ptr_incr, false, &inv_p);
|
|
gcc_assert (bb_vinfo || !inv_p);
|
|
}
|
|
else
|
|
{
|
|
/* For interleaved stores we created vectorized defs for all the
|
|
defs stored in OPRNDS in the previous iteration (previous copy).
|
|
DR_CHAIN is then used as an input to vect_permute_store_chain(),
|
|
and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
|
|
next copy.
|
|
If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
|
|
OPRNDS are of size 1. */
|
|
for (i = 0; i < group_size; i++)
|
|
{
|
|
op = VEC_index (tree, oprnds, i);
|
|
vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def,
|
|
&dt);
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
|
|
VEC_replace(tree, dr_chain, i, vec_oprnd);
|
|
VEC_replace(tree, oprnds, i, vec_oprnd);
|
|
}
|
|
dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
|
|
TYPE_SIZE_UNIT (aggr_type));
|
|
}
|
|
|
|
if (store_lanes_p)
|
|
{
|
|
tree vec_array;
|
|
|
|
/* Combine all the vectors into an array. */
|
|
vec_array = create_vector_array (vectype, vec_num);
|
|
for (i = 0; i < vec_num; i++)
|
|
{
|
|
vec_oprnd = VEC_index (tree, dr_chain, i);
|
|
write_vector_array (stmt, gsi, vec_oprnd, vec_array, i);
|
|
}
|
|
|
|
/* Emit:
|
|
MEM_REF[...all elements...] = STORE_LANES (VEC_ARRAY). */
|
|
data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
|
|
new_stmt = gimple_build_call_internal (IFN_STORE_LANES, 1, vec_array);
|
|
gimple_call_set_lhs (new_stmt, data_ref);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
mark_symbols_for_renaming (new_stmt);
|
|
}
|
|
else
|
|
{
|
|
new_stmt = NULL;
|
|
if (strided_store)
|
|
{
|
|
result_chain = VEC_alloc (tree, heap, group_size);
|
|
/* Permute. */
|
|
vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
|
|
&result_chain);
|
|
}
|
|
|
|
next_stmt = first_stmt;
|
|
for (i = 0; i < vec_num; i++)
|
|
{
|
|
struct ptr_info_def *pi;
|
|
|
|
if (i > 0)
|
|
/* Bump the vector pointer. */
|
|
dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
|
|
stmt, NULL_TREE);
|
|
|
|
if (slp)
|
|
vec_oprnd = VEC_index (tree, vec_oprnds, i);
|
|
else if (strided_store)
|
|
/* For strided stores vectorized defs are interleaved in
|
|
vect_permute_store_chain(). */
|
|
vec_oprnd = VEC_index (tree, result_chain, i);
|
|
|
|
data_ref = build2 (MEM_REF, TREE_TYPE (vec_oprnd), dataref_ptr,
|
|
build_int_cst (reference_alias_ptr_type
|
|
(DR_REF (first_dr)), 0));
|
|
pi = get_ptr_info (dataref_ptr);
|
|
pi->align = TYPE_ALIGN_UNIT (vectype);
|
|
if (aligned_access_p (first_dr))
|
|
pi->misalign = 0;
|
|
else if (DR_MISALIGNMENT (first_dr) == -1)
|
|
{
|
|
TREE_TYPE (data_ref)
|
|
= build_aligned_type (TREE_TYPE (data_ref),
|
|
TYPE_ALIGN (elem_type));
|
|
pi->align = TYPE_ALIGN_UNIT (elem_type);
|
|
pi->misalign = 0;
|
|
}
|
|
else
|
|
{
|
|
TREE_TYPE (data_ref)
|
|
= build_aligned_type (TREE_TYPE (data_ref),
|
|
TYPE_ALIGN (elem_type));
|
|
pi->misalign = DR_MISALIGNMENT (first_dr);
|
|
}
|
|
|
|
/* Arguments are ready. Create the new vector stmt. */
|
|
new_stmt = gimple_build_assign (data_ref, vec_oprnd);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
mark_symbols_for_renaming (new_stmt);
|
|
|
|
if (slp)
|
|
continue;
|
|
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
|
if (!next_stmt)
|
|
break;
|
|
}
|
|
}
|
|
if (!slp)
|
|
{
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
}
|
|
|
|
VEC_free (tree, heap, dr_chain);
|
|
VEC_free (tree, heap, oprnds);
|
|
if (result_chain)
|
|
VEC_free (tree, heap, result_chain);
|
|
if (vec_oprnds)
|
|
VEC_free (tree, heap, vec_oprnds);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Given a vector type VECTYPE returns a builtin DECL to be used
|
|
for vector permutation and stores a mask into *MASK that implements
|
|
reversal of the vector elements. If that is impossible to do
|
|
returns NULL (and *MASK is unchanged). */
|
|
|
|
static tree
|
|
perm_mask_for_reverse (tree vectype, tree *mask)
|
|
{
|
|
tree builtin_decl;
|
|
tree mask_element_type, mask_type;
|
|
tree mask_vec = NULL;
|
|
int i;
|
|
int nunits;
|
|
if (!targetm.vectorize.builtin_vec_perm)
|
|
return NULL;
|
|
|
|
builtin_decl = targetm.vectorize.builtin_vec_perm (vectype,
|
|
&mask_element_type);
|
|
if (!builtin_decl || !mask_element_type)
|
|
return NULL;
|
|
|
|
mask_type = get_vectype_for_scalar_type (mask_element_type);
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
if (!mask_type
|
|
|| TYPE_VECTOR_SUBPARTS (vectype) != TYPE_VECTOR_SUBPARTS (mask_type))
|
|
return NULL;
|
|
|
|
for (i = 0; i < nunits; i++)
|
|
mask_vec = tree_cons (NULL, build_int_cst (mask_element_type, i), mask_vec);
|
|
mask_vec = build_vector (mask_type, mask_vec);
|
|
|
|
if (!targetm.vectorize.builtin_vec_perm_ok (vectype, mask_vec))
|
|
return NULL;
|
|
if (mask)
|
|
*mask = mask_vec;
|
|
return builtin_decl;
|
|
}
|
|
|
|
/* Given a vector variable X, that was generated for the scalar LHS of
|
|
STMT, generate instructions to reverse the vector elements of X,
|
|
insert them a *GSI and return the permuted vector variable. */
|
|
|
|
static tree
|
|
reverse_vec_elements (tree x, gimple stmt, gimple_stmt_iterator *gsi)
|
|
{
|
|
tree vectype = TREE_TYPE (x);
|
|
tree mask_vec, builtin_decl;
|
|
tree perm_dest, data_ref;
|
|
gimple perm_stmt;
|
|
|
|
builtin_decl = perm_mask_for_reverse (vectype, &mask_vec);
|
|
|
|
perm_dest = vect_create_destination_var (gimple_assign_lhs (stmt), vectype);
|
|
|
|
/* Generate the permute statement. */
|
|
perm_stmt = gimple_build_call (builtin_decl, 3, x, x, mask_vec);
|
|
if (!useless_type_conversion_p (vectype,
|
|
TREE_TYPE (TREE_TYPE (builtin_decl))))
|
|
{
|
|
tree tem = create_tmp_reg (TREE_TYPE (TREE_TYPE (builtin_decl)), NULL);
|
|
tem = make_ssa_name (tem, perm_stmt);
|
|
gimple_call_set_lhs (perm_stmt, tem);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
perm_stmt = gimple_build_assign (NULL_TREE,
|
|
build1 (VIEW_CONVERT_EXPR,
|
|
vectype, tem));
|
|
}
|
|
data_ref = make_ssa_name (perm_dest, perm_stmt);
|
|
gimple_set_lhs (perm_stmt, data_ref);
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
|
|
|
return data_ref;
|
|
}
|
|
|
|
/* vectorizable_load.
|
|
|
|
Check if STMT reads a non scalar data-ref (array/pointer/structure) that
|
|
can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
|
|
|
static bool
|
|
vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
|
|
slp_tree slp_node, slp_instance slp_node_instance)
|
|
{
|
|
tree scalar_dest;
|
|
tree vec_dest = NULL;
|
|
tree data_ref = NULL;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
stmt_vec_info prev_stmt_info;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = NULL;
|
|
struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
|
|
bool nested_in_vect_loop = false;
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
tree elem_type;
|
|
tree new_temp;
|
|
enum machine_mode mode;
|
|
gimple new_stmt = NULL;
|
|
tree dummy;
|
|
enum dr_alignment_support alignment_support_scheme;
|
|
tree dataref_ptr = NULL_TREE;
|
|
gimple ptr_incr;
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
int ncopies;
|
|
int i, j, group_size;
|
|
tree msq = NULL_TREE, lsq;
|
|
tree offset = NULL_TREE;
|
|
tree realignment_token = NULL_TREE;
|
|
gimple phi = NULL;
|
|
VEC(tree,heap) *dr_chain = NULL;
|
|
bool strided_load = false;
|
|
bool load_lanes_p = false;
|
|
gimple first_stmt;
|
|
tree scalar_type;
|
|
bool inv_p;
|
|
bool negative;
|
|
bool compute_in_loop = false;
|
|
struct loop *at_loop;
|
|
int vec_num;
|
|
bool slp = (slp_node != NULL);
|
|
bool slp_perm = false;
|
|
enum tree_code code;
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
|
int vf;
|
|
tree aggr_type;
|
|
|
|
if (loop_vinfo)
|
|
{
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
|
|
vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
}
|
|
else
|
|
vf = 1;
|
|
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
|
case of SLP. */
|
|
if (slp || PURE_SLP_STMT (stmt_info))
|
|
ncopies = 1;
|
|
else
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
|
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
/* FORNOW. This restriction should be relaxed. */
|
|
if (nested_in_vect_loop && ncopies > 1)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "multiple types in nested loop.");
|
|
return false;
|
|
}
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
|
return false;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
|
return false;
|
|
|
|
/* Is vectorizable load? */
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
if (TREE_CODE (scalar_dest) != SSA_NAME)
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (code != ARRAY_REF
|
|
&& code != INDIRECT_REF
|
|
&& code != COMPONENT_REF
|
|
&& code != IMAGPART_EXPR
|
|
&& code != REALPART_EXPR
|
|
&& code != MEM_REF
|
|
&& TREE_CODE_CLASS (code) != tcc_declaration)
|
|
return false;
|
|
|
|
if (!STMT_VINFO_DATA_REF (stmt_info))
|
|
return false;
|
|
|
|
negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
|
|
if (negative && ncopies > 1)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "multiple types with negative step.");
|
|
return false;
|
|
}
|
|
|
|
scalar_type = TREE_TYPE (DR_REF (dr));
|
|
mode = TYPE_MODE (vectype);
|
|
|
|
/* FORNOW. In some cases can vectorize even if data-type not supported
|
|
(e.g. - data copies). */
|
|
if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "Aligned load, but unsupported type.");
|
|
return false;
|
|
}
|
|
|
|
/* The vector component type needs to be trivially convertible to the
|
|
scalar lhs. This should always be the case. */
|
|
elem_type = TREE_TYPE (vectype);
|
|
if (!useless_type_conversion_p (TREE_TYPE (scalar_dest), elem_type))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "??? operands of different types");
|
|
return false;
|
|
}
|
|
|
|
/* Check if the load is a part of an interleaving chain. */
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
|
{
|
|
strided_load = true;
|
|
/* FORNOW */
|
|
gcc_assert (! nested_in_vect_loop);
|
|
|
|
first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
|
if (!slp && !PURE_SLP_STMT (stmt_info))
|
|
{
|
|
group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
|
|
if (vect_load_lanes_supported (vectype, group_size))
|
|
load_lanes_p = true;
|
|
else if (!vect_strided_load_supported (vectype, group_size))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (negative)
|
|
{
|
|
gcc_assert (!strided_load);
|
|
alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
|
|
if (alignment_support_scheme != dr_aligned
|
|
&& alignment_support_scheme != dr_unaligned_supported)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "negative step but alignment required.");
|
|
return false;
|
|
}
|
|
if (!perm_mask_for_reverse (vectype, NULL))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "negative step and reversing not supported.");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
|
|
vect_model_load_cost (stmt_info, ncopies, load_lanes_p, NULL);
|
|
return true;
|
|
}
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "transform load. ncopies = %d", ncopies);
|
|
|
|
/** Transform. **/
|
|
|
|
if (strided_load)
|
|
{
|
|
first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
|
/* Check if the chain of loads is already vectorized. */
|
|
if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt)))
|
|
{
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
|
return true;
|
|
}
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
|
group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
|
|
|
|
/* VEC_NUM is the number of vect stmts to be created for this group. */
|
|
if (slp)
|
|
{
|
|
strided_load = false;
|
|
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
|
if (SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance))
|
|
slp_perm = true;
|
|
}
|
|
else
|
|
vec_num = group_size;
|
|
}
|
|
else
|
|
{
|
|
first_stmt = stmt;
|
|
first_dr = dr;
|
|
group_size = vec_num = 1;
|
|
}
|
|
|
|
alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
|
|
gcc_assert (alignment_support_scheme);
|
|
/* Targets with load-lane instructions must not require explicit
|
|
realignment. */
|
|
gcc_assert (!load_lanes_p
|
|
|| alignment_support_scheme == dr_aligned
|
|
|| alignment_support_scheme == dr_unaligned_supported);
|
|
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
|
vector stmt by a factor VF/nunits. In doing so, we record a pointer
|
|
from one copy of the vector stmt to the next, in the field
|
|
STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
|
|
stages to find the correct vector defs to be used when vectorizing
|
|
stmts that use the defs of the current stmt. The example below
|
|
illustrates the vectorization process when VF=16 and nunits=4 (i.e., we
|
|
need to create 4 vectorized stmts):
|
|
|
|
before vectorization:
|
|
RELATED_STMT VEC_STMT
|
|
S1: x = memref - -
|
|
S2: z = x + 1 - -
|
|
|
|
step 1: vectorize stmt S1:
|
|
We first create the vector stmt VS1_0, and, as usual, record a
|
|
pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
|
|
Next, we create the vector stmt VS1_1, and record a pointer to
|
|
it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
|
|
Similarly, for VS1_2 and VS1_3. This is the resulting chain of
|
|
stmts and pointers:
|
|
RELATED_STMT VEC_STMT
|
|
VS1_0: vx0 = memref0 VS1_1 -
|
|
VS1_1: vx1 = memref1 VS1_2 -
|
|
VS1_2: vx2 = memref2 VS1_3 -
|
|
VS1_3: vx3 = memref3 - -
|
|
S1: x = load - VS1_0
|
|
S2: z = x + 1 - -
|
|
|
|
See in documentation in vect_get_vec_def_for_stmt_copy for how the
|
|
information we recorded in RELATED_STMT field is used to vectorize
|
|
stmt S2. */
|
|
|
|
/* In case of interleaving (non-unit strided access):
|
|
|
|
S1: x2 = &base + 2
|
|
S2: x0 = &base
|
|
S3: x1 = &base + 1
|
|
S4: x3 = &base + 3
|
|
|
|
Vectorized loads are created in the order of memory accesses
|
|
starting from the access of the first stmt of the chain:
|
|
|
|
VS1: vx0 = &base
|
|
VS2: vx1 = &base + vec_size*1
|
|
VS3: vx3 = &base + vec_size*2
|
|
VS4: vx4 = &base + vec_size*3
|
|
|
|
Then permutation statements are generated:
|
|
|
|
VS5: vx5 = VEC_EXTRACT_EVEN_EXPR < vx0, vx1 >
|
|
VS6: vx6 = VEC_EXTRACT_ODD_EXPR < vx0, vx1 >
|
|
...
|
|
|
|
And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
|
|
(the order of the data-refs in the output of vect_permute_load_chain
|
|
corresponds to the order of scalar stmts in the interleaving chain - see
|
|
the documentation of vect_permute_load_chain()).
|
|
The generation of permutation stmts and recording them in
|
|
STMT_VINFO_VEC_STMT is done in vect_transform_strided_load().
|
|
|
|
In case of both multiple types and interleaving, the vector loads and
|
|
permutation stmts above are created for every copy. The result vector
|
|
stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the
|
|
corresponding STMT_VINFO_RELATED_STMT for the next copies. */
|
|
|
|
/* If the data reference is aligned (dr_aligned) or potentially unaligned
|
|
on a target that supports unaligned accesses (dr_unaligned_supported)
|
|
we generate the following code:
|
|
p = initial_addr;
|
|
indx = 0;
|
|
loop {
|
|
p = p + indx * vectype_size;
|
|
vec_dest = *(p);
|
|
indx = indx + 1;
|
|
}
|
|
|
|
Otherwise, the data reference is potentially unaligned on a target that
|
|
does not support unaligned accesses (dr_explicit_realign_optimized) -
|
|
then generate the following code, in which the data in each iteration is
|
|
obtained by two vector loads, one from the previous iteration, and one
|
|
from the current iteration:
|
|
p1 = initial_addr;
|
|
msq_init = *(floor(p1))
|
|
p2 = initial_addr + VS - 1;
|
|
realignment_token = call target_builtin;
|
|
indx = 0;
|
|
loop {
|
|
p2 = p2 + indx * vectype_size
|
|
lsq = *(floor(p2))
|
|
vec_dest = realign_load (msq, lsq, realignment_token)
|
|
indx = indx + 1;
|
|
msq = lsq;
|
|
} */
|
|
|
|
/* If the misalignment remains the same throughout the execution of the
|
|
loop, we can create the init_addr and permutation mask at the loop
|
|
preheader. Otherwise, it needs to be created inside the loop.
|
|
This can only occur when vectorizing memory accesses in the inner-loop
|
|
nested within an outer-loop that is being vectorized. */
|
|
|
|
if (loop && nested_in_vect_loop_p (loop, stmt)
|
|
&& (TREE_INT_CST_LOW (DR_STEP (dr))
|
|
% GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
|
|
{
|
|
gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
|
|
compute_in_loop = true;
|
|
}
|
|
|
|
if ((alignment_support_scheme == dr_explicit_realign_optimized
|
|
|| alignment_support_scheme == dr_explicit_realign)
|
|
&& !compute_in_loop)
|
|
{
|
|
msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
|
|
alignment_support_scheme, NULL_TREE,
|
|
&at_loop);
|
|
if (alignment_support_scheme == dr_explicit_realign_optimized)
|
|
{
|
|
phi = SSA_NAME_DEF_STMT (msq);
|
|
offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
|
|
}
|
|
}
|
|
else
|
|
at_loop = loop;
|
|
|
|
if (negative)
|
|
offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
|
|
|
|
if (load_lanes_p)
|
|
aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
|
|
else
|
|
aggr_type = vectype;
|
|
|
|
prev_stmt_info = NULL;
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
/* 1. Create the vector or array pointer update chain. */
|
|
if (j == 0)
|
|
dataref_ptr = vect_create_data_ref_ptr (first_stmt, aggr_type, at_loop,
|
|
offset, &dummy, gsi,
|
|
&ptr_incr, false, &inv_p);
|
|
else
|
|
dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
|
|
TYPE_SIZE_UNIT (aggr_type));
|
|
|
|
if (strided_load || slp_perm)
|
|
dr_chain = VEC_alloc (tree, heap, vec_num);
|
|
|
|
if (load_lanes_p)
|
|
{
|
|
tree vec_array;
|
|
|
|
vec_array = create_vector_array (vectype, vec_num);
|
|
|
|
/* Emit:
|
|
VEC_ARRAY = LOAD_LANES (MEM_REF[...all elements...]). */
|
|
data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
|
|
new_stmt = gimple_build_call_internal (IFN_LOAD_LANES, 1, data_ref);
|
|
gimple_call_set_lhs (new_stmt, vec_array);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
mark_symbols_for_renaming (new_stmt);
|
|
|
|
/* Extract each vector into an SSA_NAME. */
|
|
for (i = 0; i < vec_num; i++)
|
|
{
|
|
new_temp = read_vector_array (stmt, gsi, scalar_dest,
|
|
vec_array, i);
|
|
VEC_quick_push (tree, dr_chain, new_temp);
|
|
}
|
|
|
|
/* Record the mapping between SSA_NAMEs and statements. */
|
|
vect_record_strided_load_vectors (stmt, dr_chain);
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < vec_num; i++)
|
|
{
|
|
if (i > 0)
|
|
dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
|
|
stmt, NULL_TREE);
|
|
|
|
/* 2. Create the vector-load in the loop. */
|
|
switch (alignment_support_scheme)
|
|
{
|
|
case dr_aligned:
|
|
case dr_unaligned_supported:
|
|
{
|
|
struct ptr_info_def *pi;
|
|
data_ref
|
|
= build2 (MEM_REF, vectype, dataref_ptr,
|
|
build_int_cst (reference_alias_ptr_type
|
|
(DR_REF (first_dr)), 0));
|
|
pi = get_ptr_info (dataref_ptr);
|
|
pi->align = TYPE_ALIGN_UNIT (vectype);
|
|
if (alignment_support_scheme == dr_aligned)
|
|
{
|
|
gcc_assert (aligned_access_p (first_dr));
|
|
pi->misalign = 0;
|
|
}
|
|
else if (DR_MISALIGNMENT (first_dr) == -1)
|
|
{
|
|
TREE_TYPE (data_ref)
|
|
= build_aligned_type (TREE_TYPE (data_ref),
|
|
TYPE_ALIGN (elem_type));
|
|
pi->align = TYPE_ALIGN_UNIT (elem_type);
|
|
pi->misalign = 0;
|
|
}
|
|
else
|
|
{
|
|
TREE_TYPE (data_ref)
|
|
= build_aligned_type (TREE_TYPE (data_ref),
|
|
TYPE_ALIGN (elem_type));
|
|
pi->misalign = DR_MISALIGNMENT (first_dr);
|
|
}
|
|
break;
|
|
}
|
|
case dr_explicit_realign:
|
|
{
|
|
tree ptr, bump;
|
|
tree vs_minus_1;
|
|
|
|
vs_minus_1 = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
|
|
|
|
if (compute_in_loop)
|
|
msq = vect_setup_realignment (first_stmt, gsi,
|
|
&realignment_token,
|
|
dr_explicit_realign,
|
|
dataref_ptr, NULL);
|
|
|
|
new_stmt = gimple_build_assign_with_ops
|
|
(BIT_AND_EXPR, NULL_TREE, dataref_ptr,
|
|
build_int_cst
|
|
(TREE_TYPE (dataref_ptr),
|
|
-(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
|
|
ptr = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, ptr);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
data_ref
|
|
= build2 (MEM_REF, vectype, ptr,
|
|
build_int_cst (reference_alias_ptr_type
|
|
(DR_REF (first_dr)), 0));
|
|
vec_dest = vect_create_destination_var (scalar_dest,
|
|
vectype);
|
|
new_stmt = gimple_build_assign (vec_dest, data_ref);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
msq = new_temp;
|
|
|
|
bump = size_binop (MULT_EXPR, vs_minus_1,
|
|
TYPE_SIZE_UNIT (scalar_type));
|
|
ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
|
|
new_stmt = gimple_build_assign_with_ops
|
|
(BIT_AND_EXPR, NULL_TREE, ptr,
|
|
build_int_cst
|
|
(TREE_TYPE (ptr),
|
|
-(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
|
|
ptr = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, ptr);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
data_ref
|
|
= build2 (MEM_REF, vectype, ptr,
|
|
build_int_cst (reference_alias_ptr_type
|
|
(DR_REF (first_dr)), 0));
|
|
break;
|
|
}
|
|
case dr_explicit_realign_optimized:
|
|
new_stmt = gimple_build_assign_with_ops
|
|
(BIT_AND_EXPR, NULL_TREE, dataref_ptr,
|
|
build_int_cst
|
|
(TREE_TYPE (dataref_ptr),
|
|
-(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
|
|
new_temp = make_ssa_name (SSA_NAME_VAR (dataref_ptr),
|
|
new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
data_ref
|
|
= build2 (MEM_REF, vectype, new_temp,
|
|
build_int_cst (reference_alias_ptr_type
|
|
(DR_REF (first_dr)), 0));
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
new_stmt = gimple_build_assign (vec_dest, data_ref);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
mark_symbols_for_renaming (new_stmt);
|
|
|
|
/* 3. Handle explicit realignment if necessary/supported.
|
|
Create in loop:
|
|
vec_dest = realign_load (msq, lsq, realignment_token) */
|
|
if (alignment_support_scheme == dr_explicit_realign_optimized
|
|
|| alignment_support_scheme == dr_explicit_realign)
|
|
{
|
|
lsq = gimple_assign_lhs (new_stmt);
|
|
if (!realignment_token)
|
|
realignment_token = dataref_ptr;
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
new_stmt
|
|
= gimple_build_assign_with_ops3 (REALIGN_LOAD_EXPR,
|
|
vec_dest, msq, lsq,
|
|
realignment_token);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
|
|
if (alignment_support_scheme == dr_explicit_realign_optimized)
|
|
{
|
|
gcc_assert (phi);
|
|
if (i == vec_num - 1 && j == ncopies - 1)
|
|
add_phi_arg (phi, lsq,
|
|
loop_latch_edge (containing_loop),
|
|
UNKNOWN_LOCATION);
|
|
msq = lsq;
|
|
}
|
|
}
|
|
|
|
/* 4. Handle invariant-load. */
|
|
if (inv_p && !bb_vinfo)
|
|
{
|
|
tree vec_inv;
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gcc_assert (!strided_load);
|
|
gsi_next (&gsi2);
|
|
vec_inv = build_vector_from_val (vectype, scalar_dest);
|
|
new_temp = vect_init_vector (stmt, vec_inv,
|
|
vectype, &gsi2);
|
|
new_stmt = SSA_NAME_DEF_STMT (new_temp);
|
|
}
|
|
|
|
if (negative)
|
|
{
|
|
new_temp = reverse_vec_elements (new_temp, stmt, gsi);
|
|
new_stmt = SSA_NAME_DEF_STMT (new_temp);
|
|
}
|
|
|
|
/* Collect vector loads and later create their permutation in
|
|
vect_transform_strided_load (). */
|
|
if (strided_load || slp_perm)
|
|
VEC_quick_push (tree, dr_chain, new_temp);
|
|
|
|
/* Store vector loads in the corresponding SLP_NODE. */
|
|
if (slp && !slp_perm)
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node),
|
|
new_stmt);
|
|
}
|
|
}
|
|
|
|
if (slp && !slp_perm)
|
|
continue;
|
|
|
|
if (slp_perm)
|
|
{
|
|
if (!vect_transform_slp_perm_load (stmt, dr_chain, gsi, vf,
|
|
slp_node_instance, false))
|
|
{
|
|
VEC_free (tree, heap, dr_chain);
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (strided_load)
|
|
{
|
|
if (!load_lanes_p)
|
|
vect_transform_strided_load (stmt, dr_chain, group_size, gsi);
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
|
}
|
|
else
|
|
{
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
}
|
|
if (dr_chain)
|
|
VEC_free (tree, heap, dr_chain);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function vect_is_simple_cond.
|
|
|
|
Input:
|
|
LOOP - the loop that is being vectorized.
|
|
COND - Condition that is checked for simple use.
|
|
|
|
Output:
|
|
*COMP_VECTYPE - the vector type for the comparison.
|
|
|
|
Returns whether a COND can be vectorized. Checks whether
|
|
condition operands are supportable using vec_is_simple_use. */
|
|
|
|
static bool
|
|
vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo, tree *comp_vectype)
|
|
{
|
|
tree lhs, rhs;
|
|
tree def;
|
|
enum vect_def_type dt;
|
|
tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
|
|
|
|
if (!COMPARISON_CLASS_P (cond))
|
|
return false;
|
|
|
|
lhs = TREE_OPERAND (cond, 0);
|
|
rhs = TREE_OPERAND (cond, 1);
|
|
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
gimple lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
|
|
if (!vect_is_simple_use_1 (lhs, loop_vinfo, NULL, &lhs_def_stmt, &def,
|
|
&dt, &vectype1))
|
|
return false;
|
|
}
|
|
else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
|
|
&& TREE_CODE (lhs) != FIXED_CST)
|
|
return false;
|
|
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
|
{
|
|
gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
|
|
if (!vect_is_simple_use_1 (rhs, loop_vinfo, NULL, &rhs_def_stmt, &def,
|
|
&dt, &vectype2))
|
|
return false;
|
|
}
|
|
else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST
|
|
&& TREE_CODE (rhs) != FIXED_CST)
|
|
return false;
|
|
|
|
*comp_vectype = vectype1 ? vectype1 : vectype2;
|
|
return true;
|
|
}
|
|
|
|
/* vectorizable_condition.
|
|
|
|
Check if STMT is conditional modify expression that can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
|
stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
|
|
at GSI.
|
|
|
|
When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable
|
|
to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in
|
|
else caluse if it is 2).
|
|
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
|
|
|
bool
|
|
vectorizable_condition (gimple stmt, gimple_stmt_iterator *gsi,
|
|
gimple *vec_stmt, tree reduc_def, int reduc_index)
|
|
{
|
|
tree scalar_dest = NULL_TREE;
|
|
tree vec_dest = NULL_TREE;
|
|
tree cond_expr, then_clause, else_clause;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
tree comp_vectype;
|
|
tree vec_cond_lhs = NULL_TREE, vec_cond_rhs = NULL_TREE;
|
|
tree vec_then_clause = NULL_TREE, vec_else_clause = NULL_TREE;
|
|
tree vec_compare, vec_cond_expr;
|
|
tree new_temp;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
tree def;
|
|
enum vect_def_type dt, dts[4];
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
|
enum tree_code code;
|
|
stmt_vec_info prev_stmt_info = NULL;
|
|
int j;
|
|
|
|
/* FORNOW: unsupported in basic block SLP. */
|
|
gcc_assert (loop_vinfo);
|
|
|
|
/* FORNOW: SLP not supported. */
|
|
if (STMT_SLP_TYPE (stmt_info))
|
|
return false;
|
|
|
|
gcc_assert (ncopies >= 1);
|
|
if (reduc_index && ncopies > 1)
|
|
return false; /* FORNOW */
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
|
return false;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
|
|
&& !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
|
|
&& reduc_def))
|
|
return false;
|
|
|
|
/* FORNOW: not yet supported. */
|
|
if (STMT_VINFO_LIVE_P (stmt_info))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "value used after loop.");
|
|
return false;
|
|
}
|
|
|
|
/* Is vectorizable conditional operation? */
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
|
|
if (code != COND_EXPR)
|
|
return false;
|
|
|
|
cond_expr = gimple_assign_rhs1 (stmt);
|
|
then_clause = gimple_assign_rhs2 (stmt);
|
|
else_clause = gimple_assign_rhs3 (stmt);
|
|
|
|
if (!vect_is_simple_cond (cond_expr, loop_vinfo, &comp_vectype)
|
|
|| !comp_vectype)
|
|
return false;
|
|
|
|
if (TREE_CODE (then_clause) == SSA_NAME)
|
|
{
|
|
gimple then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
|
|
if (!vect_is_simple_use (then_clause, loop_vinfo, NULL,
|
|
&then_def_stmt, &def, &dt))
|
|
return false;
|
|
}
|
|
else if (TREE_CODE (then_clause) != INTEGER_CST
|
|
&& TREE_CODE (then_clause) != REAL_CST
|
|
&& TREE_CODE (then_clause) != FIXED_CST)
|
|
return false;
|
|
|
|
if (TREE_CODE (else_clause) == SSA_NAME)
|
|
{
|
|
gimple else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
|
|
if (!vect_is_simple_use (else_clause, loop_vinfo, NULL,
|
|
&else_def_stmt, &def, &dt))
|
|
return false;
|
|
}
|
|
else if (TREE_CODE (else_clause) != INTEGER_CST
|
|
&& TREE_CODE (else_clause) != REAL_CST
|
|
&& TREE_CODE (else_clause) != FIXED_CST)
|
|
return false;
|
|
|
|
if (!vec_stmt)
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
|
|
return expand_vec_cond_expr_p (vectype, comp_vectype);
|
|
}
|
|
|
|
/* Transform */
|
|
|
|
/* Handle def. */
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
|
|
/* Handle cond expr. */
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
gimple new_stmt;
|
|
if (j == 0)
|
|
{
|
|
gimple gtemp;
|
|
vec_cond_lhs =
|
|
vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0),
|
|
stmt, NULL);
|
|
vect_is_simple_use (TREE_OPERAND (cond_expr, 0), loop_vinfo,
|
|
NULL, >emp, &def, &dts[0]);
|
|
vec_cond_rhs =
|
|
vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1),
|
|
stmt, NULL);
|
|
vect_is_simple_use (TREE_OPERAND (cond_expr, 1), loop_vinfo,
|
|
NULL, >emp, &def, &dts[1]);
|
|
if (reduc_index == 1)
|
|
vec_then_clause = reduc_def;
|
|
else
|
|
{
|
|
vec_then_clause = vect_get_vec_def_for_operand (then_clause,
|
|
stmt, NULL);
|
|
vect_is_simple_use (then_clause, loop_vinfo,
|
|
NULL, >emp, &def, &dts[2]);
|
|
}
|
|
if (reduc_index == 2)
|
|
vec_else_clause = reduc_def;
|
|
else
|
|
{
|
|
vec_else_clause = vect_get_vec_def_for_operand (else_clause,
|
|
stmt, NULL);
|
|
vect_is_simple_use (else_clause, loop_vinfo,
|
|
NULL, >emp, &def, &dts[3]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
vec_cond_lhs = vect_get_vec_def_for_stmt_copy (dts[0], vec_cond_lhs);
|
|
vec_cond_rhs = vect_get_vec_def_for_stmt_copy (dts[1], vec_cond_rhs);
|
|
vec_then_clause = vect_get_vec_def_for_stmt_copy (dts[2],
|
|
vec_then_clause);
|
|
vec_else_clause = vect_get_vec_def_for_stmt_copy (dts[3],
|
|
vec_else_clause);
|
|
}
|
|
|
|
/* Arguments are ready. Create the new vector stmt. */
|
|
vec_compare = build2 (TREE_CODE (cond_expr), vectype,
|
|
vec_cond_lhs, vec_cond_rhs);
|
|
vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
|
|
vec_compare, vec_then_clause, vec_else_clause);
|
|
|
|
new_stmt = gimple_build_assign (vec_dest, vec_cond_expr);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Make sure the statement is vectorizable. */
|
|
|
|
bool
|
|
vect_analyze_stmt (gimple stmt, bool *need_to_vectorize, slp_tree node)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
|
enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);
|
|
bool ok;
|
|
tree scalar_type, vectype;
|
|
gimple pattern_stmt, pattern_def_stmt;
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "==> examining statement: ");
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
if (gimple_has_volatile_ops (stmt))
|
|
{
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
|
fprintf (vect_dump, "not vectorized: stmt has volatile operands");
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Skip stmts that do not need to be vectorized. In loops this is expected
|
|
to include:
|
|
- the COND_EXPR which is the loop exit condition
|
|
- any LABEL_EXPRs in the loop
|
|
- computations that are used only for array indexing or loop control.
|
|
In basic blocks we only analyze statements that are a part of some SLP
|
|
instance, therefore, all the statements are relevant.
|
|
|
|
Pattern statement need to be analyzed instead of the original statement
|
|
if the original statement is not relevant. Otherwise, we analyze both
|
|
statements. */
|
|
|
|
pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
{
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
|
&& pattern_stmt
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
|
{
|
|
/* Analyze PATTERN_STMT instead of the original stmt. */
|
|
stmt = pattern_stmt;
|
|
stmt_info = vinfo_for_stmt (pattern_stmt);
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "==> examining pattern statement: ");
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "irrelevant.");
|
|
|
|
return true;
|
|
}
|
|
}
|
|
else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
|
&& pattern_stmt
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
|
{
|
|
/* Analyze PATTERN_STMT too. */
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "==> examining pattern statement: ");
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
if (!vect_analyze_stmt (pattern_stmt, need_to_vectorize, node))
|
|
return false;
|
|
}
|
|
|
|
if (is_pattern_stmt_p (stmt_info)
|
|
&& (pattern_def_stmt = STMT_VINFO_PATTERN_DEF_STMT (stmt_info))
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_def_stmt))
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_def_stmt))))
|
|
{
|
|
/* Analyze def stmt of STMT if it's a pattern stmt. */
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "==> examining pattern def statement: ");
|
|
print_gimple_stmt (vect_dump, pattern_def_stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
if (!vect_analyze_stmt (pattern_def_stmt, need_to_vectorize, node))
|
|
return false;
|
|
}
|
|
|
|
|
|
switch (STMT_VINFO_DEF_TYPE (stmt_info))
|
|
{
|
|
case vect_internal_def:
|
|
break;
|
|
|
|
case vect_reduction_def:
|
|
case vect_nested_cycle:
|
|
gcc_assert (!bb_vinfo && (relevance == vect_used_in_outer
|
|
|| relevance == vect_used_in_outer_by_reduction
|
|
|| relevance == vect_unused_in_scope));
|
|
break;
|
|
|
|
case vect_induction_def:
|
|
case vect_constant_def:
|
|
case vect_external_def:
|
|
case vect_unknown_def_type:
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
if (bb_vinfo)
|
|
{
|
|
gcc_assert (PURE_SLP_STMT (stmt_info));
|
|
|
|
scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "get vectype for scalar type: ");
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
|
}
|
|
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
|
if (!vectype)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "not SLPed: unsupported data-type ");
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "vectype: ");
|
|
print_generic_expr (vect_dump, vectype, TDF_SLIM);
|
|
}
|
|
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype;
|
|
}
|
|
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
|
{
|
|
gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
|
|
gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
|
|
*need_to_vectorize = true;
|
|
}
|
|
|
|
ok = true;
|
|
if (!bb_vinfo
|
|
&& (STMT_VINFO_RELEVANT_P (stmt_info)
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
|
|
ok = (vectorizable_type_promotion (stmt, NULL, NULL, NULL)
|
|
|| vectorizable_type_demotion (stmt, NULL, NULL, NULL)
|
|
|| vectorizable_conversion (stmt, NULL, NULL, NULL)
|
|
|| vectorizable_shift (stmt, NULL, NULL, NULL)
|
|
|| vectorizable_operation (stmt, NULL, NULL, NULL)
|
|
|| vectorizable_assignment (stmt, NULL, NULL, NULL)
|
|
|| vectorizable_load (stmt, NULL, NULL, NULL, NULL)
|
|
|| vectorizable_call (stmt, NULL, NULL)
|
|
|| vectorizable_store (stmt, NULL, NULL, NULL)
|
|
|| vectorizable_reduction (stmt, NULL, NULL, NULL)
|
|
|| vectorizable_condition (stmt, NULL, NULL, NULL, 0));
|
|
else
|
|
{
|
|
if (bb_vinfo)
|
|
ok = (vectorizable_shift (stmt, NULL, NULL, node)
|
|
|| vectorizable_operation (stmt, NULL, NULL, node)
|
|
|| vectorizable_assignment (stmt, NULL, NULL, node)
|
|
|| vectorizable_load (stmt, NULL, NULL, node, NULL)
|
|
|| vectorizable_store (stmt, NULL, NULL, node));
|
|
}
|
|
|
|
if (!ok)
|
|
{
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
|
{
|
|
fprintf (vect_dump, "not vectorized: relevant stmt not ");
|
|
fprintf (vect_dump, "supported: ");
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (bb_vinfo)
|
|
return true;
|
|
|
|
/* Stmts that are (also) "live" (i.e. - that are used out of the loop)
|
|
need extra handling, except for vectorizable reductions. */
|
|
if (STMT_VINFO_LIVE_P (stmt_info)
|
|
&& STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
|
|
ok = vectorizable_live_operation (stmt, NULL, NULL);
|
|
|
|
if (!ok)
|
|
{
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
|
{
|
|
fprintf (vect_dump, "not vectorized: live stmt not ");
|
|
fprintf (vect_dump, "supported: ");
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_transform_stmt.
|
|
|
|
Create a vectorized stmt to replace STMT, and insert it at BSI. */
|
|
|
|
bool
|
|
vect_transform_stmt (gimple stmt, gimple_stmt_iterator *gsi,
|
|
bool *strided_store, slp_tree slp_node,
|
|
slp_instance slp_node_instance)
|
|
{
|
|
bool is_store = false;
|
|
gimple vec_stmt = NULL;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
bool done;
|
|
|
|
switch (STMT_VINFO_TYPE (stmt_info))
|
|
{
|
|
case type_demotion_vec_info_type:
|
|
done = vectorizable_type_demotion (stmt, gsi, &vec_stmt, slp_node);
|
|
gcc_assert (done);
|
|
break;
|
|
|
|
case type_promotion_vec_info_type:
|
|
done = vectorizable_type_promotion (stmt, gsi, &vec_stmt, slp_node);
|
|
gcc_assert (done);
|
|
break;
|
|
|
|
case type_conversion_vec_info_type:
|
|
done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
|
|
gcc_assert (done);
|
|
break;
|
|
|
|
case induc_vec_info_type:
|
|
gcc_assert (!slp_node);
|
|
done = vectorizable_induction (stmt, gsi, &vec_stmt);
|
|
gcc_assert (done);
|
|
break;
|
|
|
|
case shift_vec_info_type:
|
|
done = vectorizable_shift (stmt, gsi, &vec_stmt, slp_node);
|
|
gcc_assert (done);
|
|
break;
|
|
|
|
case op_vec_info_type:
|
|
done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
|
|
gcc_assert (done);
|
|
break;
|
|
|
|
case assignment_vec_info_type:
|
|
done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
|
|
gcc_assert (done);
|
|
break;
|
|
|
|
case load_vec_info_type:
|
|
done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
|
|
slp_node_instance);
|
|
gcc_assert (done);
|
|
break;
|
|
|
|
case store_vec_info_type:
|
|
done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
|
|
gcc_assert (done);
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info) && !slp_node)
|
|
{
|
|
/* In case of interleaving, the whole chain is vectorized when the
|
|
last store in the chain is reached. Store stmts before the last
|
|
one are skipped, and there vec_stmt_info shouldn't be freed
|
|
meanwhile. */
|
|
*strided_store = true;
|
|
if (STMT_VINFO_VEC_STMT (stmt_info))
|
|
is_store = true;
|
|
}
|
|
else
|
|
is_store = true;
|
|
break;
|
|
|
|
case condition_vec_info_type:
|
|
gcc_assert (!slp_node);
|
|
done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0);
|
|
gcc_assert (done);
|
|
break;
|
|
|
|
case call_vec_info_type:
|
|
gcc_assert (!slp_node);
|
|
done = vectorizable_call (stmt, gsi, &vec_stmt);
|
|
stmt = gsi_stmt (*gsi);
|
|
break;
|
|
|
|
case reduc_vec_info_type:
|
|
done = vectorizable_reduction (stmt, gsi, &vec_stmt, slp_node);
|
|
gcc_assert (done);
|
|
break;
|
|
|
|
default:
|
|
if (!STMT_VINFO_LIVE_P (stmt_info))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "stmt not supported.");
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Handle inner-loop stmts whose DEF is used in the loop-nest that
|
|
is being vectorized, but outside the immediately enclosing loop. */
|
|
if (vec_stmt
|
|
&& STMT_VINFO_LOOP_VINFO (stmt_info)
|
|
&& nested_in_vect_loop_p (LOOP_VINFO_LOOP (
|
|
STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
|
|
&& STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
|
|
&& (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
|
|
|| STMT_VINFO_RELEVANT (stmt_info) ==
|
|
vect_used_in_outer_by_reduction))
|
|
{
|
|
struct loop *innerloop = LOOP_VINFO_LOOP (
|
|
STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
tree scalar_dest;
|
|
gimple exit_phi;
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "Record the vdef for outer-loop vectorization.");
|
|
|
|
/* Find the relevant loop-exit phi-node, and reord the vec_stmt there
|
|
(to be used when vectorizing outer-loop stmts that use the DEF of
|
|
STMT). */
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
scalar_dest = PHI_RESULT (stmt);
|
|
else
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
|
{
|
|
if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
|
|
{
|
|
exit_phi = USE_STMT (use_p);
|
|
STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Handle stmts whose DEF is used outside the loop-nest that is
|
|
being vectorized. */
|
|
if (STMT_VINFO_LIVE_P (stmt_info)
|
|
&& STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
|
|
{
|
|
done = vectorizable_live_operation (stmt, gsi, &vec_stmt);
|
|
gcc_assert (done);
|
|
}
|
|
|
|
if (vec_stmt)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
|
|
|
|
return is_store;
|
|
}
|
|
|
|
|
|
/* Remove a group of stores (for SLP or interleaving), free their
|
|
stmt_vec_info. */
|
|
|
|
void
|
|
vect_remove_stores (gimple first_stmt)
|
|
{
|
|
gimple next = first_stmt;
|
|
gimple tmp;
|
|
gimple_stmt_iterator next_si;
|
|
|
|
while (next)
|
|
{
|
|
/* Free the attached stmt_vec_info and remove the stmt. */
|
|
next_si = gsi_for_stmt (next);
|
|
gsi_remove (&next_si, true);
|
|
tmp = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
|
|
free_stmt_vec_info (next);
|
|
next = tmp;
|
|
}
|
|
}
|
|
|
|
|
|
/* Function new_stmt_vec_info.
|
|
|
|
Create and initialize a new stmt_vec_info struct for STMT. */
|
|
|
|
stmt_vec_info
|
|
new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo,
|
|
bb_vec_info bb_vinfo)
|
|
{
|
|
stmt_vec_info res;
|
|
res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
|
|
|
|
STMT_VINFO_TYPE (res) = undef_vec_info_type;
|
|
STMT_VINFO_STMT (res) = stmt;
|
|
STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
|
|
STMT_VINFO_BB_VINFO (res) = bb_vinfo;
|
|
STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
|
|
STMT_VINFO_LIVE_P (res) = false;
|
|
STMT_VINFO_VECTYPE (res) = NULL;
|
|
STMT_VINFO_VEC_STMT (res) = NULL;
|
|
STMT_VINFO_VECTORIZABLE (res) = true;
|
|
STMT_VINFO_IN_PATTERN_P (res) = false;
|
|
STMT_VINFO_RELATED_STMT (res) = NULL;
|
|
STMT_VINFO_PATTERN_DEF_STMT (res) = NULL;
|
|
STMT_VINFO_DATA_REF (res) = NULL;
|
|
|
|
STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
|
|
STMT_VINFO_DR_OFFSET (res) = NULL;
|
|
STMT_VINFO_DR_INIT (res) = NULL;
|
|
STMT_VINFO_DR_STEP (res) = NULL;
|
|
STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
|
|
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
|
&& is_loop_header_bb_p (gimple_bb (stmt)))
|
|
STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
|
|
else
|
|
STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
|
|
|
|
STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
|
|
STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0;
|
|
STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0;
|
|
STMT_SLP_TYPE (res) = loop_vect;
|
|
GROUP_FIRST_ELEMENT (res) = NULL;
|
|
GROUP_NEXT_ELEMENT (res) = NULL;
|
|
GROUP_SIZE (res) = 0;
|
|
GROUP_STORE_COUNT (res) = 0;
|
|
GROUP_GAP (res) = 0;
|
|
GROUP_SAME_DR_STMT (res) = NULL;
|
|
GROUP_READ_WRITE_DEPENDENCE (res) = false;
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
/* Create a hash table for stmt_vec_info. */
|
|
|
|
void
|
|
init_stmt_vec_info_vec (void)
|
|
{
|
|
gcc_assert (!stmt_vec_info_vec);
|
|
stmt_vec_info_vec = VEC_alloc (vec_void_p, heap, 50);
|
|
}
|
|
|
|
|
|
/* Free hash table for stmt_vec_info. */
|
|
|
|
void
|
|
free_stmt_vec_info_vec (void)
|
|
{
|
|
gcc_assert (stmt_vec_info_vec);
|
|
VEC_free (vec_void_p, heap, stmt_vec_info_vec);
|
|
}
|
|
|
|
|
|
/* Free stmt vectorization related info. */
|
|
|
|
void
|
|
free_stmt_vec_info (gimple stmt)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
if (!stmt_info)
|
|
return;
|
|
|
|
VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
|
|
set_vinfo_for_stmt (stmt, NULL);
|
|
free (stmt_info);
|
|
}
|
|
|
|
|
|
/* Function get_vectype_for_scalar_type_and_size.
|
|
|
|
Returns the vector type corresponding to SCALAR_TYPE and SIZE as supported
|
|
by the target. */
|
|
|
|
static tree
|
|
get_vectype_for_scalar_type_and_size (tree scalar_type, unsigned size)
|
|
{
|
|
enum machine_mode inner_mode = TYPE_MODE (scalar_type);
|
|
enum machine_mode simd_mode;
|
|
unsigned int nbytes = GET_MODE_SIZE (inner_mode);
|
|
int nunits;
|
|
tree vectype;
|
|
|
|
if (nbytes == 0)
|
|
return NULL_TREE;
|
|
|
|
/* We can't build a vector type of elements with alignment bigger than
|
|
their size. */
|
|
if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
|
|
return NULL_TREE;
|
|
|
|
/* If we'd build a vector type of elements whose mode precision doesn't
|
|
match their types precision we'll get mismatched types on vector
|
|
extracts via BIT_FIELD_REFs. This effectively means we disable
|
|
vectorization of bool and/or enum types in some languages. */
|
|
if (INTEGRAL_TYPE_P (scalar_type)
|
|
&& GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type))
|
|
return NULL_TREE;
|
|
|
|
if (GET_MODE_CLASS (inner_mode) != MODE_INT
|
|
&& GET_MODE_CLASS (inner_mode) != MODE_FLOAT)
|
|
return NULL_TREE;
|
|
|
|
/* We shouldn't end up building VECTOR_TYPEs of non-scalar components.
|
|
When the component mode passes the above test simply use a type
|
|
corresponding to that mode. The theory is that any use that
|
|
would cause problems with this will disable vectorization anyway. */
|
|
if (!SCALAR_FLOAT_TYPE_P (scalar_type)
|
|
&& !INTEGRAL_TYPE_P (scalar_type)
|
|
&& !POINTER_TYPE_P (scalar_type))
|
|
scalar_type = lang_hooks.types.type_for_mode (inner_mode, 1);
|
|
|
|
/* If no size was supplied use the mode the target prefers. Otherwise
|
|
lookup a vector mode of the specified size. */
|
|
if (size == 0)
|
|
simd_mode = targetm.vectorize.preferred_simd_mode (inner_mode);
|
|
else
|
|
simd_mode = mode_for_vector (inner_mode, size / nbytes);
|
|
nunits = GET_MODE_SIZE (simd_mode) / nbytes;
|
|
if (nunits <= 1)
|
|
return NULL_TREE;
|
|
|
|
vectype = build_vector_type (scalar_type, nunits);
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "get vectype with %d units of type ", nunits);
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
|
}
|
|
|
|
if (!vectype)
|
|
return NULL_TREE;
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "vectype: ");
|
|
print_generic_expr (vect_dump, vectype, TDF_SLIM);
|
|
}
|
|
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype))
|
|
&& !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "mode not supported by target.");
|
|
return NULL_TREE;
|
|
}
|
|
|
|
return vectype;
|
|
}
|
|
|
|
unsigned int current_vector_size;
|
|
|
|
/* Function get_vectype_for_scalar_type.
|
|
|
|
Returns the vector type corresponding to SCALAR_TYPE as supported
|
|
by the target. */
|
|
|
|
tree
|
|
get_vectype_for_scalar_type (tree scalar_type)
|
|
{
|
|
tree vectype;
|
|
vectype = get_vectype_for_scalar_type_and_size (scalar_type,
|
|
current_vector_size);
|
|
if (vectype
|
|
&& current_vector_size == 0)
|
|
current_vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
|
|
return vectype;
|
|
}
|
|
|
|
/* Function get_same_sized_vectype
|
|
|
|
Returns a vector type corresponding to SCALAR_TYPE of size
|
|
VECTOR_TYPE if supported by the target. */
|
|
|
|
tree
|
|
get_same_sized_vectype (tree scalar_type, tree vector_type)
|
|
{
|
|
return get_vectype_for_scalar_type_and_size
|
|
(scalar_type, GET_MODE_SIZE (TYPE_MODE (vector_type)));
|
|
}
|
|
|
|
/* Function vect_is_simple_use.
|
|
|
|
Input:
|
|
LOOP_VINFO - the vect info of the loop that is being vectorized.
|
|
BB_VINFO - the vect info of the basic block that is being vectorized.
|
|
OPERAND - operand of a stmt in the loop or bb.
|
|
DEF - the defining stmt in case OPERAND is an SSA_NAME.
|
|
|
|
Returns whether a stmt with OPERAND can be vectorized.
|
|
For loops, supportable operands are constants, loop invariants, and operands
|
|
that are defined by the current iteration of the loop. Unsupportable
|
|
operands are those that are defined by a previous iteration of the loop (as
|
|
is the case in reduction/induction computations).
|
|
For basic blocks, supportable operands are constants and bb invariants.
|
|
For now, operands defined outside the basic block are not supported. */
|
|
|
|
bool
|
|
vect_is_simple_use (tree operand, loop_vec_info loop_vinfo,
|
|
bb_vec_info bb_vinfo, gimple *def_stmt,
|
|
tree *def, enum vect_def_type *dt)
|
|
{
|
|
basic_block bb;
|
|
stmt_vec_info stmt_vinfo;
|
|
struct loop *loop = NULL;
|
|
|
|
if (loop_vinfo)
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
*def_stmt = NULL;
|
|
*def = NULL_TREE;
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "vect_is_simple_use: operand ");
|
|
print_generic_expr (vect_dump, operand, TDF_SLIM);
|
|
}
|
|
|
|
if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
|
|
{
|
|
*dt = vect_constant_def;
|
|
return true;
|
|
}
|
|
|
|
if (is_gimple_min_invariant (operand))
|
|
{
|
|
*def = operand;
|
|
*dt = vect_external_def;
|
|
return true;
|
|
}
|
|
|
|
if (TREE_CODE (operand) == PAREN_EXPR)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "non-associatable copy.");
|
|
operand = TREE_OPERAND (operand, 0);
|
|
}
|
|
|
|
if (TREE_CODE (operand) != SSA_NAME)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "not ssa-name.");
|
|
return false;
|
|
}
|
|
|
|
*def_stmt = SSA_NAME_DEF_STMT (operand);
|
|
if (*def_stmt == NULL)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "no def_stmt.");
|
|
return false;
|
|
}
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "def_stmt: ");
|
|
print_gimple_stmt (vect_dump, *def_stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
/* Empty stmt is expected only in case of a function argument.
|
|
(Otherwise - we expect a phi_node or a GIMPLE_ASSIGN). */
|
|
if (gimple_nop_p (*def_stmt))
|
|
{
|
|
*def = operand;
|
|
*dt = vect_external_def;
|
|
return true;
|
|
}
|
|
|
|
bb = gimple_bb (*def_stmt);
|
|
|
|
if ((loop && !flow_bb_inside_loop_p (loop, bb))
|
|
|| (!loop && bb != BB_VINFO_BB (bb_vinfo))
|
|
|| (!loop && gimple_code (*def_stmt) == GIMPLE_PHI))
|
|
*dt = vect_external_def;
|
|
else
|
|
{
|
|
stmt_vinfo = vinfo_for_stmt (*def_stmt);
|
|
*dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
|
|
}
|
|
|
|
if (*dt == vect_unknown_def_type)
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "Unsupported pattern.");
|
|
return false;
|
|
}
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "type of def: %d.",*dt);
|
|
|
|
switch (gimple_code (*def_stmt))
|
|
{
|
|
case GIMPLE_PHI:
|
|
*def = gimple_phi_result (*def_stmt);
|
|
break;
|
|
|
|
case GIMPLE_ASSIGN:
|
|
*def = gimple_assign_lhs (*def_stmt);
|
|
break;
|
|
|
|
case GIMPLE_CALL:
|
|
*def = gimple_call_lhs (*def_stmt);
|
|
if (*def != NULL)
|
|
break;
|
|
/* FALLTHRU */
|
|
default:
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "unsupported defining stmt: ");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function vect_is_simple_use_1.
|
|
|
|
Same as vect_is_simple_use_1 but also determines the vector operand
|
|
type of OPERAND and stores it to *VECTYPE. If the definition of
|
|
OPERAND is vect_uninitialized_def, vect_constant_def or
|
|
vect_external_def *VECTYPE will be set to NULL_TREE and the caller
|
|
is responsible to compute the best suited vector type for the
|
|
scalar operand. */
|
|
|
|
bool
|
|
vect_is_simple_use_1 (tree operand, loop_vec_info loop_vinfo,
|
|
bb_vec_info bb_vinfo, gimple *def_stmt,
|
|
tree *def, enum vect_def_type *dt, tree *vectype)
|
|
{
|
|
if (!vect_is_simple_use (operand, loop_vinfo, bb_vinfo, def_stmt, def, dt))
|
|
return false;
|
|
|
|
/* Now get a vector type if the def is internal, otherwise supply
|
|
NULL_TREE and leave it up to the caller to figure out a proper
|
|
type for the use stmt. */
|
|
if (*dt == vect_internal_def
|
|
|| *dt == vect_induction_def
|
|
|| *dt == vect_reduction_def
|
|
|| *dt == vect_double_reduction_def
|
|
|| *dt == vect_nested_cycle)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (*def_stmt);
|
|
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
|
&& !STMT_VINFO_RELEVANT (stmt_info)
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
|
|
|
|
*vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
gcc_assert (*vectype != NULL_TREE);
|
|
}
|
|
else if (*dt == vect_uninitialized_def
|
|
|| *dt == vect_constant_def
|
|
|| *dt == vect_external_def)
|
|
*vectype = NULL_TREE;
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function supportable_widening_operation
|
|
|
|
Check whether an operation represented by the code CODE is a
|
|
widening operation that is supported by the target platform in
|
|
vector form (i.e., when operating on arguments of type VECTYPE_IN
|
|
producing a result of type VECTYPE_OUT).
|
|
|
|
Widening operations we currently support are NOP (CONVERT), FLOAT
|
|
and WIDEN_MULT. This function checks if these operations are supported
|
|
by the target platform either directly (via vector tree-codes), or via
|
|
target builtins.
|
|
|
|
Output:
|
|
- CODE1 and CODE2 are codes of vector operations to be used when
|
|
vectorizing the operation, if available.
|
|
- DECL1 and DECL2 are decls of target builtin functions to be used
|
|
when vectorizing the operation, if available. In this case,
|
|
CODE1 and CODE2 are CALL_EXPR.
|
|
- MULTI_STEP_CVT determines the number of required intermediate steps in
|
|
case of multi-step conversion (like char->short->int - in that case
|
|
MULTI_STEP_CVT will be 1).
|
|
- INTERM_TYPES contains the intermediate type required to perform the
|
|
widening operation (short in the above example). */
|
|
|
|
bool
|
|
supportable_widening_operation (enum tree_code code, gimple stmt,
|
|
tree vectype_out, tree vectype_in,
|
|
tree *decl1, tree *decl2,
|
|
enum tree_code *code1, enum tree_code *code2,
|
|
int *multi_step_cvt,
|
|
VEC (tree, heap) **interm_types)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
|
|
bool ordered_p;
|
|
enum machine_mode vec_mode;
|
|
enum insn_code icode1, icode2;
|
|
optab optab1, optab2;
|
|
tree vectype = vectype_in;
|
|
tree wide_vectype = vectype_out;
|
|
enum tree_code c1, c2;
|
|
|
|
/* The result of a vectorized widening operation usually requires two vectors
|
|
(because the widened results do not fit int one vector). The generated
|
|
vector results would normally be expected to be generated in the same
|
|
order as in the original scalar computation, i.e. if 8 results are
|
|
generated in each vector iteration, they are to be organized as follows:
|
|
vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8].
|
|
|
|
However, in the special case that the result of the widening operation is
|
|
used in a reduction computation only, the order doesn't matter (because
|
|
when vectorizing a reduction we change the order of the computation).
|
|
Some targets can take advantage of this and generate more efficient code.
|
|
For example, targets like Altivec, that support widen_mult using a sequence
|
|
of {mult_even,mult_odd} generate the following vectors:
|
|
vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].
|
|
|
|
When vectorizing outer-loops, we execute the inner-loop sequentially
|
|
(each vectorized inner-loop iteration contributes to VF outer-loop
|
|
iterations in parallel). We therefore don't allow to change the order
|
|
of the computation in the inner-loop during outer-loop vectorization. */
|
|
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
|
|
&& !nested_in_vect_loop_p (vect_loop, stmt))
|
|
ordered_p = false;
|
|
else
|
|
ordered_p = true;
|
|
|
|
if (!ordered_p
|
|
&& code == WIDEN_MULT_EXPR
|
|
&& targetm.vectorize.builtin_mul_widen_even
|
|
&& targetm.vectorize.builtin_mul_widen_even (vectype)
|
|
&& targetm.vectorize.builtin_mul_widen_odd
|
|
&& targetm.vectorize.builtin_mul_widen_odd (vectype))
|
|
{
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "Unordered widening operation detected.");
|
|
|
|
*code1 = *code2 = CALL_EXPR;
|
|
*decl1 = targetm.vectorize.builtin_mul_widen_even (vectype);
|
|
*decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype);
|
|
return true;
|
|
}
|
|
|
|
switch (code)
|
|
{
|
|
case WIDEN_MULT_EXPR:
|
|
if (BYTES_BIG_ENDIAN)
|
|
{
|
|
c1 = VEC_WIDEN_MULT_HI_EXPR;
|
|
c2 = VEC_WIDEN_MULT_LO_EXPR;
|
|
}
|
|
else
|
|
{
|
|
c2 = VEC_WIDEN_MULT_HI_EXPR;
|
|
c1 = VEC_WIDEN_MULT_LO_EXPR;
|
|
}
|
|
break;
|
|
|
|
CASE_CONVERT:
|
|
if (BYTES_BIG_ENDIAN)
|
|
{
|
|
c1 = VEC_UNPACK_HI_EXPR;
|
|
c2 = VEC_UNPACK_LO_EXPR;
|
|
}
|
|
else
|
|
{
|
|
c2 = VEC_UNPACK_HI_EXPR;
|
|
c1 = VEC_UNPACK_LO_EXPR;
|
|
}
|
|
break;
|
|
|
|
case FLOAT_EXPR:
|
|
if (BYTES_BIG_ENDIAN)
|
|
{
|
|
c1 = VEC_UNPACK_FLOAT_HI_EXPR;
|
|
c2 = VEC_UNPACK_FLOAT_LO_EXPR;
|
|
}
|
|
else
|
|
{
|
|
c2 = VEC_UNPACK_FLOAT_HI_EXPR;
|
|
c1 = VEC_UNPACK_FLOAT_LO_EXPR;
|
|
}
|
|
break;
|
|
|
|
case FIX_TRUNC_EXPR:
|
|
/* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
|
|
VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
|
|
computing the operation. */
|
|
return false;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
if (code == FIX_TRUNC_EXPR)
|
|
{
|
|
/* The signedness is determined from output operand. */
|
|
optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
|
|
optab2 = optab_for_tree_code (c2, vectype_out, optab_default);
|
|
}
|
|
else
|
|
{
|
|
optab1 = optab_for_tree_code (c1, vectype, optab_default);
|
|
optab2 = optab_for_tree_code (c2, vectype, optab_default);
|
|
}
|
|
|
|
if (!optab1 || !optab2)
|
|
return false;
|
|
|
|
vec_mode = TYPE_MODE (vectype);
|
|
if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing
|
|
|| (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing)
|
|
return false;
|
|
|
|
/* Check if it's a multi-step conversion that can be done using intermediate
|
|
types. */
|
|
if (insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype)
|
|
|| insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype))
|
|
{
|
|
int i;
|
|
tree prev_type = vectype, intermediate_type;
|
|
enum machine_mode intermediate_mode, prev_mode = vec_mode;
|
|
optab optab3, optab4;
|
|
|
|
if (!CONVERT_EXPR_CODE_P (code))
|
|
return false;
|
|
|
|
*code1 = c1;
|
|
*code2 = c2;
|
|
|
|
/* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
|
|
intermediate steps in promotion sequence. We try
|
|
MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do
|
|
not. */
|
|
*interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
intermediate_mode = insn_data[icode1].operand[0].mode;
|
|
intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
|
|
TYPE_UNSIGNED (prev_type));
|
|
optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
|
|
optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
|
|
|
|
if (!optab3 || !optab4
|
|
|| ((icode1 = optab_handler (optab1, prev_mode))
|
|
== CODE_FOR_nothing)
|
|
|| insn_data[icode1].operand[0].mode != intermediate_mode
|
|
|| ((icode2 = optab_handler (optab2, prev_mode))
|
|
== CODE_FOR_nothing)
|
|
|| insn_data[icode2].operand[0].mode != intermediate_mode
|
|
|| ((icode1 = optab_handler (optab3, intermediate_mode))
|
|
== CODE_FOR_nothing)
|
|
|| ((icode2 = optab_handler (optab4, intermediate_mode))
|
|
== CODE_FOR_nothing))
|
|
return false;
|
|
|
|
VEC_quick_push (tree, *interm_types, intermediate_type);
|
|
(*multi_step_cvt)++;
|
|
|
|
if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
|
|
&& insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
|
|
return true;
|
|
|
|
prev_type = intermediate_type;
|
|
prev_mode = intermediate_mode;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
*code1 = c1;
|
|
*code2 = c2;
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function supportable_narrowing_operation
|
|
|
|
Check whether an operation represented by the code CODE is a
|
|
narrowing operation that is supported by the target platform in
|
|
vector form (i.e., when operating on arguments of type VECTYPE_IN
|
|
and producing a result of type VECTYPE_OUT).
|
|
|
|
Narrowing operations we currently support are NOP (CONVERT) and
|
|
FIX_TRUNC. This function checks if these operations are supported by
|
|
the target platform directly via vector tree-codes.
|
|
|
|
Output:
|
|
- CODE1 is the code of a vector operation to be used when
|
|
vectorizing the operation, if available.
|
|
- MULTI_STEP_CVT determines the number of required intermediate steps in
|
|
case of multi-step conversion (like int->short->char - in that case
|
|
MULTI_STEP_CVT will be 1).
|
|
- INTERM_TYPES contains the intermediate type required to perform the
|
|
narrowing operation (short in the above example). */
|
|
|
|
bool
|
|
supportable_narrowing_operation (enum tree_code code,
|
|
tree vectype_out, tree vectype_in,
|
|
enum tree_code *code1, int *multi_step_cvt,
|
|
VEC (tree, heap) **interm_types)
|
|
{
|
|
enum machine_mode vec_mode;
|
|
enum insn_code icode1;
|
|
optab optab1, interm_optab;
|
|
tree vectype = vectype_in;
|
|
tree narrow_vectype = vectype_out;
|
|
enum tree_code c1;
|
|
tree intermediate_type, prev_type;
|
|
int i;
|
|
|
|
switch (code)
|
|
{
|
|
CASE_CONVERT:
|
|
c1 = VEC_PACK_TRUNC_EXPR;
|
|
break;
|
|
|
|
case FIX_TRUNC_EXPR:
|
|
c1 = VEC_PACK_FIX_TRUNC_EXPR;
|
|
break;
|
|
|
|
case FLOAT_EXPR:
|
|
/* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
|
|
tree code and optabs used for computing the operation. */
|
|
return false;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
if (code == FIX_TRUNC_EXPR)
|
|
/* The signedness is determined from output operand. */
|
|
optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
|
|
else
|
|
optab1 = optab_for_tree_code (c1, vectype, optab_default);
|
|
|
|
if (!optab1)
|
|
return false;
|
|
|
|
vec_mode = TYPE_MODE (vectype);
|
|
if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing)
|
|
return false;
|
|
|
|
/* Check if it's a multi-step conversion that can be done using intermediate
|
|
types. */
|
|
if (insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype))
|
|
{
|
|
enum machine_mode intermediate_mode, prev_mode = vec_mode;
|
|
|
|
*code1 = c1;
|
|
prev_type = vectype;
|
|
/* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
|
|
intermediate steps in promotion sequence. We try
|
|
MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do
|
|
not. */
|
|
*interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
intermediate_mode = insn_data[icode1].operand[0].mode;
|
|
intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
|
|
TYPE_UNSIGNED (prev_type));
|
|
interm_optab = optab_for_tree_code (c1, intermediate_type,
|
|
optab_default);
|
|
if (!interm_optab
|
|
|| ((icode1 = optab_handler (optab1, prev_mode))
|
|
== CODE_FOR_nothing)
|
|
|| insn_data[icode1].operand[0].mode != intermediate_mode
|
|
|| ((icode1 = optab_handler (interm_optab, intermediate_mode))
|
|
== CODE_FOR_nothing))
|
|
return false;
|
|
|
|
VEC_quick_push (tree, *interm_types, intermediate_type);
|
|
(*multi_step_cvt)++;
|
|
|
|
if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
|
|
return true;
|
|
|
|
prev_type = intermediate_type;
|
|
prev_mode = intermediate_mode;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
*code1 = c1;
|
|
return true;
|
|
}
|