5133f00ef8
From-SVN: r171076
816 lines
22 KiB
C
816 lines
22 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Garbage collector.
|
|
|
|
#include "runtime.h"
|
|
#include "malloc.h"
|
|
|
|
enum {
|
|
Debug = 0,
|
|
UseCas = 1,
|
|
PtrSize = sizeof(void*),
|
|
|
|
// Four bits per word (see #defines below).
|
|
wordsPerBitmapWord = sizeof(void*)*8/4,
|
|
bitShift = sizeof(void*)*8/4,
|
|
};
|
|
|
|
// Bits in per-word bitmap.
|
|
// #defines because enum might not be able to hold the values.
|
|
//
|
|
// Each word in the bitmap describes wordsPerBitmapWord words
|
|
// of heap memory. There are 4 bitmap bits dedicated to each heap word,
|
|
// so on a 64-bit system there is one bitmap word per 16 heap words.
|
|
// The bits in the word are packed together by type first, then by
|
|
// heap location, so each 64-bit bitmap word consists of, from top to bottom,
|
|
// the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits,
|
|
// then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits.
|
|
// This layout makes it easier to iterate over the bits of a given type.
|
|
//
|
|
// The bitmap starts at mheap.arena_start and extends *backward* from
|
|
// there. On a 64-bit system the off'th word in the arena is tracked by
|
|
// the off/16+1'th word before mheap.arena_start. (On a 32-bit system,
|
|
// the only difference is that the divisor is 8.)
|
|
//
|
|
// To pull out the bits corresponding to a given pointer p, we use:
|
|
//
|
|
// off = p - (uintptr*)mheap.arena_start; // word offset
|
|
// b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
// shift = off % wordsPerBitmapWord
|
|
// bits = *b >> shift;
|
|
// /* then test bits & bitAllocated, bits & bitMarked, etc. */
|
|
//
|
|
#define bitAllocated ((uintptr)1<<(bitShift*0))
|
|
#define bitNoPointers ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */
|
|
#define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */
|
|
#define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */
|
|
#define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set */
|
|
|
|
#define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial)
|
|
|
|
static uint64 nlookup;
|
|
static uint64 nsizelookup;
|
|
static uint64 naddrlookup;
|
|
static int32 gctrace;
|
|
|
|
typedef struct Workbuf Workbuf;
|
|
struct Workbuf
|
|
{
|
|
Workbuf *next;
|
|
uintptr nw;
|
|
byte *w[2048-2];
|
|
};
|
|
|
|
static bool finstarted;
|
|
static pthread_mutex_t finqlock = PTHREAD_MUTEX_INITIALIZER;
|
|
static pthread_cond_t finqcond = PTHREAD_COND_INITIALIZER;
|
|
static Finalizer *finq;
|
|
static int32 fingwait;
|
|
|
|
static void runfinq(void*);
|
|
static Workbuf* getempty(Workbuf*);
|
|
static Workbuf* getfull(Workbuf*);
|
|
|
|
// scanblock scans a block of n bytes starting at pointer b for references
|
|
// to other objects, scanning any it finds recursively until there are no
|
|
// unscanned objects left. Instead of using an explicit recursion, it keeps
|
|
// a work list in the Workbuf* structures and loops in the main function
|
|
// body. Keeping an explicit work list is easier on the stack allocator and
|
|
// more efficient.
|
|
static void
|
|
scanblock(byte *b, int64 n)
|
|
{
|
|
byte *obj, *arena_start, *p;
|
|
void **vp;
|
|
uintptr size, *bitp, bits, shift, i, j, x, xbits, off;
|
|
MSpan *s;
|
|
PageID k;
|
|
void **bw, **w, **ew;
|
|
Workbuf *wbuf;
|
|
|
|
// Memory arena parameters.
|
|
arena_start = runtime_mheap.arena_start;
|
|
|
|
wbuf = nil; // current work buffer
|
|
ew = nil; // end of work buffer
|
|
bw = nil; // beginning of work buffer
|
|
w = nil; // current pointer into work buffer
|
|
|
|
// Align b to a word boundary.
|
|
off = (uintptr)b & (PtrSize-1);
|
|
if(off != 0) {
|
|
b += PtrSize - off;
|
|
n -= PtrSize - off;
|
|
}
|
|
|
|
for(;;) {
|
|
// Each iteration scans the block b of length n, queueing pointers in
|
|
// the work buffer.
|
|
if(Debug > 1)
|
|
runtime_printf("scanblock %p %lld\n", b, (long long) n);
|
|
|
|
vp = (void**)b;
|
|
n /= PtrSize;
|
|
for(i=0; i<(uintptr)n; i++) {
|
|
obj = (byte*)vp[i];
|
|
|
|
// Words outside the arena cannot be pointers.
|
|
if((byte*)obj < arena_start || (byte*)obj >= runtime_mheap.arena_used)
|
|
continue;
|
|
|
|
// obj may be a pointer to a live object.
|
|
// Try to find the beginning of the object.
|
|
|
|
// Round down to word boundary.
|
|
obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1));
|
|
|
|
// Find bits for this word.
|
|
off = (uintptr*)obj - (uintptr*)arena_start;
|
|
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
xbits = *bitp;
|
|
bits = xbits >> shift;
|
|
|
|
// Pointing at the beginning of a block?
|
|
if((bits & (bitAllocated|bitBlockBoundary)) != 0)
|
|
goto found;
|
|
|
|
// Pointing just past the beginning?
|
|
// Scan backward a little to find a block boundary.
|
|
for(j=shift; j-->0; ) {
|
|
if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) {
|
|
obj = (byte*)obj - (shift-j)*PtrSize;
|
|
shift = j;
|
|
bits = xbits>>shift;
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
// Otherwise consult span table to find beginning.
|
|
// (Manually inlined copy of MHeap_LookupMaybe.)
|
|
nlookup++;
|
|
naddrlookup++;
|
|
k = (uintptr)obj>>PageShift;
|
|
x = k;
|
|
if(sizeof(void*) == 8)
|
|
x -= (uintptr)arena_start>>PageShift;
|
|
s = runtime_mheap.map[x];
|
|
if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse)
|
|
continue;
|
|
p = (byte*)((uintptr)s->start<<PageShift);
|
|
if(s->sizeclass == 0) {
|
|
obj = p;
|
|
} else {
|
|
if((byte*)obj >= (byte*)s->limit)
|
|
continue;
|
|
size = runtime_class_to_size[s->sizeclass];
|
|
int32 i = ((byte*)obj - p)/size;
|
|
obj = p+i*size;
|
|
}
|
|
|
|
// Now that we know the object header, reload bits.
|
|
off = (uintptr*)obj - (uintptr*)arena_start;
|
|
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
xbits = *bitp;
|
|
bits = xbits >> shift;
|
|
|
|
found:
|
|
// Now we have bits, bitp, and shift correct for
|
|
// obj pointing at the base of the object.
|
|
// If not allocated or already marked, done.
|
|
if((bits & bitAllocated) == 0 || (bits & bitMarked) != 0)
|
|
continue;
|
|
*bitp |= bitMarked<<shift;
|
|
|
|
// If object has no pointers, don't need to scan further.
|
|
if((bits & bitNoPointers) != 0)
|
|
continue;
|
|
|
|
// If buffer is full, get a new one.
|
|
if(w >= ew) {
|
|
wbuf = getempty(wbuf);
|
|
bw = (void**)wbuf->w;
|
|
w = bw;
|
|
ew = bw + nelem(wbuf->w);
|
|
}
|
|
*w++ = obj;
|
|
}
|
|
|
|
// Done scanning [b, b+n). Prepare for the next iteration of
|
|
// the loop by setting b and n to the parameters for the next block.
|
|
|
|
// Fetch b from the work buffers.
|
|
if(w <= bw) {
|
|
// Emptied our buffer: refill.
|
|
wbuf = getfull(wbuf);
|
|
if(wbuf == nil)
|
|
break;
|
|
bw = (void**)wbuf->w;
|
|
ew = (void**)(wbuf->w + nelem(wbuf->w));
|
|
w = bw+wbuf->nw;
|
|
}
|
|
b = *--w;
|
|
|
|
// Figure out n = size of b. Start by loading bits for b.
|
|
off = (uintptr*)b - (uintptr*)arena_start;
|
|
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
xbits = *bitp;
|
|
bits = xbits >> shift;
|
|
|
|
// Might be small; look for nearby block boundary.
|
|
// A block boundary is marked by either bitBlockBoundary
|
|
// or bitAllocated being set (see notes near their definition).
|
|
enum {
|
|
boundary = bitBlockBoundary|bitAllocated
|
|
};
|
|
// Look for a block boundary both after and before b
|
|
// in the same bitmap word.
|
|
//
|
|
// A block boundary j words after b is indicated by
|
|
// bits>>j & boundary
|
|
// assuming shift+j < bitShift. (If shift+j >= bitShift then
|
|
// we'll be bleeding other bit types like bitMarked into our test.)
|
|
// Instead of inserting the conditional shift+j < bitShift into the loop,
|
|
// we can let j range from 1 to bitShift as long as we first
|
|
// apply a mask to keep only the bits corresponding
|
|
// to shift+j < bitShift aka j < bitShift-shift.
|
|
bits &= (boundary<<(bitShift-shift)) - boundary;
|
|
|
|
// A block boundary j words before b is indicated by
|
|
// xbits>>(shift-j) & boundary
|
|
// (assuming shift >= j). There is no cleverness here
|
|
// avoid the test, because when j gets too large the shift
|
|
// turns negative, which is undefined in C.
|
|
|
|
for(j=1; j<bitShift; j++) {
|
|
if(((bits>>j)&boundary) != 0 || (shift>=j && ((xbits>>(shift-j))&boundary) != 0)) {
|
|
n = j*PtrSize;
|
|
goto scan;
|
|
}
|
|
}
|
|
|
|
// Fall back to asking span about size class.
|
|
// (Manually inlined copy of MHeap_Lookup.)
|
|
nlookup++;
|
|
nsizelookup++;
|
|
x = (uintptr)b>>PageShift;
|
|
if(sizeof(void*) == 8)
|
|
x -= (uintptr)arena_start>>PageShift;
|
|
s = runtime_mheap.map[x];
|
|
if(s->sizeclass == 0)
|
|
n = s->npages<<PageShift;
|
|
else
|
|
n = runtime_class_to_size[s->sizeclass];
|
|
scan:;
|
|
}
|
|
}
|
|
|
|
static struct {
|
|
Workbuf *full;
|
|
Workbuf *empty;
|
|
byte *chunk;
|
|
uintptr nchunk;
|
|
} work;
|
|
|
|
// Get an empty work buffer off the work.empty list,
|
|
// allocating new buffers as needed.
|
|
static Workbuf*
|
|
getempty(Workbuf *b)
|
|
{
|
|
if(b != nil) {
|
|
b->nw = nelem(b->w);
|
|
b->next = work.full;
|
|
work.full = b;
|
|
}
|
|
b = work.empty;
|
|
if(b != nil) {
|
|
work.empty = b->next;
|
|
return b;
|
|
}
|
|
|
|
if(work.nchunk < sizeof *b) {
|
|
work.nchunk = 1<<20;
|
|
work.chunk = runtime_SysAlloc(work.nchunk);
|
|
}
|
|
b = (Workbuf*)work.chunk;
|
|
work.chunk += sizeof *b;
|
|
work.nchunk -= sizeof *b;
|
|
return b;
|
|
}
|
|
|
|
// Get a full work buffer off the work.full list, or return nil.
|
|
static Workbuf*
|
|
getfull(Workbuf *b)
|
|
{
|
|
if(b != nil) {
|
|
b->nw = 0;
|
|
b->next = work.empty;
|
|
work.empty = b;
|
|
}
|
|
b = work.full;
|
|
if(b != nil)
|
|
work.full = b->next;
|
|
return b;
|
|
}
|
|
|
|
// Scanstack calls scanblock on each of gp's stack segments.
|
|
static void
|
|
markfin(void *v)
|
|
{
|
|
uintptr size;
|
|
|
|
size = 0;
|
|
if(!runtime_mlookup(v, (byte**)&v, &size, nil) || !runtime_blockspecial(v))
|
|
runtime_throw("mark - finalizer inconsistency");
|
|
|
|
// do not mark the finalizer block itself. just mark the things it points at.
|
|
scanblock(v, size);
|
|
}
|
|
|
|
struct root_list {
|
|
struct root_list *next;
|
|
struct root {
|
|
void *decl;
|
|
size_t size;
|
|
} roots[];
|
|
};
|
|
|
|
static struct root_list* roots;
|
|
|
|
void
|
|
__go_register_gc_roots (struct root_list* r)
|
|
{
|
|
// FIXME: This needs locking if multiple goroutines can call
|
|
// dlopen simultaneously.
|
|
r->next = roots;
|
|
roots = r;
|
|
}
|
|
|
|
// Mark
|
|
static void
|
|
mark(void)
|
|
{
|
|
struct root_list *pl;
|
|
|
|
for(pl = roots; pl != nil; pl = pl->next) {
|
|
struct root* pr = &pl->roots[0];
|
|
while(1) {
|
|
void *decl = pr->decl;
|
|
if(decl == nil)
|
|
break;
|
|
scanblock(decl, pr->size);
|
|
pr++;
|
|
}
|
|
}
|
|
|
|
scanblock((byte*)&m0, sizeof m0);
|
|
scanblock((byte*)&finq, sizeof finq);
|
|
runtime_MProf_Mark(scanblock);
|
|
|
|
// mark stacks
|
|
__go_scanstacks(scanblock);
|
|
|
|
// mark things pointed at by objects with finalizers
|
|
runtime_walkfintab(markfin, scanblock);
|
|
}
|
|
|
|
// Sweep frees or calls finalizers for blocks not marked in the mark phase.
|
|
// It clears the mark bits in preparation for the next GC round.
|
|
static void
|
|
sweep(void)
|
|
{
|
|
MSpan *s;
|
|
int32 cl, n, npages;
|
|
uintptr size;
|
|
byte *p;
|
|
MCache *c;
|
|
Finalizer *f;
|
|
|
|
for(s = runtime_mheap.allspans; s != nil; s = s->allnext) {
|
|
if(s->state != MSpanInUse)
|
|
continue;
|
|
|
|
p = (byte*)(s->start << PageShift);
|
|
cl = s->sizeclass;
|
|
if(cl == 0) {
|
|
size = s->npages<<PageShift;
|
|
n = 1;
|
|
} else {
|
|
// Chunk full of small blocks.
|
|
size = runtime_class_to_size[cl];
|
|
npages = runtime_class_to_allocnpages[cl];
|
|
n = (npages << PageShift) / size;
|
|
}
|
|
|
|
// sweep through n objects of given size starting at p.
|
|
for(; n > 0; n--, p += size) {
|
|
uintptr off, *bitp, shift, bits;
|
|
|
|
off = (uintptr*)p - (uintptr*)runtime_mheap.arena_start;
|
|
bitp = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
bits = *bitp>>shift;
|
|
|
|
if((bits & bitAllocated) == 0)
|
|
continue;
|
|
|
|
if((bits & bitMarked) != 0) {
|
|
*bitp &= ~(bitMarked<<shift);
|
|
continue;
|
|
}
|
|
|
|
if((bits & bitSpecial) != 0) {
|
|
// Special means it has a finalizer or is being profiled.
|
|
f = runtime_getfinalizer(p, 1);
|
|
if(f != nil) {
|
|
f->arg = p;
|
|
f->next = finq;
|
|
finq = f;
|
|
continue;
|
|
}
|
|
runtime_MProf_Free(p, size);
|
|
}
|
|
|
|
// Mark freed; restore block boundary bit.
|
|
*bitp = (*bitp & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
|
|
|
|
if(s->sizeclass == 0) {
|
|
// Free large span.
|
|
runtime_unmarkspan(p, 1<<PageShift);
|
|
*(uintptr*)p = 1; // needs zeroing
|
|
runtime_MHeap_Free(&runtime_mheap, s, 1);
|
|
} else {
|
|
// Free small object.
|
|
c = m->mcache;
|
|
if(size > sizeof(uintptr))
|
|
((uintptr*)p)[1] = 1; // mark as "needs to be zeroed"
|
|
mstats.by_size[s->sizeclass].nfree++;
|
|
runtime_MCache_Free(c, p, s->sizeclass, size);
|
|
}
|
|
mstats.alloc -= size;
|
|
mstats.nfree++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static pthread_mutex_t gcsema = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
// Initialized from $GOGC. GOGC=off means no gc.
|
|
//
|
|
// Next gc is after we've allocated an extra amount of
|
|
// memory proportional to the amount already in use.
|
|
// If gcpercent=100 and we're using 4M, we'll gc again
|
|
// when we get to 8M. This keeps the gc cost in linear
|
|
// proportion to the allocation cost. Adjusting gcpercent
|
|
// just changes the linear constant (and also the amount of
|
|
// extra memory used).
|
|
static int32 gcpercent = -2;
|
|
|
|
void
|
|
runtime_gc(int32 force __attribute__ ((unused)))
|
|
{
|
|
int64 t0, t1, t2, t3;
|
|
uint64 heap0, heap1, obj0, obj1;
|
|
char *p;
|
|
Finalizer *fp;
|
|
|
|
// The gc is turned off (via enablegc) until
|
|
// the bootstrap has completed.
|
|
// Also, malloc gets called in the guts
|
|
// of a number of libraries that might be
|
|
// holding locks. To avoid priority inversion
|
|
// problems, don't bother trying to run gc
|
|
// while holding a lock. The next mallocgc
|
|
// without a lock will do the gc instead.
|
|
if(!mstats.enablegc || m->locks > 0 /* || runtime_panicking */)
|
|
return;
|
|
|
|
if(gcpercent == -2) { // first time through
|
|
p = runtime_getenv("GOGC");
|
|
if(p == nil || p[0] == '\0')
|
|
gcpercent = 100;
|
|
else if(runtime_strcmp(p, "off") == 0)
|
|
gcpercent = -1;
|
|
else
|
|
gcpercent = runtime_atoi(p);
|
|
|
|
p = runtime_getenv("GOGCTRACE");
|
|
if(p != nil)
|
|
gctrace = runtime_atoi(p);
|
|
}
|
|
if(gcpercent < 0)
|
|
return;
|
|
|
|
pthread_mutex_lock(&finqlock);
|
|
pthread_mutex_lock(&gcsema);
|
|
if(!force && mstats.heap_alloc < mstats.next_gc) {
|
|
pthread_mutex_unlock(&gcsema);
|
|
pthread_mutex_unlock(&finqlock);
|
|
return;
|
|
}
|
|
|
|
t0 = runtime_nanotime();
|
|
nlookup = 0;
|
|
nsizelookup = 0;
|
|
naddrlookup = 0;
|
|
|
|
m->gcing = 1;
|
|
runtime_stoptheworld();
|
|
if(runtime_mheap.Lock.key != 0)
|
|
runtime_throw("runtime_mheap locked during gc");
|
|
|
|
__go_cachestats();
|
|
heap0 = mstats.heap_alloc;
|
|
obj0 = mstats.nmalloc - mstats.nfree;
|
|
|
|
mark();
|
|
t1 = runtime_nanotime();
|
|
sweep();
|
|
t2 = runtime_nanotime();
|
|
__go_stealcache();
|
|
|
|
mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100;
|
|
m->gcing = 0;
|
|
|
|
m->locks++; // disable gc during the mallocs in newproc
|
|
|
|
heap1 = mstats.heap_alloc;
|
|
obj1 = mstats.nmalloc - mstats.nfree;
|
|
|
|
t3 = runtime_nanotime();
|
|
mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t3 - t0;
|
|
mstats.pause_total_ns += t3 - t0;
|
|
mstats.numgc++;
|
|
if(mstats.debuggc)
|
|
runtime_printf("pause %llu\n", (unsigned long long)t3-t0);
|
|
|
|
if(gctrace) {
|
|
runtime_printf("gc%d: %llu+%llu+%llu ms %llu -> %llu MB %llu -> %llu (%llu-%llu) objects %llu pointer lookups (%llu size, %llu addr)\n",
|
|
mstats.numgc, (unsigned long long)(t1-t0)/1000000, (unsigned long long)(t2-t1)/1000000, (unsigned long long)(t3-t2)/1000000,
|
|
(unsigned long long)heap0>>20, (unsigned long long)heap1>>20, (unsigned long long)obj0, (unsigned long long)obj1,
|
|
(unsigned long long)mstats.nmalloc, (unsigned long long)mstats.nfree,
|
|
(unsigned long long)nlookup, (unsigned long long)nsizelookup, (unsigned long long)naddrlookup);
|
|
}
|
|
|
|
pthread_mutex_unlock(&gcsema);
|
|
runtime_starttheworld();
|
|
|
|
// finqlock is still held.
|
|
fp = finq;
|
|
if(fp != nil) {
|
|
// kick off or wake up goroutine to run queued finalizers
|
|
if(!finstarted) {
|
|
__go_go(runfinq, nil);
|
|
finstarted = 1;
|
|
}
|
|
else if(fingwait) {
|
|
fingwait = 0;
|
|
pthread_cond_signal(&finqcond);
|
|
}
|
|
}
|
|
m->locks--;
|
|
pthread_mutex_unlock(&finqlock);
|
|
|
|
if(gctrace > 1 && !force)
|
|
runtime_gc(1);
|
|
}
|
|
|
|
static void
|
|
runfinq(void* dummy)
|
|
{
|
|
Finalizer *f, *next;
|
|
|
|
USED(dummy);
|
|
|
|
for(;;) {
|
|
pthread_mutex_lock(&finqlock);
|
|
f = finq;
|
|
finq = nil;
|
|
if(f == nil) {
|
|
fingwait = 1;
|
|
pthread_cond_wait(&finqcond, &finqlock);
|
|
pthread_mutex_unlock(&finqlock);
|
|
continue;
|
|
}
|
|
pthread_mutex_unlock(&finqlock);
|
|
for(; f; f=next) {
|
|
void *params[1];
|
|
|
|
next = f->next;
|
|
params[0] = &f->arg;
|
|
reflect_call(f->ft, (void*)f->fn, 0, params, nil);
|
|
f->fn = nil;
|
|
f->arg = nil;
|
|
f->next = nil;
|
|
runtime_free(f);
|
|
}
|
|
runtime_gc(1); // trigger another gc to clean up the finalized objects, if possible
|
|
}
|
|
}
|
|
|
|
#define runtime_gomaxprocs 2
|
|
|
|
// mark the block at v of size n as allocated.
|
|
// If noptr is true, mark it as having no pointers.
|
|
void
|
|
runtime_markallocated(void *v, uintptr n, bool noptr)
|
|
{
|
|
uintptr *b, obits, bits, off, shift;
|
|
|
|
// if(0)
|
|
// runtime_printf("markallocated %p+%p\n", v, n);
|
|
|
|
if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
|
|
runtime_throw("markallocated: bad pointer");
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset
|
|
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
for(;;) {
|
|
obits = *b;
|
|
bits = (obits & ~(bitMask<<shift)) | (bitAllocated<<shift);
|
|
if(noptr)
|
|
bits |= bitNoPointers<<shift;
|
|
if(runtime_gomaxprocs == 1) {
|
|
*b = bits;
|
|
break;
|
|
} else {
|
|
// gomaxprocs > 1: use atomic op
|
|
if(runtime_casp((void**)b, (void*)obits, (void*)bits))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// mark the block at v of size n as freed.
|
|
void
|
|
runtime_markfreed(void *v, uintptr n)
|
|
{
|
|
uintptr *b, obits, bits, off, shift;
|
|
|
|
// if(0)
|
|
// runtime_printf("markallocated %p+%p\n", v, n);
|
|
|
|
if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
|
|
runtime_throw("markallocated: bad pointer");
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset
|
|
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
for(;;) {
|
|
obits = *b;
|
|
bits = (obits & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
|
|
if(runtime_gomaxprocs == 1) {
|
|
*b = bits;
|
|
break;
|
|
} else {
|
|
// gomaxprocs > 1: use atomic op
|
|
if(runtime_casp((void**)b, (void*)obits, (void*)bits))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check that the block at v of size n is marked freed.
|
|
void
|
|
runtime_checkfreed(void *v, uintptr n)
|
|
{
|
|
uintptr *b, bits, off, shift;
|
|
|
|
if(!runtime_checking)
|
|
return;
|
|
|
|
if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
|
|
return; // not allocated, so okay
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset
|
|
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
bits = *b>>shift;
|
|
if((bits & bitAllocated) != 0) {
|
|
runtime_printf("checkfreed %p+%p: off=%p have=%p\n",
|
|
v, (void*)n, (void*)off, (void*)(bits & bitMask));
|
|
runtime_throw("checkfreed: not freed");
|
|
}
|
|
}
|
|
|
|
// mark the span of memory at v as having n blocks of the given size.
|
|
// if leftover is true, there is left over space at the end of the span.
|
|
void
|
|
runtime_markspan(void *v, uintptr size, uintptr n, bool leftover)
|
|
{
|
|
uintptr *b, off, shift;
|
|
byte *p;
|
|
|
|
if((byte*)v+size*n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
|
|
runtime_throw("markspan: bad pointer");
|
|
|
|
p = v;
|
|
if(leftover) // mark a boundary just past end of last block too
|
|
n++;
|
|
for(; n-- > 0; p += size) {
|
|
// Okay to use non-atomic ops here, because we control
|
|
// the entire span, and each bitmap word has bits for only
|
|
// one span, so no other goroutines are changing these
|
|
// bitmap words.
|
|
off = (uintptr*)p - (uintptr*)runtime_mheap.arena_start; // word offset
|
|
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
*b = (*b & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
|
|
}
|
|
}
|
|
|
|
// unmark the span of memory at v of length n bytes.
|
|
void
|
|
runtime_unmarkspan(void *v, uintptr n)
|
|
{
|
|
uintptr *p, *b, off;
|
|
|
|
if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start)
|
|
runtime_throw("markspan: bad pointer");
|
|
|
|
p = v;
|
|
off = p - (uintptr*)runtime_mheap.arena_start; // word offset
|
|
if(off % wordsPerBitmapWord != 0)
|
|
runtime_throw("markspan: unaligned pointer");
|
|
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
n /= PtrSize;
|
|
if(n%wordsPerBitmapWord != 0)
|
|
runtime_throw("unmarkspan: unaligned length");
|
|
// Okay to use non-atomic ops here, because we control
|
|
// the entire span, and each bitmap word has bits for only
|
|
// one span, so no other goroutines are changing these
|
|
// bitmap words.
|
|
n /= wordsPerBitmapWord;
|
|
while(n-- > 0)
|
|
*b-- = 0;
|
|
}
|
|
|
|
bool
|
|
runtime_blockspecial(void *v)
|
|
{
|
|
uintptr *b, off, shift;
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start;
|
|
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
return (*b & (bitSpecial<<shift)) != 0;
|
|
}
|
|
|
|
void
|
|
runtime_setblockspecial(void *v)
|
|
{
|
|
uintptr *b, off, shift, bits, obits;
|
|
|
|
off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start;
|
|
b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
|
|
shift = off % wordsPerBitmapWord;
|
|
|
|
for(;;) {
|
|
obits = *b;
|
|
bits = obits | (bitSpecial<<shift);
|
|
if(runtime_gomaxprocs == 1) {
|
|
*b = bits;
|
|
break;
|
|
} else {
|
|
// gomaxprocs > 1: use atomic op
|
|
if(runtime_casp((void**)b, (void*)obits, (void*)bits))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
runtime_MHeap_MapBits(MHeap *h)
|
|
{
|
|
// Caller has added extra mappings to the arena.
|
|
// Add extra mappings of bitmap words as needed.
|
|
// We allocate extra bitmap pieces in chunks of bitmapChunk.
|
|
enum {
|
|
bitmapChunk = 8192
|
|
};
|
|
uintptr n;
|
|
|
|
n = (h->arena_used - h->arena_start) / wordsPerBitmapWord;
|
|
n = (n+bitmapChunk-1) & ~(bitmapChunk-1);
|
|
if(h->bitmap_mapped >= n)
|
|
return;
|
|
|
|
runtime_SysMap(h->arena_start - n, n - h->bitmap_mapped);
|
|
h->bitmap_mapped = n;
|
|
}
|
|
|
|
void
|
|
__go_enable_gc()
|
|
{
|
|
mstats.enablegc = 1;
|
|
}
|