dddcca1d19
PR rtl-opt/20412 * simplify-rtx.c (simplify_relational_operation_1): Fix typo - check the correct mode. PR rtl-opt/20412 * gcc.c-torture/compile/pr20412.c: New test. From-SVN: r96264
4083 lines
118 KiB
C
4083 lines
118 KiB
C
/* RTL simplification functions for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "tm_p.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "flags.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "toplev.h"
|
||
#include "output.h"
|
||
#include "ggc.h"
|
||
#include "target.h"
|
||
|
||
/* Simplification and canonicalization of RTL. */
|
||
|
||
/* Much code operates on (low, high) pairs; the low value is an
|
||
unsigned wide int, the high value a signed wide int. We
|
||
occasionally need to sign extend from low to high as if low were a
|
||
signed wide int. */
|
||
#define HWI_SIGN_EXTEND(low) \
|
||
((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
|
||
|
||
static rtx neg_const_int (enum machine_mode, rtx);
|
||
static bool plus_minus_operand_p (rtx);
|
||
static int simplify_plus_minus_op_data_cmp (const void *, const void *);
|
||
static rtx simplify_plus_minus (enum rtx_code, enum machine_mode, rtx,
|
||
rtx, int);
|
||
static rtx simplify_immed_subreg (enum machine_mode, rtx, enum machine_mode,
|
||
unsigned int);
|
||
static rtx simplify_associative_operation (enum rtx_code, enum machine_mode,
|
||
rtx, rtx);
|
||
static rtx simplify_relational_operation_1 (enum rtx_code, enum machine_mode,
|
||
enum machine_mode, rtx, rtx);
|
||
static rtx simplify_unary_operation_1 (enum rtx_code, enum machine_mode, rtx);
|
||
static rtx simplify_binary_operation_1 (enum rtx_code, enum machine_mode,
|
||
rtx, rtx, rtx, rtx);
|
||
|
||
/* Negate a CONST_INT rtx, truncating (because a conversion from a
|
||
maximally negative number can overflow). */
|
||
static rtx
|
||
neg_const_int (enum machine_mode mode, rtx i)
|
||
{
|
||
return gen_int_mode (- INTVAL (i), mode);
|
||
}
|
||
|
||
/* Test whether expression, X, is an immediate constant that represents
|
||
the most significant bit of machine mode MODE. */
|
||
|
||
bool
|
||
mode_signbit_p (enum machine_mode mode, rtx x)
|
||
{
|
||
unsigned HOST_WIDE_INT val;
|
||
unsigned int width;
|
||
|
||
if (GET_MODE_CLASS (mode) != MODE_INT)
|
||
return false;
|
||
|
||
width = GET_MODE_BITSIZE (mode);
|
||
if (width == 0)
|
||
return false;
|
||
|
||
if (width <= HOST_BITS_PER_WIDE_INT
|
||
&& GET_CODE (x) == CONST_INT)
|
||
val = INTVAL (x);
|
||
else if (width <= 2 * HOST_BITS_PER_WIDE_INT
|
||
&& GET_CODE (x) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_LOW (x) == 0)
|
||
{
|
||
val = CONST_DOUBLE_HIGH (x);
|
||
width -= HOST_BITS_PER_WIDE_INT;
|
||
}
|
||
else
|
||
return false;
|
||
|
||
if (width < HOST_BITS_PER_WIDE_INT)
|
||
val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
|
||
return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
|
||
}
|
||
|
||
/* Make a binary operation by properly ordering the operands and
|
||
seeing if the expression folds. */
|
||
|
||
rtx
|
||
simplify_gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0,
|
||
rtx op1)
|
||
{
|
||
rtx tem;
|
||
|
||
/* Put complex operands first and constants second if commutative. */
|
||
if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
|
||
&& swap_commutative_operands_p (op0, op1))
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
|
||
/* If this simplifies, do it. */
|
||
tem = simplify_binary_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
|
||
/* Handle addition and subtraction specially. Otherwise, just form
|
||
the operation. */
|
||
|
||
if (code == PLUS || code == MINUS)
|
||
{
|
||
tem = simplify_plus_minus (code, mode, op0, op1, 1);
|
||
if (tem)
|
||
return tem;
|
||
}
|
||
|
||
return gen_rtx_fmt_ee (code, mode, op0, op1);
|
||
}
|
||
|
||
/* If X is a MEM referencing the constant pool, return the real value.
|
||
Otherwise return X. */
|
||
rtx
|
||
avoid_constant_pool_reference (rtx x)
|
||
{
|
||
rtx c, tmp, addr;
|
||
enum machine_mode cmode;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case MEM:
|
||
break;
|
||
|
||
case FLOAT_EXTEND:
|
||
/* Handle float extensions of constant pool references. */
|
||
tmp = XEXP (x, 0);
|
||
c = avoid_constant_pool_reference (tmp);
|
||
if (c != tmp && GET_CODE (c) == CONST_DOUBLE)
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, c);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
|
||
}
|
||
return x;
|
||
|
||
default:
|
||
return x;
|
||
}
|
||
|
||
addr = XEXP (x, 0);
|
||
|
||
/* Call target hook to avoid the effects of -fpic etc.... */
|
||
addr = targetm.delegitimize_address (addr);
|
||
|
||
if (GET_CODE (addr) == LO_SUM)
|
||
addr = XEXP (addr, 1);
|
||
|
||
if (GET_CODE (addr) != SYMBOL_REF
|
||
|| ! CONSTANT_POOL_ADDRESS_P (addr))
|
||
return x;
|
||
|
||
c = get_pool_constant (addr);
|
||
cmode = get_pool_mode (addr);
|
||
|
||
/* If we're accessing the constant in a different mode than it was
|
||
originally stored, attempt to fix that up via subreg simplifications.
|
||
If that fails we have no choice but to return the original memory. */
|
||
if (cmode != GET_MODE (x))
|
||
{
|
||
c = simplify_subreg (GET_MODE (x), c, cmode, 0);
|
||
return c ? c : x;
|
||
}
|
||
|
||
return c;
|
||
}
|
||
|
||
/* Make a unary operation by first seeing if it folds and otherwise making
|
||
the specified operation. */
|
||
|
||
rtx
|
||
simplify_gen_unary (enum rtx_code code, enum machine_mode mode, rtx op,
|
||
enum machine_mode op_mode)
|
||
{
|
||
rtx tem;
|
||
|
||
/* If this simplifies, use it. */
|
||
if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
|
||
return tem;
|
||
|
||
return gen_rtx_fmt_e (code, mode, op);
|
||
}
|
||
|
||
/* Likewise for ternary operations. */
|
||
|
||
rtx
|
||
simplify_gen_ternary (enum rtx_code code, enum machine_mode mode,
|
||
enum machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
|
||
{
|
||
rtx tem;
|
||
|
||
/* If this simplifies, use it. */
|
||
if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
|
||
op0, op1, op2)))
|
||
return tem;
|
||
|
||
return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
|
||
}
|
||
|
||
/* Likewise, for relational operations.
|
||
CMP_MODE specifies mode comparison is done in. */
|
||
|
||
rtx
|
||
simplify_gen_relational (enum rtx_code code, enum machine_mode mode,
|
||
enum machine_mode cmp_mode, rtx op0, rtx op1)
|
||
{
|
||
rtx tem;
|
||
|
||
if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
|
||
op0, op1)))
|
||
return tem;
|
||
|
||
return gen_rtx_fmt_ee (code, mode, op0, op1);
|
||
}
|
||
|
||
/* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
|
||
resulting RTX. Return a new RTX which is as simplified as possible. */
|
||
|
||
rtx
|
||
simplify_replace_rtx (rtx x, rtx old_rtx, rtx new_rtx)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
enum machine_mode mode = GET_MODE (x);
|
||
enum machine_mode op_mode;
|
||
rtx op0, op1, op2;
|
||
|
||
/* If X is OLD_RTX, return NEW_RTX. Otherwise, if this is an expression, try
|
||
to build a new expression substituting recursively. If we can't do
|
||
anything, return our input. */
|
||
|
||
if (x == old_rtx)
|
||
return new_rtx;
|
||
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case RTX_UNARY:
|
||
op0 = XEXP (x, 0);
|
||
op_mode = GET_MODE (op0);
|
||
op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
|
||
if (op0 == XEXP (x, 0))
|
||
return x;
|
||
return simplify_gen_unary (code, mode, op0, op_mode);
|
||
|
||
case RTX_BIN_ARITH:
|
||
case RTX_COMM_ARITH:
|
||
op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
|
||
op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
|
||
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
||
return x;
|
||
return simplify_gen_binary (code, mode, op0, op1);
|
||
|
||
case RTX_COMPARE:
|
||
case RTX_COMM_COMPARE:
|
||
op0 = XEXP (x, 0);
|
||
op1 = XEXP (x, 1);
|
||
op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
|
||
op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
|
||
op1 = simplify_replace_rtx (op1, old_rtx, new_rtx);
|
||
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
||
return x;
|
||
return simplify_gen_relational (code, mode, op_mode, op0, op1);
|
||
|
||
case RTX_TERNARY:
|
||
case RTX_BITFIELD_OPS:
|
||
op0 = XEXP (x, 0);
|
||
op_mode = GET_MODE (op0);
|
||
op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
|
||
op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
|
||
op2 = simplify_replace_rtx (XEXP (x, 2), old_rtx, new_rtx);
|
||
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
|
||
return x;
|
||
if (op_mode == VOIDmode)
|
||
op_mode = GET_MODE (op0);
|
||
return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
|
||
|
||
case RTX_EXTRA:
|
||
/* The only case we try to handle is a SUBREG. */
|
||
if (code == SUBREG)
|
||
{
|
||
op0 = simplify_replace_rtx (SUBREG_REG (x), old_rtx, new_rtx);
|
||
if (op0 == SUBREG_REG (x))
|
||
return x;
|
||
op0 = simplify_gen_subreg (GET_MODE (x), op0,
|
||
GET_MODE (SUBREG_REG (x)),
|
||
SUBREG_BYTE (x));
|
||
return op0 ? op0 : x;
|
||
}
|
||
break;
|
||
|
||
case RTX_OBJ:
|
||
if (code == MEM)
|
||
{
|
||
op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
|
||
if (op0 == XEXP (x, 0))
|
||
return x;
|
||
return replace_equiv_address_nv (x, op0);
|
||
}
|
||
else if (code == LO_SUM)
|
||
{
|
||
op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
|
||
op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
|
||
|
||
/* (lo_sum (high x) x) -> x */
|
||
if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
|
||
return op1;
|
||
|
||
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
||
return x;
|
||
return gen_rtx_LO_SUM (mode, op0, op1);
|
||
}
|
||
else if (code == REG)
|
||
{
|
||
if (rtx_equal_p (x, old_rtx))
|
||
return new_rtx;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return x;
|
||
}
|
||
|
||
/* Try to simplify a unary operation CODE whose output mode is to be
|
||
MODE with input operand OP whose mode was originally OP_MODE.
|
||
Return zero if no simplification can be made. */
|
||
rtx
|
||
simplify_unary_operation (enum rtx_code code, enum machine_mode mode,
|
||
rtx op, enum machine_mode op_mode)
|
||
{
|
||
rtx trueop, tem;
|
||
|
||
if (GET_CODE (op) == CONST)
|
||
op = XEXP (op, 0);
|
||
|
||
trueop = avoid_constant_pool_reference (op);
|
||
|
||
tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
|
||
if (tem)
|
||
return tem;
|
||
|
||
return simplify_unary_operation_1 (code, mode, op);
|
||
}
|
||
|
||
/* Perform some simplifications we can do even if the operands
|
||
aren't constant. */
|
||
static rtx
|
||
simplify_unary_operation_1 (enum rtx_code code, enum machine_mode mode, rtx op)
|
||
{
|
||
enum rtx_code reversed;
|
||
rtx temp;
|
||
|
||
switch (code)
|
||
{
|
||
case NOT:
|
||
/* (not (not X)) == X. */
|
||
if (GET_CODE (op) == NOT)
|
||
return XEXP (op, 0);
|
||
|
||
/* (not (eq X Y)) == (ne X Y), etc. */
|
||
if (COMPARISON_P (op)
|
||
&& (mode == BImode || STORE_FLAG_VALUE == -1)
|
||
&& ((reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN))
|
||
return simplify_gen_relational (reversed, mode, VOIDmode,
|
||
XEXP (op, 0), XEXP (op, 1));
|
||
|
||
/* (not (plus X -1)) can become (neg X). */
|
||
if (GET_CODE (op) == PLUS
|
||
&& XEXP (op, 1) == constm1_rtx)
|
||
return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
|
||
|
||
/* Similarly, (not (neg X)) is (plus X -1). */
|
||
if (GET_CODE (op) == NEG)
|
||
return plus_constant (XEXP (op, 0), -1);
|
||
|
||
/* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
|
||
if (GET_CODE (op) == XOR
|
||
&& GET_CODE (XEXP (op, 1)) == CONST_INT
|
||
&& (temp = simplify_unary_operation (NOT, mode,
|
||
XEXP (op, 1), mode)) != 0)
|
||
return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
|
||
|
||
/* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
|
||
if (GET_CODE (op) == PLUS
|
||
&& GET_CODE (XEXP (op, 1)) == CONST_INT
|
||
&& mode_signbit_p (mode, XEXP (op, 1))
|
||
&& (temp = simplify_unary_operation (NOT, mode,
|
||
XEXP (op, 1), mode)) != 0)
|
||
return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
|
||
|
||
|
||
/* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
|
||
operands other than 1, but that is not valid. We could do a
|
||
similar simplification for (not (lshiftrt C X)) where C is
|
||
just the sign bit, but this doesn't seem common enough to
|
||
bother with. */
|
||
if (GET_CODE (op) == ASHIFT
|
||
&& XEXP (op, 0) == const1_rtx)
|
||
{
|
||
temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
|
||
return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
|
||
}
|
||
|
||
/* If STORE_FLAG_VALUE is -1, (not (comparison X Y)) can be done
|
||
by reversing the comparison code if valid. */
|
||
if (STORE_FLAG_VALUE == -1
|
||
&& COMPARISON_P (op)
|
||
&& (reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN)
|
||
return simplify_gen_relational (reversed, mode, VOIDmode,
|
||
XEXP (op, 0), XEXP (op, 1));
|
||
|
||
/* (not (ashiftrt foo C)) where C is the number of bits in FOO
|
||
minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
|
||
so we can perform the above simplification. */
|
||
|
||
if (STORE_FLAG_VALUE == -1
|
||
&& GET_CODE (op) == ASHIFTRT
|
||
&& GET_CODE (XEXP (op, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
|
||
return simplify_gen_relational (GE, mode, VOIDmode,
|
||
XEXP (op, 0), const0_rtx);
|
||
|
||
break;
|
||
|
||
case NEG:
|
||
/* (neg (neg X)) == X. */
|
||
if (GET_CODE (op) == NEG)
|
||
return XEXP (op, 0);
|
||
|
||
/* (neg (plus X 1)) can become (not X). */
|
||
if (GET_CODE (op) == PLUS
|
||
&& XEXP (op, 1) == const1_rtx)
|
||
return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
|
||
|
||
/* Similarly, (neg (not X)) is (plus X 1). */
|
||
if (GET_CODE (op) == NOT)
|
||
return plus_constant (XEXP (op, 0), 1);
|
||
|
||
/* (neg (minus X Y)) can become (minus Y X). This transformation
|
||
isn't safe for modes with signed zeros, since if X and Y are
|
||
both +0, (minus Y X) is the same as (minus X Y). If the
|
||
rounding mode is towards +infinity (or -infinity) then the two
|
||
expressions will be rounded differently. */
|
||
if (GET_CODE (op) == MINUS
|
||
&& !HONOR_SIGNED_ZEROS (mode)
|
||
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
|
||
return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
|
||
|
||
if (GET_CODE (op) == PLUS
|
||
&& !HONOR_SIGNED_ZEROS (mode)
|
||
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
|
||
{
|
||
/* (neg (plus A C)) is simplified to (minus -C A). */
|
||
if (GET_CODE (XEXP (op, 1)) == CONST_INT
|
||
|| GET_CODE (XEXP (op, 1)) == CONST_DOUBLE)
|
||
{
|
||
temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
|
||
if (temp)
|
||
return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
|
||
}
|
||
|
||
/* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
|
||
temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
|
||
return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
|
||
}
|
||
|
||
/* (neg (mult A B)) becomes (mult (neg A) B).
|
||
This works even for floating-point values. */
|
||
if (GET_CODE (op) == MULT
|
||
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
|
||
{
|
||
temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
|
||
return simplify_gen_binary (MULT, mode, temp, XEXP (op, 1));
|
||
}
|
||
|
||
/* NEG commutes with ASHIFT since it is multiplication. Only do
|
||
this if we can then eliminate the NEG (e.g., if the operand
|
||
is a constant). */
|
||
if (GET_CODE (op) == ASHIFT)
|
||
{
|
||
temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
|
||
if (temp)
|
||
return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
|
||
}
|
||
|
||
/* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
|
||
C is equal to the width of MODE minus 1. */
|
||
if (GET_CODE (op) == ASHIFTRT
|
||
&& GET_CODE (XEXP (op, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
|
||
return simplify_gen_binary (LSHIFTRT, mode,
|
||
XEXP (op, 0), XEXP (op, 1));
|
||
|
||
/* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
|
||
C is equal to the width of MODE minus 1. */
|
||
if (GET_CODE (op) == LSHIFTRT
|
||
&& GET_CODE (XEXP (op, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
|
||
return simplify_gen_binary (ASHIFTRT, mode,
|
||
XEXP (op, 0), XEXP (op, 1));
|
||
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
/* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
|
||
becomes just the MINUS if its mode is MODE. This allows
|
||
folding switch statements on machines using casesi (such as
|
||
the VAX). */
|
||
if (GET_CODE (op) == TRUNCATE
|
||
&& GET_MODE (XEXP (op, 0)) == mode
|
||
&& GET_CODE (XEXP (op, 0)) == MINUS
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
|
||
return XEXP (op, 0);
|
||
|
||
/* Check for a sign extension of a subreg of a promoted
|
||
variable, where the promotion is sign-extended, and the
|
||
target mode is the same as the variable's promotion. */
|
||
if (GET_CODE (op) == SUBREG
|
||
&& SUBREG_PROMOTED_VAR_P (op)
|
||
&& ! SUBREG_PROMOTED_UNSIGNED_P (op)
|
||
&& GET_MODE (XEXP (op, 0)) == mode)
|
||
return XEXP (op, 0);
|
||
|
||
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
|
||
if (! POINTERS_EXTEND_UNSIGNED
|
||
&& mode == Pmode && GET_MODE (op) == ptr_mode
|
||
&& (CONSTANT_P (op)
|
||
|| (GET_CODE (op) == SUBREG
|
||
&& REG_P (SUBREG_REG (op))
|
||
&& REG_POINTER (SUBREG_REG (op))
|
||
&& GET_MODE (SUBREG_REG (op)) == Pmode)))
|
||
return convert_memory_address (Pmode, op);
|
||
#endif
|
||
break;
|
||
|
||
case ZERO_EXTEND:
|
||
/* Check for a zero extension of a subreg of a promoted
|
||
variable, where the promotion is zero-extended, and the
|
||
target mode is the same as the variable's promotion. */
|
||
if (GET_CODE (op) == SUBREG
|
||
&& SUBREG_PROMOTED_VAR_P (op)
|
||
&& SUBREG_PROMOTED_UNSIGNED_P (op)
|
||
&& GET_MODE (XEXP (op, 0)) == mode)
|
||
return XEXP (op, 0);
|
||
|
||
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
|
||
if (POINTERS_EXTEND_UNSIGNED > 0
|
||
&& mode == Pmode && GET_MODE (op) == ptr_mode
|
||
&& (CONSTANT_P (op)
|
||
|| (GET_CODE (op) == SUBREG
|
||
&& REG_P (SUBREG_REG (op))
|
||
&& REG_POINTER (SUBREG_REG (op))
|
||
&& GET_MODE (SUBREG_REG (op)) == Pmode)))
|
||
return convert_memory_address (Pmode, op);
|
||
#endif
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Try to compute the value of a unary operation CODE whose output mode is to
|
||
be MODE with input operand OP whose mode was originally OP_MODE.
|
||
Return zero if the value cannot be computed. */
|
||
rtx
|
||
simplify_const_unary_operation (enum rtx_code code, enum machine_mode mode,
|
||
rtx op, enum machine_mode op_mode)
|
||
{
|
||
unsigned int width = GET_MODE_BITSIZE (mode);
|
||
|
||
if (code == VEC_DUPLICATE)
|
||
{
|
||
gcc_assert (VECTOR_MODE_P (mode));
|
||
if (GET_MODE (op) != VOIDmode)
|
||
{
|
||
if (!VECTOR_MODE_P (GET_MODE (op)))
|
||
gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
|
||
else
|
||
gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
|
||
(GET_MODE (op)));
|
||
}
|
||
if (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
|
||
|| GET_CODE (op) == CONST_VECTOR)
|
||
{
|
||
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
||
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
unsigned int i;
|
||
|
||
if (GET_CODE (op) != CONST_VECTOR)
|
||
for (i = 0; i < n_elts; i++)
|
||
RTVEC_ELT (v, i) = op;
|
||
else
|
||
{
|
||
enum machine_mode inmode = GET_MODE (op);
|
||
int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
|
||
unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
|
||
|
||
gcc_assert (in_n_elts < n_elts);
|
||
gcc_assert ((n_elts % in_n_elts) == 0);
|
||
for (i = 0; i < n_elts; i++)
|
||
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
|
||
}
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
}
|
||
|
||
if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
|
||
{
|
||
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
||
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
||
enum machine_mode opmode = GET_MODE (op);
|
||
int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
|
||
unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
unsigned int i;
|
||
|
||
gcc_assert (op_n_elts == n_elts);
|
||
for (i = 0; i < n_elts; i++)
|
||
{
|
||
rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
|
||
CONST_VECTOR_ELT (op, i),
|
||
GET_MODE_INNER (opmode));
|
||
if (!x)
|
||
return 0;
|
||
RTVEC_ELT (v, i) = x;
|
||
}
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
|
||
/* The order of these tests is critical so that, for example, we don't
|
||
check the wrong mode (input vs. output) for a conversion operation,
|
||
such as FIX. At some point, this should be simplified. */
|
||
|
||
if (code == FLOAT && GET_MODE (op) == VOIDmode
|
||
&& (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
|
||
{
|
||
HOST_WIDE_INT hv, lv;
|
||
REAL_VALUE_TYPE d;
|
||
|
||
if (GET_CODE (op) == CONST_INT)
|
||
lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
|
||
else
|
||
lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
|
||
|
||
REAL_VALUE_FROM_INT (d, lv, hv, mode);
|
||
d = real_value_truncate (mode, d);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
||
}
|
||
else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
|
||
&& (GET_CODE (op) == CONST_DOUBLE
|
||
|| GET_CODE (op) == CONST_INT))
|
||
{
|
||
HOST_WIDE_INT hv, lv;
|
||
REAL_VALUE_TYPE d;
|
||
|
||
if (GET_CODE (op) == CONST_INT)
|
||
lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
|
||
else
|
||
lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
|
||
|
||
if (op_mode == VOIDmode)
|
||
{
|
||
/* We don't know how to interpret negative-looking numbers in
|
||
this case, so don't try to fold those. */
|
||
if (hv < 0)
|
||
return 0;
|
||
}
|
||
else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
|
||
;
|
||
else
|
||
hv = 0, lv &= GET_MODE_MASK (op_mode);
|
||
|
||
REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
|
||
d = real_value_truncate (mode, d);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
||
}
|
||
|
||
if (GET_CODE (op) == CONST_INT
|
||
&& width <= HOST_BITS_PER_WIDE_INT && width > 0)
|
||
{
|
||
HOST_WIDE_INT arg0 = INTVAL (op);
|
||
HOST_WIDE_INT val;
|
||
|
||
switch (code)
|
||
{
|
||
case NOT:
|
||
val = ~ arg0;
|
||
break;
|
||
|
||
case NEG:
|
||
val = - arg0;
|
||
break;
|
||
|
||
case ABS:
|
||
val = (arg0 >= 0 ? arg0 : - arg0);
|
||
break;
|
||
|
||
case FFS:
|
||
/* Don't use ffs here. Instead, get low order bit and then its
|
||
number. If arg0 is zero, this will return 0, as desired. */
|
||
arg0 &= GET_MODE_MASK (mode);
|
||
val = exact_log2 (arg0 & (- arg0)) + 1;
|
||
break;
|
||
|
||
case CLZ:
|
||
arg0 &= GET_MODE_MASK (mode);
|
||
if (arg0 == 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode, val))
|
||
;
|
||
else
|
||
val = GET_MODE_BITSIZE (mode) - floor_log2 (arg0) - 1;
|
||
break;
|
||
|
||
case CTZ:
|
||
arg0 &= GET_MODE_MASK (mode);
|
||
if (arg0 == 0)
|
||
{
|
||
/* Even if the value at zero is undefined, we have to come
|
||
up with some replacement. Seems good enough. */
|
||
if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, val))
|
||
val = GET_MODE_BITSIZE (mode);
|
||
}
|
||
else
|
||
val = exact_log2 (arg0 & -arg0);
|
||
break;
|
||
|
||
case POPCOUNT:
|
||
arg0 &= GET_MODE_MASK (mode);
|
||
val = 0;
|
||
while (arg0)
|
||
val++, arg0 &= arg0 - 1;
|
||
break;
|
||
|
||
case PARITY:
|
||
arg0 &= GET_MODE_MASK (mode);
|
||
val = 0;
|
||
while (arg0)
|
||
val++, arg0 &= arg0 - 1;
|
||
val &= 1;
|
||
break;
|
||
|
||
case TRUNCATE:
|
||
val = arg0;
|
||
break;
|
||
|
||
case ZERO_EXTEND:
|
||
/* When zero-extending a CONST_INT, we need to know its
|
||
original mode. */
|
||
gcc_assert (op_mode != VOIDmode);
|
||
if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
/* If we were really extending the mode,
|
||
we would have to distinguish between zero-extension
|
||
and sign-extension. */
|
||
gcc_assert (width == GET_MODE_BITSIZE (op_mode));
|
||
val = arg0;
|
||
}
|
||
else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
|
||
val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
|
||
else
|
||
return 0;
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
if (op_mode == VOIDmode)
|
||
op_mode = mode;
|
||
if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
/* If we were really extending the mode,
|
||
we would have to distinguish between zero-extension
|
||
and sign-extension. */
|
||
gcc_assert (width == GET_MODE_BITSIZE (op_mode));
|
||
val = arg0;
|
||
}
|
||
else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
val
|
||
= arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
|
||
if (val
|
||
& ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
|
||
val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
|
||
}
|
||
else
|
||
return 0;
|
||
break;
|
||
|
||
case SQRT:
|
||
case FLOAT_EXTEND:
|
||
case FLOAT_TRUNCATE:
|
||
case SS_TRUNCATE:
|
||
case US_TRUNCATE:
|
||
return 0;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return gen_int_mode (val, mode);
|
||
}
|
||
|
||
/* We can do some operations on integer CONST_DOUBLEs. Also allow
|
||
for a DImode operation on a CONST_INT. */
|
||
else if (GET_MODE (op) == VOIDmode
|
||
&& width <= HOST_BITS_PER_WIDE_INT * 2
|
||
&& (GET_CODE (op) == CONST_DOUBLE
|
||
|| GET_CODE (op) == CONST_INT))
|
||
{
|
||
unsigned HOST_WIDE_INT l1, lv;
|
||
HOST_WIDE_INT h1, hv;
|
||
|
||
if (GET_CODE (op) == CONST_DOUBLE)
|
||
l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
|
||
else
|
||
l1 = INTVAL (op), h1 = HWI_SIGN_EXTEND (l1);
|
||
|
||
switch (code)
|
||
{
|
||
case NOT:
|
||
lv = ~ l1;
|
||
hv = ~ h1;
|
||
break;
|
||
|
||
case NEG:
|
||
neg_double (l1, h1, &lv, &hv);
|
||
break;
|
||
|
||
case ABS:
|
||
if (h1 < 0)
|
||
neg_double (l1, h1, &lv, &hv);
|
||
else
|
||
lv = l1, hv = h1;
|
||
break;
|
||
|
||
case FFS:
|
||
hv = 0;
|
||
if (l1 == 0)
|
||
{
|
||
if (h1 == 0)
|
||
lv = 0;
|
||
else
|
||
lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1) + 1;
|
||
}
|
||
else
|
||
lv = exact_log2 (l1 & -l1) + 1;
|
||
break;
|
||
|
||
case CLZ:
|
||
hv = 0;
|
||
if (h1 != 0)
|
||
lv = GET_MODE_BITSIZE (mode) - floor_log2 (h1) - 1
|
||
- HOST_BITS_PER_WIDE_INT;
|
||
else if (l1 != 0)
|
||
lv = GET_MODE_BITSIZE (mode) - floor_log2 (l1) - 1;
|
||
else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, lv))
|
||
lv = GET_MODE_BITSIZE (mode);
|
||
break;
|
||
|
||
case CTZ:
|
||
hv = 0;
|
||
if (l1 != 0)
|
||
lv = exact_log2 (l1 & -l1);
|
||
else if (h1 != 0)
|
||
lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1);
|
||
else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, lv))
|
||
lv = GET_MODE_BITSIZE (mode);
|
||
break;
|
||
|
||
case POPCOUNT:
|
||
hv = 0;
|
||
lv = 0;
|
||
while (l1)
|
||
lv++, l1 &= l1 - 1;
|
||
while (h1)
|
||
lv++, h1 &= h1 - 1;
|
||
break;
|
||
|
||
case PARITY:
|
||
hv = 0;
|
||
lv = 0;
|
||
while (l1)
|
||
lv++, l1 &= l1 - 1;
|
||
while (h1)
|
||
lv++, h1 &= h1 - 1;
|
||
lv &= 1;
|
||
break;
|
||
|
||
case TRUNCATE:
|
||
/* This is just a change-of-mode, so do nothing. */
|
||
lv = l1, hv = h1;
|
||
break;
|
||
|
||
case ZERO_EXTEND:
|
||
gcc_assert (op_mode != VOIDmode);
|
||
|
||
if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
|
||
return 0;
|
||
|
||
hv = 0;
|
||
lv = l1 & GET_MODE_MASK (op_mode);
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
if (op_mode == VOIDmode
|
||
|| GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
|
||
return 0;
|
||
else
|
||
{
|
||
lv = l1 & GET_MODE_MASK (op_mode);
|
||
if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
|
||
&& (lv & ((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
|
||
lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
|
||
|
||
hv = HWI_SIGN_EXTEND (lv);
|
||
}
|
||
break;
|
||
|
||
case SQRT:
|
||
return 0;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
return immed_double_const (lv, hv, mode);
|
||
}
|
||
|
||
else if (GET_CODE (op) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (mode) == MODE_FLOAT)
|
||
{
|
||
REAL_VALUE_TYPE d, t;
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
|
||
|
||
switch (code)
|
||
{
|
||
case SQRT:
|
||
if (HONOR_SNANS (mode) && real_isnan (&d))
|
||
return 0;
|
||
real_sqrt (&t, mode, &d);
|
||
d = t;
|
||
break;
|
||
case ABS:
|
||
d = REAL_VALUE_ABS (d);
|
||
break;
|
||
case NEG:
|
||
d = REAL_VALUE_NEGATE (d);
|
||
break;
|
||
case FLOAT_TRUNCATE:
|
||
d = real_value_truncate (mode, d);
|
||
break;
|
||
case FLOAT_EXTEND:
|
||
/* All this does is change the mode. */
|
||
break;
|
||
case FIX:
|
||
real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
|
||
break;
|
||
case NOT:
|
||
{
|
||
long tmp[4];
|
||
int i;
|
||
|
||
real_to_target (tmp, &d, GET_MODE (op));
|
||
for (i = 0; i < 4; i++)
|
||
tmp[i] = ~tmp[i];
|
||
real_from_target (&d, tmp, mode);
|
||
break;
|
||
}
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
||
}
|
||
|
||
else if (GET_CODE (op) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& width <= 2*HOST_BITS_PER_WIDE_INT && width > 0)
|
||
{
|
||
/* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
|
||
operators are intentionally left unspecified (to ease implementation
|
||
by target backends), for consistency, this routine implements the
|
||
same semantics for constant folding as used by the middle-end. */
|
||
|
||
/* This was formerly used only for non-IEEE float.
|
||
eggert@twinsun.com says it is safe for IEEE also. */
|
||
HOST_WIDE_INT xh, xl, th, tl;
|
||
REAL_VALUE_TYPE x, t;
|
||
REAL_VALUE_FROM_CONST_DOUBLE (x, op);
|
||
switch (code)
|
||
{
|
||
case FIX:
|
||
if (REAL_VALUE_ISNAN (x))
|
||
return const0_rtx;
|
||
|
||
/* Test against the signed upper bound. */
|
||
if (width > HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
th = ((unsigned HOST_WIDE_INT) 1
|
||
<< (width - HOST_BITS_PER_WIDE_INT - 1)) - 1;
|
||
tl = -1;
|
||
}
|
||
else
|
||
{
|
||
th = 0;
|
||
tl = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
|
||
}
|
||
real_from_integer (&t, VOIDmode, tl, th, 0);
|
||
if (REAL_VALUES_LESS (t, x))
|
||
{
|
||
xh = th;
|
||
xl = tl;
|
||
break;
|
||
}
|
||
|
||
/* Test against the signed lower bound. */
|
||
if (width > HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
th = (HOST_WIDE_INT) -1 << (width - HOST_BITS_PER_WIDE_INT - 1);
|
||
tl = 0;
|
||
}
|
||
else
|
||
{
|
||
th = -1;
|
||
tl = (HOST_WIDE_INT) -1 << (width - 1);
|
||
}
|
||
real_from_integer (&t, VOIDmode, tl, th, 0);
|
||
if (REAL_VALUES_LESS (x, t))
|
||
{
|
||
xh = th;
|
||
xl = tl;
|
||
break;
|
||
}
|
||
REAL_VALUE_TO_INT (&xl, &xh, x);
|
||
break;
|
||
|
||
case UNSIGNED_FIX:
|
||
if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
|
||
return const0_rtx;
|
||
|
||
/* Test against the unsigned upper bound. */
|
||
if (width == 2*HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
th = -1;
|
||
tl = -1;
|
||
}
|
||
else if (width >= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
th = ((unsigned HOST_WIDE_INT) 1
|
||
<< (width - HOST_BITS_PER_WIDE_INT)) - 1;
|
||
tl = -1;
|
||
}
|
||
else
|
||
{
|
||
th = 0;
|
||
tl = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
|
||
}
|
||
real_from_integer (&t, VOIDmode, tl, th, 1);
|
||
if (REAL_VALUES_LESS (t, x))
|
||
{
|
||
xh = th;
|
||
xl = tl;
|
||
break;
|
||
}
|
||
|
||
REAL_VALUE_TO_INT (&xl, &xh, x);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
return immed_double_const (xl, xh, mode);
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Subroutine of simplify_binary_operation to simplify a commutative,
|
||
associative binary operation CODE with result mode MODE, operating
|
||
on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
|
||
SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
|
||
canonicalization is possible. */
|
||
|
||
static rtx
|
||
simplify_associative_operation (enum rtx_code code, enum machine_mode mode,
|
||
rtx op0, rtx op1)
|
||
{
|
||
rtx tem;
|
||
|
||
/* Linearize the operator to the left. */
|
||
if (GET_CODE (op1) == code)
|
||
{
|
||
/* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
|
||
if (GET_CODE (op0) == code)
|
||
{
|
||
tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
|
||
return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
|
||
}
|
||
|
||
/* "a op (b op c)" becomes "(b op c) op a". */
|
||
if (! swap_commutative_operands_p (op1, op0))
|
||
return simplify_gen_binary (code, mode, op1, op0);
|
||
|
||
tem = op0;
|
||
op0 = op1;
|
||
op1 = tem;
|
||
}
|
||
|
||
if (GET_CODE (op0) == code)
|
||
{
|
||
/* Canonicalize "(x op c) op y" as "(x op y) op c". */
|
||
if (swap_commutative_operands_p (XEXP (op0, 1), op1))
|
||
{
|
||
tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
|
||
return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
|
||
}
|
||
|
||
/* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
|
||
tem = swap_commutative_operands_p (XEXP (op0, 1), op1)
|
||
? simplify_binary_operation (code, mode, op1, XEXP (op0, 1))
|
||
: simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
|
||
if (tem != 0)
|
||
return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
|
||
|
||
/* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
|
||
tem = swap_commutative_operands_p (XEXP (op0, 0), op1)
|
||
? simplify_binary_operation (code, mode, op1, XEXP (op0, 0))
|
||
: simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
|
||
if (tem != 0)
|
||
return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Simplify a binary operation CODE with result mode MODE, operating on OP0
|
||
and OP1. Return 0 if no simplification is possible.
|
||
|
||
Don't use this for relational operations such as EQ or LT.
|
||
Use simplify_relational_operation instead. */
|
||
rtx
|
||
simplify_binary_operation (enum rtx_code code, enum machine_mode mode,
|
||
rtx op0, rtx op1)
|
||
{
|
||
rtx trueop0, trueop1;
|
||
rtx tem;
|
||
|
||
/* Relational operations don't work here. We must know the mode
|
||
of the operands in order to do the comparison correctly.
|
||
Assuming a full word can give incorrect results.
|
||
Consider comparing 128 with -128 in QImode. */
|
||
gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
|
||
gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
|
||
|
||
/* Make sure the constant is second. */
|
||
if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
|
||
&& swap_commutative_operands_p (op0, op1))
|
||
{
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
}
|
||
|
||
trueop0 = avoid_constant_pool_reference (op0);
|
||
trueop1 = avoid_constant_pool_reference (op1);
|
||
|
||
tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
|
||
if (tem)
|
||
return tem;
|
||
return simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
|
||
}
|
||
|
||
static rtx
|
||
simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
|
||
rtx op0, rtx op1, rtx trueop0, rtx trueop1)
|
||
{
|
||
rtx tem;
|
||
HOST_WIDE_INT val;
|
||
unsigned int width = GET_MODE_BITSIZE (mode);
|
||
|
||
/* Even if we can't compute a constant result,
|
||
there are some cases worth simplifying. */
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
/* Maybe simplify x + 0 to x. The two expressions are equivalent
|
||
when x is NaN, infinite, or finite and nonzero. They aren't
|
||
when x is -0 and the rounding mode is not towards -infinity,
|
||
since (-0) + 0 is then 0. */
|
||
if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
|
||
/* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
|
||
transformations are safe even for IEEE. */
|
||
if (GET_CODE (op0) == NEG)
|
||
return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
|
||
else if (GET_CODE (op1) == NEG)
|
||
return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
|
||
|
||
/* (~a) + 1 -> -a */
|
||
if (INTEGRAL_MODE_P (mode)
|
||
&& GET_CODE (op0) == NOT
|
||
&& trueop1 == const1_rtx)
|
||
return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
|
||
|
||
/* Handle both-operands-constant cases. We can only add
|
||
CONST_INTs to constants since the sum of relocatable symbols
|
||
can't be handled by most assemblers. Don't add CONST_INT
|
||
to CONST_INT since overflow won't be computed properly if wider
|
||
than HOST_BITS_PER_WIDE_INT. */
|
||
|
||
if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
|
||
&& GET_CODE (op1) == CONST_INT)
|
||
return plus_constant (op0, INTVAL (op1));
|
||
else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
|
||
&& GET_CODE (op0) == CONST_INT)
|
||
return plus_constant (op1, INTVAL (op0));
|
||
|
||
/* See if this is something like X * C - X or vice versa or
|
||
if the multiplication is written as a shift. If so, we can
|
||
distribute and make a new multiply, shift, or maybe just
|
||
have X (if C is 2 in the example above). But don't make
|
||
something more expensive than we had before. */
|
||
|
||
if (! FLOAT_MODE_P (mode))
|
||
{
|
||
HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
|
||
rtx lhs = op0, rhs = op1;
|
||
|
||
if (GET_CODE (lhs) == NEG)
|
||
coeff0 = -1, lhs = XEXP (lhs, 0);
|
||
else if (GET_CODE (lhs) == MULT
|
||
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT)
|
||
coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
|
||
else if (GET_CODE (lhs) == ASHIFT
|
||
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (lhs, 1)) >= 0
|
||
&& INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
|
||
lhs = XEXP (lhs, 0);
|
||
}
|
||
|
||
if (GET_CODE (rhs) == NEG)
|
||
coeff1 = -1, rhs = XEXP (rhs, 0);
|
||
else if (GET_CODE (rhs) == MULT
|
||
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT)
|
||
{
|
||
coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
|
||
}
|
||
else if (GET_CODE (rhs) == ASHIFT
|
||
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (rhs, 1)) >= 0
|
||
&& INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
|
||
rhs = XEXP (rhs, 0);
|
||
}
|
||
|
||
if (rtx_equal_p (lhs, rhs))
|
||
{
|
||
rtx orig = gen_rtx_PLUS (mode, op0, op1);
|
||
tem = simplify_gen_binary (MULT, mode, lhs,
|
||
GEN_INT (coeff0 + coeff1));
|
||
return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
|
||
? tem : 0;
|
||
}
|
||
}
|
||
|
||
/* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
|
||
if ((GET_CODE (op1) == CONST_INT
|
||
|| GET_CODE (op1) == CONST_DOUBLE)
|
||
&& GET_CODE (op0) == XOR
|
||
&& (GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
|| GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
|
||
&& mode_signbit_p (mode, op1))
|
||
return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
|
||
simplify_gen_binary (XOR, mode, op1,
|
||
XEXP (op0, 1)));
|
||
|
||
/* If one of the operands is a PLUS or a MINUS, see if we can
|
||
simplify this by the associative law.
|
||
Don't use the associative law for floating point.
|
||
The inaccuracy makes it nonassociative,
|
||
and subtle programs can break if operations are associated. */
|
||
|
||
if (INTEGRAL_MODE_P (mode)
|
||
&& (plus_minus_operand_p (op0)
|
||
|| plus_minus_operand_p (op1))
|
||
&& (tem = simplify_plus_minus (code, mode, op0, op1, 0)) != 0)
|
||
return tem;
|
||
|
||
/* Reassociate floating point addition only when the user
|
||
specifies unsafe math optimizations. */
|
||
if (FLOAT_MODE_P (mode)
|
||
&& flag_unsafe_math_optimizations)
|
||
{
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
}
|
||
break;
|
||
|
||
case COMPARE:
|
||
#ifdef HAVE_cc0
|
||
/* Convert (compare FOO (const_int 0)) to FOO unless we aren't
|
||
using cc0, in which case we want to leave it as a COMPARE
|
||
so we can distinguish it from a register-register-copy.
|
||
|
||
In IEEE floating point, x-0 is not the same as x. */
|
||
|
||
if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|
||
|| ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
|
||
&& trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
#endif
|
||
|
||
/* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
|
||
if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
|
||
|| (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
|
||
&& XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
|
||
{
|
||
rtx xop00 = XEXP (op0, 0);
|
||
rtx xop10 = XEXP (op1, 0);
|
||
|
||
#ifdef HAVE_cc0
|
||
if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
|
||
#else
|
||
if (REG_P (xop00) && REG_P (xop10)
|
||
&& GET_MODE (xop00) == GET_MODE (xop10)
|
||
&& REGNO (xop00) == REGNO (xop10)
|
||
&& GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
|
||
&& GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
|
||
#endif
|
||
return xop00;
|
||
}
|
||
break;
|
||
|
||
case MINUS:
|
||
/* We can't assume x-x is 0 even with non-IEEE floating point,
|
||
but since it is zero except in very strange circumstances, we
|
||
will treat it as zero with -funsafe-math-optimizations. */
|
||
if (rtx_equal_p (trueop0, trueop1)
|
||
&& ! side_effects_p (op0)
|
||
&& (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations))
|
||
return CONST0_RTX (mode);
|
||
|
||
/* Change subtraction from zero into negation. (0 - x) is the
|
||
same as -x when x is NaN, infinite, or finite and nonzero.
|
||
But if the mode has signed zeros, and does not round towards
|
||
-infinity, then 0 - 0 is 0, not -0. */
|
||
if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
|
||
return simplify_gen_unary (NEG, mode, op1, mode);
|
||
|
||
/* (-1 - a) is ~a. */
|
||
if (trueop0 == constm1_rtx)
|
||
return simplify_gen_unary (NOT, mode, op1, mode);
|
||
|
||
/* Subtracting 0 has no effect unless the mode has signed zeros
|
||
and supports rounding towards -infinity. In such a case,
|
||
0 - 0 is -0. */
|
||
if (!(HONOR_SIGNED_ZEROS (mode)
|
||
&& HONOR_SIGN_DEPENDENT_ROUNDING (mode))
|
||
&& trueop1 == CONST0_RTX (mode))
|
||
return op0;
|
||
|
||
/* See if this is something like X * C - X or vice versa or
|
||
if the multiplication is written as a shift. If so, we can
|
||
distribute and make a new multiply, shift, or maybe just
|
||
have X (if C is 2 in the example above). But don't make
|
||
something more expensive than we had before. */
|
||
|
||
if (! FLOAT_MODE_P (mode))
|
||
{
|
||
HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
|
||
rtx lhs = op0, rhs = op1;
|
||
|
||
if (GET_CODE (lhs) == NEG)
|
||
coeff0 = -1, lhs = XEXP (lhs, 0);
|
||
else if (GET_CODE (lhs) == MULT
|
||
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT)
|
||
{
|
||
coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
|
||
}
|
||
else if (GET_CODE (lhs) == ASHIFT
|
||
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (lhs, 1)) >= 0
|
||
&& INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
|
||
lhs = XEXP (lhs, 0);
|
||
}
|
||
|
||
if (GET_CODE (rhs) == NEG)
|
||
coeff1 = - 1, rhs = XEXP (rhs, 0);
|
||
else if (GET_CODE (rhs) == MULT
|
||
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT)
|
||
{
|
||
coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
|
||
}
|
||
else if (GET_CODE (rhs) == ASHIFT
|
||
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (rhs, 1)) >= 0
|
||
&& INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
|
||
rhs = XEXP (rhs, 0);
|
||
}
|
||
|
||
if (rtx_equal_p (lhs, rhs))
|
||
{
|
||
rtx orig = gen_rtx_MINUS (mode, op0, op1);
|
||
tem = simplify_gen_binary (MULT, mode, lhs,
|
||
GEN_INT (coeff0 - coeff1));
|
||
return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
|
||
? tem : 0;
|
||
}
|
||
}
|
||
|
||
/* (a - (-b)) -> (a + b). True even for IEEE. */
|
||
if (GET_CODE (op1) == NEG)
|
||
return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
|
||
|
||
/* (-x - c) may be simplified as (-c - x). */
|
||
if (GET_CODE (op0) == NEG
|
||
&& (GET_CODE (op1) == CONST_INT
|
||
|| GET_CODE (op1) == CONST_DOUBLE))
|
||
{
|
||
tem = simplify_unary_operation (NEG, mode, op1, mode);
|
||
if (tem)
|
||
return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
|
||
}
|
||
|
||
/* If one of the operands is a PLUS or a MINUS, see if we can
|
||
simplify this by the associative law.
|
||
Don't use the associative law for floating point.
|
||
The inaccuracy makes it nonassociative,
|
||
and subtle programs can break if operations are associated. */
|
||
|
||
if (INTEGRAL_MODE_P (mode)
|
||
&& (plus_minus_operand_p (op0)
|
||
|| plus_minus_operand_p (op1))
|
||
&& (tem = simplify_plus_minus (code, mode, op0, op1, 0)) != 0)
|
||
return tem;
|
||
|
||
/* Don't let a relocatable value get a negative coeff. */
|
||
if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
|
||
return simplify_gen_binary (PLUS, mode,
|
||
op0,
|
||
neg_const_int (mode, op1));
|
||
|
||
/* (x - (x & y)) -> (x & ~y) */
|
||
if (GET_CODE (op1) == AND)
|
||
{
|
||
if (rtx_equal_p (op0, XEXP (op1, 0)))
|
||
{
|
||
tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
|
||
GET_MODE (XEXP (op1, 1)));
|
||
return simplify_gen_binary (AND, mode, op0, tem);
|
||
}
|
||
if (rtx_equal_p (op0, XEXP (op1, 1)))
|
||
{
|
||
tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
|
||
GET_MODE (XEXP (op1, 0)));
|
||
return simplify_gen_binary (AND, mode, op0, tem);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case MULT:
|
||
if (trueop1 == constm1_rtx)
|
||
return simplify_gen_unary (NEG, mode, op0, mode);
|
||
|
||
/* Maybe simplify x * 0 to 0. The reduction is not valid if
|
||
x is NaN, since x * 0 is then also NaN. Nor is it valid
|
||
when the mode has signed zeros, since multiplying a negative
|
||
number by 0 will give -0, not 0. */
|
||
if (!HONOR_NANS (mode)
|
||
&& !HONOR_SIGNED_ZEROS (mode)
|
||
&& trueop1 == CONST0_RTX (mode)
|
||
&& ! side_effects_p (op0))
|
||
return op1;
|
||
|
||
/* In IEEE floating point, x*1 is not equivalent to x for
|
||
signalling NaNs. */
|
||
if (!HONOR_SNANS (mode)
|
||
&& trueop1 == CONST1_RTX (mode))
|
||
return op0;
|
||
|
||
/* Convert multiply by constant power of two into shift unless
|
||
we are still generating RTL. This test is a kludge. */
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& (val = exact_log2 (INTVAL (trueop1))) >= 0
|
||
/* If the mode is larger than the host word size, and the
|
||
uppermost bit is set, then this isn't a power of two due
|
||
to implicit sign extension. */
|
||
&& (width <= HOST_BITS_PER_WIDE_INT
|
||
|| val != HOST_BITS_PER_WIDE_INT - 1))
|
||
return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
|
||
|
||
/* x*2 is x+x and x*(-1) is -x */
|
||
if (GET_CODE (trueop1) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_FLOAT
|
||
&& GET_MODE (op0) == mode)
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
|
||
|
||
if (REAL_VALUES_EQUAL (d, dconst2))
|
||
return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
|
||
|
||
if (REAL_VALUES_EQUAL (d, dconstm1))
|
||
return simplify_gen_unary (NEG, mode, op0, mode);
|
||
}
|
||
|
||
/* Reassociate multiplication, but for floating point MULTs
|
||
only when the user specifies unsafe math optimizations. */
|
||
if (! FLOAT_MODE_P (mode)
|
||
|| flag_unsafe_math_optimizations)
|
||
{
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
}
|
||
break;
|
||
|
||
case IOR:
|
||
if (trueop1 == const0_rtx)
|
||
return op0;
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& ((INTVAL (trueop1) & GET_MODE_MASK (mode))
|
||
== GET_MODE_MASK (mode)))
|
||
return op1;
|
||
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
/* A | (~A) -> -1 */
|
||
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|
||
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
|
||
&& ! side_effects_p (op0)
|
||
&& GET_MODE_CLASS (mode) != MODE_CC)
|
||
return constm1_rtx;
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case XOR:
|
||
if (trueop1 == const0_rtx)
|
||
return op0;
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& ((INTVAL (trueop1) & GET_MODE_MASK (mode))
|
||
== GET_MODE_MASK (mode)))
|
||
return simplify_gen_unary (NOT, mode, op0, mode);
|
||
if (trueop0 == trueop1
|
||
&& ! side_effects_p (op0)
|
||
&& GET_MODE_CLASS (mode) != MODE_CC)
|
||
return const0_rtx;
|
||
|
||
/* Canonicalize XOR of the most significant bit to PLUS. */
|
||
if ((GET_CODE (op1) == CONST_INT
|
||
|| GET_CODE (op1) == CONST_DOUBLE)
|
||
&& mode_signbit_p (mode, op1))
|
||
return simplify_gen_binary (PLUS, mode, op0, op1);
|
||
/* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
|
||
if ((GET_CODE (op1) == CONST_INT
|
||
|| GET_CODE (op1) == CONST_DOUBLE)
|
||
&& GET_CODE (op0) == PLUS
|
||
&& (GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
|| GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
|
||
&& mode_signbit_p (mode, XEXP (op0, 1)))
|
||
return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
|
||
simplify_gen_binary (XOR, mode, op1,
|
||
XEXP (op0, 1)));
|
||
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case AND:
|
||
if (trueop1 == const0_rtx && ! side_effects_p (op0))
|
||
return const0_rtx;
|
||
/* If we are turning off bits already known off in OP0, we need
|
||
not do an AND. */
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (trueop0, mode) & ~INTVAL (trueop1)) == 0)
|
||
return op0;
|
||
if (trueop0 == trueop1 && ! side_effects_p (op0)
|
||
&& GET_MODE_CLASS (mode) != MODE_CC)
|
||
return op0;
|
||
/* A & (~A) -> 0 */
|
||
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|
||
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
|
||
&& ! side_effects_p (op0)
|
||
&& GET_MODE_CLASS (mode) != MODE_CC)
|
||
return const0_rtx;
|
||
|
||
/* Transform (and (extend X) C) into (zero_extend (and X C)) if
|
||
there are no nonzero bits of C outside of X's mode. */
|
||
if ((GET_CODE (op0) == SIGN_EXTEND
|
||
|| GET_CODE (op0) == ZERO_EXTEND)
|
||
&& GET_CODE (trueop1) == CONST_INT
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (~GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))
|
||
& INTVAL (trueop1)) == 0)
|
||
{
|
||
enum machine_mode imode = GET_MODE (XEXP (op0, 0));
|
||
tem = simplify_gen_binary (AND, imode, XEXP (op0, 0),
|
||
gen_int_mode (INTVAL (trueop1),
|
||
imode));
|
||
return simplify_gen_unary (ZERO_EXTEND, mode, tem, imode);
|
||
}
|
||
|
||
/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
|
||
((A & N) + B) & M -> (A + B) & M
|
||
Similarly if (N & M) == 0,
|
||
((A | N) + B) & M -> (A + B) & M
|
||
and for - instead of + and/or ^ instead of |. */
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& ~INTVAL (trueop1)
|
||
&& (INTVAL (trueop1) & (INTVAL (trueop1) + 1)) == 0
|
||
&& (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
|
||
{
|
||
rtx pmop[2];
|
||
int which;
|
||
|
||
pmop[0] = XEXP (op0, 0);
|
||
pmop[1] = XEXP (op0, 1);
|
||
|
||
for (which = 0; which < 2; which++)
|
||
{
|
||
tem = pmop[which];
|
||
switch (GET_CODE (tem))
|
||
{
|
||
case AND:
|
||
if (GET_CODE (XEXP (tem, 1)) == CONST_INT
|
||
&& (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1))
|
||
== INTVAL (trueop1))
|
||
pmop[which] = XEXP (tem, 0);
|
||
break;
|
||
case IOR:
|
||
case XOR:
|
||
if (GET_CODE (XEXP (tem, 1)) == CONST_INT
|
||
&& (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1)) == 0)
|
||
pmop[which] = XEXP (tem, 0);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
|
||
{
|
||
tem = simplify_gen_binary (GET_CODE (op0), mode,
|
||
pmop[0], pmop[1]);
|
||
return simplify_gen_binary (code, mode, tem, op1);
|
||
}
|
||
}
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case UDIV:
|
||
/* 0/x is 0 (or x&0 if x has side-effects). */
|
||
if (trueop0 == const0_rtx)
|
||
return side_effects_p (op1)
|
||
? simplify_gen_binary (AND, mode, op1, const0_rtx)
|
||
: const0_rtx;
|
||
/* x/1 is x. */
|
||
if (trueop1 == const1_rtx)
|
||
{
|
||
/* Handle narrowing UDIV. */
|
||
rtx x = gen_lowpart_common (mode, op0);
|
||
if (x)
|
||
return x;
|
||
if (mode != GET_MODE (op0) && GET_MODE (op0) != VOIDmode)
|
||
return gen_lowpart_SUBREG (mode, op0);
|
||
return op0;
|
||
}
|
||
/* Convert divide by power of two into shift. */
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& (val = exact_log2 (INTVAL (trueop1))) > 0)
|
||
return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (val));
|
||
break;
|
||
|
||
case DIV:
|
||
/* Handle floating point and integers separately. */
|
||
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
||
{
|
||
/* Maybe change 0.0 / x to 0.0. This transformation isn't
|
||
safe for modes with NaNs, since 0.0 / 0.0 will then be
|
||
NaN rather than 0.0. Nor is it safe for modes with signed
|
||
zeros, since dividing 0 by a negative number gives -0.0 */
|
||
if (trueop0 == CONST0_RTX (mode)
|
||
&& !HONOR_NANS (mode)
|
||
&& !HONOR_SIGNED_ZEROS (mode)
|
||
&& ! side_effects_p (op1))
|
||
return op0;
|
||
/* x/1.0 is x. */
|
||
if (trueop1 == CONST1_RTX (mode)
|
||
&& !HONOR_SNANS (mode))
|
||
return op0;
|
||
|
||
if (GET_CODE (trueop1) == CONST_DOUBLE
|
||
&& trueop1 != CONST0_RTX (mode))
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
|
||
|
||
/* x/-1.0 is -x. */
|
||
if (REAL_VALUES_EQUAL (d, dconstm1)
|
||
&& !HONOR_SNANS (mode))
|
||
return simplify_gen_unary (NEG, mode, op0, mode);
|
||
|
||
/* Change FP division by a constant into multiplication.
|
||
Only do this with -funsafe-math-optimizations. */
|
||
if (flag_unsafe_math_optimizations
|
||
&& !REAL_VALUES_EQUAL (d, dconst0))
|
||
{
|
||
REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
|
||
tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
||
return simplify_gen_binary (MULT, mode, op0, tem);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* 0/x is 0 (or x&0 if x has side-effects). */
|
||
if (trueop0 == const0_rtx)
|
||
return side_effects_p (op1)
|
||
? simplify_gen_binary (AND, mode, op1, const0_rtx)
|
||
: const0_rtx;
|
||
/* x/1 is x. */
|
||
if (trueop1 == const1_rtx)
|
||
{
|
||
/* Handle narrowing DIV. */
|
||
rtx x = gen_lowpart_common (mode, op0);
|
||
if (x)
|
||
return x;
|
||
if (mode != GET_MODE (op0) && GET_MODE (op0) != VOIDmode)
|
||
return gen_lowpart_SUBREG (mode, op0);
|
||
return op0;
|
||
}
|
||
/* x/-1 is -x. */
|
||
if (trueop1 == constm1_rtx)
|
||
{
|
||
rtx x = gen_lowpart_common (mode, op0);
|
||
if (!x)
|
||
x = (mode != GET_MODE (op0) && GET_MODE (op0) != VOIDmode)
|
||
? gen_lowpart_SUBREG (mode, op0) : op0;
|
||
return simplify_gen_unary (NEG, mode, x, mode);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case UMOD:
|
||
/* 0%x is 0 (or x&0 if x has side-effects). */
|
||
if (trueop0 == const0_rtx)
|
||
return side_effects_p (op1)
|
||
? simplify_gen_binary (AND, mode, op1, const0_rtx)
|
||
: const0_rtx;
|
||
/* x%1 is 0 (of x&0 if x has side-effects). */
|
||
if (trueop1 == const1_rtx)
|
||
return side_effects_p (op0)
|
||
? simplify_gen_binary (AND, mode, op0, const0_rtx)
|
||
: const0_rtx;
|
||
/* Implement modulus by power of two as AND. */
|
||
if (GET_CODE (trueop1) == CONST_INT
|
||
&& exact_log2 (INTVAL (trueop1)) > 0)
|
||
return simplify_gen_binary (AND, mode, op0,
|
||
GEN_INT (INTVAL (op1) - 1));
|
||
break;
|
||
|
||
case MOD:
|
||
/* 0%x is 0 (or x&0 if x has side-effects). */
|
||
if (trueop0 == const0_rtx)
|
||
return side_effects_p (op1)
|
||
? simplify_gen_binary (AND, mode, op1, const0_rtx)
|
||
: const0_rtx;
|
||
/* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
|
||
if (trueop1 == const1_rtx || trueop1 == constm1_rtx)
|
||
return side_effects_p (op0)
|
||
? simplify_gen_binary (AND, mode, op0, const0_rtx)
|
||
: const0_rtx;
|
||
break;
|
||
|
||
case ROTATERT:
|
||
case ROTATE:
|
||
case ASHIFTRT:
|
||
/* Rotating ~0 always results in ~0. */
|
||
if (GET_CODE (trueop0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (trueop0) == GET_MODE_MASK (mode)
|
||
&& ! side_effects_p (op1))
|
||
return op0;
|
||
|
||
/* Fall through.... */
|
||
|
||
case ASHIFT:
|
||
case LSHIFTRT:
|
||
if (trueop1 == const0_rtx)
|
||
return op0;
|
||
if (trueop0 == const0_rtx && ! side_effects_p (op1))
|
||
return op0;
|
||
break;
|
||
|
||
case SMIN:
|
||
if (width <= HOST_BITS_PER_WIDE_INT
|
||
&& GET_CODE (trueop1) == CONST_INT
|
||
&& INTVAL (trueop1) == (HOST_WIDE_INT) 1 << (width -1)
|
||
&& ! side_effects_p (op0))
|
||
return op1;
|
||
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case SMAX:
|
||
if (width <= HOST_BITS_PER_WIDE_INT
|
||
&& GET_CODE (trueop1) == CONST_INT
|
||
&& ((unsigned HOST_WIDE_INT) INTVAL (trueop1)
|
||
== (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
|
||
&& ! side_effects_p (op0))
|
||
return op1;
|
||
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case UMIN:
|
||
if (trueop1 == const0_rtx && ! side_effects_p (op0))
|
||
return op1;
|
||
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case UMAX:
|
||
if (trueop1 == constm1_rtx && ! side_effects_p (op0))
|
||
return op1;
|
||
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
||
return op0;
|
||
tem = simplify_associative_operation (code, mode, op0, op1);
|
||
if (tem)
|
||
return tem;
|
||
break;
|
||
|
||
case SS_PLUS:
|
||
case US_PLUS:
|
||
case SS_MINUS:
|
||
case US_MINUS:
|
||
/* ??? There are simplifications that can be done. */
|
||
return 0;
|
||
|
||
case VEC_SELECT:
|
||
if (!VECTOR_MODE_P (mode))
|
||
{
|
||
gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
|
||
gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
|
||
gcc_assert (GET_CODE (trueop1) == PARALLEL);
|
||
gcc_assert (XVECLEN (trueop1, 0) == 1);
|
||
gcc_assert (GET_CODE (XVECEXP (trueop1, 0, 0)) == CONST_INT);
|
||
|
||
if (GET_CODE (trueop0) == CONST_VECTOR)
|
||
return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
|
||
(trueop1, 0, 0)));
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
|
||
gcc_assert (GET_MODE_INNER (mode)
|
||
== GET_MODE_INNER (GET_MODE (trueop0)));
|
||
gcc_assert (GET_CODE (trueop1) == PARALLEL);
|
||
|
||
if (GET_CODE (trueop0) == CONST_VECTOR)
|
||
{
|
||
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
||
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
unsigned int i;
|
||
|
||
gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
|
||
for (i = 0; i < n_elts; i++)
|
||
{
|
||
rtx x = XVECEXP (trueop1, 0, i);
|
||
|
||
gcc_assert (GET_CODE (x) == CONST_INT);
|
||
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
|
||
INTVAL (x));
|
||
}
|
||
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
}
|
||
return 0;
|
||
case VEC_CONCAT:
|
||
{
|
||
enum machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
|
||
? GET_MODE (trueop0)
|
||
: GET_MODE_INNER (mode));
|
||
enum machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
|
||
? GET_MODE (trueop1)
|
||
: GET_MODE_INNER (mode));
|
||
|
||
gcc_assert (VECTOR_MODE_P (mode));
|
||
gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
|
||
== GET_MODE_SIZE (mode));
|
||
|
||
if (VECTOR_MODE_P (op0_mode))
|
||
gcc_assert (GET_MODE_INNER (mode)
|
||
== GET_MODE_INNER (op0_mode));
|
||
else
|
||
gcc_assert (GET_MODE_INNER (mode) == op0_mode);
|
||
|
||
if (VECTOR_MODE_P (op1_mode))
|
||
gcc_assert (GET_MODE_INNER (mode)
|
||
== GET_MODE_INNER (op1_mode));
|
||
else
|
||
gcc_assert (GET_MODE_INNER (mode) == op1_mode);
|
||
|
||
if ((GET_CODE (trueop0) == CONST_VECTOR
|
||
|| GET_CODE (trueop0) == CONST_INT
|
||
|| GET_CODE (trueop0) == CONST_DOUBLE)
|
||
&& (GET_CODE (trueop1) == CONST_VECTOR
|
||
|| GET_CODE (trueop1) == CONST_INT
|
||
|| GET_CODE (trueop1) == CONST_DOUBLE))
|
||
{
|
||
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
||
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
unsigned int i;
|
||
unsigned in_n_elts = 1;
|
||
|
||
if (VECTOR_MODE_P (op0_mode))
|
||
in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
|
||
for (i = 0; i < n_elts; i++)
|
||
{
|
||
if (i < in_n_elts)
|
||
{
|
||
if (!VECTOR_MODE_P (op0_mode))
|
||
RTVEC_ELT (v, i) = trueop0;
|
||
else
|
||
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
|
||
}
|
||
else
|
||
{
|
||
if (!VECTOR_MODE_P (op1_mode))
|
||
RTVEC_ELT (v, i) = trueop1;
|
||
else
|
||
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
|
||
i - in_n_elts);
|
||
}
|
||
}
|
||
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
}
|
||
return 0;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
rtx
|
||
simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
|
||
rtx op0, rtx op1)
|
||
{
|
||
HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
|
||
HOST_WIDE_INT val;
|
||
unsigned int width = GET_MODE_BITSIZE (mode);
|
||
|
||
if (VECTOR_MODE_P (mode)
|
||
&& code != VEC_CONCAT
|
||
&& GET_CODE (op0) == CONST_VECTOR
|
||
&& GET_CODE (op1) == CONST_VECTOR)
|
||
{
|
||
unsigned n_elts = GET_MODE_NUNITS (mode);
|
||
enum machine_mode op0mode = GET_MODE (op0);
|
||
unsigned op0_n_elts = GET_MODE_NUNITS (op0mode);
|
||
enum machine_mode op1mode = GET_MODE (op1);
|
||
unsigned op1_n_elts = GET_MODE_NUNITS (op1mode);
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
unsigned int i;
|
||
|
||
gcc_assert (op0_n_elts == n_elts);
|
||
gcc_assert (op1_n_elts == n_elts);
|
||
for (i = 0; i < n_elts; i++)
|
||
{
|
||
rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
|
||
CONST_VECTOR_ELT (op0, i),
|
||
CONST_VECTOR_ELT (op1, i));
|
||
if (!x)
|
||
return 0;
|
||
RTVEC_ELT (v, i) = x;
|
||
}
|
||
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
|
||
if (VECTOR_MODE_P (mode)
|
||
&& code == VEC_CONCAT
|
||
&& CONSTANT_P (op0) && CONSTANT_P (op1))
|
||
{
|
||
unsigned n_elts = GET_MODE_NUNITS (mode);
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
|
||
gcc_assert (n_elts >= 2);
|
||
if (n_elts == 2)
|
||
{
|
||
gcc_assert (GET_CODE (op0) != CONST_VECTOR);
|
||
gcc_assert (GET_CODE (op1) != CONST_VECTOR);
|
||
|
||
RTVEC_ELT (v, 0) = op0;
|
||
RTVEC_ELT (v, 1) = op1;
|
||
}
|
||
else
|
||
{
|
||
unsigned op0_n_elts = GET_MODE_NUNITS (GET_MODE (op0));
|
||
unsigned op1_n_elts = GET_MODE_NUNITS (GET_MODE (op1));
|
||
unsigned i;
|
||
|
||
gcc_assert (GET_CODE (op0) == CONST_VECTOR);
|
||
gcc_assert (GET_CODE (op1) == CONST_VECTOR);
|
||
gcc_assert (op0_n_elts + op1_n_elts == n_elts);
|
||
|
||
for (i = 0; i < op0_n_elts; ++i)
|
||
RTVEC_ELT (v, i) = XVECEXP (op0, 0, i);
|
||
for (i = 0; i < op1_n_elts; ++i)
|
||
RTVEC_ELT (v, op0_n_elts+i) = XVECEXP (op1, 0, i);
|
||
}
|
||
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_FLOAT
|
||
&& GET_CODE (op0) == CONST_DOUBLE
|
||
&& GET_CODE (op1) == CONST_DOUBLE
|
||
&& mode == GET_MODE (op0) && mode == GET_MODE (op1))
|
||
{
|
||
if (code == AND
|
||
|| code == IOR
|
||
|| code == XOR)
|
||
{
|
||
long tmp0[4];
|
||
long tmp1[4];
|
||
REAL_VALUE_TYPE r;
|
||
int i;
|
||
|
||
real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
|
||
GET_MODE (op0));
|
||
real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
|
||
GET_MODE (op1));
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
switch (code)
|
||
{
|
||
case AND:
|
||
tmp0[i] &= tmp1[i];
|
||
break;
|
||
case IOR:
|
||
tmp0[i] |= tmp1[i];
|
||
break;
|
||
case XOR:
|
||
tmp0[i] ^= tmp1[i];
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
real_from_target (&r, tmp0, mode);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
|
||
}
|
||
else
|
||
{
|
||
REAL_VALUE_TYPE f0, f1, value, result;
|
||
bool inexact;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
|
||
REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
|
||
real_convert (&f0, mode, &f0);
|
||
real_convert (&f1, mode, &f1);
|
||
|
||
if (HONOR_SNANS (mode)
|
||
&& (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
|
||
return 0;
|
||
|
||
if (code == DIV
|
||
&& REAL_VALUES_EQUAL (f1, dconst0)
|
||
&& (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
|
||
return 0;
|
||
|
||
if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
|
||
&& flag_trapping_math
|
||
&& REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
|
||
{
|
||
int s0 = REAL_VALUE_NEGATIVE (f0);
|
||
int s1 = REAL_VALUE_NEGATIVE (f1);
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
/* Inf + -Inf = NaN plus exception. */
|
||
if (s0 != s1)
|
||
return 0;
|
||
break;
|
||
case MINUS:
|
||
/* Inf - Inf = NaN plus exception. */
|
||
if (s0 == s1)
|
||
return 0;
|
||
break;
|
||
case DIV:
|
||
/* Inf / Inf = NaN plus exception. */
|
||
return 0;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
|
||
&& flag_trapping_math
|
||
&& ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
|
||
|| (REAL_VALUE_ISINF (f1)
|
||
&& REAL_VALUES_EQUAL (f0, dconst0))))
|
||
/* Inf * 0 = NaN plus exception. */
|
||
return 0;
|
||
|
||
inexact = real_arithmetic (&value, rtx_to_tree_code (code),
|
||
&f0, &f1);
|
||
real_convert (&result, mode, &value);
|
||
|
||
/* Don't constant fold this floating point operation if the
|
||
result may dependent upon the run-time rounding mode and
|
||
flag_rounding_math is set, or if GCC's software emulation
|
||
is unable to accurately represent the result. */
|
||
|
||
if ((flag_rounding_math
|
||
|| (REAL_MODE_FORMAT_COMPOSITE_P (mode)
|
||
&& !flag_unsafe_math_optimizations))
|
||
&& (inexact || !real_identical (&result, &value)))
|
||
return NULL_RTX;
|
||
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (result, mode);
|
||
}
|
||
}
|
||
|
||
/* We can fold some multi-word operations. */
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& width == HOST_BITS_PER_WIDE_INT * 2
|
||
&& (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
|
||
&& (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
|
||
{
|
||
unsigned HOST_WIDE_INT l1, l2, lv, lt;
|
||
HOST_WIDE_INT h1, h2, hv, ht;
|
||
|
||
if (GET_CODE (op0) == CONST_DOUBLE)
|
||
l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
|
||
else
|
||
l1 = INTVAL (op0), h1 = HWI_SIGN_EXTEND (l1);
|
||
|
||
if (GET_CODE (op1) == CONST_DOUBLE)
|
||
l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
|
||
else
|
||
l2 = INTVAL (op1), h2 = HWI_SIGN_EXTEND (l2);
|
||
|
||
switch (code)
|
||
{
|
||
case MINUS:
|
||
/* A - B == A + (-B). */
|
||
neg_double (l2, h2, &lv, &hv);
|
||
l2 = lv, h2 = hv;
|
||
|
||
/* Fall through.... */
|
||
|
||
case PLUS:
|
||
add_double (l1, h1, l2, h2, &lv, &hv);
|
||
break;
|
||
|
||
case MULT:
|
||
mul_double (l1, h1, l2, h2, &lv, &hv);
|
||
break;
|
||
|
||
case DIV:
|
||
if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
|
||
&lv, &hv, <, &ht))
|
||
return 0;
|
||
break;
|
||
|
||
case MOD:
|
||
if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
|
||
<, &ht, &lv, &hv))
|
||
return 0;
|
||
break;
|
||
|
||
case UDIV:
|
||
if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
|
||
&lv, &hv, <, &ht))
|
||
return 0;
|
||
break;
|
||
|
||
case UMOD:
|
||
if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
|
||
<, &ht, &lv, &hv))
|
||
return 0;
|
||
break;
|
||
|
||
case AND:
|
||
lv = l1 & l2, hv = h1 & h2;
|
||
break;
|
||
|
||
case IOR:
|
||
lv = l1 | l2, hv = h1 | h2;
|
||
break;
|
||
|
||
case XOR:
|
||
lv = l1 ^ l2, hv = h1 ^ h2;
|
||
break;
|
||
|
||
case SMIN:
|
||
if (h1 < h2
|
||
|| (h1 == h2
|
||
&& ((unsigned HOST_WIDE_INT) l1
|
||
< (unsigned HOST_WIDE_INT) l2)))
|
||
lv = l1, hv = h1;
|
||
else
|
||
lv = l2, hv = h2;
|
||
break;
|
||
|
||
case SMAX:
|
||
if (h1 > h2
|
||
|| (h1 == h2
|
||
&& ((unsigned HOST_WIDE_INT) l1
|
||
> (unsigned HOST_WIDE_INT) l2)))
|
||
lv = l1, hv = h1;
|
||
else
|
||
lv = l2, hv = h2;
|
||
break;
|
||
|
||
case UMIN:
|
||
if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
|
||
|| (h1 == h2
|
||
&& ((unsigned HOST_WIDE_INT) l1
|
||
< (unsigned HOST_WIDE_INT) l2)))
|
||
lv = l1, hv = h1;
|
||
else
|
||
lv = l2, hv = h2;
|
||
break;
|
||
|
||
case UMAX:
|
||
if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
|
||
|| (h1 == h2
|
||
&& ((unsigned HOST_WIDE_INT) l1
|
||
> (unsigned HOST_WIDE_INT) l2)))
|
||
lv = l1, hv = h1;
|
||
else
|
||
lv = l2, hv = h2;
|
||
break;
|
||
|
||
case LSHIFTRT: case ASHIFTRT:
|
||
case ASHIFT:
|
||
case ROTATE: case ROTATERT:
|
||
if (SHIFT_COUNT_TRUNCATED)
|
||
l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
|
||
|
||
if (h2 != 0 || l2 >= GET_MODE_BITSIZE (mode))
|
||
return 0;
|
||
|
||
if (code == LSHIFTRT || code == ASHIFTRT)
|
||
rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
|
||
code == ASHIFTRT);
|
||
else if (code == ASHIFT)
|
||
lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
|
||
else if (code == ROTATE)
|
||
lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
|
||
else /* code == ROTATERT */
|
||
rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
|
||
break;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
return immed_double_const (lv, hv, mode);
|
||
}
|
||
|
||
if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
|
||
&& width <= HOST_BITS_PER_WIDE_INT && width != 0)
|
||
{
|
||
/* Get the integer argument values in two forms:
|
||
zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
|
||
|
||
arg0 = INTVAL (op0);
|
||
arg1 = INTVAL (op1);
|
||
|
||
if (width < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
|
||
arg0s = arg0;
|
||
if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
|
||
arg0s |= ((HOST_WIDE_INT) (-1) << width);
|
||
|
||
arg1s = arg1;
|
||
if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
|
||
arg1s |= ((HOST_WIDE_INT) (-1) << width);
|
||
}
|
||
else
|
||
{
|
||
arg0s = arg0;
|
||
arg1s = arg1;
|
||
}
|
||
|
||
/* Compute the value of the arithmetic. */
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
val = arg0s + arg1s;
|
||
break;
|
||
|
||
case MINUS:
|
||
val = arg0s - arg1s;
|
||
break;
|
||
|
||
case MULT:
|
||
val = arg0s * arg1s;
|
||
break;
|
||
|
||
case DIV:
|
||
if (arg1s == 0
|
||
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
|
||
&& arg1s == -1))
|
||
return 0;
|
||
val = arg0s / arg1s;
|
||
break;
|
||
|
||
case MOD:
|
||
if (arg1s == 0
|
||
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
|
||
&& arg1s == -1))
|
||
return 0;
|
||
val = arg0s % arg1s;
|
||
break;
|
||
|
||
case UDIV:
|
||
if (arg1 == 0
|
||
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
|
||
&& arg1s == -1))
|
||
return 0;
|
||
val = (unsigned HOST_WIDE_INT) arg0 / arg1;
|
||
break;
|
||
|
||
case UMOD:
|
||
if (arg1 == 0
|
||
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
|
||
&& arg1s == -1))
|
||
return 0;
|
||
val = (unsigned HOST_WIDE_INT) arg0 % arg1;
|
||
break;
|
||
|
||
case AND:
|
||
val = arg0 & arg1;
|
||
break;
|
||
|
||
case IOR:
|
||
val = arg0 | arg1;
|
||
break;
|
||
|
||
case XOR:
|
||
val = arg0 ^ arg1;
|
||
break;
|
||
|
||
case LSHIFTRT:
|
||
case ASHIFT:
|
||
case ASHIFTRT:
|
||
/* Truncate the shift if SHIFT_COUNT_TRUNCATED, otherwise make sure
|
||
the value is in range. We can't return any old value for
|
||
out-of-range arguments because either the middle-end (via
|
||
shift_truncation_mask) or the back-end might be relying on
|
||
target-specific knowledge. Nor can we rely on
|
||
shift_truncation_mask, since the shift might not be part of an
|
||
ashlM3, lshrM3 or ashrM3 instruction. */
|
||
if (SHIFT_COUNT_TRUNCATED)
|
||
arg1 = (unsigned HOST_WIDE_INT) arg1 % width;
|
||
else if (arg1 < 0 || arg1 >= GET_MODE_BITSIZE (mode))
|
||
return 0;
|
||
|
||
val = (code == ASHIFT
|
||
? ((unsigned HOST_WIDE_INT) arg0) << arg1
|
||
: ((unsigned HOST_WIDE_INT) arg0) >> arg1);
|
||
|
||
/* Sign-extend the result for arithmetic right shifts. */
|
||
if (code == ASHIFTRT && arg0s < 0 && arg1 > 0)
|
||
val |= ((HOST_WIDE_INT) -1) << (width - arg1);
|
||
break;
|
||
|
||
case ROTATERT:
|
||
if (arg1 < 0)
|
||
return 0;
|
||
|
||
arg1 %= width;
|
||
val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
|
||
| (((unsigned HOST_WIDE_INT) arg0) >> arg1));
|
||
break;
|
||
|
||
case ROTATE:
|
||
if (arg1 < 0)
|
||
return 0;
|
||
|
||
arg1 %= width;
|
||
val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
|
||
| (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
|
||
break;
|
||
|
||
case COMPARE:
|
||
/* Do nothing here. */
|
||
return 0;
|
||
|
||
case SMIN:
|
||
val = arg0s <= arg1s ? arg0s : arg1s;
|
||
break;
|
||
|
||
case UMIN:
|
||
val = ((unsigned HOST_WIDE_INT) arg0
|
||
<= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
|
||
break;
|
||
|
||
case SMAX:
|
||
val = arg0s > arg1s ? arg0s : arg1s;
|
||
break;
|
||
|
||
case UMAX:
|
||
val = ((unsigned HOST_WIDE_INT) arg0
|
||
> (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
|
||
break;
|
||
|
||
case SS_PLUS:
|
||
case US_PLUS:
|
||
case SS_MINUS:
|
||
case US_MINUS:
|
||
/* ??? There are simplifications that can be done. */
|
||
return 0;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return gen_int_mode (val, mode);
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
|
||
|
||
/* Simplify a PLUS or MINUS, at least one of whose operands may be another
|
||
PLUS or MINUS.
|
||
|
||
Rather than test for specific case, we do this by a brute-force method
|
||
and do all possible simplifications until no more changes occur. Then
|
||
we rebuild the operation.
|
||
|
||
If FORCE is true, then always generate the rtx. This is used to
|
||
canonicalize stuff emitted from simplify_gen_binary. Note that this
|
||
can still fail if the rtx is too complex. It won't fail just because
|
||
the result is not 'simpler' than the input, however. */
|
||
|
||
struct simplify_plus_minus_op_data
|
||
{
|
||
rtx op;
|
||
int neg;
|
||
};
|
||
|
||
static int
|
||
simplify_plus_minus_op_data_cmp (const void *p1, const void *p2)
|
||
{
|
||
const struct simplify_plus_minus_op_data *d1 = p1;
|
||
const struct simplify_plus_minus_op_data *d2 = p2;
|
||
|
||
return (commutative_operand_precedence (d2->op)
|
||
- commutative_operand_precedence (d1->op));
|
||
}
|
||
|
||
static rtx
|
||
simplify_plus_minus (enum rtx_code code, enum machine_mode mode, rtx op0,
|
||
rtx op1, int force)
|
||
{
|
||
struct simplify_plus_minus_op_data ops[8];
|
||
rtx result, tem;
|
||
int n_ops = 2, input_ops = 2, input_consts = 0, n_consts;
|
||
int first, changed;
|
||
int i, j;
|
||
|
||
memset (ops, 0, sizeof ops);
|
||
|
||
/* Set up the two operands and then expand them until nothing has been
|
||
changed. If we run out of room in our array, give up; this should
|
||
almost never happen. */
|
||
|
||
ops[0].op = op0;
|
||
ops[0].neg = 0;
|
||
ops[1].op = op1;
|
||
ops[1].neg = (code == MINUS);
|
||
|
||
do
|
||
{
|
||
changed = 0;
|
||
|
||
for (i = 0; i < n_ops; i++)
|
||
{
|
||
rtx this_op = ops[i].op;
|
||
int this_neg = ops[i].neg;
|
||
enum rtx_code this_code = GET_CODE (this_op);
|
||
|
||
switch (this_code)
|
||
{
|
||
case PLUS:
|
||
case MINUS:
|
||
if (n_ops == 7)
|
||
return NULL_RTX;
|
||
|
||
ops[n_ops].op = XEXP (this_op, 1);
|
||
ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
|
||
n_ops++;
|
||
|
||
ops[i].op = XEXP (this_op, 0);
|
||
input_ops++;
|
||
changed = 1;
|
||
break;
|
||
|
||
case NEG:
|
||
ops[i].op = XEXP (this_op, 0);
|
||
ops[i].neg = ! this_neg;
|
||
changed = 1;
|
||
break;
|
||
|
||
case CONST:
|
||
if (n_ops < 7
|
||
&& GET_CODE (XEXP (this_op, 0)) == PLUS
|
||
&& CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
|
||
&& CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
|
||
{
|
||
ops[i].op = XEXP (XEXP (this_op, 0), 0);
|
||
ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
|
||
ops[n_ops].neg = this_neg;
|
||
n_ops++;
|
||
input_consts++;
|
||
changed = 1;
|
||
}
|
||
break;
|
||
|
||
case NOT:
|
||
/* ~a -> (-a - 1) */
|
||
if (n_ops != 7)
|
||
{
|
||
ops[n_ops].op = constm1_rtx;
|
||
ops[n_ops++].neg = this_neg;
|
||
ops[i].op = XEXP (this_op, 0);
|
||
ops[i].neg = !this_neg;
|
||
changed = 1;
|
||
}
|
||
break;
|
||
|
||
case CONST_INT:
|
||
if (this_neg)
|
||
{
|
||
ops[i].op = neg_const_int (mode, this_op);
|
||
ops[i].neg = 0;
|
||
changed = 1;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
while (changed);
|
||
|
||
/* If we only have two operands, we can't do anything. */
|
||
if (n_ops <= 2 && !force)
|
||
return NULL_RTX;
|
||
|
||
/* Count the number of CONSTs we didn't split above. */
|
||
for (i = 0; i < n_ops; i++)
|
||
if (GET_CODE (ops[i].op) == CONST)
|
||
input_consts++;
|
||
|
||
/* Now simplify each pair of operands until nothing changes. The first
|
||
time through just simplify constants against each other. */
|
||
|
||
first = 1;
|
||
do
|
||
{
|
||
changed = first;
|
||
|
||
for (i = 0; i < n_ops - 1; i++)
|
||
for (j = i + 1; j < n_ops; j++)
|
||
{
|
||
rtx lhs = ops[i].op, rhs = ops[j].op;
|
||
int lneg = ops[i].neg, rneg = ops[j].neg;
|
||
|
||
if (lhs != 0 && rhs != 0
|
||
&& (! first || (CONSTANT_P (lhs) && CONSTANT_P (rhs))))
|
||
{
|
||
enum rtx_code ncode = PLUS;
|
||
|
||
if (lneg != rneg)
|
||
{
|
||
ncode = MINUS;
|
||
if (lneg)
|
||
tem = lhs, lhs = rhs, rhs = tem;
|
||
}
|
||
else if (swap_commutative_operands_p (lhs, rhs))
|
||
tem = lhs, lhs = rhs, rhs = tem;
|
||
|
||
tem = simplify_binary_operation (ncode, mode, lhs, rhs);
|
||
|
||
/* Reject "simplifications" that just wrap the two
|
||
arguments in a CONST. Failure to do so can result
|
||
in infinite recursion with simplify_binary_operation
|
||
when it calls us to simplify CONST operations. */
|
||
if (tem
|
||
&& ! (GET_CODE (tem) == CONST
|
||
&& GET_CODE (XEXP (tem, 0)) == ncode
|
||
&& XEXP (XEXP (tem, 0), 0) == lhs
|
||
&& XEXP (XEXP (tem, 0), 1) == rhs)
|
||
/* Don't allow -x + -1 -> ~x simplifications in the
|
||
first pass. This allows us the chance to combine
|
||
the -1 with other constants. */
|
||
&& ! (first
|
||
&& GET_CODE (tem) == NOT
|
||
&& XEXP (tem, 0) == rhs))
|
||
{
|
||
lneg &= rneg;
|
||
if (GET_CODE (tem) == NEG)
|
||
tem = XEXP (tem, 0), lneg = !lneg;
|
||
if (GET_CODE (tem) == CONST_INT && lneg)
|
||
tem = neg_const_int (mode, tem), lneg = 0;
|
||
|
||
ops[i].op = tem;
|
||
ops[i].neg = lneg;
|
||
ops[j].op = NULL_RTX;
|
||
changed = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
first = 0;
|
||
}
|
||
while (changed);
|
||
|
||
/* Pack all the operands to the lower-numbered entries. */
|
||
for (i = 0, j = 0; j < n_ops; j++)
|
||
if (ops[j].op)
|
||
ops[i++] = ops[j];
|
||
n_ops = i;
|
||
|
||
/* Sort the operations based on swap_commutative_operands_p. */
|
||
qsort (ops, n_ops, sizeof (*ops), simplify_plus_minus_op_data_cmp);
|
||
|
||
/* Create (minus -C X) instead of (neg (const (plus X C))). */
|
||
if (n_ops == 2
|
||
&& GET_CODE (ops[1].op) == CONST_INT
|
||
&& CONSTANT_P (ops[0].op)
|
||
&& ops[0].neg)
|
||
return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
|
||
|
||
/* We suppressed creation of trivial CONST expressions in the
|
||
combination loop to avoid recursion. Create one manually now.
|
||
The combination loop should have ensured that there is exactly
|
||
one CONST_INT, and the sort will have ensured that it is last
|
||
in the array and that any other constant will be next-to-last. */
|
||
|
||
if (n_ops > 1
|
||
&& GET_CODE (ops[n_ops - 1].op) == CONST_INT
|
||
&& CONSTANT_P (ops[n_ops - 2].op))
|
||
{
|
||
rtx value = ops[n_ops - 1].op;
|
||
if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
|
||
value = neg_const_int (mode, value);
|
||
ops[n_ops - 2].op = plus_constant (ops[n_ops - 2].op, INTVAL (value));
|
||
n_ops--;
|
||
}
|
||
|
||
/* Count the number of CONSTs that we generated. */
|
||
n_consts = 0;
|
||
for (i = 0; i < n_ops; i++)
|
||
if (GET_CODE (ops[i].op) == CONST)
|
||
n_consts++;
|
||
|
||
/* Give up if we didn't reduce the number of operands we had. Make
|
||
sure we count a CONST as two operands. If we have the same
|
||
number of operands, but have made more CONSTs than before, this
|
||
is also an improvement, so accept it. */
|
||
if (!force
|
||
&& (n_ops + n_consts > input_ops
|
||
|| (n_ops + n_consts == input_ops && n_consts <= input_consts)))
|
||
return NULL_RTX;
|
||
|
||
/* Put a non-negated operand first, if possible. */
|
||
|
||
for (i = 0; i < n_ops && ops[i].neg; i++)
|
||
continue;
|
||
if (i == n_ops)
|
||
ops[0].op = gen_rtx_NEG (mode, ops[0].op);
|
||
else if (i != 0)
|
||
{
|
||
tem = ops[0].op;
|
||
ops[0] = ops[i];
|
||
ops[i].op = tem;
|
||
ops[i].neg = 1;
|
||
}
|
||
|
||
/* Now make the result by performing the requested operations. */
|
||
result = ops[0].op;
|
||
for (i = 1; i < n_ops; i++)
|
||
result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
|
||
mode, result, ops[i].op);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Check whether an operand is suitable for calling simplify_plus_minus. */
|
||
static bool
|
||
plus_minus_operand_p (rtx x)
|
||
{
|
||
return GET_CODE (x) == PLUS
|
||
|| GET_CODE (x) == MINUS
|
||
|| (GET_CODE (x) == CONST
|
||
&& GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& CONSTANT_P (XEXP (XEXP (x, 0), 0))
|
||
&& CONSTANT_P (XEXP (XEXP (x, 0), 1)));
|
||
}
|
||
|
||
/* Like simplify_binary_operation except used for relational operators.
|
||
MODE is the mode of the result. If MODE is VOIDmode, both operands must
|
||
not also be VOIDmode.
|
||
|
||
CMP_MODE specifies in which mode the comparison is done in, so it is
|
||
the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
|
||
the operands or, if both are VOIDmode, the operands are compared in
|
||
"infinite precision". */
|
||
rtx
|
||
simplify_relational_operation (enum rtx_code code, enum machine_mode mode,
|
||
enum machine_mode cmp_mode, rtx op0, rtx op1)
|
||
{
|
||
rtx tem, trueop0, trueop1;
|
||
|
||
if (cmp_mode == VOIDmode)
|
||
cmp_mode = GET_MODE (op0);
|
||
if (cmp_mode == VOIDmode)
|
||
cmp_mode = GET_MODE (op1);
|
||
|
||
tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
|
||
if (tem)
|
||
{
|
||
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
||
{
|
||
if (tem == const0_rtx)
|
||
return CONST0_RTX (mode);
|
||
#ifdef FLOAT_STORE_FLAG_VALUE
|
||
{
|
||
REAL_VALUE_TYPE val;
|
||
val = FLOAT_STORE_FLAG_VALUE (mode);
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
|
||
}
|
||
#else
|
||
return NULL_RTX;
|
||
#endif
|
||
}
|
||
if (VECTOR_MODE_P (mode))
|
||
{
|
||
if (tem == const0_rtx)
|
||
return CONST0_RTX (mode);
|
||
#ifdef VECTOR_STORE_FLAG_VALUE
|
||
{
|
||
int i, units;
|
||
rtvec v;
|
||
|
||
rtx val = VECTOR_STORE_FLAG_VALUE (mode);
|
||
if (val == NULL_RTX)
|
||
return NULL_RTX;
|
||
if (val == const1_rtx)
|
||
return CONST1_RTX (mode);
|
||
|
||
units = GET_MODE_NUNITS (mode);
|
||
v = rtvec_alloc (units);
|
||
for (i = 0; i < units; i++)
|
||
RTVEC_ELT (v, i) = val;
|
||
return gen_rtx_raw_CONST_VECTOR (mode, v);
|
||
}
|
||
#else
|
||
return NULL_RTX;
|
||
#endif
|
||
}
|
||
|
||
return tem;
|
||
}
|
||
|
||
/* For the following tests, ensure const0_rtx is op1. */
|
||
if (swap_commutative_operands_p (op0, op1)
|
||
|| (op0 == const0_rtx && op1 != const0_rtx))
|
||
tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
|
||
|
||
/* If op0 is a compare, extract the comparison arguments from it. */
|
||
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
|
||
return simplify_relational_operation (code, mode, VOIDmode,
|
||
XEXP (op0, 0), XEXP (op0, 1));
|
||
|
||
if (mode == VOIDmode
|
||
|| GET_MODE_CLASS (cmp_mode) == MODE_CC
|
||
|| CC0_P (op0))
|
||
return NULL_RTX;
|
||
|
||
trueop0 = avoid_constant_pool_reference (op0);
|
||
trueop1 = avoid_constant_pool_reference (op1);
|
||
return simplify_relational_operation_1 (code, mode, cmp_mode,
|
||
trueop0, trueop1);
|
||
}
|
||
|
||
/* This part of simplify_relational_operation is only used when CMP_MODE
|
||
is not in class MODE_CC (i.e. it is a real comparison).
|
||
|
||
MODE is the mode of the result, while CMP_MODE specifies in which
|
||
mode the comparison is done in, so it is the mode of the operands. */
|
||
|
||
static rtx
|
||
simplify_relational_operation_1 (enum rtx_code code, enum machine_mode mode,
|
||
enum machine_mode cmp_mode, rtx op0, rtx op1)
|
||
{
|
||
enum rtx_code op0code = GET_CODE (op0);
|
||
|
||
if (GET_CODE (op1) == CONST_INT)
|
||
{
|
||
if (INTVAL (op1) == 0 && COMPARISON_P (op0))
|
||
{
|
||
/* If op0 is a comparison, extract the comparison arguments form it. */
|
||
if (code == NE)
|
||
{
|
||
if (GET_MODE (op0) == mode)
|
||
return simplify_rtx (op0);
|
||
else
|
||
return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
|
||
XEXP (op0, 0), XEXP (op0, 1));
|
||
}
|
||
else if (code == EQ)
|
||
{
|
||
enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
|
||
if (new_code != UNKNOWN)
|
||
return simplify_gen_relational (new_code, mode, VOIDmode,
|
||
XEXP (op0, 0), XEXP (op0, 1));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
|
||
if ((code == EQ || code == NE)
|
||
&& (op0code == PLUS || op0code == MINUS)
|
||
&& CONSTANT_P (op1)
|
||
&& CONSTANT_P (XEXP (op0, 1))
|
||
&& (INTEGRAL_MODE_P (cmp_mode) || flag_unsafe_math_optimizations))
|
||
{
|
||
rtx x = XEXP (op0, 0);
|
||
rtx c = XEXP (op0, 1);
|
||
|
||
c = simplify_gen_binary (op0code == PLUS ? MINUS : PLUS,
|
||
cmp_mode, op1, c);
|
||
return simplify_gen_relational (code, mode, cmp_mode, x, c);
|
||
}
|
||
|
||
/* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
|
||
the same as (zero_extract:SI FOO (const_int 1) BAR). */
|
||
if (code == NE
|
||
&& op1 == const0_rtx
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& cmp_mode != VOIDmode
|
||
/* ??? Work-around BImode bugs in the ia64 backend. */
|
||
&& mode != BImode
|
||
&& cmp_mode != BImode
|
||
&& nonzero_bits (op0, cmp_mode) == 1
|
||
&& STORE_FLAG_VALUE == 1)
|
||
return GET_MODE_SIZE (mode) > GET_MODE_SIZE (cmp_mode)
|
||
? simplify_gen_unary (ZERO_EXTEND, mode, op0, cmp_mode)
|
||
: lowpart_subreg (mode, op0, cmp_mode);
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Check if the given comparison (done in the given MODE) is actually a
|
||
tautology or a contradiction.
|
||
If no simplification is possible, this function returns zero.
|
||
Otherwise, it returns either const_true_rtx or const0_rtx. */
|
||
|
||
rtx
|
||
simplify_const_relational_operation (enum rtx_code code,
|
||
enum machine_mode mode,
|
||
rtx op0, rtx op1)
|
||
{
|
||
int equal, op0lt, op0ltu, op1lt, op1ltu;
|
||
rtx tem;
|
||
rtx trueop0;
|
||
rtx trueop1;
|
||
|
||
gcc_assert (mode != VOIDmode
|
||
|| (GET_MODE (op0) == VOIDmode
|
||
&& GET_MODE (op1) == VOIDmode));
|
||
|
||
/* If op0 is a compare, extract the comparison arguments from it. */
|
||
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
|
||
op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
|
||
|
||
/* We can't simplify MODE_CC values since we don't know what the
|
||
actual comparison is. */
|
||
if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
|
||
return 0;
|
||
|
||
/* Make sure the constant is second. */
|
||
if (swap_commutative_operands_p (op0, op1))
|
||
{
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
trueop0 = avoid_constant_pool_reference (op0);
|
||
trueop1 = avoid_constant_pool_reference (op1);
|
||
|
||
/* For integer comparisons of A and B maybe we can simplify A - B and can
|
||
then simplify a comparison of that with zero. If A and B are both either
|
||
a register or a CONST_INT, this can't help; testing for these cases will
|
||
prevent infinite recursion here and speed things up.
|
||
|
||
If CODE is an unsigned comparison, then we can never do this optimization,
|
||
because it gives an incorrect result if the subtraction wraps around zero.
|
||
ANSI C defines unsigned operations such that they never overflow, and
|
||
thus such cases can not be ignored; but we cannot do it even for
|
||
signed comparisons for languages such as Java, so test flag_wrapv. */
|
||
|
||
if (!flag_wrapv && INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
|
||
&& ! ((REG_P (op0) || GET_CODE (trueop0) == CONST_INT)
|
||
&& (REG_P (op1) || GET_CODE (trueop1) == CONST_INT))
|
||
&& 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
|
||
/* We cannot do this for == or != if tem is a nonzero address. */
|
||
&& ((code != EQ && code != NE) || ! nonzero_address_p (tem))
|
||
&& code != GTU && code != GEU && code != LTU && code != LEU)
|
||
return simplify_const_relational_operation (signed_condition (code),
|
||
mode, tem, const0_rtx);
|
||
|
||
if (flag_unsafe_math_optimizations && code == ORDERED)
|
||
return const_true_rtx;
|
||
|
||
if (flag_unsafe_math_optimizations && code == UNORDERED)
|
||
return const0_rtx;
|
||
|
||
/* For modes without NaNs, if the two operands are equal, we know the
|
||
result except if they have side-effects. */
|
||
if (! HONOR_NANS (GET_MODE (trueop0))
|
||
&& rtx_equal_p (trueop0, trueop1)
|
||
&& ! side_effects_p (trueop0))
|
||
equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
|
||
|
||
/* If the operands are floating-point constants, see if we can fold
|
||
the result. */
|
||
else if (GET_CODE (trueop0) == CONST_DOUBLE
|
||
&& GET_CODE (trueop1) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (GET_MODE (trueop0)) == MODE_FLOAT)
|
||
{
|
||
REAL_VALUE_TYPE d0, d1;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
|
||
|
||
/* Comparisons are unordered iff at least one of the values is NaN. */
|
||
if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
|
||
switch (code)
|
||
{
|
||
case UNEQ:
|
||
case UNLT:
|
||
case UNGT:
|
||
case UNLE:
|
||
case UNGE:
|
||
case NE:
|
||
case UNORDERED:
|
||
return const_true_rtx;
|
||
case EQ:
|
||
case LT:
|
||
case GT:
|
||
case LE:
|
||
case GE:
|
||
case LTGT:
|
||
case ORDERED:
|
||
return const0_rtx;
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
equal = REAL_VALUES_EQUAL (d0, d1);
|
||
op0lt = op0ltu = REAL_VALUES_LESS (d0, d1);
|
||
op1lt = op1ltu = REAL_VALUES_LESS (d1, d0);
|
||
}
|
||
|
||
/* Otherwise, see if the operands are both integers. */
|
||
else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
|
||
&& (GET_CODE (trueop0) == CONST_DOUBLE
|
||
|| GET_CODE (trueop0) == CONST_INT)
|
||
&& (GET_CODE (trueop1) == CONST_DOUBLE
|
||
|| GET_CODE (trueop1) == CONST_INT))
|
||
{
|
||
int width = GET_MODE_BITSIZE (mode);
|
||
HOST_WIDE_INT l0s, h0s, l1s, h1s;
|
||
unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
|
||
|
||
/* Get the two words comprising each integer constant. */
|
||
if (GET_CODE (trueop0) == CONST_DOUBLE)
|
||
{
|
||
l0u = l0s = CONST_DOUBLE_LOW (trueop0);
|
||
h0u = h0s = CONST_DOUBLE_HIGH (trueop0);
|
||
}
|
||
else
|
||
{
|
||
l0u = l0s = INTVAL (trueop0);
|
||
h0u = h0s = HWI_SIGN_EXTEND (l0s);
|
||
}
|
||
|
||
if (GET_CODE (trueop1) == CONST_DOUBLE)
|
||
{
|
||
l1u = l1s = CONST_DOUBLE_LOW (trueop1);
|
||
h1u = h1s = CONST_DOUBLE_HIGH (trueop1);
|
||
}
|
||
else
|
||
{
|
||
l1u = l1s = INTVAL (trueop1);
|
||
h1u = h1s = HWI_SIGN_EXTEND (l1s);
|
||
}
|
||
|
||
/* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
|
||
we have to sign or zero-extend the values. */
|
||
if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
|
||
if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
|
||
l0s |= ((HOST_WIDE_INT) (-1) << width);
|
||
|
||
if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
|
||
l1s |= ((HOST_WIDE_INT) (-1) << width);
|
||
}
|
||
if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
|
||
h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
|
||
|
||
equal = (h0u == h1u && l0u == l1u);
|
||
op0lt = (h0s < h1s || (h0s == h1s && l0u < l1u));
|
||
op1lt = (h1s < h0s || (h1s == h0s && l1u < l0u));
|
||
op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
|
||
op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
|
||
}
|
||
|
||
/* Otherwise, there are some code-specific tests we can make. */
|
||
else
|
||
{
|
||
/* Optimize comparisons with upper and lower bounds. */
|
||
if (SCALAR_INT_MODE_P (mode)
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
rtx mmin, mmax;
|
||
int sign;
|
||
|
||
if (code == GEU
|
||
|| code == LEU
|
||
|| code == GTU
|
||
|| code == LTU)
|
||
sign = 0;
|
||
else
|
||
sign = 1;
|
||
|
||
get_mode_bounds (mode, sign, mode, &mmin, &mmax);
|
||
|
||
tem = NULL_RTX;
|
||
switch (code)
|
||
{
|
||
case GEU:
|
||
case GE:
|
||
/* x >= min is always true. */
|
||
if (rtx_equal_p (trueop1, mmin))
|
||
tem = const_true_rtx;
|
||
else
|
||
break;
|
||
|
||
case LEU:
|
||
case LE:
|
||
/* x <= max is always true. */
|
||
if (rtx_equal_p (trueop1, mmax))
|
||
tem = const_true_rtx;
|
||
break;
|
||
|
||
case GTU:
|
||
case GT:
|
||
/* x > max is always false. */
|
||
if (rtx_equal_p (trueop1, mmax))
|
||
tem = const0_rtx;
|
||
break;
|
||
|
||
case LTU:
|
||
case LT:
|
||
/* x < min is always false. */
|
||
if (rtx_equal_p (trueop1, mmin))
|
||
tem = const0_rtx;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
if (tem == const0_rtx
|
||
|| tem == const_true_rtx)
|
||
return tem;
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
if (trueop1 == const0_rtx && nonzero_address_p (op0))
|
||
return const0_rtx;
|
||
break;
|
||
|
||
case NE:
|
||
if (trueop1 == const0_rtx && nonzero_address_p (op0))
|
||
return const_true_rtx;
|
||
break;
|
||
|
||
case LT:
|
||
/* Optimize abs(x) < 0.0. */
|
||
if (trueop1 == CONST0_RTX (mode) && !HONOR_SNANS (mode))
|
||
{
|
||
tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
|
||
: trueop0;
|
||
if (GET_CODE (tem) == ABS)
|
||
return const0_rtx;
|
||
}
|
||
break;
|
||
|
||
case GE:
|
||
/* Optimize abs(x) >= 0.0. */
|
||
if (trueop1 == CONST0_RTX (mode) && !HONOR_NANS (mode))
|
||
{
|
||
tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
|
||
: trueop0;
|
||
if (GET_CODE (tem) == ABS)
|
||
return const_true_rtx;
|
||
}
|
||
break;
|
||
|
||
case UNGE:
|
||
/* Optimize ! (abs(x) < 0.0). */
|
||
if (trueop1 == CONST0_RTX (mode))
|
||
{
|
||
tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
|
||
: trueop0;
|
||
if (GET_CODE (tem) == ABS)
|
||
return const_true_rtx;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
|
||
as appropriate. */
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
case UNEQ:
|
||
return equal ? const_true_rtx : const0_rtx;
|
||
case NE:
|
||
case LTGT:
|
||
return ! equal ? const_true_rtx : const0_rtx;
|
||
case LT:
|
||
case UNLT:
|
||
return op0lt ? const_true_rtx : const0_rtx;
|
||
case GT:
|
||
case UNGT:
|
||
return op1lt ? const_true_rtx : const0_rtx;
|
||
case LTU:
|
||
return op0ltu ? const_true_rtx : const0_rtx;
|
||
case GTU:
|
||
return op1ltu ? const_true_rtx : const0_rtx;
|
||
case LE:
|
||
case UNLE:
|
||
return equal || op0lt ? const_true_rtx : const0_rtx;
|
||
case GE:
|
||
case UNGE:
|
||
return equal || op1lt ? const_true_rtx : const0_rtx;
|
||
case LEU:
|
||
return equal || op0ltu ? const_true_rtx : const0_rtx;
|
||
case GEU:
|
||
return equal || op1ltu ? const_true_rtx : const0_rtx;
|
||
case ORDERED:
|
||
return const_true_rtx;
|
||
case UNORDERED:
|
||
return const0_rtx;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Simplify CODE, an operation with result mode MODE and three operands,
|
||
OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
|
||
a constant. Return 0 if no simplifications is possible. */
|
||
|
||
rtx
|
||
simplify_ternary_operation (enum rtx_code code, enum machine_mode mode,
|
||
enum machine_mode op0_mode, rtx op0, rtx op1,
|
||
rtx op2)
|
||
{
|
||
unsigned int width = GET_MODE_BITSIZE (mode);
|
||
|
||
/* VOIDmode means "infinite" precision. */
|
||
if (width == 0)
|
||
width = HOST_BITS_PER_WIDE_INT;
|
||
|
||
switch (code)
|
||
{
|
||
case SIGN_EXTRACT:
|
||
case ZERO_EXTRACT:
|
||
if (GET_CODE (op0) == CONST_INT
|
||
&& GET_CODE (op1) == CONST_INT
|
||
&& GET_CODE (op2) == CONST_INT
|
||
&& ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
|
||
&& width <= (unsigned) HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
/* Extracting a bit-field from a constant */
|
||
HOST_WIDE_INT val = INTVAL (op0);
|
||
|
||
if (BITS_BIG_ENDIAN)
|
||
val >>= (GET_MODE_BITSIZE (op0_mode)
|
||
- INTVAL (op2) - INTVAL (op1));
|
||
else
|
||
val >>= INTVAL (op2);
|
||
|
||
if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
|
||
{
|
||
/* First zero-extend. */
|
||
val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
|
||
/* If desired, propagate sign bit. */
|
||
if (code == SIGN_EXTRACT
|
||
&& (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
|
||
val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
|
||
}
|
||
|
||
/* Clear the bits that don't belong in our mode,
|
||
unless they and our sign bit are all one.
|
||
So we get either a reasonable negative value or a reasonable
|
||
unsigned value for this mode. */
|
||
if (width < HOST_BITS_PER_WIDE_INT
|
||
&& ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
|
||
!= ((HOST_WIDE_INT) (-1) << (width - 1))))
|
||
val &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
|
||
return gen_int_mode (val, mode);
|
||
}
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
if (GET_CODE (op0) == CONST_INT)
|
||
return op0 != const0_rtx ? op1 : op2;
|
||
|
||
/* Convert c ? a : a into "a". */
|
||
if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
|
||
return op1;
|
||
|
||
/* Convert a != b ? a : b into "a". */
|
||
if (GET_CODE (op0) == NE
|
||
&& ! side_effects_p (op0)
|
||
&& ! HONOR_NANS (mode)
|
||
&& ! HONOR_SIGNED_ZEROS (mode)
|
||
&& ((rtx_equal_p (XEXP (op0, 0), op1)
|
||
&& rtx_equal_p (XEXP (op0, 1), op2))
|
||
|| (rtx_equal_p (XEXP (op0, 0), op2)
|
||
&& rtx_equal_p (XEXP (op0, 1), op1))))
|
||
return op1;
|
||
|
||
/* Convert a == b ? a : b into "b". */
|
||
if (GET_CODE (op0) == EQ
|
||
&& ! side_effects_p (op0)
|
||
&& ! HONOR_NANS (mode)
|
||
&& ! HONOR_SIGNED_ZEROS (mode)
|
||
&& ((rtx_equal_p (XEXP (op0, 0), op1)
|
||
&& rtx_equal_p (XEXP (op0, 1), op2))
|
||
|| (rtx_equal_p (XEXP (op0, 0), op2)
|
||
&& rtx_equal_p (XEXP (op0, 1), op1))))
|
||
return op2;
|
||
|
||
if (COMPARISON_P (op0) && ! side_effects_p (op0))
|
||
{
|
||
enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
|
||
? GET_MODE (XEXP (op0, 1))
|
||
: GET_MODE (XEXP (op0, 0)));
|
||
rtx temp;
|
||
|
||
/* Look for happy constants in op1 and op2. */
|
||
if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT t = INTVAL (op1);
|
||
HOST_WIDE_INT f = INTVAL (op2);
|
||
|
||
if (t == STORE_FLAG_VALUE && f == 0)
|
||
code = GET_CODE (op0);
|
||
else if (t == 0 && f == STORE_FLAG_VALUE)
|
||
{
|
||
enum rtx_code tmp;
|
||
tmp = reversed_comparison_code (op0, NULL_RTX);
|
||
if (tmp == UNKNOWN)
|
||
break;
|
||
code = tmp;
|
||
}
|
||
else
|
||
break;
|
||
|
||
return simplify_gen_relational (code, mode, cmp_mode,
|
||
XEXP (op0, 0), XEXP (op0, 1));
|
||
}
|
||
|
||
if (cmp_mode == VOIDmode)
|
||
cmp_mode = op0_mode;
|
||
temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
|
||
cmp_mode, XEXP (op0, 0),
|
||
XEXP (op0, 1));
|
||
|
||
/* See if any simplifications were possible. */
|
||
if (temp)
|
||
{
|
||
if (GET_CODE (temp) == CONST_INT)
|
||
return temp == const0_rtx ? op2 : op1;
|
||
else if (temp)
|
||
return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case VEC_MERGE:
|
||
gcc_assert (GET_MODE (op0) == mode);
|
||
gcc_assert (GET_MODE (op1) == mode);
|
||
gcc_assert (VECTOR_MODE_P (mode));
|
||
op2 = avoid_constant_pool_reference (op2);
|
||
if (GET_CODE (op2) == CONST_INT)
|
||
{
|
||
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
||
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
||
int mask = (1 << n_elts) - 1;
|
||
|
||
if (!(INTVAL (op2) & mask))
|
||
return op1;
|
||
if ((INTVAL (op2) & mask) == mask)
|
||
return op0;
|
||
|
||
op0 = avoid_constant_pool_reference (op0);
|
||
op1 = avoid_constant_pool_reference (op1);
|
||
if (GET_CODE (op0) == CONST_VECTOR
|
||
&& GET_CODE (op1) == CONST_VECTOR)
|
||
{
|
||
rtvec v = rtvec_alloc (n_elts);
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < n_elts; i++)
|
||
RTVEC_ELT (v, i) = (INTVAL (op2) & (1 << i)
|
||
? CONST_VECTOR_ELT (op0, i)
|
||
: CONST_VECTOR_ELT (op1, i));
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Evaluate a SUBREG of a CONST_INT or CONST_DOUBLE or CONST_VECTOR,
|
||
returning another CONST_INT or CONST_DOUBLE or CONST_VECTOR.
|
||
|
||
Works by unpacking OP into a collection of 8-bit values
|
||
represented as a little-endian array of 'unsigned char', selecting by BYTE,
|
||
and then repacking them again for OUTERMODE. */
|
||
|
||
static rtx
|
||
simplify_immed_subreg (enum machine_mode outermode, rtx op,
|
||
enum machine_mode innermode, unsigned int byte)
|
||
{
|
||
/* We support up to 512-bit values (for V8DFmode). */
|
||
enum {
|
||
max_bitsize = 512,
|
||
value_bit = 8,
|
||
value_mask = (1 << value_bit) - 1
|
||
};
|
||
unsigned char value[max_bitsize / value_bit];
|
||
int value_start;
|
||
int i;
|
||
int elem;
|
||
|
||
int num_elem;
|
||
rtx * elems;
|
||
int elem_bitsize;
|
||
rtx result_s;
|
||
rtvec result_v = NULL;
|
||
enum mode_class outer_class;
|
||
enum machine_mode outer_submode;
|
||
|
||
/* Some ports misuse CCmode. */
|
||
if (GET_MODE_CLASS (outermode) == MODE_CC && GET_CODE (op) == CONST_INT)
|
||
return op;
|
||
|
||
/* We have no way to represent a complex constant at the rtl level. */
|
||
if (COMPLEX_MODE_P (outermode))
|
||
return NULL_RTX;
|
||
|
||
/* Unpack the value. */
|
||
|
||
if (GET_CODE (op) == CONST_VECTOR)
|
||
{
|
||
num_elem = CONST_VECTOR_NUNITS (op);
|
||
elems = &CONST_VECTOR_ELT (op, 0);
|
||
elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
|
||
}
|
||
else
|
||
{
|
||
num_elem = 1;
|
||
elems = &op;
|
||
elem_bitsize = max_bitsize;
|
||
}
|
||
/* If this asserts, it is too complicated; reducing value_bit may help. */
|
||
gcc_assert (BITS_PER_UNIT % value_bit == 0);
|
||
/* I don't know how to handle endianness of sub-units. */
|
||
gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
|
||
|
||
for (elem = 0; elem < num_elem; elem++)
|
||
{
|
||
unsigned char * vp;
|
||
rtx el = elems[elem];
|
||
|
||
/* Vectors are kept in target memory order. (This is probably
|
||
a mistake.) */
|
||
{
|
||
unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
|
||
unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
|
||
/ BITS_PER_UNIT);
|
||
unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
|
||
unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
|
||
unsigned bytele = (subword_byte % UNITS_PER_WORD
|
||
+ (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
|
||
vp = value + (bytele * BITS_PER_UNIT) / value_bit;
|
||
}
|
||
|
||
switch (GET_CODE (el))
|
||
{
|
||
case CONST_INT:
|
||
for (i = 0;
|
||
i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
|
||
i += value_bit)
|
||
*vp++ = INTVAL (el) >> i;
|
||
/* CONST_INTs are always logically sign-extended. */
|
||
for (; i < elem_bitsize; i += value_bit)
|
||
*vp++ = INTVAL (el) < 0 ? -1 : 0;
|
||
break;
|
||
|
||
case CONST_DOUBLE:
|
||
if (GET_MODE (el) == VOIDmode)
|
||
{
|
||
/* If this triggers, someone should have generated a
|
||
CONST_INT instead. */
|
||
gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
|
||
|
||
for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
|
||
*vp++ = CONST_DOUBLE_LOW (el) >> i;
|
||
while (i < HOST_BITS_PER_WIDE_INT * 2 && i < elem_bitsize)
|
||
{
|
||
*vp++
|
||
= CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
|
||
i += value_bit;
|
||
}
|
||
/* It shouldn't matter what's done here, so fill it with
|
||
zero. */
|
||
for (; i < max_bitsize; i += value_bit)
|
||
*vp++ = 0;
|
||
}
|
||
else
|
||
{
|
||
long tmp[max_bitsize / 32];
|
||
int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
|
||
|
||
gcc_assert (GET_MODE_CLASS (GET_MODE (el)) == MODE_FLOAT);
|
||
gcc_assert (bitsize <= elem_bitsize);
|
||
gcc_assert (bitsize % value_bit == 0);
|
||
|
||
real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
|
||
GET_MODE (el));
|
||
|
||
/* real_to_target produces its result in words affected by
|
||
FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
|
||
and use WORDS_BIG_ENDIAN instead; see the documentation
|
||
of SUBREG in rtl.texi. */
|
||
for (i = 0; i < bitsize; i += value_bit)
|
||
{
|
||
int ibase;
|
||
if (WORDS_BIG_ENDIAN)
|
||
ibase = bitsize - 1 - i;
|
||
else
|
||
ibase = i;
|
||
*vp++ = tmp[ibase / 32] >> i % 32;
|
||
}
|
||
|
||
/* It shouldn't matter what's done here, so fill it with
|
||
zero. */
|
||
for (; i < elem_bitsize; i += value_bit)
|
||
*vp++ = 0;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Now, pick the right byte to start with. */
|
||
/* Renumber BYTE so that the least-significant byte is byte 0. A special
|
||
case is paradoxical SUBREGs, which shouldn't be adjusted since they
|
||
will already have offset 0. */
|
||
if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
|
||
{
|
||
unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)
|
||
- byte);
|
||
unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
|
||
unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
|
||
byte = (subword_byte % UNITS_PER_WORD
|
||
+ (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
|
||
}
|
||
|
||
/* BYTE should still be inside OP. (Note that BYTE is unsigned,
|
||
so if it's become negative it will instead be very large.) */
|
||
gcc_assert (byte < GET_MODE_SIZE (innermode));
|
||
|
||
/* Convert from bytes to chunks of size value_bit. */
|
||
value_start = byte * (BITS_PER_UNIT / value_bit);
|
||
|
||
/* Re-pack the value. */
|
||
|
||
if (VECTOR_MODE_P (outermode))
|
||
{
|
||
num_elem = GET_MODE_NUNITS (outermode);
|
||
result_v = rtvec_alloc (num_elem);
|
||
elems = &RTVEC_ELT (result_v, 0);
|
||
outer_submode = GET_MODE_INNER (outermode);
|
||
}
|
||
else
|
||
{
|
||
num_elem = 1;
|
||
elems = &result_s;
|
||
outer_submode = outermode;
|
||
}
|
||
|
||
outer_class = GET_MODE_CLASS (outer_submode);
|
||
elem_bitsize = GET_MODE_BITSIZE (outer_submode);
|
||
|
||
gcc_assert (elem_bitsize % value_bit == 0);
|
||
gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
|
||
|
||
for (elem = 0; elem < num_elem; elem++)
|
||
{
|
||
unsigned char *vp;
|
||
|
||
/* Vectors are stored in target memory order. (This is probably
|
||
a mistake.) */
|
||
{
|
||
unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
|
||
unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
|
||
/ BITS_PER_UNIT);
|
||
unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
|
||
unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
|
||
unsigned bytele = (subword_byte % UNITS_PER_WORD
|
||
+ (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
|
||
vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
|
||
}
|
||
|
||
switch (outer_class)
|
||
{
|
||
case MODE_INT:
|
||
case MODE_PARTIAL_INT:
|
||
{
|
||
unsigned HOST_WIDE_INT hi = 0, lo = 0;
|
||
|
||
for (i = 0;
|
||
i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
|
||
i += value_bit)
|
||
lo |= (HOST_WIDE_INT)(*vp++ & value_mask) << i;
|
||
for (; i < elem_bitsize; i += value_bit)
|
||
hi |= ((HOST_WIDE_INT)(*vp++ & value_mask)
|
||
<< (i - HOST_BITS_PER_WIDE_INT));
|
||
|
||
/* immed_double_const doesn't call trunc_int_for_mode. I don't
|
||
know why. */
|
||
if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
|
||
elems[elem] = gen_int_mode (lo, outer_submode);
|
||
else
|
||
elems[elem] = immed_double_const (lo, hi, outer_submode);
|
||
}
|
||
break;
|
||
|
||
case MODE_FLOAT:
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
long tmp[max_bitsize / 32];
|
||
|
||
/* real_from_target wants its input in words affected by
|
||
FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
|
||
and use WORDS_BIG_ENDIAN instead; see the documentation
|
||
of SUBREG in rtl.texi. */
|
||
for (i = 0; i < max_bitsize / 32; i++)
|
||
tmp[i] = 0;
|
||
for (i = 0; i < elem_bitsize; i += value_bit)
|
||
{
|
||
int ibase;
|
||
if (WORDS_BIG_ENDIAN)
|
||
ibase = elem_bitsize - 1 - i;
|
||
else
|
||
ibase = i;
|
||
tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
|
||
}
|
||
|
||
real_from_target (&r, tmp, outer_submode);
|
||
elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
if (VECTOR_MODE_P (outermode))
|
||
return gen_rtx_CONST_VECTOR (outermode, result_v);
|
||
else
|
||
return result_s;
|
||
}
|
||
|
||
/* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
|
||
Return 0 if no simplifications are possible. */
|
||
rtx
|
||
simplify_subreg (enum machine_mode outermode, rtx op,
|
||
enum machine_mode innermode, unsigned int byte)
|
||
{
|
||
/* Little bit of sanity checking. */
|
||
gcc_assert (innermode != VOIDmode);
|
||
gcc_assert (outermode != VOIDmode);
|
||
gcc_assert (innermode != BLKmode);
|
||
gcc_assert (outermode != BLKmode);
|
||
|
||
gcc_assert (GET_MODE (op) == innermode
|
||
|| GET_MODE (op) == VOIDmode);
|
||
|
||
gcc_assert ((byte % GET_MODE_SIZE (outermode)) == 0);
|
||
gcc_assert (byte < GET_MODE_SIZE (innermode));
|
||
|
||
if (outermode == innermode && !byte)
|
||
return op;
|
||
|
||
if (GET_CODE (op) == CONST_INT
|
||
|| GET_CODE (op) == CONST_DOUBLE
|
||
|| GET_CODE (op) == CONST_VECTOR)
|
||
return simplify_immed_subreg (outermode, op, innermode, byte);
|
||
|
||
/* Changing mode twice with SUBREG => just change it once,
|
||
or not at all if changing back op starting mode. */
|
||
if (GET_CODE (op) == SUBREG)
|
||
{
|
||
enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
|
||
int final_offset = byte + SUBREG_BYTE (op);
|
||
rtx newx;
|
||
|
||
if (outermode == innermostmode
|
||
&& byte == 0 && SUBREG_BYTE (op) == 0)
|
||
return SUBREG_REG (op);
|
||
|
||
/* The SUBREG_BYTE represents offset, as if the value were stored
|
||
in memory. Irritating exception is paradoxical subreg, where
|
||
we define SUBREG_BYTE to be 0. On big endian machines, this
|
||
value should be negative. For a moment, undo this exception. */
|
||
if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
|
||
{
|
||
int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
|
||
if (WORDS_BIG_ENDIAN)
|
||
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
final_offset += difference % UNITS_PER_WORD;
|
||
}
|
||
if (SUBREG_BYTE (op) == 0
|
||
&& GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
|
||
{
|
||
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
|
||
if (WORDS_BIG_ENDIAN)
|
||
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
final_offset += difference % UNITS_PER_WORD;
|
||
}
|
||
|
||
/* See whether resulting subreg will be paradoxical. */
|
||
if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
|
||
{
|
||
/* In nonparadoxical subregs we can't handle negative offsets. */
|
||
if (final_offset < 0)
|
||
return NULL_RTX;
|
||
/* Bail out in case resulting subreg would be incorrect. */
|
||
if (final_offset % GET_MODE_SIZE (outermode)
|
||
|| (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
|
||
return NULL_RTX;
|
||
}
|
||
else
|
||
{
|
||
int offset = 0;
|
||
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
|
||
|
||
/* In paradoxical subreg, see if we are still looking on lower part.
|
||
If so, our SUBREG_BYTE will be 0. */
|
||
if (WORDS_BIG_ENDIAN)
|
||
offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
offset += difference % UNITS_PER_WORD;
|
||
if (offset == final_offset)
|
||
final_offset = 0;
|
||
else
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Recurse for further possible simplifications. */
|
||
newx = simplify_subreg (outermode, SUBREG_REG (op), innermostmode,
|
||
final_offset);
|
||
if (newx)
|
||
return newx;
|
||
if (validate_subreg (outermode, innermostmode,
|
||
SUBREG_REG (op), final_offset))
|
||
return gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* SUBREG of a hard register => just change the register number
|
||
and/or mode. If the hard register is not valid in that mode,
|
||
suppress this simplification. If the hard register is the stack,
|
||
frame, or argument pointer, leave this as a SUBREG. */
|
||
|
||
if (REG_P (op)
|
||
&& REGNO (op) < FIRST_PSEUDO_REGISTER
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
&& ! (REG_CANNOT_CHANGE_MODE_P (REGNO (op), innermode, outermode)
|
||
&& GET_MODE_CLASS (innermode) != MODE_COMPLEX_INT
|
||
&& GET_MODE_CLASS (innermode) != MODE_COMPLEX_FLOAT)
|
||
#endif
|
||
&& ((reload_completed && !frame_pointer_needed)
|
||
|| (REGNO (op) != FRAME_POINTER_REGNUM
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
&& REGNO (op) != HARD_FRAME_POINTER_REGNUM
|
||
#endif
|
||
))
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
&& REGNO (op) != ARG_POINTER_REGNUM
|
||
#endif
|
||
&& REGNO (op) != STACK_POINTER_REGNUM
|
||
&& subreg_offset_representable_p (REGNO (op), innermode,
|
||
byte, outermode))
|
||
{
|
||
unsigned int regno = REGNO (op);
|
||
unsigned int final_regno
|
||
= regno + subreg_regno_offset (regno, innermode, byte, outermode);
|
||
|
||
/* ??? We do allow it if the current REG is not valid for
|
||
its mode. This is a kludge to work around how float/complex
|
||
arguments are passed on 32-bit SPARC and should be fixed. */
|
||
if (HARD_REGNO_MODE_OK (final_regno, outermode)
|
||
|| ! HARD_REGNO_MODE_OK (regno, innermode))
|
||
{
|
||
rtx x = gen_rtx_REG_offset (op, outermode, final_regno, byte);
|
||
|
||
/* Propagate original regno. We don't have any way to specify
|
||
the offset inside original regno, so do so only for lowpart.
|
||
The information is used only by alias analysis that can not
|
||
grog partial register anyway. */
|
||
|
||
if (subreg_lowpart_offset (outermode, innermode) == byte)
|
||
ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
|
||
return x;
|
||
}
|
||
}
|
||
|
||
/* If we have a SUBREG of a register that we are replacing and we are
|
||
replacing it with a MEM, make a new MEM and try replacing the
|
||
SUBREG with it. Don't do this if the MEM has a mode-dependent address
|
||
or if we would be widening it. */
|
||
|
||
if (MEM_P (op)
|
||
&& ! mode_dependent_address_p (XEXP (op, 0))
|
||
/* Allow splitting of volatile memory references in case we don't
|
||
have instruction to move the whole thing. */
|
||
&& (! MEM_VOLATILE_P (op)
|
||
|| ! have_insn_for (SET, innermode))
|
||
&& GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
|
||
return adjust_address_nv (op, outermode, byte);
|
||
|
||
/* Handle complex values represented as CONCAT
|
||
of real and imaginary part. */
|
||
if (GET_CODE (op) == CONCAT)
|
||
{
|
||
unsigned int inner_size, final_offset;
|
||
rtx part, res;
|
||
|
||
inner_size = GET_MODE_UNIT_SIZE (innermode);
|
||
part = byte < inner_size ? XEXP (op, 0) : XEXP (op, 1);
|
||
final_offset = byte % inner_size;
|
||
if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
|
||
return NULL_RTX;
|
||
|
||
res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
|
||
if (res)
|
||
return res;
|
||
if (validate_subreg (outermode, GET_MODE (part), part, final_offset))
|
||
return gen_rtx_SUBREG (outermode, part, final_offset);
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Optimize SUBREG truncations of zero and sign extended values. */
|
||
if ((GET_CODE (op) == ZERO_EXTEND
|
||
|| GET_CODE (op) == SIGN_EXTEND)
|
||
&& GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode))
|
||
{
|
||
unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
|
||
|
||
/* If we're requesting the lowpart of a zero or sign extension,
|
||
there are three possibilities. If the outermode is the same
|
||
as the origmode, we can omit both the extension and the subreg.
|
||
If the outermode is not larger than the origmode, we can apply
|
||
the truncation without the extension. Finally, if the outermode
|
||
is larger than the origmode, but both are integer modes, we
|
||
can just extend to the appropriate mode. */
|
||
if (bitpos == 0)
|
||
{
|
||
enum machine_mode origmode = GET_MODE (XEXP (op, 0));
|
||
if (outermode == origmode)
|
||
return XEXP (op, 0);
|
||
if (GET_MODE_BITSIZE (outermode) <= GET_MODE_BITSIZE (origmode))
|
||
return simplify_gen_subreg (outermode, XEXP (op, 0), origmode,
|
||
subreg_lowpart_offset (outermode,
|
||
origmode));
|
||
if (SCALAR_INT_MODE_P (outermode))
|
||
return simplify_gen_unary (GET_CODE (op), outermode,
|
||
XEXP (op, 0), origmode);
|
||
}
|
||
|
||
/* A SUBREG resulting from a zero extension may fold to zero if
|
||
it extracts higher bits that the ZERO_EXTEND's source bits. */
|
||
if (GET_CODE (op) == ZERO_EXTEND
|
||
&& bitpos >= GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0))))
|
||
return CONST0_RTX (outermode);
|
||
}
|
||
|
||
/* Simplify (subreg:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C), 0) into
|
||
to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
|
||
the outer subreg is effectively a truncation to the original mode. */
|
||
if ((GET_CODE (op) == LSHIFTRT
|
||
|| GET_CODE (op) == ASHIFTRT)
|
||
&& SCALAR_INT_MODE_P (outermode)
|
||
/* Ensure that OUTERMODE is at least twice as wide as the INNERMODE
|
||
to avoid the possibility that an outer LSHIFTRT shifts by more
|
||
than the sign extension's sign_bit_copies and introduces zeros
|
||
into the high bits of the result. */
|
||
&& (2 * GET_MODE_BITSIZE (outermode)) <= GET_MODE_BITSIZE (innermode)
|
||
&& GET_CODE (XEXP (op, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
|
||
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
|
||
&& INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
|
||
&& subreg_lsb_1 (outermode, innermode, byte) == 0)
|
||
return simplify_gen_binary (ASHIFTRT, outermode,
|
||
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
|
||
|
||
/* Likewise (subreg:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C), 0) into
|
||
to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
|
||
the outer subreg is effectively a truncation to the original mode. */
|
||
if ((GET_CODE (op) == LSHIFTRT
|
||
|| GET_CODE (op) == ASHIFTRT)
|
||
&& SCALAR_INT_MODE_P (outermode)
|
||
&& GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
|
||
&& GET_CODE (XEXP (op, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
|
||
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
|
||
&& INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
|
||
&& subreg_lsb_1 (outermode, innermode, byte) == 0)
|
||
return simplify_gen_binary (LSHIFTRT, outermode,
|
||
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
|
||
|
||
/* Likewise (subreg:QI (ashift:SI (zero_extend:SI (x:QI)) C), 0) into
|
||
to (ashift:QI (x:QI) C), where C is a suitable small constant and
|
||
the outer subreg is effectively a truncation to the original mode. */
|
||
if (GET_CODE (op) == ASHIFT
|
||
&& SCALAR_INT_MODE_P (outermode)
|
||
&& GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
|
||
&& GET_CODE (XEXP (op, 1)) == CONST_INT
|
||
&& (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
|
||
|| GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
|
||
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
|
||
&& INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
|
||
&& subreg_lsb_1 (outermode, innermode, byte) == 0)
|
||
return simplify_gen_binary (ASHIFT, outermode,
|
||
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Make a SUBREG operation or equivalent if it folds. */
|
||
|
||
rtx
|
||
simplify_gen_subreg (enum machine_mode outermode, rtx op,
|
||
enum machine_mode innermode, unsigned int byte)
|
||
{
|
||
rtx newx;
|
||
|
||
newx = simplify_subreg (outermode, op, innermode, byte);
|
||
if (newx)
|
||
return newx;
|
||
|
||
if (GET_CODE (op) == SUBREG
|
||
|| GET_CODE (op) == CONCAT
|
||
|| GET_MODE (op) == VOIDmode)
|
||
return NULL_RTX;
|
||
|
||
if (validate_subreg (outermode, innermode, op, byte))
|
||
return gen_rtx_SUBREG (outermode, op, byte);
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Simplify X, an rtx expression.
|
||
|
||
Return the simplified expression or NULL if no simplifications
|
||
were possible.
|
||
|
||
This is the preferred entry point into the simplification routines;
|
||
however, we still allow passes to call the more specific routines.
|
||
|
||
Right now GCC has three (yes, three) major bodies of RTL simplification
|
||
code that need to be unified.
|
||
|
||
1. fold_rtx in cse.c. This code uses various CSE specific
|
||
information to aid in RTL simplification.
|
||
|
||
2. simplify_rtx in combine.c. Similar to fold_rtx, except that
|
||
it uses combine specific information to aid in RTL
|
||
simplification.
|
||
|
||
3. The routines in this file.
|
||
|
||
|
||
Long term we want to only have one body of simplification code; to
|
||
get to that state I recommend the following steps:
|
||
|
||
1. Pour over fold_rtx & simplify_rtx and move any simplifications
|
||
which are not pass dependent state into these routines.
|
||
|
||
2. As code is moved by #1, change fold_rtx & simplify_rtx to
|
||
use this routine whenever possible.
|
||
|
||
3. Allow for pass dependent state to be provided to these
|
||
routines and add simplifications based on the pass dependent
|
||
state. Remove code from cse.c & combine.c that becomes
|
||
redundant/dead.
|
||
|
||
It will take time, but ultimately the compiler will be easier to
|
||
maintain and improve. It's totally silly that when we add a
|
||
simplification that it needs to be added to 4 places (3 for RTL
|
||
simplification and 1 for tree simplification. */
|
||
|
||
rtx
|
||
simplify_rtx (rtx x)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
enum machine_mode mode = GET_MODE (x);
|
||
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case RTX_UNARY:
|
||
return simplify_unary_operation (code, mode,
|
||
XEXP (x, 0), GET_MODE (XEXP (x, 0)));
|
||
case RTX_COMM_ARITH:
|
||
if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
|
||
return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
|
||
|
||
/* Fall through.... */
|
||
|
||
case RTX_BIN_ARITH:
|
||
return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
|
||
|
||
case RTX_TERNARY:
|
||
case RTX_BITFIELD_OPS:
|
||
return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
|
||
XEXP (x, 0), XEXP (x, 1),
|
||
XEXP (x, 2));
|
||
|
||
case RTX_COMPARE:
|
||
case RTX_COMM_COMPARE:
|
||
return simplify_relational_operation (code, mode,
|
||
((GET_MODE (XEXP (x, 0))
|
||
!= VOIDmode)
|
||
? GET_MODE (XEXP (x, 0))
|
||
: GET_MODE (XEXP (x, 1))),
|
||
XEXP (x, 0),
|
||
XEXP (x, 1));
|
||
|
||
case RTX_EXTRA:
|
||
if (code == SUBREG)
|
||
return simplify_gen_subreg (mode, SUBREG_REG (x),
|
||
GET_MODE (SUBREG_REG (x)),
|
||
SUBREG_BYTE (x));
|
||
break;
|
||
|
||
case RTX_OBJ:
|
||
if (code == LO_SUM)
|
||
{
|
||
/* Convert (lo_sum (high FOO) FOO) to FOO. */
|
||
if (GET_CODE (XEXP (x, 0)) == HIGH
|
||
&& rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
|
||
return XEXP (x, 1);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return NULL;
|
||
}
|