644cb69f80
PR libfortran/19308 PR fortran/20120 PR libfortran/22437 * Makefile.am: Add generated files for large real and integers kinds. Add a rule to create the kinds.inc c99_protos.inc files. Use kinds.inc to preprocess Fortran generated files. * libgfortran.h: Add macro definitions for GFC_INTEGER_16_HUGE, GFC_REAL_10_HUGE and GFC_REAL_16_HUGE. Add types gfc_array_i16, gfc_array_r10, gfc_array_r16, gfc_array_c10, gfc_array_c16, gfc_array_l16. * mk-kinds-h.sh: Define macros HAVE_GFC_LOGICAL_* and HAVE_GFC_COMPLEX_* when these types are available. * intrinsics/ishftc.c (ishftc16): New function for GFC_INTEGER_16. * m4/all.m4, m4/any.m4, m4/count.m4, m4/cshift1.m4, m4/dotprod.m4, m4/dotprodc.m4, m4/dotprodl.m4, m4/eoshift1.m4, m4/eoshift3.m4, m4/exponent.m4, m4/fraction.m4, m4/in_pack.m4, m4/in_unpack.m4, m4/matmul.m4, m4/matmull.m4, m4/maxloc0.m4, m4/maxloc1.m4, m4/maxval.m4, m4/minloc0.m4, m4/minloc1.m4, m4/minval.m4, m4/mtype.m4, m4/nearest.m4, m4/pow.m4, m4/product.m4, m4/reshape.m4, m4/set_exponent.m4, m4/shape.m4, m4/specific.m4, m4/specific2.m4, m4/sum.m4, m4/transpose.m4: Protect generated functions with appropriate "#if defined (HAVE_GFC_type_kind)" preprocessor directives. * Makefile.in: Regenerate. * all files in generated/: Regenerate. * f95-lang.c (DO_DEFINE_MATH_BUILTIN): Add support for long double builtin function. (gfc_init_builtin_functions): Add mfunc_longdouble, mfunc_clongdouble and func_clongdouble_longdouble trees. Build them for round, trunc, cabs, copysign and pow functions. * iresolve.c (gfc_resolve_reshape, gfc_resolve_transpose): Add case for kind 10 and 16. * trans-decl.c: Add trees for cpowl10, cpowl16, ishftc16, exponent10 and exponent16. (gfc_build_intrinsic_function_decls): Build nodes for int16, real10, real16, complex10 and complex16 types. Build all possible combinations for function _gfortran_pow_?n_?n. Build function calls cpowl10, cpowl16, ishftc16, exponent10 and exponent16. * trans-expr.c (gfc_conv_power_op): Add case for integer(16), real(10) and real(16). * trans-intrinsic.c: Add suppport for long double builtin functions in BUILT_IN_FUNCTION, LIBM_FUNCTION and LIBF_FUNCTION macros. (gfc_conv_intrinsic_aint): Add case for integer(16), real(10) and real(16) kinds. (gfc_build_intrinsic_lib_fndecls): Add support for real10_decl and real16_decl in library functions. (gfc_get_intrinsic_lib_fndecl): Add cases for real and complex kinds 10 and 16. (gfc_conv_intrinsic_exponent): Add cases for real(10) and real(16) kinds. (gfc_conv_intrinsic_sign): Likewise. (gfc_conv_intrinsic_ishftc): Add case for integer(16) kind. * trans-types.c (gfc_get_int_type, gfc_get_real_type, gfc_get_complex_type, gfc_get_logical_type): Doesn't error out in the case of kinds not available. * trans.h: Declare trees for cpowl10, cpowl16, ishftc16, exponent10 and exponent16. * gfortran.dg/large_real_kind_2.F90: New test. * gfortran.dg/large_integer_kind_2.f90: New test. From-SVN: r104889
222 lines
6.3 KiB
C
222 lines
6.3 KiB
C
/* Implementation of the MATMUL intrinsic
|
|
Copyright 2002, 2005 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
In addition to the permissions in the GNU General Public License, the
|
|
Free Software Foundation gives you unlimited permission to link the
|
|
compiled version of this file into combinations with other programs,
|
|
and to distribute those combinations without any restriction coming
|
|
from the use of this file. (The General Public License restrictions
|
|
do apply in other respects; for example, they cover modification of
|
|
the file, and distribution when not linked into a combine
|
|
executable.)
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public
|
|
License along with libgfortran; see the file COPYING. If not,
|
|
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA. */
|
|
|
|
#include "config.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include "libgfortran.h"
|
|
|
|
#if defined (HAVE_GFC_COMPLEX_10)
|
|
|
|
/* This is a C version of the following fortran pseudo-code. The key
|
|
point is the loop order -- we access all arrays column-first, which
|
|
improves the performance enough to boost galgel spec score by 50%.
|
|
|
|
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
|
|
C = 0
|
|
DO J=1,N
|
|
DO K=1,COUNT
|
|
DO I=1,M
|
|
C(I,J) = C(I,J)+A(I,K)*B(K,J)
|
|
*/
|
|
|
|
extern void matmul_c10 (gfc_array_c10 * retarray, gfc_array_c10 * a, gfc_array_c10 * b);
|
|
export_proto(matmul_c10);
|
|
|
|
void
|
|
matmul_c10 (gfc_array_c10 * retarray, gfc_array_c10 * a, gfc_array_c10 * b)
|
|
{
|
|
GFC_COMPLEX_10 *abase;
|
|
GFC_COMPLEX_10 *bbase;
|
|
GFC_COMPLEX_10 *dest;
|
|
|
|
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
|
|
index_type x, y, n, count, xcount, ycount;
|
|
|
|
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
|
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
|
|
|
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
|
|
|
|
Either A or B (but not both) can be rank 1:
|
|
|
|
o One-dimensional argument A is implicitly treated as a row matrix
|
|
dimensioned [1,count], so xcount=1.
|
|
|
|
o One-dimensional argument B is implicitly treated as a column matrix
|
|
dimensioned [count, 1], so ycount=1.
|
|
*/
|
|
|
|
if (retarray->data == NULL)
|
|
{
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
retarray->dim[0].lbound = 0;
|
|
retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
|
|
retarray->dim[0].stride = 1;
|
|
}
|
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
retarray->dim[0].lbound = 0;
|
|
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
|
|
retarray->dim[0].stride = 1;
|
|
}
|
|
else
|
|
{
|
|
retarray->dim[0].lbound = 0;
|
|
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
|
|
retarray->dim[0].stride = 1;
|
|
|
|
retarray->dim[1].lbound = 0;
|
|
retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
|
|
retarray->dim[1].stride = retarray->dim[0].ubound+1;
|
|
}
|
|
|
|
retarray->data
|
|
= internal_malloc_size (sizeof (GFC_COMPLEX_10) * size0 ((array_t *) retarray));
|
|
retarray->offset = 0;
|
|
}
|
|
|
|
abase = a->data;
|
|
bbase = b->data;
|
|
dest = retarray->data;
|
|
|
|
if (retarray->dim[0].stride == 0)
|
|
retarray->dim[0].stride = 1;
|
|
if (a->dim[0].stride == 0)
|
|
a->dim[0].stride = 1;
|
|
if (b->dim[0].stride == 0)
|
|
b->dim[0].stride = 1;
|
|
|
|
|
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
|
{
|
|
/* One-dimensional result may be addressed in the code below
|
|
either as a row or a column matrix. We want both cases to
|
|
work. */
|
|
rxstride = rystride = retarray->dim[0].stride;
|
|
}
|
|
else
|
|
{
|
|
rxstride = retarray->dim[0].stride;
|
|
rystride = retarray->dim[1].stride;
|
|
}
|
|
|
|
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
/* Treat it as a a row matrix A[1,count]. */
|
|
axstride = a->dim[0].stride;
|
|
aystride = 1;
|
|
|
|
xcount = 1;
|
|
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
|
}
|
|
else
|
|
{
|
|
axstride = a->dim[0].stride;
|
|
aystride = a->dim[1].stride;
|
|
|
|
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
|
|
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
|
}
|
|
|
|
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
|
|
|
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
/* Treat it as a column matrix B[count,1] */
|
|
bxstride = b->dim[0].stride;
|
|
|
|
/* bystride should never be used for 1-dimensional b.
|
|
in case it is we want it to cause a segfault, rather than
|
|
an incorrect result. */
|
|
bystride = 0xDEADBEEF;
|
|
ycount = 1;
|
|
}
|
|
else
|
|
{
|
|
bxstride = b->dim[0].stride;
|
|
bystride = b->dim[1].stride;
|
|
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
|
|
}
|
|
|
|
abase = a->data;
|
|
bbase = b->data;
|
|
dest = retarray->data;
|
|
|
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
|
{
|
|
GFC_COMPLEX_10 *bbase_y;
|
|
GFC_COMPLEX_10 *dest_y;
|
|
GFC_COMPLEX_10 *abase_n;
|
|
GFC_COMPLEX_10 bbase_yn;
|
|
|
|
if (rystride == ycount)
|
|
memset (dest, 0, (sizeof (GFC_COMPLEX_10) * size0((array_t *) retarray)));
|
|
else
|
|
{
|
|
for (y = 0; y < ycount; y++)
|
|
for (x = 0; x < xcount; x++)
|
|
dest[x + y*rystride] = (GFC_COMPLEX_10)0;
|
|
}
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
bbase_y = bbase + y*bystride;
|
|
dest_y = dest + y*rystride;
|
|
for (n = 0; n < count; n++)
|
|
{
|
|
abase_n = abase + n*aystride;
|
|
bbase_yn = bbase_y[n];
|
|
for (x = 0; x < xcount; x++)
|
|
{
|
|
dest_y[x] += abase_n[x] * bbase_yn;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (y = 0; y < ycount; y++)
|
|
for (x = 0; x < xcount; x++)
|
|
dest[x*rxstride + y*rystride] = (GFC_COMPLEX_10)0;
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
for (n = 0; n < count; n++)
|
|
for (x = 0; x < xcount; x++)
|
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
|
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
|
}
|
|
}
|
|
|
|
#endif
|