gcc/libjava/java/lang/reflect/natMethod.cc
Tom Tromey 97b8365caf Merged gcj-eclipse branch to trunk.
From-SVN: r120621
2007-01-09 19:58:05 +00:00

684 lines
18 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// natMethod.cc - Native code for Method class.
/* Copyright (C) 1998, 1999, 2000, 2001 , 2002, 2003, 2004, 2005, 2006 Free Software Foundation
This file is part of libgcj.
This software is copyrighted work licensed under the terms of the
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
details. */
#include <config.h>
#include <gcj/cni.h>
#include <jvm.h>
#include <jni.h>
#include <java-stack.h>
#include <java/lang/reflect/Method.h>
#include <java/lang/reflect/Constructor.h>
#include <java/lang/reflect/InvocationTargetException.h>
#include <java/lang/reflect/Modifier.h>
#include <java/lang/Void.h>
#include <java/lang/Byte.h>
#include <java/lang/Boolean.h>
#include <java/lang/Character.h>
#include <java/lang/Short.h>
#include <java/lang/Integer.h>
#include <java/lang/Long.h>
#include <java/lang/Float.h>
#include <java/lang/Double.h>
#include <java/lang/IllegalAccessException.h>
#include <java/lang/IllegalArgumentException.h>
#include <java/lang/IncompatibleClassChangeError.h>
#include <java/lang/NullPointerException.h>
#include <java/lang/ArrayIndexOutOfBoundsException.h>
#include <java/lang/VirtualMachineError.h>
#include <java/lang/Class.h>
#include <gcj/method.h>
#include <gnu/gcj/RawData.h>
#include <java/lang/NoClassDefFoundError.h>
#include <stdlib.h>
#if USE_LIBFFI
#include <ffi.h>
#else
#include <java/lang/UnsupportedOperationException.h>
#endif
typedef JArray< ::java::lang::annotation::Annotation * > * anno_a_t;
typedef JArray< JArray< ::java::lang::annotation::Annotation * > *> * anno_aa_t;
struct cpair
{
jclass prim;
jclass wrap;
};
// This is used to determine when a primitive widening conversion is
// allowed.
static cpair primitives[] =
{
#define BOOLEAN 0
{ JvPrimClass (boolean), &java::lang::Boolean::class$ },
{ JvPrimClass (byte), &java::lang::Byte::class$ },
#define SHORT 2
{ JvPrimClass (short), &java::lang::Short::class$ },
#define CHAR 3
{ JvPrimClass (char), &java::lang::Character::class$ },
{ JvPrimClass (int), &java::lang::Integer::class$ },
{ JvPrimClass (long), &java::lang::Long::class$ },
{ JvPrimClass (float), &java::lang::Float::class$ },
{ JvPrimClass (double), &java::lang::Double::class$ },
{ NULL, NULL }
};
static inline jboolean
can_widen (jclass from, jclass to)
{
int fromx = -1, tox = -1;
for (int i = 0; primitives[i].prim; ++i)
{
if (primitives[i].wrap == from)
fromx = i;
if (primitives[i].prim == to)
tox = i;
}
// Can't handle a miss.
if (fromx == -1 || tox == -1)
return false;
// Boolean arguments may not be widened.
if (fromx == BOOLEAN && tox != BOOLEAN)
return false;
// Nothing promotes to char.
if (tox == CHAR && fromx != CHAR)
return false;
return fromx <= tox;
}
#ifdef USE_LIBFFI
static inline ffi_type *
get_ffi_type (jclass klass)
{
// A special case.
if (klass == NULL)
return &ffi_type_pointer;
ffi_type *r;
if (klass == JvPrimClass (byte))
r = &ffi_type_sint8;
else if (klass == JvPrimClass (short))
r = &ffi_type_sint16;
else if (klass == JvPrimClass (int))
r = &ffi_type_sint32;
else if (klass == JvPrimClass (long))
r = &ffi_type_sint64;
else if (klass == JvPrimClass (float))
r = &ffi_type_float;
else if (klass == JvPrimClass (double))
r = &ffi_type_double;
else if (klass == JvPrimClass (boolean))
{
// On some platforms a bool is a byte, on others an int.
if (sizeof (jboolean) == sizeof (jbyte))
r = &ffi_type_sint8;
else
{
JvAssert (sizeof (jboolean) == sizeof (jint));
r = &ffi_type_sint32;
}
}
else if (klass == JvPrimClass (char))
r = &ffi_type_uint16;
else
{
JvAssert (! klass->isPrimitive());
r = &ffi_type_pointer;
}
return r;
}
#endif // USE_LIBFFI
jobject
java::lang::reflect::Method::invoke (jobject obj, jobjectArray args)
{
using namespace java::lang::reflect;
jclass iface = NULL;
if (parameter_types == NULL)
getType ();
jmethodID meth = _Jv_FromReflectedMethod (this);
if (Modifier::isStatic(meth->accflags))
{
// We have to initialize a static class. It is safe to do this
// here and not in _Jv_CallAnyMethodA because JNI initializes a
// class whenever a method lookup is done.
_Jv_InitClass (declaringClass);
}
else
{
jclass objClass = JV_CLASS (obj);
if (! _Jv_IsAssignableFrom (objClass, declaringClass))
throw new java::lang::IllegalArgumentException;
}
// Check accessibility, if required.
if (! (Modifier::isPublic (meth->accflags) || this->isAccessible()))
{
Class *caller = _Jv_StackTrace::GetCallingClass (&Method::class$);
if (! _Jv_CheckAccess(caller, declaringClass, meth->accflags))
throw new IllegalAccessException;
}
if (declaringClass->isInterface())
iface = declaringClass;
return _Jv_CallAnyMethodA (obj, return_type, meth, false,
parameter_types, args, iface);
}
jint
java::lang::reflect::Method::getModifiersInternal ()
{
return _Jv_FromReflectedMethod (this)->accflags;
}
jstring
java::lang::reflect::Method::getSignature()
{
return declaringClass->getReflectionSignature (this);
}
jobject
java::lang::reflect::Method::getDefaultValue()
{
return declaringClass->getMethodDefaultValue(this);
}
anno_a_t
java::lang::reflect::Method::getDeclaredAnnotationsInternal()
{
return (anno_a_t) declaringClass->getDeclaredAnnotations(this, false);
}
anno_aa_t
java::lang::reflect::Method::getParameterAnnotationsInternal()
{
return (anno_aa_t) declaringClass->getDeclaredAnnotations(this, true);
}
jstring
java::lang::reflect::Method::getName ()
{
if (name == NULL)
name = _Jv_NewStringUtf8Const (_Jv_FromReflectedMethod (this)->name);
return name;
}
/* Internal method to set return_type and parameter_types fields. */
void
java::lang::reflect::Method::getType ()
{
_Jv_Method *method = _Jv_FromReflectedMethod (this);
_Jv_GetTypesFromSignature (method,
declaringClass,
&parameter_types,
&return_type);
int count = 0;
if (method->throws != NULL)
{
while (method->throws[count] != NULL)
++count;
}
exception_types
= (JArray<jclass> *) JvNewObjectArray (count, &java::lang::Class::class$,
NULL);
jclass *elts = elements (exception_types);
for (int i = 0; i < count; ++i)
elts[i] = _Jv_FindClass (method->throws[i],
declaringClass->getClassLoaderInternal ());
}
void
_Jv_GetTypesFromSignature (jmethodID method,
jclass declaringClass,
JArray<jclass> **arg_types_out,
jclass *return_type_out)
{
_Jv_Utf8Const* sig = method->signature;
java::lang::ClassLoader *loader = declaringClass->getClassLoaderInternal();
char *ptr = sig->chars();
int numArgs = 0;
/* First just count the number of parameters. */
// FIXME: should do some validation here, e.g., that there is only
// one return type.
for (; ; ptr++)
{
switch (*ptr)
{
case 0:
case ')':
case 'V':
break;
case '[':
case '(':
continue;
case 'B':
case 'C':
case 'D':
case 'F':
case 'S':
case 'I':
case 'J':
case 'Z':
numArgs++;
continue;
case 'L':
numArgs++;
do
ptr++;
while (*ptr != ';' && ptr[1] != '\0');
continue;
}
break;
}
JArray<jclass> *args = (JArray<jclass> *)
JvNewObjectArray (numArgs, &java::lang::Class::class$, NULL);
jclass* argPtr = elements (args);
for (ptr = sig->chars(); *ptr != '\0'; ptr++)
{
if (*ptr == '(')
continue;
if (*ptr == ')')
{
argPtr = return_type_out;
continue;
}
char *end_ptr;
jclass type = _Jv_FindClassFromSignature (ptr, loader, &end_ptr);
if (type == NULL)
// FIXME: This isn't ideal.
throw new java::lang::NoClassDefFoundError (sig->toString());
// ARGPTR can be NULL if we are processing the return value of a
// call from Constructor.
if (argPtr)
*argPtr++ = type;
ptr = end_ptr;
}
*arg_types_out = args;
}
// This is a very rough analog of the JNI CallNonvirtual<type>MethodA
// functions. It handles both Methods and Constructors, and it can
// handle any return type. In the Constructor case, the `obj'
// argument is unused and should be NULL; also, the `return_type' is
// the class that the constructor will construct. RESULT is a pointer
// to a `jvalue' (see jni.h); for a void method this should be NULL.
// This function returns an exception (if one was thrown), or NULL if
// the call went ok.
void
_Jv_CallAnyMethodA (jobject obj,
jclass return_type,
jmethodID meth,
jboolean is_constructor,
jboolean is_virtual_call,
JArray<jclass> *parameter_types,
jvalue *args,
jvalue *result,
jboolean is_jni_call,
jclass iface)
{
using namespace java::lang::reflect;
#ifdef USE_LIBFFI
JvAssert (! is_constructor || ! obj);
JvAssert (! is_constructor || return_type);
// See whether call needs an object as the first argument. A
// constructor does need a `this' argument, but it is one we create.
jboolean needs_this = false;
if (is_constructor
|| ! Modifier::isStatic(meth->accflags))
needs_this = true;
int param_count = parameter_types->length;
if (needs_this)
++param_count;
ffi_type *rtype;
// A constructor itself always returns void.
if (is_constructor || return_type == JvPrimClass (void))
rtype = &ffi_type_void;
else
rtype = get_ffi_type (return_type);
ffi_type **argtypes = (ffi_type **) __builtin_alloca (param_count
* sizeof (ffi_type *));
jclass *paramelts = elements (parameter_types);
// Special case for the `this' argument of a constructor. Note that
// the JDK 1.2 docs specify that the new object must be allocated
// before argument conversions are done.
if (is_constructor)
obj = _Jv_AllocObject (return_type);
const int size_per_arg = sizeof(jvalue);
ffi_cif cif;
char *p = (char *) __builtin_alloca (param_count * size_per_arg);
// Overallocate to get correct alignment.
void **values = (void **)
__builtin_alloca (param_count * sizeof (void *));
int i = 0;
if (needs_this)
{
// The `NULL' type is `Object'.
argtypes[i] = get_ffi_type (NULL);
values[i] = p;
memcpy (p, &obj, sizeof (jobject));
p += size_per_arg;
++i;
}
for (int arg = 0; i < param_count; ++i, ++arg)
{
int tsize;
argtypes[i] = get_ffi_type (paramelts[arg]);
if (paramelts[arg]->isPrimitive())
tsize = paramelts[arg]->size();
else
tsize = sizeof (jobject);
// Copy appropriate bits from the jvalue into the ffi array.
// FIXME: we could do this copying all in one loop, above, by
// over-allocating a bit.
// How do we do this without breaking big-endian platforms?
values[i] = p;
memcpy (p, &args[arg], tsize);
p += size_per_arg;
}
if (ffi_prep_cif (&cif, FFI_DEFAULT_ABI, param_count,
rtype, argtypes) != FFI_OK)
throw new java::lang::VirtualMachineError(JvNewStringLatin1("internal error: ffi_prep_cif failed"));
using namespace java::lang;
using namespace java::lang::reflect;
union
{
ffi_arg i;
jobject o;
jlong l;
jfloat f;
jdouble d;
} ffi_result;
switch (rtype->type)
{
case FFI_TYPE_VOID:
break;
case FFI_TYPE_SINT8:
result->b = 0;
break;
case FFI_TYPE_SINT16:
result->s = 0;
break;
case FFI_TYPE_UINT16:
result->c = 0;
break;
case FFI_TYPE_SINT32:
result->i = 0;
break;
case FFI_TYPE_SINT64:
result->j = 0;
break;
case FFI_TYPE_FLOAT:
result->f = 0;
break;
case FFI_TYPE_DOUBLE:
result->d = 0;
break;
case FFI_TYPE_POINTER:
result->l = 0;
break;
default:
JvFail ("Unknown ffi_call return type");
break;
}
void *ncode;
// FIXME: If a vtable index is -1 at this point it is invalid, so we
// have to use the ncode.
//
// This can happen because methods in final classes don't have
// vtable entries, but _Jv_isVirtualMethod() doesn't know that. We
// could solve this problem by allocating a vtable index for methods
// in final classes.
if (is_virtual_call
&& ! Modifier::isFinal (meth->accflags)
&& (_Jv_ushort)-1 != meth->index)
{
_Jv_VTable *vtable = *(_Jv_VTable **) obj;
if (iface == NULL)
{
if (is_jni_call && Modifier::isAbstract (meth->accflags))
{
// With JNI we don't know if this is an interface call
// or a call to an abstract method. Look up the method
// by name, the slow way.
_Jv_Method *concrete_meth
= _Jv_LookupDeclaredMethod (vtable->clas,
meth->name,
meth->signature,
NULL);
if (concrete_meth == NULL
|| concrete_meth->ncode == NULL
|| Modifier::isAbstract(concrete_meth->accflags))
throw new java::lang::IncompatibleClassChangeError
(_Jv_GetMethodString (vtable->clas, meth));
ncode = concrete_meth->ncode;
}
else
ncode = vtable->get_method (meth->index);
}
else
ncode = _Jv_LookupInterfaceMethodIdx (vtable->clas, iface,
meth->index);
}
else
{
ncode = meth->ncode;
}
try
{
ffi_call (&cif, (void (*)()) ncode, &ffi_result, values);
}
catch (Throwable *ex)
{
// For JNI we just throw the real error. For reflection, we
// wrap the underlying method's exception in an
// InvocationTargetException.
if (! is_jni_call)
ex = new InvocationTargetException (ex);
throw ex;
}
// Since ffi_call returns integer values promoted to a word, use
// a narrowing conversion for jbyte, jchar, etc. results.
// Note that boolean is handled either by the FFI_TYPE_SINT8 or
// FFI_TYPE_SINT32 case.
if (is_constructor)
result->l = obj;
else
{
switch (rtype->type)
{
case FFI_TYPE_VOID:
break;
case FFI_TYPE_SINT8:
result->b = (jbyte)ffi_result.i;
break;
case FFI_TYPE_SINT16:
result->s = (jshort)ffi_result.i;
break;
case FFI_TYPE_UINT16:
result->c = (jchar)ffi_result.i;
break;
case FFI_TYPE_SINT32:
result->i = (jint)ffi_result.i;
break;
case FFI_TYPE_SINT64:
result->j = (jlong)ffi_result.l;
break;
case FFI_TYPE_FLOAT:
result->f = (jfloat)ffi_result.f;
break;
case FFI_TYPE_DOUBLE:
result->d = (jdouble)ffi_result.d;
break;
case FFI_TYPE_POINTER:
result->l = (jobject)ffi_result.o;
break;
default:
JvFail ("Unknown ffi_call return type");
break;
}
}
#else
throw new java::lang::UnsupportedOperationException(JvNewStringLatin1("reflection not available in this build"));
#endif // USE_LIBFFI
}
// This is another version of _Jv_CallAnyMethodA, but this one does
// more checking and is used by the reflection (and not JNI) code.
jobject
_Jv_CallAnyMethodA (jobject obj,
jclass return_type,
jmethodID meth,
jboolean is_constructor,
JArray<jclass> *parameter_types,
jobjectArray args,
jclass iface)
{
if (parameter_types->length == 0 && args == NULL)
{
// The JDK accepts this, so we do too.
}
else if (parameter_types->length != args->length)
throw new java::lang::IllegalArgumentException;
int param_count = parameter_types->length;
jclass *paramelts = elements (parameter_types);
jobject *argelts = args == NULL ? NULL : elements (args);
jvalue argvals[param_count];
#define COPY(Where, What, Type) \
do { \
Type val = (What); \
memcpy ((Where), &val, sizeof (Type)); \
} while (0)
for (int i = 0; i < param_count; ++i)
{
jclass k = argelts[i] ? argelts[i]->getClass() : NULL;
if (paramelts[i]->isPrimitive())
{
if (! argelts[i]
|| ! k
|| ! can_widen (k, paramelts[i]))
throw new java::lang::IllegalArgumentException;
if (paramelts[i] == JvPrimClass (boolean))
COPY (&argvals[i],
((java::lang::Boolean *) argelts[i])->booleanValue(),
jboolean);
else if (paramelts[i] == JvPrimClass (char))
COPY (&argvals[i],
((java::lang::Character *) argelts[i])->charValue(),
jchar);
else
{
java::lang::Number *num = (java::lang::Number *) argelts[i];
if (paramelts[i] == JvPrimClass (byte))
COPY (&argvals[i], num->byteValue(), jbyte);
else if (paramelts[i] == JvPrimClass (short))
COPY (&argvals[i], num->shortValue(), jshort);
else if (paramelts[i] == JvPrimClass (int))
COPY (&argvals[i], num->intValue(), jint);
else if (paramelts[i] == JvPrimClass (long))
COPY (&argvals[i], num->longValue(), jlong);
else if (paramelts[i] == JvPrimClass (float))
COPY (&argvals[i], num->floatValue(), jfloat);
else if (paramelts[i] == JvPrimClass (double))
COPY (&argvals[i], num->doubleValue(), jdouble);
}
}
else
{
if (argelts[i] && ! paramelts[i]->isAssignableFrom (k))
throw new java::lang::IllegalArgumentException;
COPY (&argvals[i], argelts[i], jobject);
}
}
jvalue ret_value;
_Jv_CallAnyMethodA (obj, return_type, meth, is_constructor,
_Jv_isVirtualMethod (meth),
parameter_types, argvals, &ret_value,
false, iface);
jobject r;
#define VAL(Wrapper, Field) (new Wrapper (ret_value.Field))
if (is_constructor)
r = ret_value.l;
else if (return_type == JvPrimClass (byte))
r = VAL (java::lang::Byte, b);
else if (return_type == JvPrimClass (short))
r = VAL (java::lang::Short, s);
else if (return_type == JvPrimClass (int))
r = VAL (java::lang::Integer, i);
else if (return_type == JvPrimClass (long))
r = VAL (java::lang::Long, j);
else if (return_type == JvPrimClass (float))
r = VAL (java::lang::Float, f);
else if (return_type == JvPrimClass (double))
r = VAL (java::lang::Double, d);
else if (return_type == JvPrimClass (boolean))
r = VAL (java::lang::Boolean, z);
else if (return_type == JvPrimClass (char))
r = VAL (java::lang::Character, c);
else if (return_type == JvPrimClass (void))
r = NULL;
else
{
JvAssert (return_type == NULL || ! return_type->isPrimitive());
r = ret_value.l;
}
return r;
}