gcc/gcc/graphite-poly.c

727 lines
17 KiB
C

/* Graphite polyhedral representation.
Copyright (C) 2009 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com> and
Tobias Grosser <grosser@fim.uni-passau.de>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "output.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "toplev.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "domwalk.h"
#include "value-prof.h"
#include "pointer-set.h"
#include "gimple.h"
#include "params.h"
#ifdef HAVE_cloog
#include "cloog/cloog.h"
#include "ppl_c.h"
#include "sese.h"
#include "graphite-ppl.h"
#include "graphite.h"
#include "graphite-poly.h"
#include "graphite-dependences.h"
/* Return the maximal loop depth in SCOP. */
int
scop_max_loop_depth (scop_p scop)
{
int i;
poly_bb_p pbb;
int max_nb_loops = 0;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
{
int nb_loops = pbb_dim_iter_domain (pbb);
if (max_nb_loops < nb_loops)
max_nb_loops = nb_loops;
}
return max_nb_loops;
}
/* Extend the scattering matrix of PBB to MAX_SCATTERING scattering
dimensions. */
static void
extend_scattering (poly_bb_p pbb, int max_scattering)
{
ppl_dimension_type nb_old_dims, nb_new_dims;
int nb_added_dims, i;
ppl_Coefficient_t coef;
Value one;
nb_added_dims = max_scattering - pbb_nb_scattering_transform (pbb);
value_init (one);
value_set_si (one, 1);
ppl_new_Coefficient (&coef);
ppl_assign_Coefficient_from_mpz_t (coef, one);
gcc_assert (nb_added_dims >= 0);
nb_old_dims = pbb_nb_scattering_transform (pbb) + pbb_dim_iter_domain (pbb)
+ scop_nb_params (PBB_SCOP (pbb));
nb_new_dims = nb_old_dims + nb_added_dims;
ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb),
pbb_nb_scattering_transform (pbb), nb_added_dims);
PBB_NB_SCATTERING_TRANSFORM (pbb) += nb_added_dims;
/* Add identity matrix for the added dimensions. */
for (i = max_scattering - nb_added_dims; i < max_scattering; i++)
{
ppl_Constraint_t cstr;
ppl_Linear_Expression_t expr;
ppl_new_Linear_Expression_with_dimension (&expr, nb_new_dims);
ppl_Linear_Expression_add_to_coefficient (expr, i, coef);
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Polyhedron_add_constraint (PBB_TRANSFORMED_SCATTERING (pbb), cstr);
ppl_delete_Constraint (cstr);
ppl_delete_Linear_Expression (expr);
}
ppl_delete_Coefficient (coef);
value_clear (one);
}
/* All scattering matrices in SCOP will have the same number of scattering
dimensions. */
int
unify_scattering_dimensions (scop_p scop)
{
int i;
poly_bb_p pbb;
graphite_dim_t max_scattering = 0;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
max_scattering = MAX (pbb_nb_scattering_transform (pbb), max_scattering);
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
extend_scattering (pbb, max_scattering);
return max_scattering;
}
/* Prints to FILE the scattering function of PBB. */
void
print_scattering_function (FILE *file, poly_bb_p pbb)
{
graphite_dim_t i;
if (!PBB_TRANSFORMED (pbb))
return;
fprintf (file, "scattering bb_%d (\n", GBB_BB (PBB_BLACK_BOX (pbb))->index);
fprintf (file, "# eq");
for (i = 0; i < pbb_nb_scattering_transform (pbb); i++)
fprintf (file, " s%d", (int) i);
for (i = 0; i < pbb_nb_local_vars (pbb); i++)
fprintf (file, " lv%d", (int) i);
for (i = 0; i < pbb_dim_iter_domain (pbb); i++)
fprintf (file, " i%d", (int) i);
for (i = 0; i < pbb_nb_params (pbb); i++)
fprintf (file, " p%d", (int) i);
fprintf (file, " cst\n");
ppl_print_polyhedron_matrix (file, PBB_TRANSFORMED_SCATTERING (pbb));
fprintf (file, ")\n");
}
/* Prints to FILE the iteration domain of PBB. */
void
print_iteration_domain (FILE *file, poly_bb_p pbb)
{
print_pbb_domain (file, pbb);
}
/* Prints to FILE the scattering functions of every PBB of SCOP. */
void
print_scattering_functions (FILE *file, scop_p scop)
{
int i;
poly_bb_p pbb;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
print_scattering_function (file, pbb);
}
/* Prints to FILE the iteration domains of every PBB of SCOP. */
void
print_iteration_domains (FILE *file, scop_p scop)
{
int i;
poly_bb_p pbb;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
print_iteration_domain (file, pbb);
}
/* Prints to STDERR the scattering function of PBB. */
void
debug_scattering_function (poly_bb_p pbb)
{
print_scattering_function (stderr, pbb);
}
/* Prints to STDERR the iteration domain of PBB. */
void
debug_iteration_domain (poly_bb_p pbb)
{
print_iteration_domain (stderr, pbb);
}
/* Prints to STDERR the scattering functions of every PBB of SCOP. */
void
debug_scattering_functions (scop_p scop)
{
print_scattering_functions (stderr, scop);
}
/* Prints to STDERR the iteration domains of every PBB of SCOP. */
void
debug_iteration_domains (scop_p scop)
{
print_iteration_domains (stderr, scop);
}
/* Apply graphite transformations to all the basic blocks of SCOP. */
bool
apply_poly_transforms (scop_p scop)
{
bool transform_done = false;
gcc_assert (graphite_legal_transform (scop));
/* Generate code even if we did not apply any real transformation.
This also allows to check the performance for the identity
transformation: GIMPLE -> GRAPHITE -> GIMPLE
Keep in mind that CLooG optimizes in control, so the loop structure
may change, even if we only use -fgraphite-identity. */
if (flag_graphite_identity)
transform_done = true;
if (flag_loop_parallelize_all)
transform_done = true;
if (flag_loop_block)
gcc_unreachable (); /* Not yet supported. */
if (flag_loop_strip_mine)
transform_done |= scop_do_strip_mine (scop);
if (flag_loop_interchange)
transform_done |= scop_do_interchange (scop);
return transform_done;
}
/* Create a new polyhedral data reference and add it to PBB. It is
defined by its ACCESSES, its TYPE, and the number of subscripts
NB_SUBSCRIPTS. */
void
new_poly_dr (poly_bb_p pbb,
ppl_Pointset_Powerset_C_Polyhedron_t accesses,
enum POLY_DR_TYPE type, void *cdr, int nb_subscripts)
{
poly_dr_p pdr = XNEW (struct poly_dr);
PDR_PBB (pdr) = pbb;
PDR_ACCESSES (pdr) = accesses;
PDR_TYPE (pdr) = type;
PDR_CDR (pdr) = cdr;
PDR_NB_SUBSCRIPTS (pdr) = nb_subscripts;
VEC_safe_push (poly_dr_p, heap, PBB_DRS (pbb), pdr);
}
/* Free polyhedral data reference PDR. */
void
free_poly_dr (poly_dr_p pdr)
{
ppl_delete_Pointset_Powerset_C_Polyhedron (PDR_ACCESSES (pdr));
XDELETE (pdr);
}
/* Create a new polyhedral black box. */
void
new_poly_bb (scop_p scop, void *black_box)
{
poly_bb_p pbb = XNEW (struct poly_bb);
PBB_DOMAIN (pbb) = NULL;
PBB_SCOP (pbb) = scop;
pbb_set_black_box (pbb, black_box);
PBB_TRANSFORMED (pbb) = NULL;
PBB_SAVED (pbb) = NULL;
PBB_ORIGINAL (pbb) = NULL;
PBB_DRS (pbb) = VEC_alloc (poly_dr_p, heap, 3);
VEC_safe_push (poly_bb_p, heap, SCOP_BBS (scop), pbb);
}
/* Free polyhedral black box. */
void
free_poly_bb (poly_bb_p pbb)
{
int i;
poly_dr_p pdr;
ppl_delete_Pointset_Powerset_C_Polyhedron (PBB_DOMAIN (pbb));
if (PBB_TRANSFORMED (pbb))
poly_scattering_free (PBB_TRANSFORMED (pbb));
if (PBB_SAVED (pbb))
poly_scattering_free (PBB_SAVED (pbb));
if (PBB_ORIGINAL (pbb))
poly_scattering_free (PBB_ORIGINAL (pbb));
if (PBB_DRS (pbb))
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
free_poly_dr (pdr);
VEC_free (poly_dr_p, heap, PBB_DRS (pbb));
XDELETE (pbb);
}
static void
print_pdr_access_layout (FILE *file, poly_dr_p pdr)
{
graphite_dim_t i;
fprintf (file, "# eq");
for (i = 0; i < pdr_dim_iter_domain (pdr); i++)
fprintf (file, " i%d", (int) i);
for (i = 0; i < pdr_nb_params (pdr); i++)
fprintf (file, " p%d", (int) i);
fprintf (file, " alias");
for (i = 0; i < PDR_NB_SUBSCRIPTS (pdr); i++)
fprintf (file, " sub%d", (int) i);
fprintf (file, " cst\n");
}
/* Prints to FILE the polyhedral data reference PDR. */
void
print_pdr (FILE *file, poly_dr_p pdr)
{
fprintf (file, "pdr (");
switch (PDR_TYPE (pdr))
{
case PDR_READ:
fprintf (file, "read \n");
break;
case PDR_WRITE:
fprintf (file, "write \n");
break;
case PDR_MAY_WRITE:
fprintf (file, "may_write \n");
break;
default:
gcc_unreachable ();
}
dump_data_reference (file, (data_reference_p) PDR_CDR (pdr));
fprintf (file, "data accesses (\n");
print_pdr_access_layout (file, pdr);
ppl_print_powerset_matrix (file, PDR_ACCESSES (pdr));
fprintf (file, ")\n");
fprintf (file, ")\n");
}
/* Prints to STDERR the polyhedral data reference PDR. */
void
debug_pdr (poly_dr_p pdr)
{
print_pdr (stderr, pdr);
}
/* Creates a new SCOP containing REGION. */
scop_p
new_scop (void *region)
{
scop_p scop = XNEW (struct scop);
SCOP_DEP_GRAPH (scop) = NULL;
SCOP_CONTEXT (scop) = NULL;
scop_set_region (scop, region);
SCOP_BBS (scop) = VEC_alloc (poly_bb_p, heap, 3);
SCOP_ORIGINAL_PDR_PAIRS (scop) = htab_create (10, hash_poly_dr_pair_p,
eq_poly_dr_pair_p, free);
return scop;
}
/* Deletes SCOP. */
void
free_scop (scop_p scop)
{
int i;
poly_bb_p pbb;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
free_poly_bb (pbb);
VEC_free (poly_bb_p, heap, SCOP_BBS (scop));
if (SCOP_CONTEXT (scop))
ppl_delete_Pointset_Powerset_C_Polyhedron (SCOP_CONTEXT (scop));
htab_delete (SCOP_ORIGINAL_PDR_PAIRS (scop));
XDELETE (scop);
}
/* Print to FILE the domain of PBB. */
void
print_pbb_domain (FILE *file, poly_bb_p pbb)
{
graphite_dim_t i;
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
if (!PBB_DOMAIN (pbb))
return;
fprintf (file, "domains bb_%d (\n", GBB_BB (gbb)->index);
fprintf (file, "# eq");
for (i = 0; i < pbb_dim_iter_domain (pbb); i++)
fprintf (file, " i%d", (int) i);
for (i = 0; i < pbb_nb_params (pbb); i++)
fprintf (file, " p%d", (int) i);
fprintf (file, " cst\n");
if (PBB_DOMAIN (pbb))
ppl_print_powerset_matrix (file, PBB_DOMAIN (pbb));
fprintf (file, ")\n");
}
/* Dump the cases of a graphite basic block GBB on FILE. */
static void
dump_gbb_cases (FILE *file, gimple_bb_p gbb)
{
int i;
gimple stmt;
VEC (gimple, heap) *cases;
if (!gbb)
return;
cases = GBB_CONDITION_CASES (gbb);
if (VEC_empty (gimple, cases))
return;
fprintf (file, "cases bb_%d (", GBB_BB (gbb)->index);
for (i = 0; VEC_iterate (gimple, cases, i, stmt); i++)
print_gimple_stmt (file, stmt, 0, 0);
fprintf (file, ")\n");
}
/* Dump conditions of a graphite basic block GBB on FILE. */
static void
dump_gbb_conditions (FILE *file, gimple_bb_p gbb)
{
int i;
gimple stmt;
VEC (gimple, heap) *conditions;
if (!gbb)
return;
conditions = GBB_CONDITIONS (gbb);
if (VEC_empty (gimple, conditions))
return;
fprintf (file, "conditions bb_%d (", GBB_BB (gbb)->index);
for (i = 0; VEC_iterate (gimple, conditions, i, stmt); i++)
print_gimple_stmt (file, stmt, 0, 0);
fprintf (file, ")\n");
}
/* Print to FILE all the data references of PBB. */
void
print_pdrs (FILE *file, poly_bb_p pbb)
{
int i;
poly_dr_p pdr;
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
print_pdr (file, pdr);
}
/* Print to STDERR all the data references of PBB. */
void
debug_pdrs (poly_bb_p pbb)
{
print_pdrs (stderr, pbb);
}
/* Print to FILE the domain and scattering function of PBB. */
void
print_pbb (FILE *file, poly_bb_p pbb)
{
fprintf (file, "pbb_%d (\n", GBB_BB (PBB_BLACK_BOX (pbb))->index);
dump_gbb_conditions (file, PBB_BLACK_BOX (pbb));
dump_gbb_cases (file, PBB_BLACK_BOX (pbb));
print_pdrs (file, pbb);
print_pbb_domain (file, pbb);
print_scattering_function (file, pbb);
fprintf (file, ")\n");
}
/* Print to FILE the parameters of SCOP. */
void
print_scop_params (FILE *file, scop_p scop)
{
int i;
tree t;
fprintf (file, "parameters (\n");
for (i = 0; VEC_iterate (tree, SESE_PARAMS (SCOP_REGION (scop)), i, t); i++)
{
fprintf (file, "p_%d -> ", i);
print_generic_expr (file, t, 0);
fprintf (file, "\n");
}
fprintf (file, ")\n");
}
/* Print to FILE the context of SCoP. */
void
print_scop_context (FILE *file, scop_p scop)
{
graphite_dim_t i;
fprintf (file, "context (\n");
fprintf (file, "# eq");
for (i = 0; i < scop_nb_params (scop); i++)
fprintf (file, " p%d", (int) i);
fprintf (file, " cst\n");
if (SCOP_CONTEXT (scop))
ppl_print_powerset_matrix (file, SCOP_CONTEXT (scop));
fprintf (file, ")\n");
}
/* Print to FILE the SCOP. */
void
print_scop (FILE *file, scop_p scop)
{
int i;
poly_bb_p pbb;
fprintf (file, "scop (\n");
print_scop_params (file, scop);
print_scop_context (file, scop);
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
print_pbb (file, pbb);
fprintf (file, ")\n");
}
/* Print to STDERR the domain of PBB. */
void
debug_pbb_domain (poly_bb_p pbb)
{
print_pbb_domain (stderr, pbb);
}
/* Print to FILE the domain and scattering function of PBB. */
void
debug_pbb (poly_bb_p pbb)
{
print_pbb (stderr, pbb);
}
/* Print to STDERR the context of SCOP. */
void
debug_scop_context (scop_p scop)
{
print_scop_context (stderr, scop);
}
/* Print to STDERR the SCOP. */
void
debug_scop (scop_p scop)
{
print_scop (stderr, scop);
}
/* Print to STDERR the parameters of SCOP. */
void
debug_scop_params (scop_p scop)
{
print_scop_params (stderr, scop);
}
/* The dimension in the transformed scattering polyhedron of PBB
containing the scattering iterator for the loop at depth LOOP_DEPTH. */
ppl_dimension_type
psct_scattering_dim_for_loop_depth (poly_bb_p pbb, graphite_dim_t loop_depth)
{
ppl_const_Constraint_System_t pcs;
ppl_Constraint_System_const_iterator_t cit, cend;
ppl_const_Constraint_t cstr;
ppl_Polyhedron_t ph = PBB_TRANSFORMED_SCATTERING (pbb);
ppl_dimension_type iter = psct_iterator_dim (pbb, loop_depth);
ppl_Linear_Expression_t expr;
ppl_Coefficient_t coef;
Value val;
graphite_dim_t i;
value_init (val);
ppl_new_Coefficient (&coef);
ppl_Polyhedron_get_constraints (ph, &pcs);
ppl_new_Constraint_System_const_iterator (&cit);
ppl_new_Constraint_System_const_iterator (&cend);
for (ppl_Constraint_System_begin (pcs, cit),
ppl_Constraint_System_end (pcs, cend);
!ppl_Constraint_System_const_iterator_equal_test (cit, cend);
ppl_Constraint_System_const_iterator_increment (cit))
{
ppl_Constraint_System_const_iterator_dereference (cit, &cstr);
ppl_new_Linear_Expression_from_Constraint (&expr, cstr);
ppl_Linear_Expression_coefficient (expr, iter, coef);
ppl_Coefficient_to_mpz_t (coef, val);
if (value_zero_p (val))
{
ppl_delete_Linear_Expression (expr);
continue;
}
for (i = 0; i < pbb_nb_scattering_transform (pbb); i++)
{
ppl_dimension_type scatter = psct_scattering_dim (pbb, i);
ppl_Linear_Expression_coefficient (expr, scatter, coef);
ppl_Coefficient_to_mpz_t (coef, val);
if (value_notzero_p (val))
{
value_clear (val);
ppl_delete_Linear_Expression (expr);
ppl_delete_Coefficient (coef);
ppl_delete_Constraint_System_const_iterator (cit);
ppl_delete_Constraint_System_const_iterator (cend);
return scatter;
}
}
}
gcc_unreachable ();
}
/* Returns the number of iterations NITER of the loop around PBB at
depth LOOP_DEPTH. */
void
pbb_number_of_iterations (poly_bb_p pbb,
graphite_dim_t loop_depth,
Value niter)
{
ppl_Linear_Expression_t le;
ppl_dimension_type dim;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb), &dim);
ppl_new_Linear_Expression_with_dimension (&le, dim);
ppl_set_coef (le, pbb_iterator_dim (pbb, loop_depth), 1);
value_set_si (niter, -1);
ppl_max_for_le (PBB_DOMAIN (pbb), le, niter);
ppl_delete_Linear_Expression (le);
}
#endif