gcc/libgo/go/math/big/nat.go
Ian Lance Taylor 22b955cca5 libgo: update to go1.7rc3
Reviewed-on: https://go-review.googlesource.com/25150

From-SVN: r238662
2016-07-22 18:15:38 +00:00

1306 lines
28 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements unsigned multi-precision integers (natural
// numbers). They are the building blocks for the implementation
// of signed integers, rationals, and floating-point numbers.
package big
import (
"math/rand"
"sync"
)
// An unsigned integer x of the form
//
// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
//
// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
// with the digits x[i] as the slice elements.
//
// A number is normalized if the slice contains no leading 0 digits.
// During arithmetic operations, denormalized values may occur but are
// always normalized before returning the final result. The normalized
// representation of 0 is the empty or nil slice (length = 0).
//
type nat []Word
var (
natOne = nat{1}
natTwo = nat{2}
natTen = nat{10}
)
func (z nat) clear() {
for i := range z {
z[i] = 0
}
}
func (z nat) norm() nat {
i := len(z)
for i > 0 && z[i-1] == 0 {
i--
}
return z[0:i]
}
func (z nat) make(n int) nat {
if n <= cap(z) {
return z[:n] // reuse z
}
// Choosing a good value for e has significant performance impact
// because it increases the chance that a value can be reused.
const e = 4 // extra capacity
return make(nat, n, n+e)
}
func (z nat) setWord(x Word) nat {
if x == 0 {
return z[:0]
}
z = z.make(1)
z[0] = x
return z
}
func (z nat) setUint64(x uint64) nat {
// single-digit values
if w := Word(x); uint64(w) == x {
return z.setWord(w)
}
// compute number of words n required to represent x
n := 0
for t := x; t > 0; t >>= _W {
n++
}
// split x into n words
z = z.make(n)
for i := range z {
z[i] = Word(x & _M)
x >>= _W
}
return z
}
func (z nat) set(x nat) nat {
z = z.make(len(x))
copy(z, x)
return z
}
func (z nat) add(x, y nat) nat {
m := len(x)
n := len(y)
switch {
case m < n:
return z.add(y, x)
case m == 0:
// n == 0 because m >= n; result is 0
return z[:0]
case n == 0:
// result is x
return z.set(x)
}
// m > 0
z = z.make(m + 1)
c := addVV(z[0:n], x, y)
if m > n {
c = addVW(z[n:m], x[n:], c)
}
z[m] = c
return z.norm()
}
func (z nat) sub(x, y nat) nat {
m := len(x)
n := len(y)
switch {
case m < n:
panic("underflow")
case m == 0:
// n == 0 because m >= n; result is 0
return z[:0]
case n == 0:
// result is x
return z.set(x)
}
// m > 0
z = z.make(m)
c := subVV(z[0:n], x, y)
if m > n {
c = subVW(z[n:], x[n:], c)
}
if c != 0 {
panic("underflow")
}
return z.norm()
}
func (x nat) cmp(y nat) (r int) {
m := len(x)
n := len(y)
if m != n || m == 0 {
switch {
case m < n:
r = -1
case m > n:
r = 1
}
return
}
i := m - 1
for i > 0 && x[i] == y[i] {
i--
}
switch {
case x[i] < y[i]:
r = -1
case x[i] > y[i]:
r = 1
}
return
}
func (z nat) mulAddWW(x nat, y, r Word) nat {
m := len(x)
if m == 0 || y == 0 {
return z.setWord(r) // result is r
}
// m > 0
z = z.make(m + 1)
z[m] = mulAddVWW(z[0:m], x, y, r)
return z.norm()
}
// basicMul multiplies x and y and leaves the result in z.
// The (non-normalized) result is placed in z[0 : len(x) + len(y)].
func basicMul(z, x, y nat) {
z[0 : len(x)+len(y)].clear() // initialize z
for i, d := range y {
if d != 0 {
z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
}
}
}
// montgomery computes z mod m = x*y*2**(-n*_W) mod m,
// assuming k = -1/m mod 2**_W.
// z is used for storing the result which is returned;
// z must not alias x, y or m.
// See Gueron, "Efficient Software Implementations of Modular Exponentiation".
// https://eprint.iacr.org/2011/239.pdf
// In the terminology of that paper, this is an "Almost Montgomery Multiplication":
// x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result
// z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m.
func (z nat) montgomery(x, y, m nat, k Word, n int) nat {
// This code assumes x, y, m are all the same length, n.
// (required by addMulVVW and the for loop).
// It also assumes that x, y are already reduced mod m,
// or else the result will not be properly reduced.
if len(x) != n || len(y) != n || len(m) != n {
panic("math/big: mismatched montgomery number lengths")
}
z = z.make(n)
z.clear()
var c Word
for i := 0; i < n; i++ {
d := y[i]
c2 := addMulVVW(z, x, d)
t := z[0] * k
c3 := addMulVVW(z, m, t)
copy(z, z[1:])
cx := c + c2
cy := cx + c3
z[n-1] = cy
if cx < c2 || cy < c3 {
c = 1
} else {
c = 0
}
}
if c != 0 {
subVV(z, z, m)
}
return z
}
// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.
// Factored out for readability - do not use outside karatsuba.
func karatsubaAdd(z, x nat, n int) {
if c := addVV(z[0:n], z, x); c != 0 {
addVW(z[n:n+n>>1], z[n:], c)
}
}
// Like karatsubaAdd, but does subtract.
func karatsubaSub(z, x nat, n int) {
if c := subVV(z[0:n], z, x); c != 0 {
subVW(z[n:n+n>>1], z[n:], c)
}
}
// Operands that are shorter than karatsubaThreshold are multiplied using
// "grade school" multiplication; for longer operands the Karatsuba algorithm
// is used.
var karatsubaThreshold int = 40 // computed by calibrate.go
// karatsuba multiplies x and y and leaves the result in z.
// Both x and y must have the same length n and n must be a
// power of 2. The result vector z must have len(z) >= 6*n.
// The (non-normalized) result is placed in z[0 : 2*n].
func karatsuba(z, x, y nat) {
n := len(y)
// Switch to basic multiplication if numbers are odd or small.
// (n is always even if karatsubaThreshold is even, but be
// conservative)
if n&1 != 0 || n < karatsubaThreshold || n < 2 {
basicMul(z, x, y)
return
}
// n&1 == 0 && n >= karatsubaThreshold && n >= 2
// Karatsuba multiplication is based on the observation that
// for two numbers x and y with:
//
// x = x1*b + x0
// y = y1*b + y0
//
// the product x*y can be obtained with 3 products z2, z1, z0
// instead of 4:
//
// x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0
// = z2*b*b + z1*b + z0
//
// with:
//
// xd = x1 - x0
// yd = y0 - y1
//
// z1 = xd*yd + z2 + z0
// = (x1-x0)*(y0 - y1) + z2 + z0
// = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0
// = x1*y0 - z2 - z0 + x0*y1 + z2 + z0
// = x1*y0 + x0*y1
// split x, y into "digits"
n2 := n >> 1 // n2 >= 1
x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0
y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0
// z is used for the result and temporary storage:
//
// 6*n 5*n 4*n 3*n 2*n 1*n 0*n
// z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]
//
// For each recursive call of karatsuba, an unused slice of
// z is passed in that has (at least) half the length of the
// caller's z.
// compute z0 and z2 with the result "in place" in z
karatsuba(z, x0, y0) // z0 = x0*y0
karatsuba(z[n:], x1, y1) // z2 = x1*y1
// compute xd (or the negative value if underflow occurs)
s := 1 // sign of product xd*yd
xd := z[2*n : 2*n+n2]
if subVV(xd, x1, x0) != 0 { // x1-x0
s = -s
subVV(xd, x0, x1) // x0-x1
}
// compute yd (or the negative value if underflow occurs)
yd := z[2*n+n2 : 3*n]
if subVV(yd, y0, y1) != 0 { // y0-y1
s = -s
subVV(yd, y1, y0) // y1-y0
}
// p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0
// p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
p := z[n*3:]
karatsuba(p, xd, yd)
// save original z2:z0
// (ok to use upper half of z since we're done recursing)
r := z[n*4:]
copy(r, z[:n*2])
// add up all partial products
//
// 2*n n 0
// z = [ z2 | z0 ]
// + [ z0 ]
// + [ z2 ]
// + [ p ]
//
karatsubaAdd(z[n2:], r, n)
karatsubaAdd(z[n2:], r[n:], n)
if s > 0 {
karatsubaAdd(z[n2:], p, n)
} else {
karatsubaSub(z[n2:], p, n)
}
}
// alias reports whether x and y share the same base array.
func alias(x, y nat) bool {
return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
}
// addAt implements z += x<<(_W*i); z must be long enough.
// (we don't use nat.add because we need z to stay the same
// slice, and we don't need to normalize z after each addition)
func addAt(z, x nat, i int) {
if n := len(x); n > 0 {
if c := addVV(z[i:i+n], z[i:], x); c != 0 {
j := i + n
if j < len(z) {
addVW(z[j:], z[j:], c)
}
}
}
}
func max(x, y int) int {
if x > y {
return x
}
return y
}
// karatsubaLen computes an approximation to the maximum k <= n such that
// k = p<<i for a number p <= karatsubaThreshold and an i >= 0. Thus, the
// result is the largest number that can be divided repeatedly by 2 before
// becoming about the value of karatsubaThreshold.
func karatsubaLen(n int) int {
i := uint(0)
for n > karatsubaThreshold {
n >>= 1
i++
}
return n << i
}
func (z nat) mul(x, y nat) nat {
m := len(x)
n := len(y)
switch {
case m < n:
return z.mul(y, x)
case m == 0 || n == 0:
return z[:0]
case n == 1:
return z.mulAddWW(x, y[0], 0)
}
// m >= n > 1
// determine if z can be reused
if alias(z, x) || alias(z, y) {
z = nil // z is an alias for x or y - cannot reuse
}
// use basic multiplication if the numbers are small
if n < karatsubaThreshold {
z = z.make(m + n)
basicMul(z, x, y)
return z.norm()
}
// m >= n && n >= karatsubaThreshold && n >= 2
// determine Karatsuba length k such that
//
// x = xh*b + x0 (0 <= x0 < b)
// y = yh*b + y0 (0 <= y0 < b)
// b = 1<<(_W*k) ("base" of digits xi, yi)
//
k := karatsubaLen(n)
// k <= n
// multiply x0 and y0 via Karatsuba
x0 := x[0:k] // x0 is not normalized
y0 := y[0:k] // y0 is not normalized
z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
karatsuba(z, x0, y0)
z = z[0 : m+n] // z has final length but may be incomplete
z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)
// If xh != 0 or yh != 0, add the missing terms to z. For
//
// xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b)
// yh = y1*b (0 <= y1 < b)
//
// the missing terms are
//
// x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0
//
// since all the yi for i > 1 are 0 by choice of k: If any of them
// were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would
// be a larger valid threshold contradicting the assumption about k.
//
if k < n || m != n {
var t nat
// add x0*y1*b
x0 := x0.norm()
y1 := y[k:] // y1 is normalized because y is
t = t.mul(x0, y1) // update t so we don't lose t's underlying array
addAt(z, t, k)
// add xi*y0<<i, xi*y1*b<<(i+k)
y0 := y0.norm()
for i := k; i < len(x); i += k {
xi := x[i:]
if len(xi) > k {
xi = xi[:k]
}
xi = xi.norm()
t = t.mul(xi, y0)
addAt(z, t, i)
t = t.mul(xi, y1)
addAt(z, t, i+k)
}
}
return z.norm()
}
// mulRange computes the product of all the unsigned integers in the
// range [a, b] inclusively. If a > b (empty range), the result is 1.
func (z nat) mulRange(a, b uint64) nat {
switch {
case a == 0:
// cut long ranges short (optimization)
return z.setUint64(0)
case a > b:
return z.setUint64(1)
case a == b:
return z.setUint64(a)
case a+1 == b:
return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b))
}
m := (a + b) / 2
return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))
}
// q = (x-r)/y, with 0 <= r < y
func (z nat) divW(x nat, y Word) (q nat, r Word) {
m := len(x)
switch {
case y == 0:
panic("division by zero")
case y == 1:
q = z.set(x) // result is x
return
case m == 0:
q = z[:0] // result is 0
return
}
// m > 0
z = z.make(m)
r = divWVW(z, 0, x, y)
q = z.norm()
return
}
func (z nat) div(z2, u, v nat) (q, r nat) {
if len(v) == 0 {
panic("division by zero")
}
if u.cmp(v) < 0 {
q = z[:0]
r = z2.set(u)
return
}
if len(v) == 1 {
var r2 Word
q, r2 = z.divW(u, v[0])
r = z2.setWord(r2)
return
}
q, r = z.divLarge(z2, u, v)
return
}
// getNat returns a nat of len n. The contents may not be zero.
func getNat(n int) nat {
var z nat
if v := natPool.Get(); v != nil {
z = v.(nat)
}
return z.make(n)
}
func putNat(x nat) {
natPool.Put(x)
}
var natPool sync.Pool
// q = (uIn-r)/v, with 0 <= r < y
// Uses z as storage for q, and u as storage for r if possible.
// See Knuth, Volume 2, section 4.3.1, Algorithm D.
// Preconditions:
// len(v) >= 2
// len(uIn) >= len(v)
func (z nat) divLarge(u, uIn, v nat) (q, r nat) {
n := len(v)
m := len(uIn) - n
// determine if z can be reused
// TODO(gri) should find a better solution - this if statement
// is very costly (see e.g. time pidigits -s -n 10000)
if alias(z, uIn) || alias(z, v) {
z = nil // z is an alias for uIn or v - cannot reuse
}
q = z.make(m + 1)
qhatv := getNat(n + 1)
if alias(u, uIn) || alias(u, v) {
u = nil // u is an alias for uIn or v - cannot reuse
}
u = u.make(len(uIn) + 1)
u.clear() // TODO(gri) no need to clear if we allocated a new u
// D1.
var v1 nat
shift := nlz(v[n-1])
if shift > 0 {
// do not modify v, it may be used by another goroutine simultaneously
v1 = getNat(n)
shlVU(v1, v, shift)
v = v1
}
u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)
// D2.
for j := m; j >= 0; j-- {
// D3.
qhat := Word(_M)
if u[j+n] != v[n-1] {
var rhat Word
qhat, rhat = divWW(u[j+n], u[j+n-1], v[n-1])
// x1 | x2 = q̂v_{n-2}
x1, x2 := mulWW(qhat, v[n-2])
// test if q̂v_{n-2} > br̂ + u_{j+n-2}
for greaterThan(x1, x2, rhat, u[j+n-2]) {
qhat--
prevRhat := rhat
rhat += v[n-1]
// v[n-1] >= 0, so this tests for overflow.
if rhat < prevRhat {
break
}
x1, x2 = mulWW(qhat, v[n-2])
}
}
// D4.
qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0)
c := subVV(u[j:j+len(qhatv)], u[j:], qhatv)
if c != 0 {
c := addVV(u[j:j+n], u[j:], v)
u[j+n] += c
qhat--
}
q[j] = qhat
}
if v1 != nil {
putNat(v1)
}
putNat(qhatv)
q = q.norm()
shrVU(u, u, shift)
r = u.norm()
return q, r
}
// Length of x in bits. x must be normalized.
func (x nat) bitLen() int {
if i := len(x) - 1; i >= 0 {
return i*_W + bitLen(x[i])
}
return 0
}
const deBruijn32 = 0x077CB531
var deBruijn32Lookup = []byte{
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
}
const deBruijn64 = 0x03f79d71b4ca8b09
var deBruijn64Lookup = []byte{
0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
}
// trailingZeroBits returns the number of consecutive least significant zero
// bits of x.
func trailingZeroBits(x Word) uint {
// x & -x leaves only the right-most bit set in the word. Let k be the
// index of that bit. Since only a single bit is set, the value is two
// to the power of k. Multiplying by a power of two is equivalent to
// left shifting, in this case by k bits. The de Bruijn constant is
// such that all six bit, consecutive substrings are distinct.
// Therefore, if we have a left shifted version of this constant we can
// find by how many bits it was shifted by looking at which six bit
// substring ended up at the top of the word.
// (Knuth, volume 4, section 7.3.1)
switch _W {
case 32:
return uint(deBruijn32Lookup[((x&-x)*deBruijn32)>>27])
case 64:
return uint(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58])
default:
panic("unknown word size")
}
}
// trailingZeroBits returns the number of consecutive least significant zero
// bits of x.
func (x nat) trailingZeroBits() uint {
if len(x) == 0 {
return 0
}
var i uint
for x[i] == 0 {
i++
}
// x[i] != 0
return i*_W + trailingZeroBits(x[i])
}
// z = x << s
func (z nat) shl(x nat, s uint) nat {
m := len(x)
if m == 0 {
return z[:0]
}
// m > 0
n := m + int(s/_W)
z = z.make(n + 1)
z[n] = shlVU(z[n-m:n], x, s%_W)
z[0 : n-m].clear()
return z.norm()
}
// z = x >> s
func (z nat) shr(x nat, s uint) nat {
m := len(x)
n := m - int(s/_W)
if n <= 0 {
return z[:0]
}
// n > 0
z = z.make(n)
shrVU(z, x[m-n:], s%_W)
return z.norm()
}
func (z nat) setBit(x nat, i uint, b uint) nat {
j := int(i / _W)
m := Word(1) << (i % _W)
n := len(x)
switch b {
case 0:
z = z.make(n)
copy(z, x)
if j >= n {
// no need to grow
return z
}
z[j] &^= m
return z.norm()
case 1:
if j >= n {
z = z.make(j + 1)
z[n:].clear()
} else {
z = z.make(n)
}
copy(z, x)
z[j] |= m
// no need to normalize
return z
}
panic("set bit is not 0 or 1")
}
// bit returns the value of the i'th bit, with lsb == bit 0.
func (x nat) bit(i uint) uint {
j := i / _W
if j >= uint(len(x)) {
return 0
}
// 0 <= j < len(x)
return uint(x[j] >> (i % _W) & 1)
}
// sticky returns 1 if there's a 1 bit within the
// i least significant bits, otherwise it returns 0.
func (x nat) sticky(i uint) uint {
j := i / _W
if j >= uint(len(x)) {
if len(x) == 0 {
return 0
}
return 1
}
// 0 <= j < len(x)
for _, x := range x[:j] {
if x != 0 {
return 1
}
}
if x[j]<<(_W-i%_W) != 0 {
return 1
}
return 0
}
func (z nat) and(x, y nat) nat {
m := len(x)
n := len(y)
if m > n {
m = n
}
// m <= n
z = z.make(m)
for i := 0; i < m; i++ {
z[i] = x[i] & y[i]
}
return z.norm()
}
func (z nat) andNot(x, y nat) nat {
m := len(x)
n := len(y)
if n > m {
n = m
}
// m >= n
z = z.make(m)
for i := 0; i < n; i++ {
z[i] = x[i] &^ y[i]
}
copy(z[n:m], x[n:m])
return z.norm()
}
func (z nat) or(x, y nat) nat {
m := len(x)
n := len(y)
s := x
if m < n {
n, m = m, n
s = y
}
// m >= n
z = z.make(m)
for i := 0; i < n; i++ {
z[i] = x[i] | y[i]
}
copy(z[n:m], s[n:m])
return z.norm()
}
func (z nat) xor(x, y nat) nat {
m := len(x)
n := len(y)
s := x
if m < n {
n, m = m, n
s = y
}
// m >= n
z = z.make(m)
for i := 0; i < n; i++ {
z[i] = x[i] ^ y[i]
}
copy(z[n:m], s[n:m])
return z.norm()
}
// greaterThan reports whether (x1<<_W + x2) > (y1<<_W + y2)
func greaterThan(x1, x2, y1, y2 Word) bool {
return x1 > y1 || x1 == y1 && x2 > y2
}
// modW returns x % d.
func (x nat) modW(d Word) (r Word) {
// TODO(agl): we don't actually need to store the q value.
var q nat
q = q.make(len(x))
return divWVW(q, 0, x, d)
}
// random creates a random integer in [0..limit), using the space in z if
// possible. n is the bit length of limit.
func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
if alias(z, limit) {
z = nil // z is an alias for limit - cannot reuse
}
z = z.make(len(limit))
bitLengthOfMSW := uint(n % _W)
if bitLengthOfMSW == 0 {
bitLengthOfMSW = _W
}
mask := Word((1 << bitLengthOfMSW) - 1)
for {
switch _W {
case 32:
for i := range z {
z[i] = Word(rand.Uint32())
}
case 64:
for i := range z {
z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
}
default:
panic("unknown word size")
}
z[len(limit)-1] &= mask
if z.cmp(limit) < 0 {
break
}
}
return z.norm()
}
// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
// otherwise it sets z to x**y. The result is the value of z.
func (z nat) expNN(x, y, m nat) nat {
if alias(z, x) || alias(z, y) {
// We cannot allow in-place modification of x or y.
z = nil
}
// x**y mod 1 == 0
if len(m) == 1 && m[0] == 1 {
return z.setWord(0)
}
// m == 0 || m > 1
// x**0 == 1
if len(y) == 0 {
return z.setWord(1)
}
// y > 0
// x**1 mod m == x mod m
if len(y) == 1 && y[0] == 1 && len(m) != 0 {
_, z = z.div(z, x, m)
return z
}
// y > 1
if len(m) != 0 {
// We likely end up being as long as the modulus.
z = z.make(len(m))
}
z = z.set(x)
// If the base is non-trivial and the exponent is large, we use
// 4-bit, windowed exponentiation. This involves precomputing 14 values
// (x^2...x^15) but then reduces the number of multiply-reduces by a
// third. Even for a 32-bit exponent, this reduces the number of
// operations. Uses Montgomery method for odd moduli.
if len(x) > 1 && len(y) > 1 && len(m) > 0 {
if m[0]&1 == 1 {
return z.expNNMontgomery(x, y, m)
}
return z.expNNWindowed(x, y, m)
}
v := y[len(y)-1] // v > 0 because y is normalized and y > 0
shift := nlz(v) + 1
v <<= shift
var q nat
const mask = 1 << (_W - 1)
// We walk through the bits of the exponent one by one. Each time we
// see a bit, we square, thus doubling the power. If the bit is a one,
// we also multiply by x, thus adding one to the power.
w := _W - int(shift)
// zz and r are used to avoid allocating in mul and div as
// otherwise the arguments would alias.
var zz, r nat
for j := 0; j < w; j++ {
zz = zz.mul(z, z)
zz, z = z, zz
if v&mask != 0 {
zz = zz.mul(z, x)
zz, z = z, zz
}
if len(m) != 0 {
zz, r = zz.div(r, z, m)
zz, r, q, z = q, z, zz, r
}
v <<= 1
}
for i := len(y) - 2; i >= 0; i-- {
v = y[i]
for j := 0; j < _W; j++ {
zz = zz.mul(z, z)
zz, z = z, zz
if v&mask != 0 {
zz = zz.mul(z, x)
zz, z = z, zz
}
if len(m) != 0 {
zz, r = zz.div(r, z, m)
zz, r, q, z = q, z, zz, r
}
v <<= 1
}
}
return z.norm()
}
// expNNWindowed calculates x**y mod m using a fixed, 4-bit window.
func (z nat) expNNWindowed(x, y, m nat) nat {
// zz and r are used to avoid allocating in mul and div as otherwise
// the arguments would alias.
var zz, r nat
const n = 4
// powers[i] contains x^i.
var powers [1 << n]nat
powers[0] = natOne
powers[1] = x
for i := 2; i < 1<<n; i += 2 {
p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1]
*p = p.mul(*p2, *p2)
zz, r = zz.div(r, *p, m)
*p, r = r, *p
*p1 = p1.mul(*p, x)
zz, r = zz.div(r, *p1, m)
*p1, r = r, *p1
}
z = z.setWord(1)
for i := len(y) - 1; i >= 0; i-- {
yi := y[i]
for j := 0; j < _W; j += n {
if i != len(y)-1 || j != 0 {
// Unrolled loop for significant performance
// gain. Use go test -bench=".*" in crypto/rsa
// to check performance before making changes.
zz = zz.mul(z, z)
zz, z = z, zz
zz, r = zz.div(r, z, m)
z, r = r, z
zz = zz.mul(z, z)
zz, z = z, zz
zz, r = zz.div(r, z, m)
z, r = r, z
zz = zz.mul(z, z)
zz, z = z, zz
zz, r = zz.div(r, z, m)
z, r = r, z
zz = zz.mul(z, z)
zz, z = z, zz
zz, r = zz.div(r, z, m)
z, r = r, z
}
zz = zz.mul(z, powers[yi>>(_W-n)])
zz, z = z, zz
zz, r = zz.div(r, z, m)
z, r = r, z
yi <<= n
}
}
return z.norm()
}
// expNNMontgomery calculates x**y mod m using a fixed, 4-bit window.
// Uses Montgomery representation.
func (z nat) expNNMontgomery(x, y, m nat) nat {
numWords := len(m)
// We want the lengths of x and m to be equal.
// It is OK if x >= m as long as len(x) == len(m).
if len(x) > numWords {
_, x = nat(nil).div(nil, x, m)
// Note: now len(x) <= numWords, not guaranteed ==.
}
if len(x) < numWords {
rr := make(nat, numWords)
copy(rr, x)
x = rr
}
// Ideally the precomputations would be performed outside, and reused
// k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On NewtonRaphson
// Iteration for Multiplicative Inverses Modulo Prime Powers".
k0 := 2 - m[0]
t := m[0] - 1
for i := 1; i < _W; i <<= 1 {
t *= t
k0 *= (t + 1)
}
k0 = -k0
// RR = 2**(2*_W*len(m)) mod m
RR := nat(nil).setWord(1)
zz := nat(nil).shl(RR, uint(2*numWords*_W))
_, RR = RR.div(RR, zz, m)
if len(RR) < numWords {
zz = zz.make(numWords)
copy(zz, RR)
RR = zz
}
// one = 1, with equal length to that of m
one := make(nat, numWords)
one[0] = 1
const n = 4
// powers[i] contains x^i
var powers [1 << n]nat
powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
for i := 2; i < 1<<n; i++ {
powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
}
// initialize z = 1 (Montgomery 1)
z = z.make(numWords)
copy(z, powers[0])
zz = zz.make(numWords)
// same windowed exponent, but with Montgomery multiplications
for i := len(y) - 1; i >= 0; i-- {
yi := y[i]
for j := 0; j < _W; j += n {
if i != len(y)-1 || j != 0 {
zz = zz.montgomery(z, z, m, k0, numWords)
z = z.montgomery(zz, zz, m, k0, numWords)
zz = zz.montgomery(z, z, m, k0, numWords)
z = z.montgomery(zz, zz, m, k0, numWords)
}
zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords)
z, zz = zz, z
yi <<= n
}
}
// convert to regular number
zz = zz.montgomery(z, one, m, k0, numWords)
// One last reduction, just in case.
// See golang.org/issue/13907.
if zz.cmp(m) >= 0 {
// Common case is m has high bit set; in that case,
// since zz is the same length as m, there can be just
// one multiple of m to remove. Just subtract.
// We think that the subtract should be sufficient in general,
// so do that unconditionally, but double-check,
// in case our beliefs are wrong.
// The div is not expected to be reached.
zz = zz.sub(zz, m)
if zz.cmp(m) >= 0 {
_, zz = nat(nil).div(nil, zz, m)
}
}
return zz.norm()
}
// probablyPrime performs n Miller-Rabin tests to check whether x is prime.
// If x is prime, it returns true.
// If x is not prime, it returns false with probability at least 1 - ¼ⁿ.
//
// It is not suitable for judging primes that an adversary may have crafted
// to fool this test.
func (n nat) probablyPrime(reps int) bool {
if len(n) == 0 {
return false
}
if len(n) == 1 {
if n[0] < 2 {
return false
}
if n[0]%2 == 0 {
return n[0] == 2
}
// We have to exclude these cases because we reject all
// multiples of these numbers below.
switch n[0] {
case 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53:
return true
}
}
if n[0]&1 == 0 {
return false // n is even
}
const primesProduct32 = 0xC0CFD797 // Π {p ∈ primes, 2 < p <= 29}
const primesProduct64 = 0xE221F97C30E94E1D // Π {p ∈ primes, 2 < p <= 53}
var r Word
switch _W {
case 32:
r = n.modW(primesProduct32)
case 64:
r = n.modW(primesProduct64 & _M)
default:
panic("Unknown word size")
}
if r%3 == 0 || r%5 == 0 || r%7 == 0 || r%11 == 0 ||
r%13 == 0 || r%17 == 0 || r%19 == 0 || r%23 == 0 || r%29 == 0 {
return false
}
if _W == 64 && (r%31 == 0 || r%37 == 0 || r%41 == 0 ||
r%43 == 0 || r%47 == 0 || r%53 == 0) {
return false
}
nm1 := nat(nil).sub(n, natOne)
// determine q, k such that nm1 = q << k
k := nm1.trailingZeroBits()
q := nat(nil).shr(nm1, k)
nm3 := nat(nil).sub(nm1, natTwo)
rand := rand.New(rand.NewSource(int64(n[0])))
var x, y, quotient nat
nm3Len := nm3.bitLen()
NextRandom:
for i := 0; i < reps; i++ {
x = x.random(rand, nm3, nm3Len)
x = x.add(x, natTwo)
y = y.expNN(x, q, n)
if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
continue
}
for j := uint(1); j < k; j++ {
y = y.mul(y, y)
quotient, y = quotient.div(y, y, n)
if y.cmp(nm1) == 0 {
continue NextRandom
}
if y.cmp(natOne) == 0 {
return false
}
}
return false
}
return true
}
// bytes writes the value of z into buf using big-endian encoding.
// len(buf) must be >= len(z)*_S. The value of z is encoded in the
// slice buf[i:]. The number i of unused bytes at the beginning of
// buf is returned as result.
func (z nat) bytes(buf []byte) (i int) {
i = len(buf)
for _, d := range z {
for j := 0; j < _S; j++ {
i--
buf[i] = byte(d)
d >>= 8
}
}
for i < len(buf) && buf[i] == 0 {
i++
}
return
}
// setBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func (z nat) setBytes(buf []byte) nat {
z = z.make((len(buf) + _S - 1) / _S)
k := 0
s := uint(0)
var d Word
for i := len(buf); i > 0; i-- {
d |= Word(buf[i-1]) << s
if s += 8; s == _S*8 {
z[k] = d
k++
s = 0
d = 0
}
}
if k < len(z) {
z[k] = d
}
return z.norm()
}