gcc/libstdc++-v3/include/ext/random.tcc
Jonathan Wakely 5a7960da41 PR libstdc++/85749 constrain seed sequences for random number engines
Constrain constructors and member functions of random number engines so
that functions taking seed sequences can only be called with types that
meet the seed sequence requirements.

	PR libstdc++/85749
	* include/bits/random.h (__detail::__is_seed_seq): New SFINAE helper.
	(linear_congruential_engine, mersenne_twister_engine)
	(subtract_with_carry_engine, discard_block_engine)
	(independent_bits_engine, shuffle_order_engine): Use __is_seed_seq to
	constrain function templates taking seed sequences.
	* include/bits/random.tcc (linear_congruential_engine::seed(_Sseq&))
	(mersenne_twister_engine::seed(_Sseq&))
	(subtract_with_carry_engine::seed(_Sseq&)): Change return types to
	match declarations.
	* include/ext/random (simd_fast_mersenne_twister_engine): Use
	__is_seed_seq to constrain function templates taking seed sequences.
	* include/ext/random.tcc (simd_fast_mersenne_twister_engine::seed):
	Change return type to match declaration.
	* testsuite/26_numerics/random/discard_block_engine/cons/seed_seq2.cc:
	New.
	* testsuite/26_numerics/random/independent_bits_engine/cons/
	seed_seq2.cc: New.
	* testsuite/26_numerics/random/linear_congruential_engine/cons/
	seed_seq2.cc: New.
	* testsuite/26_numerics/random/mersenne_twister_engine/cons/
	seed_seq2.cc: New.
	* testsuite/26_numerics/random/pr60037-neg.cc: Adjust dg-error lineno.
	* testsuite/26_numerics/random/shuffle_order_engine/cons/seed_seq2.cc:
	New.
	* testsuite/26_numerics/random/subtract_with_carry_engine/cons/
	seed_seq2.cc: New.
	* testsuite/ext/random/simd_fast_mersenne_twister_engine/cons/
	seed_seq2.cc: New.

From-SVN: r260263
2018-05-15 16:36:46 +01:00

1852 lines
59 KiB
C++

// Random number extensions -*- C++ -*-
// Copyright (C) 2012-2018 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file ext/random.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{ext/random}
*/
#ifndef _EXT_RANDOM_TCC
#define _EXT_RANDOM_TCC 1
#pragma GCC system_header
namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
template<typename _UIntType, size_t __m,
size_t __pos1, size_t __sl1, size_t __sl2,
size_t __sr1, size_t __sr2,
uint32_t __msk1, uint32_t __msk2,
uint32_t __msk3, uint32_t __msk4,
uint32_t __parity1, uint32_t __parity2,
uint32_t __parity3, uint32_t __parity4>
void simd_fast_mersenne_twister_engine<_UIntType, __m,
__pos1, __sl1, __sl2, __sr1, __sr2,
__msk1, __msk2, __msk3, __msk4,
__parity1, __parity2, __parity3,
__parity4>::
seed(_UIntType __seed)
{
_M_state32[0] = static_cast<uint32_t>(__seed);
for (size_t __i = 1; __i < _M_nstate32; ++__i)
_M_state32[__i] = (1812433253UL
* (_M_state32[__i - 1] ^ (_M_state32[__i - 1] >> 30))
+ __i);
_M_pos = state_size;
_M_period_certification();
}
namespace {
inline uint32_t _Func1(uint32_t __x)
{
return (__x ^ (__x >> 27)) * UINT32_C(1664525);
}
inline uint32_t _Func2(uint32_t __x)
{
return (__x ^ (__x >> 27)) * UINT32_C(1566083941);
}
}
template<typename _UIntType, size_t __m,
size_t __pos1, size_t __sl1, size_t __sl2,
size_t __sr1, size_t __sr2,
uint32_t __msk1, uint32_t __msk2,
uint32_t __msk3, uint32_t __msk4,
uint32_t __parity1, uint32_t __parity2,
uint32_t __parity3, uint32_t __parity4>
template<typename _Sseq>
auto
simd_fast_mersenne_twister_engine<_UIntType, __m,
__pos1, __sl1, __sl2, __sr1, __sr2,
__msk1, __msk2, __msk3, __msk4,
__parity1, __parity2, __parity3,
__parity4>::
seed(_Sseq& __q)
-> _If_seed_seq<_Sseq>
{
size_t __lag;
if (_M_nstate32 >= 623)
__lag = 11;
else if (_M_nstate32 >= 68)
__lag = 7;
else if (_M_nstate32 >= 39)
__lag = 5;
else
__lag = 3;
const size_t __mid = (_M_nstate32 - __lag) / 2;
std::fill(_M_state32, _M_state32 + _M_nstate32, UINT32_C(0x8b8b8b8b));
uint32_t __arr[_M_nstate32];
__q.generate(__arr + 0, __arr + _M_nstate32);
uint32_t __r = _Func1(_M_state32[0] ^ _M_state32[__mid]
^ _M_state32[_M_nstate32 - 1]);
_M_state32[__mid] += __r;
__r += _M_nstate32;
_M_state32[__mid + __lag] += __r;
_M_state32[0] = __r;
for (size_t __i = 1, __j = 0; __j < _M_nstate32; ++__j)
{
__r = _Func1(_M_state32[__i]
^ _M_state32[(__i + __mid) % _M_nstate32]
^ _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]);
_M_state32[(__i + __mid) % _M_nstate32] += __r;
__r += __arr[__j] + __i;
_M_state32[(__i + __mid + __lag) % _M_nstate32] += __r;
_M_state32[__i] = __r;
__i = (__i + 1) % _M_nstate32;
}
for (size_t __j = 0; __j < _M_nstate32; ++__j)
{
const size_t __i = (__j + 1) % _M_nstate32;
__r = _Func2(_M_state32[__i]
+ _M_state32[(__i + __mid) % _M_nstate32]
+ _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]);
_M_state32[(__i + __mid) % _M_nstate32] ^= __r;
__r -= __i;
_M_state32[(__i + __mid + __lag) % _M_nstate32] ^= __r;
_M_state32[__i] = __r;
}
_M_pos = state_size;
_M_period_certification();
}
template<typename _UIntType, size_t __m,
size_t __pos1, size_t __sl1, size_t __sl2,
size_t __sr1, size_t __sr2,
uint32_t __msk1, uint32_t __msk2,
uint32_t __msk3, uint32_t __msk4,
uint32_t __parity1, uint32_t __parity2,
uint32_t __parity3, uint32_t __parity4>
void simd_fast_mersenne_twister_engine<_UIntType, __m,
__pos1, __sl1, __sl2, __sr1, __sr2,
__msk1, __msk2, __msk3, __msk4,
__parity1, __parity2, __parity3,
__parity4>::
_M_period_certification(void)
{
static const uint32_t __parity[4] = { __parity1, __parity2,
__parity3, __parity4 };
uint32_t __inner = 0;
for (size_t __i = 0; __i < 4; ++__i)
if (__parity[__i] != 0)
__inner ^= _M_state32[__i] & __parity[__i];
if (__builtin_parity(__inner) & 1)
return;
for (size_t __i = 0; __i < 4; ++__i)
if (__parity[__i] != 0)
{
_M_state32[__i] ^= 1 << (__builtin_ffs(__parity[__i]) - 1);
return;
}
__builtin_unreachable();
}
template<typename _UIntType, size_t __m,
size_t __pos1, size_t __sl1, size_t __sl2,
size_t __sr1, size_t __sr2,
uint32_t __msk1, uint32_t __msk2,
uint32_t __msk3, uint32_t __msk4,
uint32_t __parity1, uint32_t __parity2,
uint32_t __parity3, uint32_t __parity4>
void simd_fast_mersenne_twister_engine<_UIntType, __m,
__pos1, __sl1, __sl2, __sr1, __sr2,
__msk1, __msk2, __msk3, __msk4,
__parity1, __parity2, __parity3,
__parity4>::
discard(unsigned long long __z)
{
while (__z > state_size - _M_pos)
{
__z -= state_size - _M_pos;
_M_gen_rand();
}
_M_pos += __z;
}
#ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_GEN_READ
namespace {
template<size_t __shift>
inline void __rshift(uint32_t *__out, const uint32_t *__in)
{
uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32)
| static_cast<uint64_t>(__in[2]));
uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32)
| static_cast<uint64_t>(__in[0]));
uint64_t __oh = __th >> (__shift * 8);
uint64_t __ol = __tl >> (__shift * 8);
__ol |= __th << (64 - __shift * 8);
__out[1] = static_cast<uint32_t>(__ol >> 32);
__out[0] = static_cast<uint32_t>(__ol);
__out[3] = static_cast<uint32_t>(__oh >> 32);
__out[2] = static_cast<uint32_t>(__oh);
}
template<size_t __shift>
inline void __lshift(uint32_t *__out, const uint32_t *__in)
{
uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32)
| static_cast<uint64_t>(__in[2]));
uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32)
| static_cast<uint64_t>(__in[0]));
uint64_t __oh = __th << (__shift * 8);
uint64_t __ol = __tl << (__shift * 8);
__oh |= __tl >> (64 - __shift * 8);
__out[1] = static_cast<uint32_t>(__ol >> 32);
__out[0] = static_cast<uint32_t>(__ol);
__out[3] = static_cast<uint32_t>(__oh >> 32);
__out[2] = static_cast<uint32_t>(__oh);
}
template<size_t __sl1, size_t __sl2, size_t __sr1, size_t __sr2,
uint32_t __msk1, uint32_t __msk2, uint32_t __msk3, uint32_t __msk4>
inline void __recursion(uint32_t *__r,
const uint32_t *__a, const uint32_t *__b,
const uint32_t *__c, const uint32_t *__d)
{
uint32_t __x[4];
uint32_t __y[4];
__lshift<__sl2>(__x, __a);
__rshift<__sr2>(__y, __c);
__r[0] = (__a[0] ^ __x[0] ^ ((__b[0] >> __sr1) & __msk1)
^ __y[0] ^ (__d[0] << __sl1));
__r[1] = (__a[1] ^ __x[1] ^ ((__b[1] >> __sr1) & __msk2)
^ __y[1] ^ (__d[1] << __sl1));
__r[2] = (__a[2] ^ __x[2] ^ ((__b[2] >> __sr1) & __msk3)
^ __y[2] ^ (__d[2] << __sl1));
__r[3] = (__a[3] ^ __x[3] ^ ((__b[3] >> __sr1) & __msk4)
^ __y[3] ^ (__d[3] << __sl1));
}
}
template<typename _UIntType, size_t __m,
size_t __pos1, size_t __sl1, size_t __sl2,
size_t __sr1, size_t __sr2,
uint32_t __msk1, uint32_t __msk2,
uint32_t __msk3, uint32_t __msk4,
uint32_t __parity1, uint32_t __parity2,
uint32_t __parity3, uint32_t __parity4>
void simd_fast_mersenne_twister_engine<_UIntType, __m,
__pos1, __sl1, __sl2, __sr1, __sr2,
__msk1, __msk2, __msk3, __msk4,
__parity1, __parity2, __parity3,
__parity4>::
_M_gen_rand(void)
{
const uint32_t *__r1 = &_M_state32[_M_nstate32 - 8];
const uint32_t *__r2 = &_M_state32[_M_nstate32 - 4];
static constexpr size_t __pos1_32 = __pos1 * 4;
size_t __i;
for (__i = 0; __i < _M_nstate32 - __pos1_32; __i += 4)
{
__recursion<__sl1, __sl2, __sr1, __sr2,
__msk1, __msk2, __msk3, __msk4>
(&_M_state32[__i], &_M_state32[__i],
&_M_state32[__i + __pos1_32], __r1, __r2);
__r1 = __r2;
__r2 = &_M_state32[__i];
}
for (; __i < _M_nstate32; __i += 4)
{
__recursion<__sl1, __sl2, __sr1, __sr2,
__msk1, __msk2, __msk3, __msk4>
(&_M_state32[__i], &_M_state32[__i],
&_M_state32[__i + __pos1_32 - _M_nstate32], __r1, __r2);
__r1 = __r2;
__r2 = &_M_state32[__i];
}
_M_pos = 0;
}
#endif
#ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_OPERATOREQUAL
template<typename _UIntType, size_t __m,
size_t __pos1, size_t __sl1, size_t __sl2,
size_t __sr1, size_t __sr2,
uint32_t __msk1, uint32_t __msk2,
uint32_t __msk3, uint32_t __msk4,
uint32_t __parity1, uint32_t __parity2,
uint32_t __parity3, uint32_t __parity4>
bool
operator==(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
__m, __pos1, __sl1, __sl2, __sr1, __sr2,
__msk1, __msk2, __msk3, __msk4,
__parity1, __parity2, __parity3, __parity4>& __lhs,
const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
__m, __pos1, __sl1, __sl2, __sr1, __sr2,
__msk1, __msk2, __msk3, __msk4,
__parity1, __parity2, __parity3, __parity4>& __rhs)
{
typedef __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
__m, __pos1, __sl1, __sl2, __sr1, __sr2,
__msk1, __msk2, __msk3, __msk4,
__parity1, __parity2, __parity3, __parity4> __engine;
return (std::equal(__lhs._M_stateT,
__lhs._M_stateT + __engine::state_size,
__rhs._M_stateT)
&& __lhs._M_pos == __rhs._M_pos);
}
#endif
template<typename _UIntType, size_t __m,
size_t __pos1, size_t __sl1, size_t __sl2,
size_t __sr1, size_t __sr2,
uint32_t __msk1, uint32_t __msk2,
uint32_t __msk3, uint32_t __msk4,
uint32_t __parity1, uint32_t __parity2,
uint32_t __parity3, uint32_t __parity4,
typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
__m, __pos1, __sl1, __sl2, __sr1, __sr2,
__msk1, __msk2, __msk3, __msk4,
__parity1, __parity2, __parity3, __parity4>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
__os.fill(__space);
for (size_t __i = 0; __i < __x._M_nstate32; ++__i)
__os << __x._M_state32[__i] << __space;
__os << __x._M_pos;
__os.flags(__flags);
__os.fill(__fill);
return __os;
}
template<typename _UIntType, size_t __m,
size_t __pos1, size_t __sl1, size_t __sl2,
size_t __sr1, size_t __sr2,
uint32_t __msk1, uint32_t __msk2,
uint32_t __msk3, uint32_t __msk4,
uint32_t __parity1, uint32_t __parity2,
uint32_t __parity3, uint32_t __parity4,
typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
__gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
__m, __pos1, __sl1, __sl2, __sr1, __sr2,
__msk1, __msk2, __msk3, __msk4,
__parity1, __parity2, __parity3, __parity4>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
for (size_t __i = 0; __i < __x._M_nstate32; ++__i)
__is >> __x._M_state32[__i];
__is >> __x._M_pos;
__is.flags(__flags);
return __is;
}
#endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/**
* Iteration method due to M.D. J<o:>hnk.
*
* M.D. J<o:>hnk, Erzeugung von betaverteilten und gammaverteilten
* Zufallszahlen, Metrika, Volume 8, 1964
*/
template<typename _RealType>
template<typename _UniformRandomNumberGenerator>
typename beta_distribution<_RealType>::result_type
beta_distribution<_RealType>::
operator()(_UniformRandomNumberGenerator& __urng,
const param_type& __param)
{
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
__aurng(__urng);
result_type __x, __y;
do
{
__x = std::exp(std::log(__aurng()) / __param.alpha());
__y = std::exp(std::log(__aurng()) / __param.beta());
}
while (__x + __y > result_type(1));
return __x / (__x + __y);
}
template<typename _RealType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
beta_distribution<_RealType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __param)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
__aurng(__urng);
while (__f != __t)
{
result_type __x, __y;
do
{
__x = std::exp(std::log(__aurng()) / __param.alpha());
__y = std::exp(std::log(__aurng()) / __param.beta());
}
while (__x + __y > result_type(1));
*__f++ = __x / (__x + __y);
}
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const __gnu_cxx::beta_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_RealType>::max_digits10);
__os << __x.alpha() << __space << __x.beta();
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
__gnu_cxx::beta_distribution<_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
_RealType __alpha_val, __beta_val;
__is >> __alpha_val >> __beta_val;
__x.param(typename __gnu_cxx::beta_distribution<_RealType>::
param_type(__alpha_val, __beta_val));
__is.flags(__flags);
return __is;
}
template<std::size_t _Dimen, typename _RealType>
template<typename _InputIterator1, typename _InputIterator2>
void
normal_mv_distribution<_Dimen, _RealType>::param_type::
_M_init_full(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
_InputIterator2 __varcovbegin, _InputIterator2 __varcovend)
{
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
_M_mean.end(), _RealType(0));
// Perform the Cholesky decomposition
auto __w = _M_t.begin();
for (size_t __j = 0; __j < _Dimen; ++__j)
{
_RealType __sum = _RealType(0);
auto __slitbegin = __w;
auto __cit = _M_t.begin();
for (size_t __i = 0; __i < __j; ++__i)
{
auto __slit = __slitbegin;
_RealType __s = *__varcovbegin++;
for (size_t __k = 0; __k < __i; ++__k)
__s -= *__slit++ * *__cit++;
*__w++ = __s /= *__cit++;
__sum += __s * __s;
}
__sum = *__varcovbegin - __sum;
if (__builtin_expect(__sum <= _RealType(0), 0))
std::__throw_runtime_error(__N("normal_mv_distribution::"
"param_type::_M_init_full"));
*__w++ = std::sqrt(__sum);
std::advance(__varcovbegin, _Dimen - __j);
}
}
template<std::size_t _Dimen, typename _RealType>
template<typename _InputIterator1, typename _InputIterator2>
void
normal_mv_distribution<_Dimen, _RealType>::param_type::
_M_init_lower(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
_InputIterator2 __varcovbegin, _InputIterator2 __varcovend)
{
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
_M_mean.end(), _RealType(0));
// Perform the Cholesky decomposition
auto __w = _M_t.begin();
for (size_t __j = 0; __j < _Dimen; ++__j)
{
_RealType __sum = _RealType(0);
auto __slitbegin = __w;
auto __cit = _M_t.begin();
for (size_t __i = 0; __i < __j; ++__i)
{
auto __slit = __slitbegin;
_RealType __s = *__varcovbegin++;
for (size_t __k = 0; __k < __i; ++__k)
__s -= *__slit++ * *__cit++;
*__w++ = __s /= *__cit++;
__sum += __s * __s;
}
__sum = *__varcovbegin++ - __sum;
if (__builtin_expect(__sum <= _RealType(0), 0))
std::__throw_runtime_error(__N("normal_mv_distribution::"
"param_type::_M_init_full"));
*__w++ = std::sqrt(__sum);
}
}
template<std::size_t _Dimen, typename _RealType>
template<typename _InputIterator1, typename _InputIterator2>
void
normal_mv_distribution<_Dimen, _RealType>::param_type::
_M_init_diagonal(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
_InputIterator2 __varbegin, _InputIterator2 __varend)
{
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
_M_mean.end(), _RealType(0));
auto __w = _M_t.begin();
size_t __step = 0;
while (__varbegin != __varend)
{
std::fill_n(__w, __step, _RealType(0));
__w += __step++;
if (__builtin_expect(*__varbegin < _RealType(0), 0))
std::__throw_runtime_error(__N("normal_mv_distribution::"
"param_type::_M_init_diagonal"));
*__w++ = std::sqrt(*__varbegin++);
}
}
template<std::size_t _Dimen, typename _RealType>
template<typename _UniformRandomNumberGenerator>
typename normal_mv_distribution<_Dimen, _RealType>::result_type
normal_mv_distribution<_Dimen, _RealType>::
operator()(_UniformRandomNumberGenerator& __urng,
const param_type& __param)
{
result_type __ret;
_M_nd.__generate(__ret.begin(), __ret.end(), __urng);
auto __t_it = __param._M_t.crbegin();
for (size_t __i = _Dimen; __i > 0; --__i)
{
_RealType __sum = _RealType(0);
for (size_t __j = __i; __j > 0; --__j)
__sum += __ret[__j - 1] * *__t_it++;
__ret[__i - 1] = __sum;
}
return __ret;
}
template<std::size_t _Dimen, typename _RealType>
template<typename _ForwardIterator, typename _UniformRandomNumberGenerator>
void
normal_mv_distribution<_Dimen, _RealType>::
__generate_impl(_ForwardIterator __f, _ForwardIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __param)
{
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
_ForwardIterator>)
while (__f != __t)
*__f++ = this->operator()(__urng, __param);
}
template<size_t _Dimen, typename _RealType>
bool
operator==(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
__d1,
const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
__d2)
{
return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd;
}
template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_RealType>::max_digits10);
auto __mean = __x._M_param.mean();
for (auto __it : __mean)
__os << __it << __space;
auto __t = __x._M_param.varcov();
for (auto __it : __t)
__os << __it << __space;
__os << __x._M_nd;
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
__gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
std::array<_RealType, _Dimen> __mean;
for (auto& __it : __mean)
__is >> __it;
std::array<_RealType, _Dimen * (_Dimen + 1) / 2> __varcov;
for (auto& __it : __varcov)
__is >> __it;
__is >> __x._M_nd;
__x.param(typename normal_mv_distribution<_Dimen, _RealType>::
param_type(__mean.begin(), __mean.end(),
__varcov.begin(), __varcov.end()));
__is.flags(__flags);
return __is;
}
template<typename _RealType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
rice_distribution<_RealType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
while (__f != __t)
{
typename std::normal_distribution<result_type>::param_type
__px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma());
result_type __x = this->_M_ndx(__px, __urng);
result_type __y = this->_M_ndy(__py, __urng);
#if _GLIBCXX_USE_C99_MATH_TR1
*__f++ = std::hypot(__x, __y);
#else
*__f++ = std::sqrt(__x * __x + __y * __y);
#endif
}
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const rice_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_RealType>::max_digits10);
__os << __x.nu() << __space << __x.sigma();
__os << __space << __x._M_ndx;
__os << __space << __x._M_ndy;
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
rice_distribution<_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
_RealType __nu_val, __sigma_val;
__is >> __nu_val >> __sigma_val;
__is >> __x._M_ndx;
__is >> __x._M_ndy;
__x.param(typename rice_distribution<_RealType>::
param_type(__nu_val, __sigma_val));
__is.flags(__flags);
return __is;
}
template<typename _RealType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
nakagami_distribution<_RealType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
typename std::gamma_distribution<result_type>::param_type
__pg(__p.mu(), __p.omega() / __p.mu());
while (__f != __t)
*__f++ = std::sqrt(this->_M_gd(__pg, __urng));
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const nakagami_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_RealType>::max_digits10);
__os << __x.mu() << __space << __x.omega();
__os << __space << __x._M_gd;
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
nakagami_distribution<_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
_RealType __mu_val, __omega_val;
__is >> __mu_val >> __omega_val;
__is >> __x._M_gd;
__x.param(typename nakagami_distribution<_RealType>::
param_type(__mu_val, __omega_val));
__is.flags(__flags);
return __is;
}
template<typename _RealType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
pareto_distribution<_RealType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
result_type __mu_val = __p.mu();
result_type __malphinv = -result_type(1) / __p.alpha();
while (__f != __t)
*__f++ = __mu_val * std::pow(this->_M_ud(__urng), __malphinv);
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const pareto_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_RealType>::max_digits10);
__os << __x.alpha() << __space << __x.mu();
__os << __space << __x._M_ud;
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
pareto_distribution<_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
_RealType __alpha_val, __mu_val;
__is >> __alpha_val >> __mu_val;
__is >> __x._M_ud;
__x.param(typename pareto_distribution<_RealType>::
param_type(__alpha_val, __mu_val));
__is.flags(__flags);
return __is;
}
template<typename _RealType>
template<typename _UniformRandomNumberGenerator>
typename k_distribution<_RealType>::result_type
k_distribution<_RealType>::
operator()(_UniformRandomNumberGenerator& __urng)
{
result_type __x = this->_M_gd1(__urng);
result_type __y = this->_M_gd2(__urng);
return std::sqrt(__x * __y);
}
template<typename _RealType>
template<typename _UniformRandomNumberGenerator>
typename k_distribution<_RealType>::result_type
k_distribution<_RealType>::
operator()(_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
typename std::gamma_distribution<result_type>::param_type
__p1(__p.lambda(), result_type(1) / __p.lambda()),
__p2(__p.nu(), __p.mu() / __p.nu());
result_type __x = this->_M_gd1(__p1, __urng);
result_type __y = this->_M_gd2(__p2, __urng);
return std::sqrt(__x * __y);
}
template<typename _RealType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
k_distribution<_RealType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
typename std::gamma_distribution<result_type>::param_type
__p1(__p.lambda(), result_type(1) / __p.lambda()),
__p2(__p.nu(), __p.mu() / __p.nu());
while (__f != __t)
{
result_type __x = this->_M_gd1(__p1, __urng);
result_type __y = this->_M_gd2(__p2, __urng);
*__f++ = std::sqrt(__x * __y);
}
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const k_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_RealType>::max_digits10);
__os << __x.lambda() << __space << __x.mu() << __space << __x.nu();
__os << __space << __x._M_gd1;
__os << __space << __x._M_gd2;
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
k_distribution<_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
_RealType __lambda_val, __mu_val, __nu_val;
__is >> __lambda_val >> __mu_val >> __nu_val;
__is >> __x._M_gd1;
__is >> __x._M_gd2;
__x.param(typename k_distribution<_RealType>::
param_type(__lambda_val, __mu_val, __nu_val));
__is.flags(__flags);
return __is;
}
template<typename _RealType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
arcsine_distribution<_RealType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
result_type __dif = __p.b() - __p.a();
result_type __sum = __p.a() + __p.b();
while (__f != __t)
{
result_type __x = std::sin(this->_M_ud(__urng));
*__f++ = (__x * __dif + __sum) / result_type(2);
}
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const arcsine_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_RealType>::max_digits10);
__os << __x.a() << __space << __x.b();
__os << __space << __x._M_ud;
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
arcsine_distribution<_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
_RealType __a, __b;
__is >> __a >> __b;
__is >> __x._M_ud;
__x.param(typename arcsine_distribution<_RealType>::
param_type(__a, __b));
__is.flags(__flags);
return __is;
}
template<typename _RealType>
template<typename _UniformRandomNumberGenerator>
typename hoyt_distribution<_RealType>::result_type
hoyt_distribution<_RealType>::
operator()(_UniformRandomNumberGenerator& __urng)
{
result_type __x = this->_M_ad(__urng);
result_type __y = this->_M_ed(__urng);
return (result_type(2) * this->q()
/ (result_type(1) + this->q() * this->q()))
* std::sqrt(this->omega() * __x * __y);
}
template<typename _RealType>
template<typename _UniformRandomNumberGenerator>
typename hoyt_distribution<_RealType>::result_type
hoyt_distribution<_RealType>::
operator()(_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
result_type __q2 = __p.q() * __p.q();
result_type __num = result_type(0.5L) * (result_type(1) + __q2);
typename __gnu_cxx::arcsine_distribution<result_type>::param_type
__pa(__num, __num / __q2);
result_type __x = this->_M_ad(__pa, __urng);
result_type __y = this->_M_ed(__urng);
return (result_type(2) * __p.q() / (result_type(1) + __q2))
* std::sqrt(__p.omega() * __x * __y);
}
template<typename _RealType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
hoyt_distribution<_RealType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
result_type __2q = result_type(2) * __p.q();
result_type __q2 = __p.q() * __p.q();
result_type __q2p1 = result_type(1) + __q2;
result_type __num = result_type(0.5L) * __q2p1;
result_type __omega = __p.omega();
typename __gnu_cxx::arcsine_distribution<result_type>::param_type
__pa(__num, __num / __q2);
while (__f != __t)
{
result_type __x = this->_M_ad(__pa, __urng);
result_type __y = this->_M_ed(__urng);
*__f++ = (__2q / __q2p1) * std::sqrt(__omega * __x * __y);
}
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const hoyt_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_RealType>::max_digits10);
__os << __x.q() << __space << __x.omega();
__os << __space << __x._M_ad;
__os << __space << __x._M_ed;
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
hoyt_distribution<_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
_RealType __q, __omega;
__is >> __q >> __omega;
__is >> __x._M_ad;
__is >> __x._M_ed;
__x.param(typename hoyt_distribution<_RealType>::
param_type(__q, __omega));
__is.flags(__flags);
return __is;
}
template<typename _RealType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
triangular_distribution<_RealType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __param)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
while (__f != __t)
*__f++ = this->operator()(__urng, __param);
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const __gnu_cxx::triangular_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_RealType>::max_digits10);
__os << __x.a() << __space << __x.b() << __space << __x.c();
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
__gnu_cxx::triangular_distribution<_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
_RealType __a, __b, __c;
__is >> __a >> __b >> __c;
__x.param(typename __gnu_cxx::triangular_distribution<_RealType>::
param_type(__a, __b, __c));
__is.flags(__flags);
return __is;
}
template<typename _RealType>
template<typename _UniformRandomNumberGenerator>
typename von_mises_distribution<_RealType>::result_type
von_mises_distribution<_RealType>::
operator()(_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
const result_type __pi
= __gnu_cxx::__math_constants<result_type>::__pi;
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
__aurng(__urng);
result_type __f;
while (1)
{
result_type __rnd = std::cos(__pi * __aurng());
__f = (result_type(1) + __p._M_r * __rnd) / (__p._M_r + __rnd);
result_type __c = __p._M_kappa * (__p._M_r - __f);
result_type __rnd2 = __aurng();
if (__c * (result_type(2) - __c) > __rnd2)
break;
if (std::log(__c / __rnd2) >= __c - result_type(1))
break;
}
result_type __res = std::acos(__f);
#if _GLIBCXX_USE_C99_MATH_TR1
__res = std::copysign(__res, __aurng() - result_type(0.5));
#else
if (__aurng() < result_type(0.5))
__res = -__res;
#endif
__res += __p._M_mu;
if (__res > __pi)
__res -= result_type(2) * __pi;
else if (__res < -__pi)
__res += result_type(2) * __pi;
return __res;
}
template<typename _RealType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
von_mises_distribution<_RealType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __param)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
while (__f != __t)
*__f++ = this->operator()(__urng, __param);
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const __gnu_cxx::von_mises_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_RealType>::max_digits10);
__os << __x.mu() << __space << __x.kappa();
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
__gnu_cxx::von_mises_distribution<_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
_RealType __mu, __kappa;
__is >> __mu >> __kappa;
__x.param(typename __gnu_cxx::von_mises_distribution<_RealType>::
param_type(__mu, __kappa));
__is.flags(__flags);
return __is;
}
template<typename _UIntType>
template<typename _UniformRandomNumberGenerator>
typename hypergeometric_distribution<_UIntType>::result_type
hypergeometric_distribution<_UIntType>::
operator()(_UniformRandomNumberGenerator& __urng,
const param_type& __param)
{
std::__detail::_Adaptor<_UniformRandomNumberGenerator, double>
__aurng(__urng);
result_type __a = __param.successful_size();
result_type __b = __param.total_size();
result_type __k = 0;
if (__param.total_draws() < __param.total_size() / 2)
{
for (result_type __i = 0; __i < __param.total_draws(); ++__i)
{
if (__b * __aurng() < __a)
{
++__k;
if (__k == __param.successful_size())
return __k;
--__a;
}
--__b;
}
return __k;
}
else
{
for (result_type __i = 0; __i < __param.unsuccessful_size(); ++__i)
{
if (__b * __aurng() < __a)
{
++__k;
if (__k == __param.successful_size())
return __param.successful_size() - __k;
--__a;
}
--__b;
}
return __param.successful_size() - __k;
}
}
template<typename _UIntType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
hypergeometric_distribution<_UIntType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __param)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
while (__f != __t)
*__f++ = this->operator()(__urng);
}
template<typename _UIntType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const __gnu_cxx::hypergeometric_distribution<_UIntType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_UIntType>::max_digits10);
__os << __x.total_size() << __space << __x.successful_size() << __space
<< __x.total_draws();
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<typename _UIntType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
__gnu_cxx::hypergeometric_distribution<_UIntType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
_UIntType __total_size, __successful_size, __total_draws;
__is >> __total_size >> __successful_size >> __total_draws;
__x.param(typename __gnu_cxx::hypergeometric_distribution<_UIntType>::
param_type(__total_size, __successful_size, __total_draws));
__is.flags(__flags);
return __is;
}
template<typename _RealType>
template<typename _UniformRandomNumberGenerator>
typename logistic_distribution<_RealType>::result_type
logistic_distribution<_RealType>::
operator()(_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
__aurng(__urng);
result_type __arg = result_type(1);
while (__arg == result_type(1) || __arg == result_type(0))
__arg = __aurng();
return __p.a()
+ __p.b() * std::log(__arg / (result_type(1) - __arg));
}
template<typename _RealType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
logistic_distribution<_RealType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
__aurng(__urng);
while (__f != __t)
{
result_type __arg = result_type(1);
while (__arg == result_type(1) || __arg == result_type(0))
__arg = __aurng();
*__f++ = __p.a()
+ __p.b() * std::log(__arg / (result_type(1) - __arg));
}
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const logistic_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_RealType>::max_digits10);
__os << __x.a() << __space << __x.b();
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
logistic_distribution<_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
_RealType __a, __b;
__is >> __a >> __b;
__x.param(typename logistic_distribution<_RealType>::
param_type(__a, __b));
__is.flags(__flags);
return __is;
}
namespace {
// Helper class for the uniform_on_sphere_distribution generation
// function.
template<std::size_t _Dimen, typename _RealType>
class uniform_on_sphere_helper
{
typedef typename uniform_on_sphere_distribution<_Dimen, _RealType>::
result_type result_type;
public:
template<typename _NormalDistribution,
typename _UniformRandomNumberGenerator>
result_type operator()(_NormalDistribution& __nd,
_UniformRandomNumberGenerator& __urng)
{
result_type __ret;
typename result_type::value_type __norm;
do
{
auto __sum = _RealType(0);
std::generate(__ret.begin(), __ret.end(),
[&__nd, &__urng, &__sum](){
_RealType __t = __nd(__urng);
__sum += __t * __t;
return __t; });
__norm = std::sqrt(__sum);
}
while (__norm == _RealType(0) || ! __builtin_isfinite(__norm));
std::transform(__ret.begin(), __ret.end(), __ret.begin(),
[__norm](_RealType __val){ return __val / __norm; });
return __ret;
}
};
template<typename _RealType>
class uniform_on_sphere_helper<2, _RealType>
{
typedef typename uniform_on_sphere_distribution<2, _RealType>::
result_type result_type;
public:
template<typename _NormalDistribution,
typename _UniformRandomNumberGenerator>
result_type operator()(_NormalDistribution&,
_UniformRandomNumberGenerator& __urng)
{
result_type __ret;
_RealType __sq;
std::__detail::_Adaptor<_UniformRandomNumberGenerator,
_RealType> __aurng(__urng);
do
{
__ret[0] = _RealType(2) * __aurng() - _RealType(1);
__ret[1] = _RealType(2) * __aurng() - _RealType(1);
__sq = __ret[0] * __ret[0] + __ret[1] * __ret[1];
}
while (__sq == _RealType(0) || __sq > _RealType(1));
#if _GLIBCXX_USE_C99_MATH_TR1
// Yes, we do not just use sqrt(__sq) because hypot() is more
// accurate.
auto __norm = std::hypot(__ret[0], __ret[1]);
#else
auto __norm = std::sqrt(__sq);
#endif
__ret[0] /= __norm;
__ret[1] /= __norm;
return __ret;
}
};
}
template<std::size_t _Dimen, typename _RealType>
template<typename _UniformRandomNumberGenerator>
typename uniform_on_sphere_distribution<_Dimen, _RealType>::result_type
uniform_on_sphere_distribution<_Dimen, _RealType>::
operator()(_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
uniform_on_sphere_helper<_Dimen, _RealType> __helper;
return __helper(_M_nd, __urng);
}
template<std::size_t _Dimen, typename _RealType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
uniform_on_sphere_distribution<_Dimen, _RealType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __param)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
while (__f != __t)
*__f++ = this->operator()(__urng, __param);
}
template<std::size_t _Dimen, typename _RealType, typename _CharT,
typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const __gnu_cxx::uniform_on_sphere_distribution<_Dimen,
_RealType>& __x)
{
return __os << __x._M_nd;
}
template<std::size_t _Dimen, typename _RealType, typename _CharT,
typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
__gnu_cxx::uniform_on_sphere_distribution<_Dimen,
_RealType>& __x)
{
return __is >> __x._M_nd;
}
namespace {
// Helper class for the uniform_inside_sphere_distribution generation
// function.
template<std::size_t _Dimen, bool _SmallDimen, typename _RealType>
class uniform_inside_sphere_helper;
template<std::size_t _Dimen, typename _RealType>
class uniform_inside_sphere_helper<_Dimen, false, _RealType>
{
using result_type
= typename uniform_inside_sphere_distribution<_Dimen, _RealType>::
result_type;
public:
template<typename _UniformOnSphereDistribution,
typename _UniformRandomNumberGenerator>
result_type
operator()(_UniformOnSphereDistribution& __uosd,
_UniformRandomNumberGenerator& __urng,
_RealType __radius)
{
std::__detail::_Adaptor<_UniformRandomNumberGenerator,
_RealType> __aurng(__urng);
_RealType __pow = 1 / _RealType(_Dimen);
_RealType __urt = __radius * std::pow(__aurng(), __pow);
result_type __ret = __uosd(__aurng);
std::transform(__ret.begin(), __ret.end(), __ret.begin(),
[__urt](_RealType __val)
{ return __val * __urt; });
return __ret;
}
};
// Helper class for the uniform_inside_sphere_distribution generation
// function specialized for small dimensions.
template<std::size_t _Dimen, typename _RealType>
class uniform_inside_sphere_helper<_Dimen, true, _RealType>
{
using result_type
= typename uniform_inside_sphere_distribution<_Dimen, _RealType>::
result_type;
public:
template<typename _UniformOnSphereDistribution,
typename _UniformRandomNumberGenerator>
result_type
operator()(_UniformOnSphereDistribution&,
_UniformRandomNumberGenerator& __urng,
_RealType __radius)
{
result_type __ret;
_RealType __sq;
_RealType __radsq = __radius * __radius;
std::__detail::_Adaptor<_UniformRandomNumberGenerator,
_RealType> __aurng(__urng);
do
{
__sq = _RealType(0);
for (int i = 0; i < _Dimen; ++i)
{
__ret[i] = _RealType(2) * __aurng() - _RealType(1);
__sq += __ret[i] * __ret[i];
}
}
while (__sq > _RealType(1));
for (int i = 0; i < _Dimen; ++i)
__ret[i] *= __radius;
return __ret;
}
};
} // namespace
//
// Experiments have shown that rejection is more efficient than transform
// for dimensions less than 8.
//
template<std::size_t _Dimen, typename _RealType>
template<typename _UniformRandomNumberGenerator>
typename uniform_inside_sphere_distribution<_Dimen, _RealType>::result_type
uniform_inside_sphere_distribution<_Dimen, _RealType>::
operator()(_UniformRandomNumberGenerator& __urng,
const param_type& __p)
{
uniform_inside_sphere_helper<_Dimen, _Dimen < 8, _RealType> __helper;
return __helper(_M_uosd, __urng, __p.radius());
}
template<std::size_t _Dimen, typename _RealType>
template<typename _OutputIterator,
typename _UniformRandomNumberGenerator>
void
uniform_inside_sphere_distribution<_Dimen, _RealType>::
__generate_impl(_OutputIterator __f, _OutputIterator __t,
_UniformRandomNumberGenerator& __urng,
const param_type& __param)
{
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
result_type>)
while (__f != __t)
*__f++ = this->operator()(__urng, __param);
}
template<std::size_t _Dimen, typename _RealType, typename _CharT,
typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen,
_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(std::numeric_limits<_RealType>::max_digits10);
__os << __x.radius() << __space << __x._M_uosd;
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
template<std::size_t _Dimen, typename _RealType, typename _CharT,
typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
__gnu_cxx::uniform_inside_sphere_distribution<_Dimen,
_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
_RealType __radius_val;
__is >> __radius_val >> __x._M_uosd;
__x.param(typename uniform_inside_sphere_distribution<_Dimen, _RealType>::
param_type(__radius_val));
__is.flags(__flags);
return __is;
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __gnu_cxx
#endif // _EXT_RANDOM_TCC