f8d9fa9e80
This upgrades all of libgo other than the runtime package to the Go 1.4 release. In Go 1.4 much of the runtime was rewritten into Go. Merging that code will take more time and will not change the API, so I'm putting it off for now. There are a few runtime changes anyhow, to accomodate other packages that rely on minor modifications to the runtime support. The compiler changes slightly to add a one-bit flag to each type descriptor kind that is stored directly in an interface, which for gccgo is currently only pointer types. Another one-bit flag (gcprog) is reserved because it is used by the gc compiler, but gccgo does not currently use it. There is another error check in the compiler since I ran across it during testing. gotools/: * Makefile.am (go_cmd_go_files): Sort entries. Add generate.go. * Makefile.in: Rebuild. From-SVN: r219627
443 lines
12 KiB
Go
443 lines
12 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package jpeg
|
|
|
|
import (
|
|
"image"
|
|
)
|
|
|
|
// makeImg allocates and initializes the destination image.
|
|
func (d *decoder) makeImg(h0, v0, mxx, myy int) {
|
|
if d.nComp == nGrayComponent {
|
|
m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy))
|
|
d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray)
|
|
return
|
|
}
|
|
var subsampleRatio image.YCbCrSubsampleRatio
|
|
switch {
|
|
case h0 == 1 && v0 == 1:
|
|
subsampleRatio = image.YCbCrSubsampleRatio444
|
|
case h0 == 1 && v0 == 2:
|
|
subsampleRatio = image.YCbCrSubsampleRatio440
|
|
case h0 == 2 && v0 == 1:
|
|
subsampleRatio = image.YCbCrSubsampleRatio422
|
|
case h0 == 2 && v0 == 2:
|
|
subsampleRatio = image.YCbCrSubsampleRatio420
|
|
default:
|
|
panic("unreachable")
|
|
}
|
|
m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio)
|
|
d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr)
|
|
}
|
|
|
|
// Specified in section B.2.3.
|
|
func (d *decoder) processSOS(n int) error {
|
|
if d.nComp == 0 {
|
|
return FormatError("missing SOF marker")
|
|
}
|
|
if n < 6 || 4+2*d.nComp < n || n%2 != 0 {
|
|
return FormatError("SOS has wrong length")
|
|
}
|
|
if err := d.readFull(d.tmp[:n]); err != nil {
|
|
return err
|
|
}
|
|
nComp := int(d.tmp[0])
|
|
if n != 4+2*nComp {
|
|
return FormatError("SOS length inconsistent with number of components")
|
|
}
|
|
var scan [nColorComponent]struct {
|
|
compIndex uint8
|
|
td uint8 // DC table selector.
|
|
ta uint8 // AC table selector.
|
|
}
|
|
for i := 0; i < nComp; i++ {
|
|
cs := d.tmp[1+2*i] // Component selector.
|
|
compIndex := -1
|
|
for j, comp := range d.comp {
|
|
if cs == comp.c {
|
|
compIndex = j
|
|
}
|
|
}
|
|
if compIndex < 0 {
|
|
return FormatError("unknown component selector")
|
|
}
|
|
scan[i].compIndex = uint8(compIndex)
|
|
scan[i].td = d.tmp[2+2*i] >> 4
|
|
if scan[i].td > maxTh {
|
|
return FormatError("bad Td value")
|
|
}
|
|
scan[i].ta = d.tmp[2+2*i] & 0x0f
|
|
if scan[i].ta > maxTh {
|
|
return FormatError("bad Ta value")
|
|
}
|
|
}
|
|
|
|
// zigStart and zigEnd are the spectral selection bounds.
|
|
// ah and al are the successive approximation high and low values.
|
|
// The spec calls these values Ss, Se, Ah and Al.
|
|
//
|
|
// For progressive JPEGs, these are the two more-or-less independent
|
|
// aspects of progression. Spectral selection progression is when not
|
|
// all of a block's 64 DCT coefficients are transmitted in one pass.
|
|
// For example, three passes could transmit coefficient 0 (the DC
|
|
// component), coefficients 1-5, and coefficients 6-63, in zig-zag
|
|
// order. Successive approximation is when not all of the bits of a
|
|
// band of coefficients are transmitted in one pass. For example,
|
|
// three passes could transmit the 6 most significant bits, followed
|
|
// by the second-least significant bit, followed by the least
|
|
// significant bit.
|
|
//
|
|
// For baseline JPEGs, these parameters are hard-coded to 0/63/0/0.
|
|
zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0)
|
|
if d.progressive {
|
|
zigStart = int32(d.tmp[1+2*nComp])
|
|
zigEnd = int32(d.tmp[2+2*nComp])
|
|
ah = uint32(d.tmp[3+2*nComp] >> 4)
|
|
al = uint32(d.tmp[3+2*nComp] & 0x0f)
|
|
if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd {
|
|
return FormatError("bad spectral selection bounds")
|
|
}
|
|
if zigStart != 0 && nComp != 1 {
|
|
return FormatError("progressive AC coefficients for more than one component")
|
|
}
|
|
if ah != 0 && ah != al+1 {
|
|
return FormatError("bad successive approximation values")
|
|
}
|
|
}
|
|
|
|
// mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
|
|
h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components.
|
|
mxx := (d.width + 8*h0 - 1) / (8 * h0)
|
|
myy := (d.height + 8*v0 - 1) / (8 * v0)
|
|
if d.img1 == nil && d.img3 == nil {
|
|
d.makeImg(h0, v0, mxx, myy)
|
|
}
|
|
if d.progressive {
|
|
for i := 0; i < nComp; i++ {
|
|
compIndex := scan[i].compIndex
|
|
if d.progCoeffs[compIndex] == nil {
|
|
d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v)
|
|
}
|
|
}
|
|
}
|
|
|
|
d.bits = bits{}
|
|
mcu, expectedRST := 0, uint8(rst0Marker)
|
|
var (
|
|
// b is the decoded coefficients, in natural (not zig-zag) order.
|
|
b block
|
|
dc [nColorComponent]int32
|
|
// bx and by are the location of the current (in terms of 8x8 blocks).
|
|
// For example, with 4:2:0 chroma subsampling, the block whose top left
|
|
// pixel co-ordinates are (16, 8) is the third block in the first row:
|
|
// bx is 2 and by is 0, even though the pixel is in the second MCU.
|
|
bx, by int
|
|
blockCount int
|
|
)
|
|
for my := 0; my < myy; my++ {
|
|
for mx := 0; mx < mxx; mx++ {
|
|
for i := 0; i < nComp; i++ {
|
|
compIndex := scan[i].compIndex
|
|
qt := &d.quant[d.comp[compIndex].tq]
|
|
for j := 0; j < d.comp[compIndex].h*d.comp[compIndex].v; j++ {
|
|
// The blocks are traversed one MCU at a time. For 4:2:0 chroma
|
|
// subsampling, there are four Y 8x8 blocks in every 16x16 MCU.
|
|
//
|
|
// For a baseline 32x16 pixel image, the Y blocks visiting order is:
|
|
// 0 1 4 5
|
|
// 2 3 6 7
|
|
//
|
|
// For progressive images, the interleaved scans (those with nComp > 1)
|
|
// are traversed as above, but non-interleaved scans are traversed left
|
|
// to right, top to bottom:
|
|
// 0 1 2 3
|
|
// 4 5 6 7
|
|
// Only DC scans (zigStart == 0) can be interleaved. AC scans must have
|
|
// only one component.
|
|
//
|
|
// To further complicate matters, for non-interleaved scans, there is no
|
|
// data for any blocks that are inside the image at the MCU level but
|
|
// outside the image at the pixel level. For example, a 24x16 pixel 4:2:0
|
|
// progressive image consists of two 16x16 MCUs. The interleaved scans
|
|
// will process 8 Y blocks:
|
|
// 0 1 4 5
|
|
// 2 3 6 7
|
|
// The non-interleaved scans will process only 6 Y blocks:
|
|
// 0 1 2
|
|
// 3 4 5
|
|
if nComp != 1 {
|
|
bx, by = d.comp[compIndex].h*mx, d.comp[compIndex].v*my
|
|
if h0 == 1 {
|
|
by += j
|
|
} else {
|
|
bx += j % 2
|
|
by += j / 2
|
|
}
|
|
} else {
|
|
q := mxx * d.comp[compIndex].h
|
|
bx = blockCount % q
|
|
by = blockCount / q
|
|
blockCount++
|
|
if bx*8 >= d.width || by*8 >= d.height {
|
|
continue
|
|
}
|
|
}
|
|
|
|
// Load the previous partially decoded coefficients, if applicable.
|
|
if d.progressive {
|
|
b = d.progCoeffs[compIndex][by*mxx*d.comp[compIndex].h+bx]
|
|
} else {
|
|
b = block{}
|
|
}
|
|
|
|
if ah != 0 {
|
|
if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil {
|
|
return err
|
|
}
|
|
} else {
|
|
zig := zigStart
|
|
if zig == 0 {
|
|
zig++
|
|
// Decode the DC coefficient, as specified in section F.2.2.1.
|
|
value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if value > 16 {
|
|
return UnsupportedError("excessive DC component")
|
|
}
|
|
dcDelta, err := d.receiveExtend(value)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
dc[compIndex] += dcDelta
|
|
b[0] = dc[compIndex] << al
|
|
}
|
|
|
|
if zig <= zigEnd && d.eobRun > 0 {
|
|
d.eobRun--
|
|
} else {
|
|
// Decode the AC coefficients, as specified in section F.2.2.2.
|
|
huff := &d.huff[acTable][scan[i].ta]
|
|
for ; zig <= zigEnd; zig++ {
|
|
value, err := d.decodeHuffman(huff)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
val0 := value >> 4
|
|
val1 := value & 0x0f
|
|
if val1 != 0 {
|
|
zig += int32(val0)
|
|
if zig > zigEnd {
|
|
break
|
|
}
|
|
ac, err := d.receiveExtend(val1)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
b[unzig[zig]] = ac << al
|
|
} else {
|
|
if val0 != 0x0f {
|
|
d.eobRun = uint16(1 << val0)
|
|
if val0 != 0 {
|
|
bits, err := d.decodeBits(int32(val0))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
d.eobRun |= uint16(bits)
|
|
}
|
|
d.eobRun--
|
|
break
|
|
}
|
|
zig += 0x0f
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if d.progressive {
|
|
if zigEnd != blockSize-1 || al != 0 {
|
|
// We haven't completely decoded this 8x8 block. Save the coefficients.
|
|
d.progCoeffs[compIndex][by*mxx*d.comp[compIndex].h+bx] = b
|
|
// At this point, we could execute the rest of the loop body to dequantize and
|
|
// perform the inverse DCT, to save early stages of a progressive image to the
|
|
// *image.YCbCr buffers (the whole point of progressive encoding), but in Go,
|
|
// the jpeg.Decode function does not return until the entire image is decoded,
|
|
// so we "continue" here to avoid wasted computation.
|
|
continue
|
|
}
|
|
}
|
|
|
|
// Dequantize, perform the inverse DCT and store the block to the image.
|
|
for zig := 0; zig < blockSize; zig++ {
|
|
b[unzig[zig]] *= qt[zig]
|
|
}
|
|
idct(&b)
|
|
dst, stride := []byte(nil), 0
|
|
if d.nComp == nGrayComponent {
|
|
dst, stride = d.img1.Pix[8*(by*d.img1.Stride+bx):], d.img1.Stride
|
|
} else {
|
|
switch compIndex {
|
|
case 0:
|
|
dst, stride = d.img3.Y[8*(by*d.img3.YStride+bx):], d.img3.YStride
|
|
case 1:
|
|
dst, stride = d.img3.Cb[8*(by*d.img3.CStride+bx):], d.img3.CStride
|
|
case 2:
|
|
dst, stride = d.img3.Cr[8*(by*d.img3.CStride+bx):], d.img3.CStride
|
|
default:
|
|
return UnsupportedError("too many components")
|
|
}
|
|
}
|
|
// Level shift by +128, clip to [0, 255], and write to dst.
|
|
for y := 0; y < 8; y++ {
|
|
y8 := y * 8
|
|
yStride := y * stride
|
|
for x := 0; x < 8; x++ {
|
|
c := b[y8+x]
|
|
if c < -128 {
|
|
c = 0
|
|
} else if c > 127 {
|
|
c = 255
|
|
} else {
|
|
c += 128
|
|
}
|
|
dst[yStride+x] = uint8(c)
|
|
}
|
|
}
|
|
} // for j
|
|
} // for i
|
|
mcu++
|
|
if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
|
|
// A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
|
|
// but this one assumes well-formed input, and hence the restart marker follows immediately.
|
|
if err := d.readFull(d.tmp[:2]); err != nil {
|
|
return err
|
|
}
|
|
if d.tmp[0] != 0xff || d.tmp[1] != expectedRST {
|
|
return FormatError("bad RST marker")
|
|
}
|
|
expectedRST++
|
|
if expectedRST == rst7Marker+1 {
|
|
expectedRST = rst0Marker
|
|
}
|
|
// Reset the Huffman decoder.
|
|
d.bits = bits{}
|
|
// Reset the DC components, as per section F.2.1.3.1.
|
|
dc = [nColorComponent]int32{}
|
|
// Reset the progressive decoder state, as per section G.1.2.2.
|
|
d.eobRun = 0
|
|
}
|
|
} // for mx
|
|
} // for my
|
|
|
|
return nil
|
|
}
|
|
|
|
// refine decodes a successive approximation refinement block, as specified in
|
|
// section G.1.2.
|
|
func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error {
|
|
// Refining a DC component is trivial.
|
|
if zigStart == 0 {
|
|
if zigEnd != 0 {
|
|
panic("unreachable")
|
|
}
|
|
bit, err := d.decodeBit()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if bit {
|
|
b[0] |= delta
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3.
|
|
zig := zigStart
|
|
if d.eobRun == 0 {
|
|
loop:
|
|
for ; zig <= zigEnd; zig++ {
|
|
z := int32(0)
|
|
value, err := d.decodeHuffman(h)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
val0 := value >> 4
|
|
val1 := value & 0x0f
|
|
|
|
switch val1 {
|
|
case 0:
|
|
if val0 != 0x0f {
|
|
d.eobRun = uint16(1 << val0)
|
|
if val0 != 0 {
|
|
bits, err := d.decodeBits(int32(val0))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
d.eobRun |= uint16(bits)
|
|
}
|
|
break loop
|
|
}
|
|
case 1:
|
|
z = delta
|
|
bit, err := d.decodeBit()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if !bit {
|
|
z = -z
|
|
}
|
|
default:
|
|
return FormatError("unexpected Huffman code")
|
|
}
|
|
|
|
zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if zig > zigEnd {
|
|
return FormatError("too many coefficients")
|
|
}
|
|
if z != 0 {
|
|
b[unzig[zig]] = z
|
|
}
|
|
}
|
|
}
|
|
if d.eobRun > 0 {
|
|
d.eobRun--
|
|
if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0,
|
|
// the first nz zero entries are skipped over.
|
|
func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) {
|
|
for ; zig <= zigEnd; zig++ {
|
|
u := unzig[zig]
|
|
if b[u] == 0 {
|
|
if nz == 0 {
|
|
break
|
|
}
|
|
nz--
|
|
continue
|
|
}
|
|
bit, err := d.decodeBit()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
if !bit {
|
|
continue
|
|
}
|
|
if b[u] >= 0 {
|
|
b[u] += delta
|
|
} else {
|
|
b[u] -= delta
|
|
}
|
|
}
|
|
return zig, nil
|
|
}
|