7a9389330e
gcc/: * gcc.c (default_compilers): Add entry for ".go". * common.opt: Add -static-libgo as a driver option. * doc/install.texi (Configuration): Mention libgo as an option for --enable-shared. Mention go as an option for --enable-languages. * doc/invoke.texi (Overall Options): Mention .go as a file name suffix. Mention go as a -x option. * doc/frontends.texi (G++ and GCC): Mention Go as a supported language. * doc/sourcebuild.texi (Top Level): Mention libgo. * doc/standards.texi (Standards): Add section on Go language. Move references for other languages into their own section. * doc/contrib.texi (Contributors): Mention that I contributed the Go frontend. gcc/testsuite/: * lib/go.exp: New file. * lib/go-dg.exp: New file. * lib/go-torture.exp: New file. * lib/target-supports.exp (check_compile): Match // Go. From-SVN: r167407
351 lines
9.0 KiB
C
351 lines
9.0 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Page heap.
|
|
//
|
|
// See malloc.h for overview.
|
|
//
|
|
// When a MSpan is in the heap free list, state == MSpanFree
|
|
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
|
|
//
|
|
// When a MSpan is allocated, state == MSpanInUse
|
|
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
|
|
|
|
#include "runtime.h"
|
|
#include "malloc.h"
|
|
|
|
static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32);
|
|
static bool MHeap_Grow(MHeap*, uintptr);
|
|
static void MHeap_FreeLocked(MHeap*, MSpan*);
|
|
static MSpan *MHeap_AllocLarge(MHeap*, uintptr);
|
|
static MSpan *BestFit(MSpan*, uintptr, MSpan*);
|
|
|
|
static void
|
|
RecordSpan(void *vh, byte *p)
|
|
{
|
|
MHeap *h;
|
|
MSpan *s;
|
|
|
|
h = vh;
|
|
s = (MSpan*)p;
|
|
s->allnext = h->allspans;
|
|
h->allspans = s;
|
|
}
|
|
|
|
// Initialize the heap; fetch memory using alloc.
|
|
void
|
|
runtime_MHeap_Init(MHeap *h, void *(*alloc)(uintptr))
|
|
{
|
|
uint32 i;
|
|
|
|
runtime_initlock(h);
|
|
runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), alloc, RecordSpan, h);
|
|
runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), alloc, nil, nil);
|
|
runtime_MHeapMap_Init(&h->map, alloc);
|
|
// h->mapcache needs no init
|
|
for(i=0; i<nelem(h->free); i++)
|
|
runtime_MSpanList_Init(&h->free[i]);
|
|
runtime_MSpanList_Init(&h->large);
|
|
for(i=0; i<nelem(h->central); i++)
|
|
runtime_MCentral_Init(&h->central[i], i);
|
|
}
|
|
|
|
// Allocate a new span of npage pages from the heap
|
|
// and record its size class in the HeapMap and HeapMapCache.
|
|
MSpan*
|
|
runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct)
|
|
{
|
|
MSpan *s;
|
|
|
|
runtime_lock(h);
|
|
mstats.heap_alloc += m->mcache->local_alloc;
|
|
m->mcache->local_alloc = 0;
|
|
mstats.heap_objects += m->mcache->local_objects;
|
|
m->mcache->local_objects = 0;
|
|
s = MHeap_AllocLocked(h, npage, sizeclass);
|
|
if(s != nil) {
|
|
mstats.heap_inuse += npage<<PageShift;
|
|
if(acct) {
|
|
mstats.heap_objects++;
|
|
mstats.heap_alloc += npage<<PageShift;
|
|
}
|
|
}
|
|
runtime_unlock(h);
|
|
return s;
|
|
}
|
|
|
|
static MSpan*
|
|
MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass)
|
|
{
|
|
uintptr n;
|
|
MSpan *s, *t;
|
|
|
|
// Try in fixed-size lists up to max.
|
|
for(n=npage; n < nelem(h->free); n++) {
|
|
if(!runtime_MSpanList_IsEmpty(&h->free[n])) {
|
|
s = h->free[n].next;
|
|
goto HaveSpan;
|
|
}
|
|
}
|
|
|
|
// Best fit in list of large spans.
|
|
if((s = MHeap_AllocLarge(h, npage)) == nil) {
|
|
if(!MHeap_Grow(h, npage))
|
|
return nil;
|
|
if((s = MHeap_AllocLarge(h, npage)) == nil)
|
|
return nil;
|
|
}
|
|
|
|
HaveSpan:
|
|
// Mark span in use.
|
|
if(s->state != MSpanFree)
|
|
runtime_throw("MHeap_AllocLocked - MSpan not free");
|
|
if(s->npages < npage)
|
|
runtime_throw("MHeap_AllocLocked - bad npages");
|
|
runtime_MSpanList_Remove(s);
|
|
s->state = MSpanInUse;
|
|
|
|
if(s->npages > npage) {
|
|
// Trim extra and put it back in the heap.
|
|
t = runtime_FixAlloc_Alloc(&h->spanalloc);
|
|
mstats.mspan_inuse = h->spanalloc.inuse;
|
|
mstats.mspan_sys = h->spanalloc.sys;
|
|
runtime_MSpan_Init(t, s->start + npage, s->npages - npage);
|
|
s->npages = npage;
|
|
runtime_MHeapMap_Set(&h->map, t->start - 1, s);
|
|
runtime_MHeapMap_Set(&h->map, t->start, t);
|
|
runtime_MHeapMap_Set(&h->map, t->start + t->npages - 1, t);
|
|
t->state = MSpanInUse;
|
|
MHeap_FreeLocked(h, t);
|
|
}
|
|
|
|
// Record span info, because gc needs to be
|
|
// able to map interior pointer to containing span.
|
|
s->sizeclass = sizeclass;
|
|
for(n=0; n<npage; n++)
|
|
runtime_MHeapMap_Set(&h->map, s->start+n, s);
|
|
return s;
|
|
}
|
|
|
|
// Allocate a span of exactly npage pages from the list of large spans.
|
|
static MSpan*
|
|
MHeap_AllocLarge(MHeap *h, uintptr npage)
|
|
{
|
|
return BestFit(&h->large, npage, nil);
|
|
}
|
|
|
|
// Search list for smallest span with >= npage pages.
|
|
// If there are multiple smallest spans, take the one
|
|
// with the earliest starting address.
|
|
static MSpan*
|
|
BestFit(MSpan *list, uintptr npage, MSpan *best)
|
|
{
|
|
MSpan *s;
|
|
|
|
for(s=list->next; s != list; s=s->next) {
|
|
if(s->npages < npage)
|
|
continue;
|
|
if(best == nil
|
|
|| s->npages < best->npages
|
|
|| (s->npages == best->npages && s->start < best->start))
|
|
best = s;
|
|
}
|
|
return best;
|
|
}
|
|
|
|
// Try to add at least npage pages of memory to the heap,
|
|
// returning whether it worked.
|
|
static bool
|
|
MHeap_Grow(MHeap *h, uintptr npage)
|
|
{
|
|
uintptr ask;
|
|
void *v;
|
|
MSpan *s;
|
|
|
|
// Ask for a big chunk, to reduce the number of mappings
|
|
// the operating system needs to track; also amortizes
|
|
// the overhead of an operating system mapping.
|
|
// For Native Client, allocate a multiple of 64kB (16 pages).
|
|
npage = (npage+15)&~15;
|
|
ask = npage<<PageShift;
|
|
if(ask < HeapAllocChunk)
|
|
ask = HeapAllocChunk;
|
|
|
|
v = runtime_SysAlloc(ask);
|
|
if(v == nil) {
|
|
if(ask > (npage<<PageShift)) {
|
|
ask = npage<<PageShift;
|
|
v = runtime_SysAlloc(ask);
|
|
}
|
|
if(v == nil)
|
|
return false;
|
|
}
|
|
mstats.heap_sys += ask;
|
|
|
|
if((byte*)v < h->min || h->min == nil)
|
|
h->min = v;
|
|
if((byte*)v+ask > h->max)
|
|
h->max = (byte*)v+ask;
|
|
|
|
// NOTE(rsc): In tcmalloc, if we've accumulated enough
|
|
// system allocations, the heap map gets entirely allocated
|
|
// in 32-bit mode. (In 64-bit mode that's not practical.)
|
|
if(!runtime_MHeapMap_Preallocate(&h->map, ((uintptr)v>>PageShift) - 1, (ask>>PageShift) + 2)) {
|
|
runtime_SysFree(v, ask);
|
|
return false;
|
|
}
|
|
|
|
// Create a fake "in use" span and free it, so that the
|
|
// right coalescing happens.
|
|
s = runtime_FixAlloc_Alloc(&h->spanalloc);
|
|
mstats.mspan_inuse = h->spanalloc.inuse;
|
|
mstats.mspan_sys = h->spanalloc.sys;
|
|
runtime_MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift);
|
|
runtime_MHeapMap_Set(&h->map, s->start, s);
|
|
runtime_MHeapMap_Set(&h->map, s->start + s->npages - 1, s);
|
|
s->state = MSpanInUse;
|
|
MHeap_FreeLocked(h, s);
|
|
return true;
|
|
}
|
|
|
|
// Look up the span at the given page number.
|
|
// Page number is guaranteed to be in map
|
|
// and is guaranteed to be start or end of span.
|
|
MSpan*
|
|
runtime_MHeap_Lookup(MHeap *h, PageID p)
|
|
{
|
|
return runtime_MHeapMap_Get(&h->map, p);
|
|
}
|
|
|
|
// Look up the span at the given page number.
|
|
// Page number is *not* guaranteed to be in map
|
|
// and may be anywhere in the span.
|
|
// Map entries for the middle of a span are only
|
|
// valid for allocated spans. Free spans may have
|
|
// other garbage in their middles, so we have to
|
|
// check for that.
|
|
MSpan*
|
|
runtime_MHeap_LookupMaybe(MHeap *h, PageID p)
|
|
{
|
|
MSpan *s;
|
|
|
|
s = runtime_MHeapMap_GetMaybe(&h->map, p);
|
|
if(s == nil || p < s->start || p - s->start >= s->npages)
|
|
return nil;
|
|
if(s->state != MSpanInUse)
|
|
return nil;
|
|
return s;
|
|
}
|
|
|
|
// Free the span back into the heap.
|
|
void
|
|
runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct)
|
|
{
|
|
runtime_lock(h);
|
|
mstats.heap_alloc += m->mcache->local_alloc;
|
|
m->mcache->local_alloc = 0;
|
|
mstats.heap_objects += m->mcache->local_objects;
|
|
m->mcache->local_objects = 0;
|
|
mstats.heap_inuse -= s->npages<<PageShift;
|
|
if(acct) {
|
|
mstats.heap_alloc -= s->npages<<PageShift;
|
|
mstats.heap_objects--;
|
|
}
|
|
MHeap_FreeLocked(h, s);
|
|
runtime_unlock(h);
|
|
}
|
|
|
|
static void
|
|
MHeap_FreeLocked(MHeap *h, MSpan *s)
|
|
{
|
|
MSpan *t;
|
|
|
|
if(s->state != MSpanInUse || s->ref != 0) {
|
|
// runtime_printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d\n", s, s->start<<PageShift, s->state, s->ref);
|
|
runtime_throw("MHeap_FreeLocked - invalid free");
|
|
}
|
|
s->state = MSpanFree;
|
|
runtime_MSpanList_Remove(s);
|
|
|
|
// Coalesce with earlier, later spans.
|
|
if((t = runtime_MHeapMap_Get(&h->map, s->start - 1)) != nil && t->state != MSpanInUse) {
|
|
s->start = t->start;
|
|
s->npages += t->npages;
|
|
runtime_MHeapMap_Set(&h->map, s->start, s);
|
|
runtime_MSpanList_Remove(t);
|
|
t->state = MSpanDead;
|
|
runtime_FixAlloc_Free(&h->spanalloc, t);
|
|
mstats.mspan_inuse = h->spanalloc.inuse;
|
|
mstats.mspan_sys = h->spanalloc.sys;
|
|
}
|
|
if((t = runtime_MHeapMap_Get(&h->map, s->start + s->npages)) != nil && t->state != MSpanInUse) {
|
|
s->npages += t->npages;
|
|
runtime_MHeapMap_Set(&h->map, s->start + s->npages - 1, s);
|
|
runtime_MSpanList_Remove(t);
|
|
t->state = MSpanDead;
|
|
runtime_FixAlloc_Free(&h->spanalloc, t);
|
|
mstats.mspan_inuse = h->spanalloc.inuse;
|
|
mstats.mspan_sys = h->spanalloc.sys;
|
|
}
|
|
|
|
// Insert s into appropriate list.
|
|
if(s->npages < nelem(h->free))
|
|
runtime_MSpanList_Insert(&h->free[s->npages], s);
|
|
else
|
|
runtime_MSpanList_Insert(&h->large, s);
|
|
|
|
// TODO(rsc): IncrementalScavenge() to return memory to OS.
|
|
}
|
|
|
|
// Initialize a new span with the given start and npages.
|
|
void
|
|
runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages)
|
|
{
|
|
span->next = nil;
|
|
span->prev = nil;
|
|
span->start = start;
|
|
span->npages = npages;
|
|
span->freelist = nil;
|
|
span->ref = 0;
|
|
span->sizeclass = 0;
|
|
span->state = 0;
|
|
}
|
|
|
|
// Initialize an empty doubly-linked list.
|
|
void
|
|
runtime_MSpanList_Init(MSpan *list)
|
|
{
|
|
list->state = MSpanListHead;
|
|
list->next = list;
|
|
list->prev = list;
|
|
}
|
|
|
|
void
|
|
runtime_MSpanList_Remove(MSpan *span)
|
|
{
|
|
if(span->prev == nil && span->next == nil)
|
|
return;
|
|
span->prev->next = span->next;
|
|
span->next->prev = span->prev;
|
|
span->prev = nil;
|
|
span->next = nil;
|
|
}
|
|
|
|
bool
|
|
runtime_MSpanList_IsEmpty(MSpan *list)
|
|
{
|
|
return list->next == list;
|
|
}
|
|
|
|
void
|
|
runtime_MSpanList_Insert(MSpan *list, MSpan *span)
|
|
{
|
|
if(span->next != nil || span->prev != nil)
|
|
runtime_throw("MSpanList_Insert");
|
|
span->next = list->next;
|
|
span->prev = list;
|
|
span->next->prev = span;
|
|
span->prev->next = span;
|
|
}
|