gcc/libgfortran/generated/reshape_r8.c
Thomas Koenig 19b76346c0 re PR fortran/49479 (reshape / optionals / zero sized arrays)
2011-06-28  Thomas Koenig  <tkoenig@gcc.gnu.org>

	PR fortran/49479
	* m4/reshape.m4: If source allocation is smaller than one, set it
	to one.
	* intrinsics/reshape_generic.c:  Likewise.
	* generated/reshape_r16.c: Regenerated.
	* generated/reshape_c4.c: Regenerated.
	* generated/reshape_c16.c: Regenerated.
	* generated/reshape_c8.c: Regenerated.
	* generated/reshape_r4.c: Regenerated.
	* generated/reshape_i4.c: Regenerated.
	* generated/reshape_r10.c: Regenerated.
	* generated/reshape_r8.c: Regenerated.
	* generated/reshape_c10.c: Regenerated.
	* generated/reshape_i8.c: Regenerated.
	* generated/reshape_i16.c: Regenerated.

2011-06-28  Thomas Koenig  <tkoenig@gcc.gnu.org>

	PR fortran/49479
	* gfortran.dg/reshape_zerosize_3.f90:  New test.

From-SVN: r175594
2011-06-28 18:59:04 +00:00

361 lines
9.1 KiB
C

/* Implementation of the RESHAPE intrinsic
Copyright 2002, 2006, 2007, 2009 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#if defined (HAVE_GFC_REAL_8)
typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;
extern void reshape_r8 (gfc_array_r8 * const restrict,
gfc_array_r8 * const restrict,
shape_type * const restrict,
gfc_array_r8 * const restrict,
shape_type * const restrict);
export_proto(reshape_r8);
void
reshape_r8 (gfc_array_r8 * const restrict ret,
gfc_array_r8 * const restrict source,
shape_type * const restrict shape,
gfc_array_r8 * const restrict pad,
shape_type * const restrict order)
{
/* r.* indicates the return array. */
index_type rcount[GFC_MAX_DIMENSIONS];
index_type rextent[GFC_MAX_DIMENSIONS];
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rdim;
index_type rsize;
index_type rs;
index_type rex;
GFC_REAL_8 *rptr;
/* s.* indicates the source array. */
index_type scount[GFC_MAX_DIMENSIONS];
index_type sextent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type sstride0;
index_type sdim;
index_type ssize;
const GFC_REAL_8 *sptr;
/* p.* indicates the pad array. */
index_type pcount[GFC_MAX_DIMENSIONS];
index_type pextent[GFC_MAX_DIMENSIONS];
index_type pstride[GFC_MAX_DIMENSIONS];
index_type pdim;
index_type psize;
const GFC_REAL_8 *pptr;
const GFC_REAL_8 *src;
int n;
int dim;
int sempty, pempty, shape_empty;
index_type shape_data[GFC_MAX_DIMENSIONS];
rdim = GFC_DESCRIPTOR_EXTENT(shape,0);
if (rdim != GFC_DESCRIPTOR_RANK(ret))
runtime_error("rank of return array incorrect in RESHAPE intrinsic");
shape_empty = 0;
for (n = 0; n < rdim; n++)
{
shape_data[n] = shape->data[n * GFC_DESCRIPTOR_STRIDE(shape,0)];
if (shape_data[n] <= 0)
{
shape_data[n] = 0;
shape_empty = 1;
}
}
if (ret->data == NULL)
{
index_type alloc_size;
rs = 1;
for (n = 0; n < rdim; n++)
{
rex = shape_data[n];
GFC_DIMENSION_SET(ret->dim[n], 0, rex - 1, rs);
rs *= rex;
}
ret->offset = 0;
if (unlikely (rs < 1))
alloc_size = 1;
else
alloc_size = rs * sizeof (GFC_REAL_8);
ret->data = internal_malloc_size (alloc_size);
ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
}
if (shape_empty)
return;
if (pad)
{
pdim = GFC_DESCRIPTOR_RANK (pad);
psize = 1;
pempty = 0;
for (n = 0; n < pdim; n++)
{
pcount[n] = 0;
pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n);
pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n);
if (pextent[n] <= 0)
{
pempty = 1;
pextent[n] = 0;
}
if (psize == pstride[n])
psize *= pextent[n];
else
psize = 0;
}
pptr = pad->data;
}
else
{
pdim = 0;
psize = 1;
pempty = 1;
pptr = NULL;
}
if (unlikely (compile_options.bounds_check))
{
index_type ret_extent, source_extent;
rs = 1;
for (n = 0; n < rdim; n++)
{
rs *= shape_data[n];
ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n);
if (ret_extent != shape_data[n])
runtime_error("Incorrect extent in return value of RESHAPE"
" intrinsic in dimension %ld: is %ld,"
" should be %ld", (long int) n+1,
(long int) ret_extent, (long int) shape_data[n]);
}
source_extent = 1;
sdim = GFC_DESCRIPTOR_RANK (source);
for (n = 0; n < sdim; n++)
{
index_type se;
se = GFC_DESCRIPTOR_EXTENT(source,n);
source_extent *= se > 0 ? se : 0;
}
if (rs > source_extent && (!pad || pempty))
runtime_error("Incorrect size in SOURCE argument to RESHAPE"
" intrinsic: is %ld, should be %ld",
(long int) source_extent, (long int) rs);
if (order)
{
int seen[GFC_MAX_DIMENSIONS];
index_type v;
for (n = 0; n < rdim; n++)
seen[n] = 0;
for (n = 0; n < rdim; n++)
{
v = order->data[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
if (v < 0 || v >= rdim)
runtime_error("Value %ld out of range in ORDER argument"
" to RESHAPE intrinsic", (long int) v + 1);
if (seen[v] != 0)
runtime_error("Duplicate value %ld in ORDER argument to"
" RESHAPE intrinsic", (long int) v + 1);
seen[v] = 1;
}
}
}
rsize = 1;
for (n = 0; n < rdim; n++)
{
if (order)
dim = order->data[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
else
dim = n;
rcount[n] = 0;
rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim);
if (rextent[n] < 0)
rextent[n] = 0;
if (rextent[n] != shape_data[dim])
runtime_error ("shape and target do not conform");
if (rsize == rstride[n])
rsize *= rextent[n];
else
rsize = 0;
if (rextent[n] <= 0)
return;
}
sdim = GFC_DESCRIPTOR_RANK (source);
ssize = 1;
sempty = 0;
for (n = 0; n < sdim; n++)
{
scount[n] = 0;
sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n);
sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n);
if (sextent[n] <= 0)
{
sempty = 1;
sextent[n] = 0;
}
if (ssize == sstride[n])
ssize *= sextent[n];
else
ssize = 0;
}
if (rsize != 0 && ssize != 0 && psize != 0)
{
rsize *= sizeof (GFC_REAL_8);
ssize *= sizeof (GFC_REAL_8);
psize *= sizeof (GFC_REAL_8);
reshape_packed ((char *)ret->data, rsize, (char *)source->data,
ssize, pad ? (char *)pad->data : NULL, psize);
return;
}
rptr = ret->data;
src = sptr = source->data;
rstride0 = rstride[0];
sstride0 = sstride[0];
if (sempty && pempty)
abort ();
if (sempty)
{
/* Pretend we are using the pad array the first time around, too. */
src = pptr;
sptr = pptr;
sdim = pdim;
for (dim = 0; dim < pdim; dim++)
{
scount[dim] = pcount[dim];
sextent[dim] = pextent[dim];
sstride[dim] = pstride[dim];
sstride0 = pstride[0];
}
}
while (rptr)
{
/* Select between the source and pad arrays. */
*rptr = *src;
/* Advance to the next element. */
rptr += rstride0;
src += sstride0;
rcount[0]++;
scount[0]++;
/* Advance to the next destination element. */
n = 0;
while (rcount[n] == rextent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
rcount[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * rextent[n];
n++;
if (n == rdim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
rcount[n]++;
rptr += rstride[n];
}
}
/* Advance to the next source element. */
n = 0;
while (scount[n] == sextent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
scount[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
src -= sstride[n] * sextent[n];
n++;
if (n == sdim)
{
if (sptr && pad)
{
/* Switch to the pad array. */
sptr = NULL;
sdim = pdim;
for (dim = 0; dim < pdim; dim++)
{
scount[dim] = pcount[dim];
sextent[dim] = pextent[dim];
sstride[dim] = pstride[dim];
sstride0 = sstride[0];
}
}
/* We now start again from the beginning of the pad array. */
src = pptr;
break;
}
else
{
scount[n]++;
src += sstride[n];
}
}
}
}
#endif