gcc/libgomp/oacc-mem.c
Julian Brown 1cbd94e834 Fix potential race condition in OpenACC "exit data" operations
PR libgomp/92881

	libgomp/
	* libgomp.h (gomp_remove_var_async): Add prototype.
	* oacc-mem.c (delete_copyout): Call gomp_remove_var_async instead of
	gomp_remove_var.
	* target.c (gomp_unref_tgt): Change return type to bool, indicating
	whether target_mem_desc was unmapped.
	(gomp_unref_tgt_void): New.
	(gomp_remove_var): Reimplement in terms of...
	(gomp_remove_var_internal): ...this new helper function.
	(gomp_remove_var_async): New, implemented using above helper function.
	(gomp_unmap_vars_internal): Use gomp_unref_tgt_void instead of
	gomp_unref_tgt.

Reviewed-by: Thomas Schwinge <thomas@codesourcery.com>

From-SVN: r279388
2019-12-13 23:14:15 +00:00

1256 lines
30 KiB
C

/* OpenACC Runtime initialization routines
Copyright (C) 2013-2019 Free Software Foundation, Inc.
Contributed by Mentor Embedded.
This file is part of the GNU Offloading and Multi Processing Library
(libgomp).
Libgomp is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Libgomp is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "openacc.h"
#include "libgomp.h"
#include "gomp-constants.h"
#include "oacc-int.h"
#include <string.h>
#include <assert.h>
/* Return block containing [H->S), or NULL if not contained. The device lock
for DEV must be locked on entry, and remains locked on exit. */
static splay_tree_key
lookup_host (struct gomp_device_descr *dev, void *h, size_t s)
{
struct splay_tree_key_s node;
splay_tree_key key;
node.host_start = (uintptr_t) h;
node.host_end = (uintptr_t) h + s;
key = splay_tree_lookup (&dev->mem_map, &node);
return key;
}
/* Helper for lookup_dev. Iterate over splay tree. */
static splay_tree_key
lookup_dev_1 (splay_tree_node node, uintptr_t d, size_t s)
{
splay_tree_key key = &node->key;
if (d >= key->tgt->tgt_start && d + s <= key->tgt->tgt_end)
return key;
key = NULL;
if (node->left)
key = lookup_dev_1 (node->left, d, s);
if (!key && node->right)
key = lookup_dev_1 (node->right, d, s);
return key;
}
/* Return block containing [D->S), or NULL if not contained.
This iterates over the splay tree. This is not expected to be a common
operation.
The device lock associated with MEM_MAP must be locked on entry, and remains
locked on exit. */
static splay_tree_key
lookup_dev (splay_tree mem_map, void *d, size_t s)
{
if (!mem_map || !mem_map->root)
return NULL;
return lookup_dev_1 (mem_map->root, (uintptr_t) d, s);
}
/* OpenACC is silent on how memory exhaustion is indicated. We return
NULL. */
void *
acc_malloc (size_t s)
{
if (!s)
return NULL;
goacc_lazy_initialize ();
struct goacc_thread *thr = goacc_thread ();
assert (thr->dev);
if (thr->dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM)
return malloc (s);
acc_prof_info prof_info;
acc_api_info api_info;
bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info);
void *res = thr->dev->alloc_func (thr->dev->target_id, s);
if (profiling_p)
{
thr->prof_info = NULL;
thr->api_info = NULL;
}
return res;
}
void
acc_free (void *d)
{
splay_tree_key k;
if (!d)
return;
struct goacc_thread *thr = goacc_thread ();
assert (thr && thr->dev);
struct gomp_device_descr *acc_dev = thr->dev;
if (acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM)
return free (d);
acc_prof_info prof_info;
acc_api_info api_info;
bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info);
gomp_mutex_lock (&acc_dev->lock);
/* We don't have to call lazy open here, as the ptr value must have
been returned by acc_malloc. It's not permitted to pass NULL in
(unless you got that null from acc_malloc). */
if ((k = lookup_dev (&acc_dev->mem_map, d, 1)))
{
void *offset = d - k->tgt->tgt_start + k->tgt_offset;
void *h = k->host_start + offset;
size_t h_size = k->host_end - k->host_start;
gomp_mutex_unlock (&acc_dev->lock);
/* PR92503 "[OpenACC] Behavior of 'acc_free' if the memory space is still
used in a mapping". */
gomp_fatal ("refusing to free device memory space at %p that is still"
" mapped at [%p,+%d]",
d, h, (int) h_size);
}
else
gomp_mutex_unlock (&acc_dev->lock);
if (!acc_dev->free_func (acc_dev->target_id, d))
gomp_fatal ("error in freeing device memory in %s", __FUNCTION__);
if (profiling_p)
{
thr->prof_info = NULL;
thr->api_info = NULL;
}
}
static void
memcpy_tofrom_device (bool from, void *d, void *h, size_t s, int async,
const char *libfnname)
{
/* No need to call lazy open here, as the device pointer must have
been obtained from a routine that did that. */
struct goacc_thread *thr = goacc_thread ();
assert (thr && thr->dev);
if (thr->dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM)
{
if (from)
memmove (h, d, s);
else
memmove (d, h, s);
return;
}
acc_prof_info prof_info;
acc_api_info api_info;
bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info);
if (profiling_p)
{
prof_info.async = async;
prof_info.async_queue = prof_info.async;
}
goacc_aq aq = get_goacc_asyncqueue (async);
if (from)
gomp_copy_dev2host (thr->dev, aq, h, d, s);
else
gomp_copy_host2dev (thr->dev, aq, d, h, s, /* TODO: cbuf? */ NULL);
if (profiling_p)
{
thr->prof_info = NULL;
thr->api_info = NULL;
}
}
void
acc_memcpy_to_device (void *d, void *h, size_t s)
{
memcpy_tofrom_device (false, d, h, s, acc_async_sync, __FUNCTION__);
}
void
acc_memcpy_to_device_async (void *d, void *h, size_t s, int async)
{
memcpy_tofrom_device (false, d, h, s, async, __FUNCTION__);
}
void
acc_memcpy_from_device (void *h, void *d, size_t s)
{
memcpy_tofrom_device (true, d, h, s, acc_async_sync, __FUNCTION__);
}
void
acc_memcpy_from_device_async (void *h, void *d, size_t s, int async)
{
memcpy_tofrom_device (true, d, h, s, async, __FUNCTION__);
}
/* Return the device pointer that corresponds to host data H. Or NULL
if no mapping. */
void *
acc_deviceptr (void *h)
{
splay_tree_key n;
void *d;
void *offset;
goacc_lazy_initialize ();
struct goacc_thread *thr = goacc_thread ();
struct gomp_device_descr *dev = thr->dev;
if (thr->dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM)
return h;
/* In the following, no OpenACC Profiling Interface events can possibly be
generated. */
gomp_mutex_lock (&dev->lock);
n = lookup_host (dev, h, 1);
if (!n)
{
gomp_mutex_unlock (&dev->lock);
return NULL;
}
offset = h - n->host_start;
d = n->tgt->tgt_start + n->tgt_offset + offset;
gomp_mutex_unlock (&dev->lock);
return d;
}
/* Return the host pointer that corresponds to device data D. Or NULL
if no mapping. */
void *
acc_hostptr (void *d)
{
splay_tree_key n;
void *h;
void *offset;
goacc_lazy_initialize ();
struct goacc_thread *thr = goacc_thread ();
struct gomp_device_descr *acc_dev = thr->dev;
if (thr->dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM)
return d;
/* In the following, no OpenACC Profiling Interface events can possibly be
generated. */
gomp_mutex_lock (&acc_dev->lock);
n = lookup_dev (&acc_dev->mem_map, d, 1);
if (!n)
{
gomp_mutex_unlock (&acc_dev->lock);
return NULL;
}
offset = d - n->tgt->tgt_start + n->tgt_offset;
h = n->host_start + offset;
gomp_mutex_unlock (&acc_dev->lock);
return h;
}
/* Return 1 if host data [H,+S] is present on the device. */
int
acc_is_present (void *h, size_t s)
{
splay_tree_key n;
if (!s || !h)
return 0;
goacc_lazy_initialize ();
struct goacc_thread *thr = goacc_thread ();
struct gomp_device_descr *acc_dev = thr->dev;
if (thr->dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM)
return h != NULL;
/* In the following, no OpenACC Profiling Interface events can possibly be
generated. */
gomp_mutex_lock (&acc_dev->lock);
n = lookup_host (acc_dev, h, s);
if (n && ((uintptr_t)h < n->host_start
|| (uintptr_t)h + s > n->host_end
|| s > n->host_end - n->host_start))
n = NULL;
gomp_mutex_unlock (&acc_dev->lock);
return n != NULL;
}
/* Create a mapping for host [H,+S] -> device [D,+S] */
void
acc_map_data (void *h, void *d, size_t s)
{
struct target_mem_desc *tgt = NULL;
size_t mapnum = 1;
void *hostaddrs = h;
void *devaddrs = d;
size_t sizes = s;
unsigned short kinds = GOMP_MAP_ALLOC;
goacc_lazy_initialize ();
struct goacc_thread *thr = goacc_thread ();
struct gomp_device_descr *acc_dev = thr->dev;
if (acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM)
{
if (d != h)
gomp_fatal ("cannot map data on shared-memory system");
}
else
{
struct goacc_thread *thr = goacc_thread ();
if (!d || !h || !s)
gomp_fatal ("[%p,+%d]->[%p,+%d] is a bad map",
(void *)h, (int)s, (void *)d, (int)s);
acc_prof_info prof_info;
acc_api_info api_info;
bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info);
gomp_mutex_lock (&acc_dev->lock);
if (lookup_host (acc_dev, h, s))
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("host address [%p, +%d] is already mapped", (void *)h,
(int)s);
}
if (lookup_dev (&thr->dev->mem_map, d, s))
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("device address [%p, +%d] is already mapped", (void *)d,
(int)s);
}
gomp_mutex_unlock (&acc_dev->lock);
tgt = gomp_map_vars (acc_dev, mapnum, &hostaddrs, &devaddrs, &sizes,
&kinds, true, GOMP_MAP_VARS_OPENACC);
splay_tree_key n = tgt->list[0].key;
assert (n->refcount == 1);
assert (n->dynamic_refcount == 0);
/* Special reference counting behavior. */
n->refcount = REFCOUNT_INFINITY;
if (profiling_p)
{
thr->prof_info = NULL;
thr->api_info = NULL;
}
}
}
void
acc_unmap_data (void *h)
{
struct goacc_thread *thr = goacc_thread ();
struct gomp_device_descr *acc_dev = thr->dev;
/* No need to call lazy open, as the address must have been mapped. */
/* This is a no-op on shared-memory targets. */
if (acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM)
return;
acc_prof_info prof_info;
acc_api_info api_info;
bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info);
size_t host_size;
gomp_mutex_lock (&acc_dev->lock);
splay_tree_key n = lookup_host (acc_dev, h, 1);
struct target_mem_desc *t;
if (!n)
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("%p is not a mapped block", (void *)h);
}
host_size = n->host_end - n->host_start;
if (n->host_start != (uintptr_t) h)
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("[%p,%d] surrounds %p",
(void *) n->host_start, (int) host_size, (void *) h);
}
/* TODO This currently doesn't catch 'REFCOUNT_INFINITY' usage different from
'acc_map_data'. Maybe 'dynamic_refcount' can be used for disambiguating
the different 'REFCOUNT_INFINITY' cases, or simply separate
'REFCOUNT_INFINITY' values per different usage ('REFCOUNT_ACC_MAP_DATA'
etc.)? */
else if (n->refcount != REFCOUNT_INFINITY)
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("refusing to unmap block [%p,+%d] that has not been mapped"
" by 'acc_map_data'",
(void *) h, (int) host_size);
}
/* Mark for removal. */
n->refcount = 1;
t = n->tgt;
if (t->refcount == 2)
{
/* This is the last reference, so pull the descriptor off the
chain. This avoids gomp_unmap_vars via gomp_unmap_tgt from
freeing the device memory. */
t->tgt_end = 0;
t->to_free = 0;
}
gomp_mutex_unlock (&acc_dev->lock);
gomp_unmap_vars (t, true);
if (profiling_p)
{
thr->prof_info = NULL;
thr->api_info = NULL;
}
}
#define FLAG_PRESENT (1 << 0)
#define FLAG_CREATE (1 << 1)
#define FLAG_COPY (1 << 2)
static void *
present_create_copy (unsigned f, void *h, size_t s, int async)
{
void *d;
splay_tree_key n;
if (!h || !s)
gomp_fatal ("[%p,+%d] is a bad range", (void *)h, (int)s);
goacc_lazy_initialize ();
struct goacc_thread *thr = goacc_thread ();
struct gomp_device_descr *acc_dev = thr->dev;
if (acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM)
return h;
acc_prof_info prof_info;
acc_api_info api_info;
bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info);
if (profiling_p)
{
prof_info.async = async;
prof_info.async_queue = prof_info.async;
}
gomp_mutex_lock (&acc_dev->lock);
n = lookup_host (acc_dev, h, s);
if (n)
{
/* Present. */
d = (void *) (n->tgt->tgt_start + n->tgt_offset + h - n->host_start);
if (!(f & FLAG_PRESENT))
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("[%p,+%d] already mapped to [%p,+%d]",
(void *)h, (int)s, (void *)d, (int)s);
}
if ((h + s) > (void *)n->host_end)
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("[%p,+%d] not mapped", (void *)h, (int)s);
}
assert (n->refcount != REFCOUNT_LINK);
if (n->refcount != REFCOUNT_INFINITY)
n->refcount++;
n->dynamic_refcount++;
gomp_mutex_unlock (&acc_dev->lock);
}
else if (!(f & FLAG_CREATE))
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("[%p,+%d] not mapped", (void *)h, (int)s);
}
else
{
struct target_mem_desc *tgt;
size_t mapnum = 1;
unsigned short kinds;
void *hostaddrs = h;
if (f & FLAG_COPY)
kinds = GOMP_MAP_TO;
else
kinds = GOMP_MAP_ALLOC;
gomp_mutex_unlock (&acc_dev->lock);
goacc_aq aq = get_goacc_asyncqueue (async);
tgt = gomp_map_vars_async (acc_dev, aq, mapnum, &hostaddrs, NULL, &s,
&kinds, true, GOMP_MAP_VARS_OPENACC);
n = tgt->list[0].key;
assert (n->refcount == 1);
assert (n->dynamic_refcount == 0);
n->dynamic_refcount++;
d = tgt->to_free;
}
if (profiling_p)
{
thr->prof_info = NULL;
thr->api_info = NULL;
}
return d;
}
void *
acc_create (void *h, size_t s)
{
return present_create_copy (FLAG_PRESENT | FLAG_CREATE, h, s, acc_async_sync);
}
void
acc_create_async (void *h, size_t s, int async)
{
present_create_copy (FLAG_PRESENT | FLAG_CREATE, h, s, async);
}
/* acc_present_or_create used to be what acc_create is now. */
/* acc_pcreate is acc_present_or_create by a different name. */
#ifdef HAVE_ATTRIBUTE_ALIAS
strong_alias (acc_create, acc_present_or_create)
strong_alias (acc_create, acc_pcreate)
#else
void *
acc_present_or_create (void *h, size_t s)
{
return acc_create (h, s);
}
void *
acc_pcreate (void *h, size_t s)
{
return acc_create (h, s);
}
#endif
void *
acc_copyin (void *h, size_t s)
{
return present_create_copy (FLAG_PRESENT | FLAG_CREATE | FLAG_COPY, h, s,
acc_async_sync);
}
void
acc_copyin_async (void *h, size_t s, int async)
{
present_create_copy (FLAG_PRESENT | FLAG_CREATE | FLAG_COPY, h, s, async);
}
/* acc_present_or_copyin used to be what acc_copyin is now. */
/* acc_pcopyin is acc_present_or_copyin by a different name. */
#ifdef HAVE_ATTRIBUTE_ALIAS
strong_alias (acc_copyin, acc_present_or_copyin)
strong_alias (acc_copyin, acc_pcopyin)
#else
void *
acc_present_or_copyin (void *h, size_t s)
{
return acc_copyin (h, s);
}
void *
acc_pcopyin (void *h, size_t s)
{
return acc_copyin (h, s);
}
#endif
#define FLAG_COPYOUT (1 << 0)
#define FLAG_FINALIZE (1 << 1)
static void
delete_copyout (unsigned f, void *h, size_t s, int async, const char *libfnname)
{
splay_tree_key n;
struct goacc_thread *thr = goacc_thread ();
struct gomp_device_descr *acc_dev = thr->dev;
if (acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM)
return;
acc_prof_info prof_info;
acc_api_info api_info;
bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info);
if (profiling_p)
{
prof_info.async = async;
prof_info.async_queue = prof_info.async;
}
gomp_mutex_lock (&acc_dev->lock);
n = lookup_host (acc_dev, h, s);
/* No need to call lazy open, as the data must already have been
mapped. */
if (!n)
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("[%p,%d] is not mapped", (void *)h, (int)s);
}
if ((uintptr_t) h < n->host_start || (uintptr_t) h + s > n->host_end)
{
size_t host_size = n->host_end - n->host_start;
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("[%p,+%d] outside mapped block [%p,+%d]",
(void *) h, (int) s, (void *) n->host_start, (int) host_size);
}
assert (n->refcount != REFCOUNT_LINK);
if (n->refcount != REFCOUNT_INFINITY
&& n->refcount < n->dynamic_refcount)
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("Dynamic reference counting assert fail\n");
}
if (f & FLAG_FINALIZE)
{
if (n->refcount != REFCOUNT_INFINITY)
n->refcount -= n->dynamic_refcount;
n->dynamic_refcount = 0;
}
else if (n->dynamic_refcount)
{
if (n->refcount != REFCOUNT_INFINITY)
n->refcount--;
n->dynamic_refcount--;
}
if (n->refcount == 0)
{
goacc_aq aq = get_goacc_asyncqueue (async);
if (f & FLAG_COPYOUT)
{
void *d = (void *) (n->tgt->tgt_start + n->tgt_offset
+ (uintptr_t) h - n->host_start);
gomp_copy_dev2host (acc_dev, aq, h, d, s);
}
gomp_remove_var_async (acc_dev, n, aq);
}
gomp_mutex_unlock (&acc_dev->lock);
if (profiling_p)
{
thr->prof_info = NULL;
thr->api_info = NULL;
}
}
void
acc_delete (void *h , size_t s)
{
delete_copyout (0, h, s, acc_async_sync, __FUNCTION__);
}
void
acc_delete_async (void *h , size_t s, int async)
{
delete_copyout (0, h, s, async, __FUNCTION__);
}
void
acc_delete_finalize (void *h , size_t s)
{
delete_copyout (FLAG_FINALIZE, h, s, acc_async_sync, __FUNCTION__);
}
void
acc_delete_finalize_async (void *h , size_t s, int async)
{
delete_copyout (FLAG_FINALIZE, h, s, async, __FUNCTION__);
}
void
acc_copyout (void *h, size_t s)
{
delete_copyout (FLAG_COPYOUT, h, s, acc_async_sync, __FUNCTION__);
}
void
acc_copyout_async (void *h, size_t s, int async)
{
delete_copyout (FLAG_COPYOUT, h, s, async, __FUNCTION__);
}
void
acc_copyout_finalize (void *h, size_t s)
{
delete_copyout (FLAG_COPYOUT | FLAG_FINALIZE, h, s, acc_async_sync,
__FUNCTION__);
}
void
acc_copyout_finalize_async (void *h, size_t s, int async)
{
delete_copyout (FLAG_COPYOUT | FLAG_FINALIZE, h, s, async, __FUNCTION__);
}
static void
update_dev_host (int is_dev, void *h, size_t s, int async)
{
splay_tree_key n;
void *d;
goacc_lazy_initialize ();
struct goacc_thread *thr = goacc_thread ();
struct gomp_device_descr *acc_dev = thr->dev;
if (acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM)
return;
/* Fortran optional arguments that are non-present result in a
NULL host address here. This can safely be ignored as it is
not possible to 'update' a non-present optional argument. */
if (h == NULL)
return;
acc_prof_info prof_info;
acc_api_info api_info;
bool profiling_p = GOACC_PROFILING_SETUP_P (thr, &prof_info, &api_info);
if (profiling_p)
{
prof_info.async = async;
prof_info.async_queue = prof_info.async;
}
gomp_mutex_lock (&acc_dev->lock);
n = lookup_host (acc_dev, h, s);
if (!n)
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("[%p,%d] is not mapped", h, (int)s);
}
d = (void *) (n->tgt->tgt_start + n->tgt_offset
+ (uintptr_t) h - n->host_start);
goacc_aq aq = get_goacc_asyncqueue (async);
if (is_dev)
gomp_copy_host2dev (acc_dev, aq, d, h, s, /* TODO: cbuf? */ NULL);
else
gomp_copy_dev2host (acc_dev, aq, h, d, s);
gomp_mutex_unlock (&acc_dev->lock);
if (profiling_p)
{
thr->prof_info = NULL;
thr->api_info = NULL;
}
}
void
acc_update_device (void *h, size_t s)
{
update_dev_host (1, h, s, acc_async_sync);
}
void
acc_update_device_async (void *h, size_t s, int async)
{
update_dev_host (1, h, s, async);
}
void
acc_update_self (void *h, size_t s)
{
update_dev_host (0, h, s, acc_async_sync);
}
void
acc_update_self_async (void *h, size_t s, int async)
{
update_dev_host (0, h, s, async);
}
/* OpenACC 'enter data', 'exit data': 'GOACC_enter_exit_data' and its helper
functions. */
/* Special handling for 'GOMP_MAP_POINTER', 'GOMP_MAP_TO_PSET'.
Only the first mapping is considered in reference counting; the following
ones implicitly follow suit. */
static void
goacc_insert_pointer (size_t mapnum, void **hostaddrs, size_t *sizes,
void *kinds, int async)
{
struct target_mem_desc *tgt;
struct goacc_thread *thr = goacc_thread ();
struct gomp_device_descr *acc_dev = thr->dev;
if (*hostaddrs == NULL)
return;
if (acc_is_present (*hostaddrs, *sizes))
{
splay_tree_key n;
gomp_mutex_lock (&acc_dev->lock);
n = lookup_host (acc_dev, *hostaddrs, *sizes);
assert (n->refcount != REFCOUNT_INFINITY
&& n->refcount != REFCOUNT_LINK);
gomp_mutex_unlock (&acc_dev->lock);
tgt = n->tgt;
for (size_t i = 0; i < tgt->list_count; i++)
if (tgt->list[i].key == n)
{
for (size_t j = 0; j < mapnum; j++)
if (i + j < tgt->list_count && tgt->list[i + j].key)
{
tgt->list[i + j].key->refcount++;
tgt->list[i + j].key->dynamic_refcount++;
}
return;
}
/* Should not reach here. */
gomp_fatal ("Dynamic refcount incrementing failed for pointer/pset");
}
gomp_debug (0, " %s: prepare mappings\n", __FUNCTION__);
goacc_aq aq = get_goacc_asyncqueue (async);
tgt = gomp_map_vars_async (acc_dev, aq, mapnum, hostaddrs,
NULL, sizes, kinds, true, GOMP_MAP_VARS_OPENACC);
splay_tree_key n = tgt->list[0].key;
assert (n->refcount == 1);
assert (n->dynamic_refcount == 0);
n->dynamic_refcount++;
gomp_debug (0, " %s: mappings prepared\n", __FUNCTION__);
}
static void
goacc_remove_pointer (void *h, size_t s, bool force_copyfrom, int async,
int finalize, int mapnum)
{
struct goacc_thread *thr = goacc_thread ();
struct gomp_device_descr *acc_dev = thr->dev;
splay_tree_key n;
struct target_mem_desc *t;
int minrefs = (mapnum == 1) ? 2 : 3;
if (!acc_is_present (h, s))
return;
gomp_mutex_lock (&acc_dev->lock);
n = lookup_host (acc_dev, h, 1);
if (!n)
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("%p is not a mapped block", (void *)h);
}
gomp_debug (0, " %s: restore mappings\n", __FUNCTION__);
t = n->tgt;
assert (n->refcount != REFCOUNT_INFINITY
&& n->refcount != REFCOUNT_LINK);
if (n->refcount < n->dynamic_refcount)
{
gomp_mutex_unlock (&acc_dev->lock);
gomp_fatal ("Dynamic reference counting assert fail\n");
}
if (finalize)
{
n->refcount -= n->dynamic_refcount;
n->dynamic_refcount = 0;
}
else if (n->dynamic_refcount)
{
n->refcount--;
n->dynamic_refcount--;
}
gomp_mutex_unlock (&acc_dev->lock);
if (n->refcount == 0)
{
/* Set refcount to 1 to allow gomp_unmap_vars to unmap it. */
n->refcount = 1;
t->refcount = minrefs;
for (size_t i = 0; i < t->list_count; i++)
if (t->list[i].key == n)
{
t->list[i].copy_from = force_copyfrom ? 1 : 0;
break;
}
/* If running synchronously, unmap immediately. */
if (async < acc_async_noval)
gomp_unmap_vars (t, true);
else
{
goacc_aq aq = get_goacc_asyncqueue (async);
gomp_unmap_vars_async (t, true, aq);
}
}
gomp_mutex_unlock (&acc_dev->lock);
gomp_debug (0, " %s: mappings restored\n", __FUNCTION__);
}
/* Return the number of mappings associated with 'GOMP_MAP_TO_PSET' or
'GOMP_MAP_POINTER'. */
static int
find_pointer (int pos, size_t mapnum, unsigned short *kinds)
{
if (pos + 1 >= mapnum)
return 0;
unsigned char kind = kinds[pos+1] & 0xff;
if (kind == GOMP_MAP_TO_PSET)
return 3;
else if (kind == GOMP_MAP_POINTER)
return 2;
return 0;
}
void
GOACC_enter_exit_data (int flags_m, size_t mapnum, void **hostaddrs,
size_t *sizes, unsigned short *kinds, int async,
int num_waits, ...)
{
int flags = GOACC_FLAGS_UNMARSHAL (flags_m);
struct goacc_thread *thr;
struct gomp_device_descr *acc_dev;
bool data_enter = false;
size_t i;
goacc_lazy_initialize ();
thr = goacc_thread ();
acc_dev = thr->dev;
/* Determine whether "finalize" semantics apply to all mappings of this
OpenACC directive. */
bool finalize = false;
if (mapnum > 0)
{
unsigned char kind = kinds[0] & 0xff;
if (kind == GOMP_MAP_DELETE
|| kind == GOMP_MAP_FORCE_FROM)
finalize = true;
}
/* Determine if this is an "acc enter data". */
for (i = 0; i < mapnum; ++i)
{
unsigned char kind = kinds[i] & 0xff;
if (kind == GOMP_MAP_POINTER || kind == GOMP_MAP_TO_PSET)
continue;
if (kind == GOMP_MAP_FORCE_ALLOC
|| kind == GOMP_MAP_FORCE_PRESENT
|| kind == GOMP_MAP_FORCE_TO
|| kind == GOMP_MAP_TO
|| kind == GOMP_MAP_ALLOC)
{
data_enter = true;
break;
}
if (kind == GOMP_MAP_RELEASE
|| kind == GOMP_MAP_DELETE
|| kind == GOMP_MAP_FROM
|| kind == GOMP_MAP_FORCE_FROM)
break;
gomp_fatal (">>>> GOACC_enter_exit_data UNHANDLED kind 0x%.2x",
kind);
}
bool profiling_p = GOACC_PROFILING_DISPATCH_P (true);
acc_prof_info prof_info;
if (profiling_p)
{
thr->prof_info = &prof_info;
prof_info.event_type
= data_enter ? acc_ev_enter_data_start : acc_ev_exit_data_start;
prof_info.valid_bytes = _ACC_PROF_INFO_VALID_BYTES;
prof_info.version = _ACC_PROF_INFO_VERSION;
prof_info.device_type = acc_device_type (acc_dev->type);
prof_info.device_number = acc_dev->target_id;
prof_info.thread_id = -1;
prof_info.async = async;
prof_info.async_queue = prof_info.async;
prof_info.src_file = NULL;
prof_info.func_name = NULL;
prof_info.line_no = -1;
prof_info.end_line_no = -1;
prof_info.func_line_no = -1;
prof_info.func_end_line_no = -1;
}
acc_event_info enter_exit_data_event_info;
if (profiling_p)
{
enter_exit_data_event_info.other_event.event_type
= prof_info.event_type;
enter_exit_data_event_info.other_event.valid_bytes
= _ACC_OTHER_EVENT_INFO_VALID_BYTES;
enter_exit_data_event_info.other_event.parent_construct
= data_enter ? acc_construct_enter_data : acc_construct_exit_data;
enter_exit_data_event_info.other_event.implicit = 0;
enter_exit_data_event_info.other_event.tool_info = NULL;
}
acc_api_info api_info;
if (profiling_p)
{
thr->api_info = &api_info;
api_info.device_api = acc_device_api_none;
api_info.valid_bytes = _ACC_API_INFO_VALID_BYTES;
api_info.device_type = prof_info.device_type;
api_info.vendor = -1;
api_info.device_handle = NULL;
api_info.context_handle = NULL;
api_info.async_handle = NULL;
}
if (profiling_p)
goacc_profiling_dispatch (&prof_info, &enter_exit_data_event_info,
&api_info);
if ((acc_dev->capabilities & GOMP_OFFLOAD_CAP_SHARED_MEM)
|| (flags & GOACC_FLAG_HOST_FALLBACK))
{
prof_info.device_type = acc_device_host;
api_info.device_type = prof_info.device_type;
goto out_prof;
}
if (num_waits)
{
va_list ap;
va_start (ap, num_waits);
goacc_wait (async, num_waits, &ap);
va_end (ap);
}
/* In c, non-pointers and arrays are represented by a single data clause.
Dynamically allocated arrays and subarrays are represented by a data
clause followed by an internal GOMP_MAP_POINTER.
In fortran, scalars and not allocated arrays are represented by a
single data clause. Allocated arrays and subarrays have three mappings:
1) the original data clause, 2) a PSET 3) a pointer to the array data.
*/
if (data_enter)
{
for (i = 0; i < mapnum; i++)
{
unsigned char kind = kinds[i] & 0xff;
/* Scan for pointers and PSETs. */
int pointer = find_pointer (i, mapnum, kinds);
if (!pointer)
{
switch (kind)
{
case GOMP_MAP_ALLOC:
case GOMP_MAP_FORCE_ALLOC:
acc_create_async (hostaddrs[i], sizes[i], async);
break;
case GOMP_MAP_TO:
case GOMP_MAP_FORCE_TO:
acc_copyin_async (hostaddrs[i], sizes[i], async);
break;
default:
gomp_fatal (">>>> GOACC_enter_exit_data UNHANDLED kind 0x%.2x",
kind);
break;
}
}
else
{
goacc_insert_pointer (pointer, &hostaddrs[i], &sizes[i], &kinds[i],
async);
/* Increment 'i' by two because OpenACC requires fortran
arrays to be contiguous, so each PSET is associated with
one of MAP_FORCE_ALLOC/MAP_FORCE_PRESET/MAP_FORCE_TO, and
one MAP_POINTER. */
i += pointer - 1;
}
}
}
else
for (i = 0; i < mapnum; ++i)
{
unsigned char kind = kinds[i] & 0xff;
int pointer = find_pointer (i, mapnum, kinds);
if (!pointer)
{
switch (kind)
{
case GOMP_MAP_RELEASE:
case GOMP_MAP_DELETE:
if (acc_is_present (hostaddrs[i], sizes[i]))
{
if (finalize)
acc_delete_finalize_async (hostaddrs[i], sizes[i], async);
else
acc_delete_async (hostaddrs[i], sizes[i], async);
}
break;
case GOMP_MAP_FROM:
case GOMP_MAP_FORCE_FROM:
if (finalize)
acc_copyout_finalize_async (hostaddrs[i], sizes[i], async);
else
acc_copyout_async (hostaddrs[i], sizes[i], async);
break;
default:
gomp_fatal (">>>> GOACC_enter_exit_data UNHANDLED kind 0x%.2x",
kind);
break;
}
}
else
{
bool copyfrom = (kind == GOMP_MAP_FORCE_FROM
|| kind == GOMP_MAP_FROM);
goacc_remove_pointer (hostaddrs[i], sizes[i], copyfrom, async,
finalize, pointer);
/* See the above comment. */
i += pointer - 1;
}
}
out_prof:
if (profiling_p)
{
prof_info.event_type
= data_enter ? acc_ev_enter_data_end : acc_ev_exit_data_end;
enter_exit_data_event_info.other_event.event_type = prof_info.event_type;
goacc_profiling_dispatch (&prof_info, &enter_exit_data_event_info,
&api_info);
thr->prof_info = NULL;
thr->api_info = NULL;
}
}