807e902eea
From-SVN: r210113
1642 lines
49 KiB
C
1642 lines
49 KiB
C
/* Lower vector operations to scalar operations.
|
||
Copyright (C) 2004-2014 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by the
|
||
Free Software Foundation; either version 3, or (at your option) any
|
||
later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tree.h"
|
||
#include "stor-layout.h"
|
||
#include "tm.h"
|
||
#include "langhooks.h"
|
||
#include "basic-block.h"
|
||
#include "tree-ssa-alias.h"
|
||
#include "internal-fn.h"
|
||
#include "tree-eh.h"
|
||
#include "gimple-expr.h"
|
||
#include "is-a.h"
|
||
#include "gimple.h"
|
||
#include "gimple-iterator.h"
|
||
#include "gimplify-me.h"
|
||
#include "gimple-ssa.h"
|
||
#include "tree-cfg.h"
|
||
#include "stringpool.h"
|
||
#include "tree-ssanames.h"
|
||
#include "tree-iterator.h"
|
||
#include "tree-pass.h"
|
||
#include "flags.h"
|
||
#include "diagnostic.h"
|
||
#include "target.h"
|
||
|
||
/* Need to include rtl.h, expr.h, etc. for optabs. */
|
||
#include "expr.h"
|
||
#include "optabs.h"
|
||
|
||
|
||
static void expand_vector_operations_1 (gimple_stmt_iterator *);
|
||
|
||
|
||
/* Build a constant of type TYPE, made of VALUE's bits replicated
|
||
every TYPE_SIZE (INNER_TYPE) bits to fit TYPE's precision. */
|
||
static tree
|
||
build_replicated_const (tree type, tree inner_type, HOST_WIDE_INT value)
|
||
{
|
||
int width = tree_to_uhwi (TYPE_SIZE (inner_type));
|
||
int n = (TYPE_PRECISION (type) + HOST_BITS_PER_WIDE_INT - 1)
|
||
/ HOST_BITS_PER_WIDE_INT;
|
||
unsigned HOST_WIDE_INT low, mask;
|
||
HOST_WIDE_INT a[WIDE_INT_MAX_ELTS];
|
||
int i;
|
||
|
||
gcc_assert (n && n <= WIDE_INT_MAX_ELTS);
|
||
|
||
if (width == HOST_BITS_PER_WIDE_INT)
|
||
low = value;
|
||
else
|
||
{
|
||
mask = ((HOST_WIDE_INT)1 << width) - 1;
|
||
low = (unsigned HOST_WIDE_INT) ~0 / mask * (value & mask);
|
||
}
|
||
|
||
for (i = 0; i < n; i++)
|
||
a[i] = low;
|
||
|
||
gcc_assert (TYPE_PRECISION (type) <= MAX_BITSIZE_MODE_ANY_INT);
|
||
return wide_int_to_tree
|
||
(type, wide_int::from_array (a, n, TYPE_PRECISION (type)));
|
||
}
|
||
|
||
static GTY(()) tree vector_inner_type;
|
||
static GTY(()) tree vector_last_type;
|
||
static GTY(()) int vector_last_nunits;
|
||
|
||
/* Return a suitable vector types made of SUBPARTS units each of mode
|
||
"word_mode" (the global variable). */
|
||
static tree
|
||
build_word_mode_vector_type (int nunits)
|
||
{
|
||
if (!vector_inner_type)
|
||
vector_inner_type = lang_hooks.types.type_for_mode (word_mode, 1);
|
||
else if (vector_last_nunits == nunits)
|
||
{
|
||
gcc_assert (TREE_CODE (vector_last_type) == VECTOR_TYPE);
|
||
return vector_last_type;
|
||
}
|
||
|
||
/* We build a new type, but we canonicalize it nevertheless,
|
||
because it still saves some memory. */
|
||
vector_last_nunits = nunits;
|
||
vector_last_type = type_hash_canon (nunits,
|
||
build_vector_type (vector_inner_type,
|
||
nunits));
|
||
return vector_last_type;
|
||
}
|
||
|
||
typedef tree (*elem_op_func) (gimple_stmt_iterator *,
|
||
tree, tree, tree, tree, tree, enum tree_code);
|
||
|
||
static inline tree
|
||
tree_vec_extract (gimple_stmt_iterator *gsi, tree type,
|
||
tree t, tree bitsize, tree bitpos)
|
||
{
|
||
if (bitpos)
|
||
return gimplify_build3 (gsi, BIT_FIELD_REF, type, t, bitsize, bitpos);
|
||
else
|
||
return gimplify_build1 (gsi, VIEW_CONVERT_EXPR, type, t);
|
||
}
|
||
|
||
static tree
|
||
do_unop (gimple_stmt_iterator *gsi, tree inner_type, tree a,
|
||
tree b ATTRIBUTE_UNUSED, tree bitpos, tree bitsize,
|
||
enum tree_code code)
|
||
{
|
||
a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
|
||
return gimplify_build1 (gsi, code, inner_type, a);
|
||
}
|
||
|
||
static tree
|
||
do_binop (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
|
||
tree bitpos, tree bitsize, enum tree_code code)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (a)) == VECTOR_TYPE)
|
||
a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
|
||
if (TREE_CODE (TREE_TYPE (b)) == VECTOR_TYPE)
|
||
b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);
|
||
return gimplify_build2 (gsi, code, inner_type, a, b);
|
||
}
|
||
|
||
/* Construct expression (A[BITPOS] code B[BITPOS]) ? -1 : 0
|
||
|
||
INNER_TYPE is the type of A and B elements
|
||
|
||
returned expression is of signed integer type with the
|
||
size equal to the size of INNER_TYPE. */
|
||
static tree
|
||
do_compare (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
|
||
tree bitpos, tree bitsize, enum tree_code code)
|
||
{
|
||
tree comp_type;
|
||
|
||
a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
|
||
b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);
|
||
|
||
comp_type = build_nonstandard_integer_type
|
||
(GET_MODE_BITSIZE (TYPE_MODE (inner_type)), 0);
|
||
|
||
return gimplify_build3 (gsi, COND_EXPR, comp_type,
|
||
fold_build2 (code, boolean_type_node, a, b),
|
||
build_int_cst (comp_type, -1),
|
||
build_int_cst (comp_type, 0));
|
||
}
|
||
|
||
/* Expand vector addition to scalars. This does bit twiddling
|
||
in order to increase parallelism:
|
||
|
||
a + b = (((int) a & 0x7f7f7f7f) + ((int) b & 0x7f7f7f7f)) ^
|
||
(a ^ b) & 0x80808080
|
||
|
||
a - b = (((int) a | 0x80808080) - ((int) b & 0x7f7f7f7f)) ^
|
||
(a ^ ~b) & 0x80808080
|
||
|
||
-b = (0x80808080 - ((int) b & 0x7f7f7f7f)) ^ (~b & 0x80808080)
|
||
|
||
This optimization should be done only if 4 vector items or more
|
||
fit into a word. */
|
||
static tree
|
||
do_plus_minus (gimple_stmt_iterator *gsi, tree word_type, tree a, tree b,
|
||
tree bitpos ATTRIBUTE_UNUSED, tree bitsize ATTRIBUTE_UNUSED,
|
||
enum tree_code code)
|
||
{
|
||
tree inner_type = TREE_TYPE (TREE_TYPE (a));
|
||
unsigned HOST_WIDE_INT max;
|
||
tree low_bits, high_bits, a_low, b_low, result_low, signs;
|
||
|
||
max = GET_MODE_MASK (TYPE_MODE (inner_type));
|
||
low_bits = build_replicated_const (word_type, inner_type, max >> 1);
|
||
high_bits = build_replicated_const (word_type, inner_type, max & ~(max >> 1));
|
||
|
||
a = tree_vec_extract (gsi, word_type, a, bitsize, bitpos);
|
||
b = tree_vec_extract (gsi, word_type, b, bitsize, bitpos);
|
||
|
||
signs = gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, a, b);
|
||
b_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, b, low_bits);
|
||
if (code == PLUS_EXPR)
|
||
a_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, a, low_bits);
|
||
else
|
||
{
|
||
a_low = gimplify_build2 (gsi, BIT_IOR_EXPR, word_type, a, high_bits);
|
||
signs = gimplify_build1 (gsi, BIT_NOT_EXPR, word_type, signs);
|
||
}
|
||
|
||
signs = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, signs, high_bits);
|
||
result_low = gimplify_build2 (gsi, code, word_type, a_low, b_low);
|
||
return gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, result_low, signs);
|
||
}
|
||
|
||
static tree
|
||
do_negate (gimple_stmt_iterator *gsi, tree word_type, tree b,
|
||
tree unused ATTRIBUTE_UNUSED, tree bitpos ATTRIBUTE_UNUSED,
|
||
tree bitsize ATTRIBUTE_UNUSED,
|
||
enum tree_code code ATTRIBUTE_UNUSED)
|
||
{
|
||
tree inner_type = TREE_TYPE (TREE_TYPE (b));
|
||
HOST_WIDE_INT max;
|
||
tree low_bits, high_bits, b_low, result_low, signs;
|
||
|
||
max = GET_MODE_MASK (TYPE_MODE (inner_type));
|
||
low_bits = build_replicated_const (word_type, inner_type, max >> 1);
|
||
high_bits = build_replicated_const (word_type, inner_type, max & ~(max >> 1));
|
||
|
||
b = tree_vec_extract (gsi, word_type, b, bitsize, bitpos);
|
||
|
||
b_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, b, low_bits);
|
||
signs = gimplify_build1 (gsi, BIT_NOT_EXPR, word_type, b);
|
||
signs = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, signs, high_bits);
|
||
result_low = gimplify_build2 (gsi, MINUS_EXPR, word_type, high_bits, b_low);
|
||
return gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, result_low, signs);
|
||
}
|
||
|
||
/* Expand a vector operation to scalars, by using many operations
|
||
whose type is the vector type's inner type. */
|
||
static tree
|
||
expand_vector_piecewise (gimple_stmt_iterator *gsi, elem_op_func f,
|
||
tree type, tree inner_type,
|
||
tree a, tree b, enum tree_code code)
|
||
{
|
||
vec<constructor_elt, va_gc> *v;
|
||
tree part_width = TYPE_SIZE (inner_type);
|
||
tree index = bitsize_int (0);
|
||
int nunits = TYPE_VECTOR_SUBPARTS (type);
|
||
int delta = tree_to_uhwi (part_width)
|
||
/ tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)));
|
||
int i;
|
||
location_t loc = gimple_location (gsi_stmt (*gsi));
|
||
|
||
if (types_compatible_p (gimple_expr_type (gsi_stmt (*gsi)), type))
|
||
warning_at (loc, OPT_Wvector_operation_performance,
|
||
"vector operation will be expanded piecewise");
|
||
else
|
||
warning_at (loc, OPT_Wvector_operation_performance,
|
||
"vector operation will be expanded in parallel");
|
||
|
||
vec_alloc (v, (nunits + delta - 1) / delta);
|
||
for (i = 0; i < nunits;
|
||
i += delta, index = int_const_binop (PLUS_EXPR, index, part_width))
|
||
{
|
||
tree result = f (gsi, inner_type, a, b, index, part_width, code);
|
||
constructor_elt ce = {NULL_TREE, result};
|
||
v->quick_push (ce);
|
||
}
|
||
|
||
return build_constructor (type, v);
|
||
}
|
||
|
||
/* Expand a vector operation to scalars with the freedom to use
|
||
a scalar integer type, or to use a different size for the items
|
||
in the vector type. */
|
||
static tree
|
||
expand_vector_parallel (gimple_stmt_iterator *gsi, elem_op_func f, tree type,
|
||
tree a, tree b,
|
||
enum tree_code code)
|
||
{
|
||
tree result, compute_type;
|
||
enum machine_mode mode;
|
||
int n_words = tree_to_uhwi (TYPE_SIZE_UNIT (type)) / UNITS_PER_WORD;
|
||
location_t loc = gimple_location (gsi_stmt (*gsi));
|
||
|
||
/* We have three strategies. If the type is already correct, just do
|
||
the operation an element at a time. Else, if the vector is wider than
|
||
one word, do it a word at a time; finally, if the vector is smaller
|
||
than one word, do it as a scalar. */
|
||
if (TYPE_MODE (TREE_TYPE (type)) == word_mode)
|
||
return expand_vector_piecewise (gsi, f,
|
||
type, TREE_TYPE (type),
|
||
a, b, code);
|
||
else if (n_words > 1)
|
||
{
|
||
tree word_type = build_word_mode_vector_type (n_words);
|
||
result = expand_vector_piecewise (gsi, f,
|
||
word_type, TREE_TYPE (word_type),
|
||
a, b, code);
|
||
result = force_gimple_operand_gsi (gsi, result, true, NULL, true,
|
||
GSI_SAME_STMT);
|
||
}
|
||
else
|
||
{
|
||
/* Use a single scalar operation with a mode no wider than word_mode. */
|
||
mode = mode_for_size (tree_to_uhwi (TYPE_SIZE (type)), MODE_INT, 0);
|
||
compute_type = lang_hooks.types.type_for_mode (mode, 1);
|
||
result = f (gsi, compute_type, a, b, NULL_TREE, NULL_TREE, code);
|
||
warning_at (loc, OPT_Wvector_operation_performance,
|
||
"vector operation will be expanded with a "
|
||
"single scalar operation");
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Expand a vector operation to scalars; for integer types we can use
|
||
special bit twiddling tricks to do the sums a word at a time, using
|
||
function F_PARALLEL instead of F. These tricks are done only if
|
||
they can process at least four items, that is, only if the vector
|
||
holds at least four items and if a word can hold four items. */
|
||
static tree
|
||
expand_vector_addition (gimple_stmt_iterator *gsi,
|
||
elem_op_func f, elem_op_func f_parallel,
|
||
tree type, tree a, tree b, enum tree_code code)
|
||
{
|
||
int parts_per_word = UNITS_PER_WORD
|
||
/ tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (type)));
|
||
|
||
if (INTEGRAL_TYPE_P (TREE_TYPE (type))
|
||
&& parts_per_word >= 4
|
||
&& TYPE_VECTOR_SUBPARTS (type) >= 4)
|
||
return expand_vector_parallel (gsi, f_parallel,
|
||
type, a, b, code);
|
||
else
|
||
return expand_vector_piecewise (gsi, f,
|
||
type, TREE_TYPE (type),
|
||
a, b, code);
|
||
}
|
||
|
||
/* Try to expand vector comparison expression OP0 CODE OP1 by
|
||
querying optab if the following expression:
|
||
VEC_COND_EXPR< OP0 CODE OP1, {-1,...}, {0,...}>
|
||
can be expanded. */
|
||
static tree
|
||
expand_vector_comparison (gimple_stmt_iterator *gsi, tree type, tree op0,
|
||
tree op1, enum tree_code code)
|
||
{
|
||
tree t;
|
||
if (! expand_vec_cond_expr_p (type, TREE_TYPE (op0)))
|
||
t = expand_vector_piecewise (gsi, do_compare, type,
|
||
TREE_TYPE (TREE_TYPE (op0)), op0, op1, code);
|
||
else
|
||
t = NULL_TREE;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Helper function of expand_vector_divmod. Gimplify a RSHIFT_EXPR in type
|
||
of OP0 with shift counts in SHIFTCNTS array and return the temporary holding
|
||
the result if successful, otherwise return NULL_TREE. */
|
||
static tree
|
||
add_rshift (gimple_stmt_iterator *gsi, tree type, tree op0, int *shiftcnts)
|
||
{
|
||
optab op;
|
||
unsigned int i, nunits = TYPE_VECTOR_SUBPARTS (type);
|
||
bool scalar_shift = true;
|
||
|
||
for (i = 1; i < nunits; i++)
|
||
{
|
||
if (shiftcnts[i] != shiftcnts[0])
|
||
scalar_shift = false;
|
||
}
|
||
|
||
if (scalar_shift && shiftcnts[0] == 0)
|
||
return op0;
|
||
|
||
if (scalar_shift)
|
||
{
|
||
op = optab_for_tree_code (RSHIFT_EXPR, type, optab_scalar);
|
||
if (op != unknown_optab
|
||
&& optab_handler (op, TYPE_MODE (type)) != CODE_FOR_nothing)
|
||
return gimplify_build2 (gsi, RSHIFT_EXPR, type, op0,
|
||
build_int_cst (NULL_TREE, shiftcnts[0]));
|
||
}
|
||
|
||
op = optab_for_tree_code (RSHIFT_EXPR, type, optab_vector);
|
||
if (op != unknown_optab
|
||
&& optab_handler (op, TYPE_MODE (type)) != CODE_FOR_nothing)
|
||
{
|
||
tree *vec = XALLOCAVEC (tree, nunits);
|
||
for (i = 0; i < nunits; i++)
|
||
vec[i] = build_int_cst (TREE_TYPE (type), shiftcnts[i]);
|
||
return gimplify_build2 (gsi, RSHIFT_EXPR, type, op0,
|
||
build_vector (type, vec));
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Try to expand integer vector division by constant using
|
||
widening multiply, shifts and additions. */
|
||
static tree
|
||
expand_vector_divmod (gimple_stmt_iterator *gsi, tree type, tree op0,
|
||
tree op1, enum tree_code code)
|
||
{
|
||
bool use_pow2 = true;
|
||
bool has_vector_shift = true;
|
||
int mode = -1, this_mode;
|
||
int pre_shift = -1, post_shift;
|
||
unsigned int nunits = TYPE_VECTOR_SUBPARTS (type);
|
||
int *shifts = XALLOCAVEC (int, nunits * 4);
|
||
int *pre_shifts = shifts + nunits;
|
||
int *post_shifts = pre_shifts + nunits;
|
||
int *shift_temps = post_shifts + nunits;
|
||
unsigned HOST_WIDE_INT *mulc = XALLOCAVEC (unsigned HOST_WIDE_INT, nunits);
|
||
int prec = TYPE_PRECISION (TREE_TYPE (type));
|
||
int dummy_int;
|
||
unsigned int i;
|
||
signop sign_p = TYPE_SIGN (TREE_TYPE (type));
|
||
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (TYPE_MODE (TREE_TYPE (type)));
|
||
tree *vec;
|
||
tree cur_op, mulcst, tem;
|
||
optab op;
|
||
|
||
if (prec > HOST_BITS_PER_WIDE_INT)
|
||
return NULL_TREE;
|
||
|
||
op = optab_for_tree_code (RSHIFT_EXPR, type, optab_vector);
|
||
if (op == unknown_optab
|
||
|| optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
|
||
has_vector_shift = false;
|
||
|
||
/* Analysis phase. Determine if all op1 elements are either power
|
||
of two and it is possible to expand it using shifts (or for remainder
|
||
using masking). Additionally compute the multiplicative constants
|
||
and pre and post shifts if the division is to be expanded using
|
||
widening or high part multiplication plus shifts. */
|
||
for (i = 0; i < nunits; i++)
|
||
{
|
||
tree cst = VECTOR_CST_ELT (op1, i);
|
||
unsigned HOST_WIDE_INT ml;
|
||
|
||
if (TREE_CODE (cst) != INTEGER_CST || integer_zerop (cst))
|
||
return NULL_TREE;
|
||
pre_shifts[i] = 0;
|
||
post_shifts[i] = 0;
|
||
mulc[i] = 0;
|
||
if (use_pow2
|
||
&& (!integer_pow2p (cst) || tree_int_cst_sgn (cst) != 1))
|
||
use_pow2 = false;
|
||
if (use_pow2)
|
||
{
|
||
shifts[i] = tree_log2 (cst);
|
||
if (shifts[i] != shifts[0]
|
||
&& code == TRUNC_DIV_EXPR
|
||
&& !has_vector_shift)
|
||
use_pow2 = false;
|
||
}
|
||
if (mode == -2)
|
||
continue;
|
||
if (sign_p == UNSIGNED)
|
||
{
|
||
unsigned HOST_WIDE_INT mh;
|
||
unsigned HOST_WIDE_INT d = TREE_INT_CST_LOW (cst) & mask;
|
||
|
||
if (d >= ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))
|
||
/* FIXME: Can transform this into op0 >= op1 ? 1 : 0. */
|
||
return NULL_TREE;
|
||
|
||
if (d <= 1)
|
||
{
|
||
mode = -2;
|
||
continue;
|
||
}
|
||
|
||
/* Find a suitable multiplier and right shift count
|
||
instead of multiplying with D. */
|
||
mh = choose_multiplier (d, prec, prec, &ml, &post_shift, &dummy_int);
|
||
|
||
/* If the suggested multiplier is more than SIZE bits, we can
|
||
do better for even divisors, using an initial right shift. */
|
||
if ((mh != 0 && (d & 1) == 0)
|
||
|| (!has_vector_shift && pre_shift != -1))
|
||
{
|
||
if (has_vector_shift)
|
||
pre_shift = floor_log2 (d & -d);
|
||
else if (pre_shift == -1)
|
||
{
|
||
unsigned int j;
|
||
for (j = 0; j < nunits; j++)
|
||
{
|
||
tree cst2 = VECTOR_CST_ELT (op1, j);
|
||
unsigned HOST_WIDE_INT d2;
|
||
int this_pre_shift;
|
||
|
||
if (!tree_fits_uhwi_p (cst2))
|
||
return NULL_TREE;
|
||
d2 = tree_to_uhwi (cst2) & mask;
|
||
if (d2 == 0)
|
||
return NULL_TREE;
|
||
this_pre_shift = floor_log2 (d2 & -d2);
|
||
if (pre_shift == -1 || this_pre_shift < pre_shift)
|
||
pre_shift = this_pre_shift;
|
||
}
|
||
if (i != 0 && pre_shift != 0)
|
||
{
|
||
/* Restart. */
|
||
i = -1U;
|
||
mode = -1;
|
||
continue;
|
||
}
|
||
}
|
||
if (pre_shift != 0)
|
||
{
|
||
if ((d >> pre_shift) <= 1)
|
||
{
|
||
mode = -2;
|
||
continue;
|
||
}
|
||
mh = choose_multiplier (d >> pre_shift, prec,
|
||
prec - pre_shift,
|
||
&ml, &post_shift, &dummy_int);
|
||
gcc_assert (!mh);
|
||
pre_shifts[i] = pre_shift;
|
||
}
|
||
}
|
||
if (!mh)
|
||
this_mode = 0;
|
||
else
|
||
this_mode = 1;
|
||
}
|
||
else
|
||
{
|
||
HOST_WIDE_INT d = TREE_INT_CST_LOW (cst);
|
||
unsigned HOST_WIDE_INT abs_d;
|
||
|
||
if (d == -1)
|
||
return NULL_TREE;
|
||
|
||
/* Since d might be INT_MIN, we have to cast to
|
||
unsigned HOST_WIDE_INT before negating to avoid
|
||
undefined signed overflow. */
|
||
abs_d = (d >= 0
|
||
? (unsigned HOST_WIDE_INT) d
|
||
: - (unsigned HOST_WIDE_INT) d);
|
||
|
||
/* n rem d = n rem -d */
|
||
if (code == TRUNC_MOD_EXPR && d < 0)
|
||
d = abs_d;
|
||
else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (prec - 1))
|
||
{
|
||
/* This case is not handled correctly below. */
|
||
mode = -2;
|
||
continue;
|
||
}
|
||
if (abs_d <= 1)
|
||
{
|
||
mode = -2;
|
||
continue;
|
||
}
|
||
|
||
choose_multiplier (abs_d, prec, prec - 1, &ml,
|
||
&post_shift, &dummy_int);
|
||
if (ml >= (unsigned HOST_WIDE_INT) 1 << (prec - 1))
|
||
{
|
||
this_mode = 4 + (d < 0);
|
||
ml |= (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
|
||
}
|
||
else
|
||
this_mode = 2 + (d < 0);
|
||
}
|
||
mulc[i] = ml;
|
||
post_shifts[i] = post_shift;
|
||
if ((i && !has_vector_shift && post_shifts[0] != post_shift)
|
||
|| post_shift >= prec
|
||
|| pre_shifts[i] >= prec)
|
||
this_mode = -2;
|
||
|
||
if (i == 0)
|
||
mode = this_mode;
|
||
else if (mode != this_mode)
|
||
mode = -2;
|
||
}
|
||
|
||
vec = XALLOCAVEC (tree, nunits);
|
||
|
||
if (use_pow2)
|
||
{
|
||
tree addend = NULL_TREE;
|
||
if (sign_p == SIGNED)
|
||
{
|
||
tree uns_type;
|
||
|
||
/* Both division and remainder sequences need
|
||
op0 < 0 ? mask : 0 computed. It can be either computed as
|
||
(type) (((uns_type) (op0 >> (prec - 1))) >> (prec - shifts[i]))
|
||
if none of the shifts is 0, or as the conditional. */
|
||
for (i = 0; i < nunits; i++)
|
||
if (shifts[i] == 0)
|
||
break;
|
||
uns_type
|
||
= build_vector_type (build_nonstandard_integer_type (prec, 1),
|
||
nunits);
|
||
if (i == nunits && TYPE_MODE (uns_type) == TYPE_MODE (type))
|
||
{
|
||
for (i = 0; i < nunits; i++)
|
||
shift_temps[i] = prec - 1;
|
||
cur_op = add_rshift (gsi, type, op0, shift_temps);
|
||
if (cur_op != NULL_TREE)
|
||
{
|
||
cur_op = gimplify_build1 (gsi, VIEW_CONVERT_EXPR,
|
||
uns_type, cur_op);
|
||
for (i = 0; i < nunits; i++)
|
||
shift_temps[i] = prec - shifts[i];
|
||
cur_op = add_rshift (gsi, uns_type, cur_op, shift_temps);
|
||
if (cur_op != NULL_TREE)
|
||
addend = gimplify_build1 (gsi, VIEW_CONVERT_EXPR,
|
||
type, cur_op);
|
||
}
|
||
}
|
||
if (addend == NULL_TREE
|
||
&& expand_vec_cond_expr_p (type, type))
|
||
{
|
||
tree zero, cst, cond;
|
||
gimple stmt;
|
||
|
||
zero = build_zero_cst (type);
|
||
cond = build2 (LT_EXPR, type, op0, zero);
|
||
for (i = 0; i < nunits; i++)
|
||
vec[i] = build_int_cst (TREE_TYPE (type),
|
||
((unsigned HOST_WIDE_INT) 1
|
||
<< shifts[i]) - 1);
|
||
cst = build_vector (type, vec);
|
||
addend = make_ssa_name (type, NULL);
|
||
stmt = gimple_build_assign_with_ops (VEC_COND_EXPR, addend,
|
||
cond, cst, zero);
|
||
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
||
}
|
||
}
|
||
if (code == TRUNC_DIV_EXPR)
|
||
{
|
||
if (sign_p == UNSIGNED)
|
||
{
|
||
/* q = op0 >> shift; */
|
||
cur_op = add_rshift (gsi, type, op0, shifts);
|
||
if (cur_op != NULL_TREE)
|
||
return cur_op;
|
||
}
|
||
else if (addend != NULL_TREE)
|
||
{
|
||
/* t1 = op0 + addend;
|
||
q = t1 >> shift; */
|
||
op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
|
||
if (op != unknown_optab
|
||
&& optab_handler (op, TYPE_MODE (type)) != CODE_FOR_nothing)
|
||
{
|
||
cur_op = gimplify_build2 (gsi, PLUS_EXPR, type, op0, addend);
|
||
cur_op = add_rshift (gsi, type, cur_op, shifts);
|
||
if (cur_op != NULL_TREE)
|
||
return cur_op;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tree mask;
|
||
for (i = 0; i < nunits; i++)
|
||
vec[i] = build_int_cst (TREE_TYPE (type),
|
||
((unsigned HOST_WIDE_INT) 1
|
||
<< shifts[i]) - 1);
|
||
mask = build_vector (type, vec);
|
||
op = optab_for_tree_code (BIT_AND_EXPR, type, optab_default);
|
||
if (op != unknown_optab
|
||
&& optab_handler (op, TYPE_MODE (type)) != CODE_FOR_nothing)
|
||
{
|
||
if (sign_p == UNSIGNED)
|
||
/* r = op0 & mask; */
|
||
return gimplify_build2 (gsi, BIT_AND_EXPR, type, op0, mask);
|
||
else if (addend != NULL_TREE)
|
||
{
|
||
/* t1 = op0 + addend;
|
||
t2 = t1 & mask;
|
||
r = t2 - addend; */
|
||
op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
|
||
if (op != unknown_optab
|
||
&& optab_handler (op, TYPE_MODE (type))
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
cur_op = gimplify_build2 (gsi, PLUS_EXPR, type, op0,
|
||
addend);
|
||
cur_op = gimplify_build2 (gsi, BIT_AND_EXPR, type,
|
||
cur_op, mask);
|
||
op = optab_for_tree_code (MINUS_EXPR, type,
|
||
optab_default);
|
||
if (op != unknown_optab
|
||
&& optab_handler (op, TYPE_MODE (type))
|
||
!= CODE_FOR_nothing)
|
||
return gimplify_build2 (gsi, MINUS_EXPR, type,
|
||
cur_op, addend);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (mode == -2 || BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
|
||
return NULL_TREE;
|
||
|
||
if (!can_mult_highpart_p (TYPE_MODE (type), TYPE_UNSIGNED (type)))
|
||
return NULL_TREE;
|
||
|
||
cur_op = op0;
|
||
|
||
switch (mode)
|
||
{
|
||
case 0:
|
||
gcc_assert (sign_p == UNSIGNED);
|
||
/* t1 = oprnd0 >> pre_shift;
|
||
t2 = t1 h* ml;
|
||
q = t2 >> post_shift; */
|
||
cur_op = add_rshift (gsi, type, cur_op, pre_shifts);
|
||
if (cur_op == NULL_TREE)
|
||
return NULL_TREE;
|
||
break;
|
||
case 1:
|
||
gcc_assert (sign_p == UNSIGNED);
|
||
for (i = 0; i < nunits; i++)
|
||
{
|
||
shift_temps[i] = 1;
|
||
post_shifts[i]--;
|
||
}
|
||
break;
|
||
case 2:
|
||
case 3:
|
||
case 4:
|
||
case 5:
|
||
gcc_assert (sign_p == SIGNED);
|
||
for (i = 0; i < nunits; i++)
|
||
shift_temps[i] = prec - 1;
|
||
break;
|
||
default:
|
||
return NULL_TREE;
|
||
}
|
||
|
||
for (i = 0; i < nunits; i++)
|
||
vec[i] = build_int_cst (TREE_TYPE (type), mulc[i]);
|
||
mulcst = build_vector (type, vec);
|
||
|
||
cur_op = gimplify_build2 (gsi, MULT_HIGHPART_EXPR, type, cur_op, mulcst);
|
||
|
||
switch (mode)
|
||
{
|
||
case 0:
|
||
/* t1 = oprnd0 >> pre_shift;
|
||
t2 = t1 h* ml;
|
||
q = t2 >> post_shift; */
|
||
cur_op = add_rshift (gsi, type, cur_op, post_shifts);
|
||
break;
|
||
case 1:
|
||
/* t1 = oprnd0 h* ml;
|
||
t2 = oprnd0 - t1;
|
||
t3 = t2 >> 1;
|
||
t4 = t1 + t3;
|
||
q = t4 >> (post_shift - 1); */
|
||
op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
|
||
if (op == unknown_optab
|
||
|| optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
|
||
return NULL_TREE;
|
||
tem = gimplify_build2 (gsi, MINUS_EXPR, type, op0, cur_op);
|
||
tem = add_rshift (gsi, type, tem, shift_temps);
|
||
op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
|
||
if (op == unknown_optab
|
||
|| optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
|
||
return NULL_TREE;
|
||
tem = gimplify_build2 (gsi, PLUS_EXPR, type, cur_op, tem);
|
||
cur_op = add_rshift (gsi, type, tem, post_shifts);
|
||
if (cur_op == NULL_TREE)
|
||
return NULL_TREE;
|
||
break;
|
||
case 2:
|
||
case 3:
|
||
case 4:
|
||
case 5:
|
||
/* t1 = oprnd0 h* ml;
|
||
t2 = t1; [ iff (mode & 2) != 0 ]
|
||
t2 = t1 + oprnd0; [ iff (mode & 2) == 0 ]
|
||
t3 = t2 >> post_shift;
|
||
t4 = oprnd0 >> (prec - 1);
|
||
q = t3 - t4; [ iff (mode & 1) == 0 ]
|
||
q = t4 - t3; [ iff (mode & 1) != 0 ] */
|
||
if ((mode & 2) == 0)
|
||
{
|
||
op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
|
||
if (op == unknown_optab
|
||
|| optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
|
||
return NULL_TREE;
|
||
cur_op = gimplify_build2 (gsi, PLUS_EXPR, type, cur_op, op0);
|
||
}
|
||
cur_op = add_rshift (gsi, type, cur_op, post_shifts);
|
||
if (cur_op == NULL_TREE)
|
||
return NULL_TREE;
|
||
tem = add_rshift (gsi, type, op0, shift_temps);
|
||
if (tem == NULL_TREE)
|
||
return NULL_TREE;
|
||
op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
|
||
if (op == unknown_optab
|
||
|| optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
|
||
return NULL_TREE;
|
||
if ((mode & 1) == 0)
|
||
cur_op = gimplify_build2 (gsi, MINUS_EXPR, type, cur_op, tem);
|
||
else
|
||
cur_op = gimplify_build2 (gsi, MINUS_EXPR, type, tem, cur_op);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (code == TRUNC_DIV_EXPR)
|
||
return cur_op;
|
||
|
||
/* We divided. Now finish by:
|
||
t1 = q * oprnd1;
|
||
r = oprnd0 - t1; */
|
||
op = optab_for_tree_code (MULT_EXPR, type, optab_default);
|
||
if (op == unknown_optab
|
||
|| optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
|
||
return NULL_TREE;
|
||
tem = gimplify_build2 (gsi, MULT_EXPR, type, cur_op, op1);
|
||
op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
|
||
if (op == unknown_optab
|
||
|| optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
|
||
return NULL_TREE;
|
||
return gimplify_build2 (gsi, MINUS_EXPR, type, op0, tem);
|
||
}
|
||
|
||
/* Expand a vector condition to scalars, by using many conditions
|
||
on the vector's elements. */
|
||
static void
|
||
expand_vector_condition (gimple_stmt_iterator *gsi)
|
||
{
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
tree type = gimple_expr_type (stmt);
|
||
tree a = gimple_assign_rhs1 (stmt);
|
||
tree a1 = a;
|
||
tree a2;
|
||
bool a_is_comparison = false;
|
||
tree b = gimple_assign_rhs2 (stmt);
|
||
tree c = gimple_assign_rhs3 (stmt);
|
||
vec<constructor_elt, va_gc> *v;
|
||
tree constr;
|
||
tree inner_type = TREE_TYPE (type);
|
||
tree cond_type = TREE_TYPE (TREE_TYPE (a));
|
||
tree comp_inner_type = cond_type;
|
||
tree width = TYPE_SIZE (inner_type);
|
||
tree index = bitsize_int (0);
|
||
int nunits = TYPE_VECTOR_SUBPARTS (type);
|
||
int i;
|
||
location_t loc = gimple_location (gsi_stmt (*gsi));
|
||
|
||
if (!is_gimple_val (a))
|
||
{
|
||
gcc_assert (COMPARISON_CLASS_P (a));
|
||
a_is_comparison = true;
|
||
a1 = TREE_OPERAND (a, 0);
|
||
a2 = TREE_OPERAND (a, 1);
|
||
comp_inner_type = TREE_TYPE (TREE_TYPE (a1));
|
||
}
|
||
|
||
if (expand_vec_cond_expr_p (type, TREE_TYPE (a1)))
|
||
return;
|
||
|
||
/* TODO: try and find a smaller vector type. */
|
||
|
||
warning_at (loc, OPT_Wvector_operation_performance,
|
||
"vector condition will be expanded piecewise");
|
||
|
||
vec_alloc (v, nunits);
|
||
for (i = 0; i < nunits;
|
||
i++, index = int_const_binop (PLUS_EXPR, index, width))
|
||
{
|
||
tree aa, result;
|
||
tree bb = tree_vec_extract (gsi, inner_type, b, width, index);
|
||
tree cc = tree_vec_extract (gsi, inner_type, c, width, index);
|
||
if (a_is_comparison)
|
||
{
|
||
tree aa1 = tree_vec_extract (gsi, comp_inner_type, a1, width, index);
|
||
tree aa2 = tree_vec_extract (gsi, comp_inner_type, a2, width, index);
|
||
aa = build2 (TREE_CODE (a), cond_type, aa1, aa2);
|
||
}
|
||
else
|
||
aa = tree_vec_extract (gsi, cond_type, a, width, index);
|
||
result = gimplify_build3 (gsi, COND_EXPR, inner_type, aa, bb, cc);
|
||
constructor_elt ce = {NULL_TREE, result};
|
||
v->quick_push (ce);
|
||
}
|
||
|
||
constr = build_constructor (type, v);
|
||
gimple_assign_set_rhs_from_tree (gsi, constr);
|
||
update_stmt (gsi_stmt (*gsi));
|
||
}
|
||
|
||
static tree
|
||
expand_vector_operation (gimple_stmt_iterator *gsi, tree type, tree compute_type,
|
||
gimple assign, enum tree_code code)
|
||
{
|
||
enum machine_mode compute_mode = TYPE_MODE (compute_type);
|
||
|
||
/* If the compute mode is not a vector mode (hence we are not decomposing
|
||
a BLKmode vector to smaller, hardware-supported vectors), we may want
|
||
to expand the operations in parallel. */
|
||
if (GET_MODE_CLASS (compute_mode) != MODE_VECTOR_INT
|
||
&& GET_MODE_CLASS (compute_mode) != MODE_VECTOR_FLOAT
|
||
&& GET_MODE_CLASS (compute_mode) != MODE_VECTOR_FRACT
|
||
&& GET_MODE_CLASS (compute_mode) != MODE_VECTOR_UFRACT
|
||
&& GET_MODE_CLASS (compute_mode) != MODE_VECTOR_ACCUM
|
||
&& GET_MODE_CLASS (compute_mode) != MODE_VECTOR_UACCUM)
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
if (!TYPE_OVERFLOW_TRAPS (type))
|
||
return expand_vector_addition (gsi, do_binop, do_plus_minus, type,
|
||
gimple_assign_rhs1 (assign),
|
||
gimple_assign_rhs2 (assign), code);
|
||
break;
|
||
|
||
case NEGATE_EXPR:
|
||
if (!TYPE_OVERFLOW_TRAPS (type))
|
||
return expand_vector_addition (gsi, do_unop, do_negate, type,
|
||
gimple_assign_rhs1 (assign),
|
||
NULL_TREE, code);
|
||
break;
|
||
|
||
case BIT_AND_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
return expand_vector_parallel (gsi, do_binop, type,
|
||
gimple_assign_rhs1 (assign),
|
||
gimple_assign_rhs2 (assign), code);
|
||
|
||
case BIT_NOT_EXPR:
|
||
return expand_vector_parallel (gsi, do_unop, type,
|
||
gimple_assign_rhs1 (assign),
|
||
NULL_TREE, code);
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
case GT_EXPR:
|
||
case LT_EXPR:
|
||
case GE_EXPR:
|
||
case LE_EXPR:
|
||
case UNEQ_EXPR:
|
||
case UNGT_EXPR:
|
||
case UNLT_EXPR:
|
||
case UNGE_EXPR:
|
||
case UNLE_EXPR:
|
||
case LTGT_EXPR:
|
||
case ORDERED_EXPR:
|
||
case UNORDERED_EXPR:
|
||
{
|
||
tree rhs1 = gimple_assign_rhs1 (assign);
|
||
tree rhs2 = gimple_assign_rhs2 (assign);
|
||
|
||
return expand_vector_comparison (gsi, type, rhs1, rhs2, code);
|
||
}
|
||
|
||
case TRUNC_DIV_EXPR:
|
||
case TRUNC_MOD_EXPR:
|
||
{
|
||
tree rhs1 = gimple_assign_rhs1 (assign);
|
||
tree rhs2 = gimple_assign_rhs2 (assign);
|
||
tree ret;
|
||
|
||
if (!optimize
|
||
|| !VECTOR_INTEGER_TYPE_P (type)
|
||
|| TREE_CODE (rhs2) != VECTOR_CST
|
||
|| !VECTOR_MODE_P (TYPE_MODE (type)))
|
||
break;
|
||
|
||
ret = expand_vector_divmod (gsi, type, rhs1, rhs2, code);
|
||
if (ret != NULL_TREE)
|
||
return ret;
|
||
break;
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (TREE_CODE_CLASS (code) == tcc_unary)
|
||
return expand_vector_piecewise (gsi, do_unop, type, compute_type,
|
||
gimple_assign_rhs1 (assign),
|
||
NULL_TREE, code);
|
||
else
|
||
return expand_vector_piecewise (gsi, do_binop, type, compute_type,
|
||
gimple_assign_rhs1 (assign),
|
||
gimple_assign_rhs2 (assign), code);
|
||
}
|
||
|
||
/* Try to optimize
|
||
a_5 = { b_7, b_7 + 3, b_7 + 6, b_7 + 9 };
|
||
style stmts into:
|
||
_9 = { b_7, b_7, b_7, b_7 };
|
||
a_5 = _9 + { 0, 3, 6, 9 };
|
||
because vector splat operation is usually more efficient
|
||
than piecewise initialization of the vector. */
|
||
|
||
static void
|
||
optimize_vector_constructor (gimple_stmt_iterator *gsi)
|
||
{
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
tree lhs = gimple_assign_lhs (stmt);
|
||
tree rhs = gimple_assign_rhs1 (stmt);
|
||
tree type = TREE_TYPE (rhs);
|
||
unsigned int i, j, nelts = TYPE_VECTOR_SUBPARTS (type);
|
||
bool all_same = true;
|
||
constructor_elt *elt;
|
||
tree *cst;
|
||
gimple g;
|
||
tree base = NULL_TREE;
|
||
optab op;
|
||
|
||
if (nelts <= 2 || CONSTRUCTOR_NELTS (rhs) != nelts)
|
||
return;
|
||
op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
|
||
if (op == unknown_optab
|
||
|| optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
|
||
return;
|
||
FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (rhs), i, elt)
|
||
if (TREE_CODE (elt->value) != SSA_NAME
|
||
|| TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
|
||
return;
|
||
else
|
||
{
|
||
tree this_base = elt->value;
|
||
if (this_base != CONSTRUCTOR_ELT (rhs, 0)->value)
|
||
all_same = false;
|
||
for (j = 0; j < nelts + 1; j++)
|
||
{
|
||
g = SSA_NAME_DEF_STMT (this_base);
|
||
if (is_gimple_assign (g)
|
||
&& gimple_assign_rhs_code (g) == PLUS_EXPR
|
||
&& TREE_CODE (gimple_assign_rhs2 (g)) == INTEGER_CST
|
||
&& TREE_CODE (gimple_assign_rhs1 (g)) == SSA_NAME
|
||
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (g)))
|
||
this_base = gimple_assign_rhs1 (g);
|
||
else
|
||
break;
|
||
}
|
||
if (i == 0)
|
||
base = this_base;
|
||
else if (this_base != base)
|
||
return;
|
||
}
|
||
if (all_same)
|
||
return;
|
||
cst = XALLOCAVEC (tree, nelts);
|
||
for (i = 0; i < nelts; i++)
|
||
{
|
||
tree this_base = CONSTRUCTOR_ELT (rhs, i)->value;;
|
||
cst[i] = build_zero_cst (TREE_TYPE (base));
|
||
while (this_base != base)
|
||
{
|
||
g = SSA_NAME_DEF_STMT (this_base);
|
||
cst[i] = fold_binary (PLUS_EXPR, TREE_TYPE (base),
|
||
cst[i], gimple_assign_rhs2 (g));
|
||
if (cst[i] == NULL_TREE
|
||
|| TREE_CODE (cst[i]) != INTEGER_CST
|
||
|| TREE_OVERFLOW (cst[i]))
|
||
return;
|
||
this_base = gimple_assign_rhs1 (g);
|
||
}
|
||
}
|
||
for (i = 0; i < nelts; i++)
|
||
CONSTRUCTOR_ELT (rhs, i)->value = base;
|
||
g = gimple_build_assign (make_ssa_name (type, NULL), rhs);
|
||
gsi_insert_before (gsi, g, GSI_SAME_STMT);
|
||
g = gimple_build_assign_with_ops (PLUS_EXPR, lhs, gimple_assign_lhs (g),
|
||
build_vector (type, cst));
|
||
gsi_replace (gsi, g, false);
|
||
}
|
||
|
||
/* Return a type for the widest vector mode whose components are of type
|
||
TYPE, or NULL_TREE if none is found. */
|
||
|
||
static tree
|
||
type_for_widest_vector_mode (tree type, optab op)
|
||
{
|
||
enum machine_mode inner_mode = TYPE_MODE (type);
|
||
enum machine_mode best_mode = VOIDmode, mode;
|
||
int best_nunits = 0;
|
||
|
||
if (SCALAR_FLOAT_MODE_P (inner_mode))
|
||
mode = MIN_MODE_VECTOR_FLOAT;
|
||
else if (SCALAR_FRACT_MODE_P (inner_mode))
|
||
mode = MIN_MODE_VECTOR_FRACT;
|
||
else if (SCALAR_UFRACT_MODE_P (inner_mode))
|
||
mode = MIN_MODE_VECTOR_UFRACT;
|
||
else if (SCALAR_ACCUM_MODE_P (inner_mode))
|
||
mode = MIN_MODE_VECTOR_ACCUM;
|
||
else if (SCALAR_UACCUM_MODE_P (inner_mode))
|
||
mode = MIN_MODE_VECTOR_UACCUM;
|
||
else
|
||
mode = MIN_MODE_VECTOR_INT;
|
||
|
||
for (; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
|
||
if (GET_MODE_INNER (mode) == inner_mode
|
||
&& GET_MODE_NUNITS (mode) > best_nunits
|
||
&& optab_handler (op, mode) != CODE_FOR_nothing)
|
||
best_mode = mode, best_nunits = GET_MODE_NUNITS (mode);
|
||
|
||
if (best_mode == VOIDmode)
|
||
return NULL_TREE;
|
||
else
|
||
return build_vector_type_for_mode (type, best_mode);
|
||
}
|
||
|
||
|
||
/* Build a reference to the element of the vector VECT. Function
|
||
returns either the element itself, either BIT_FIELD_REF, or an
|
||
ARRAY_REF expression.
|
||
|
||
GSI is required to insert temporary variables while building a
|
||
refernece to the element of the vector VECT.
|
||
|
||
PTMPVEC is a pointer to the temporary variable for caching
|
||
purposes. In case when PTMPVEC is NULL new temporary variable
|
||
will be created. */
|
||
static tree
|
||
vector_element (gimple_stmt_iterator *gsi, tree vect, tree idx, tree *ptmpvec)
|
||
{
|
||
tree vect_type, vect_elt_type;
|
||
gimple asgn;
|
||
tree tmpvec;
|
||
tree arraytype;
|
||
bool need_asgn = true;
|
||
unsigned int elements;
|
||
|
||
vect_type = TREE_TYPE (vect);
|
||
vect_elt_type = TREE_TYPE (vect_type);
|
||
elements = TYPE_VECTOR_SUBPARTS (vect_type);
|
||
|
||
if (TREE_CODE (idx) == INTEGER_CST)
|
||
{
|
||
unsigned HOST_WIDE_INT index;
|
||
|
||
/* Given that we're about to compute a binary modulus,
|
||
we don't care about the high bits of the value. */
|
||
index = TREE_INT_CST_LOW (idx);
|
||
if (!tree_fits_uhwi_p (idx) || index >= elements)
|
||
{
|
||
index &= elements - 1;
|
||
idx = build_int_cst (TREE_TYPE (idx), index);
|
||
}
|
||
|
||
/* When lowering a vector statement sequence do some easy
|
||
simplification by looking through intermediate vector results. */
|
||
if (TREE_CODE (vect) == SSA_NAME)
|
||
{
|
||
gimple def_stmt = SSA_NAME_DEF_STMT (vect);
|
||
if (is_gimple_assign (def_stmt)
|
||
&& (gimple_assign_rhs_code (def_stmt) == VECTOR_CST
|
||
|| gimple_assign_rhs_code (def_stmt) == CONSTRUCTOR))
|
||
vect = gimple_assign_rhs1 (def_stmt);
|
||
}
|
||
|
||
if (TREE_CODE (vect) == VECTOR_CST)
|
||
return VECTOR_CST_ELT (vect, index);
|
||
else if (TREE_CODE (vect) == CONSTRUCTOR
|
||
&& (CONSTRUCTOR_NELTS (vect) == 0
|
||
|| TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (vect, 0)->value))
|
||
!= VECTOR_TYPE))
|
||
{
|
||
if (index < CONSTRUCTOR_NELTS (vect))
|
||
return CONSTRUCTOR_ELT (vect, index)->value;
|
||
return build_zero_cst (vect_elt_type);
|
||
}
|
||
else
|
||
{
|
||
tree size = TYPE_SIZE (vect_elt_type);
|
||
tree pos = fold_build2 (MULT_EXPR, bitsizetype, bitsize_int (index),
|
||
size);
|
||
return fold_build3 (BIT_FIELD_REF, vect_elt_type, vect, size, pos);
|
||
}
|
||
}
|
||
|
||
if (!ptmpvec)
|
||
tmpvec = create_tmp_var (vect_type, "vectmp");
|
||
else if (!*ptmpvec)
|
||
tmpvec = *ptmpvec = create_tmp_var (vect_type, "vectmp");
|
||
else
|
||
{
|
||
tmpvec = *ptmpvec;
|
||
need_asgn = false;
|
||
}
|
||
|
||
if (need_asgn)
|
||
{
|
||
TREE_ADDRESSABLE (tmpvec) = 1;
|
||
asgn = gimple_build_assign (tmpvec, vect);
|
||
gsi_insert_before (gsi, asgn, GSI_SAME_STMT);
|
||
}
|
||
|
||
arraytype = build_array_type_nelts (vect_elt_type, elements);
|
||
return build4 (ARRAY_REF, vect_elt_type,
|
||
build1 (VIEW_CONVERT_EXPR, arraytype, tmpvec),
|
||
idx, NULL_TREE, NULL_TREE);
|
||
}
|
||
|
||
/* Check if VEC_PERM_EXPR within the given setting is supported
|
||
by hardware, or lower it piecewise.
|
||
|
||
When VEC_PERM_EXPR has the same first and second operands:
|
||
VEC_PERM_EXPR <v0, v0, mask> the lowered version would be
|
||
{v0[mask[0]], v0[mask[1]], ...}
|
||
MASK and V0 must have the same number of elements.
|
||
|
||
Otherwise VEC_PERM_EXPR <v0, v1, mask> is lowered to
|
||
{mask[0] < len(v0) ? v0[mask[0]] : v1[mask[0]], ...}
|
||
V0 and V1 must have the same type. MASK, V0, V1 must have the
|
||
same number of arguments. */
|
||
|
||
static void
|
||
lower_vec_perm (gimple_stmt_iterator *gsi)
|
||
{
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
tree mask = gimple_assign_rhs3 (stmt);
|
||
tree vec0 = gimple_assign_rhs1 (stmt);
|
||
tree vec1 = gimple_assign_rhs2 (stmt);
|
||
tree vect_type = TREE_TYPE (vec0);
|
||
tree mask_type = TREE_TYPE (mask);
|
||
tree vect_elt_type = TREE_TYPE (vect_type);
|
||
tree mask_elt_type = TREE_TYPE (mask_type);
|
||
unsigned int elements = TYPE_VECTOR_SUBPARTS (vect_type);
|
||
vec<constructor_elt, va_gc> *v;
|
||
tree constr, t, si, i_val;
|
||
tree vec0tmp = NULL_TREE, vec1tmp = NULL_TREE, masktmp = NULL_TREE;
|
||
bool two_operand_p = !operand_equal_p (vec0, vec1, 0);
|
||
location_t loc = gimple_location (gsi_stmt (*gsi));
|
||
unsigned i;
|
||
|
||
if (TREE_CODE (mask) == SSA_NAME)
|
||
{
|
||
gimple def_stmt = SSA_NAME_DEF_STMT (mask);
|
||
if (is_gimple_assign (def_stmt)
|
||
&& gimple_assign_rhs_code (def_stmt) == VECTOR_CST)
|
||
mask = gimple_assign_rhs1 (def_stmt);
|
||
}
|
||
|
||
if (TREE_CODE (mask) == VECTOR_CST)
|
||
{
|
||
unsigned char *sel_int = XALLOCAVEC (unsigned char, elements);
|
||
|
||
for (i = 0; i < elements; ++i)
|
||
sel_int[i] = (TREE_INT_CST_LOW (VECTOR_CST_ELT (mask, i))
|
||
& (2 * elements - 1));
|
||
|
||
if (can_vec_perm_p (TYPE_MODE (vect_type), false, sel_int))
|
||
{
|
||
gimple_assign_set_rhs3 (stmt, mask);
|
||
update_stmt (stmt);
|
||
return;
|
||
}
|
||
}
|
||
else if (can_vec_perm_p (TYPE_MODE (vect_type), true, NULL))
|
||
return;
|
||
|
||
warning_at (loc, OPT_Wvector_operation_performance,
|
||
"vector shuffling operation will be expanded piecewise");
|
||
|
||
vec_alloc (v, elements);
|
||
for (i = 0; i < elements; i++)
|
||
{
|
||
si = size_int (i);
|
||
i_val = vector_element (gsi, mask, si, &masktmp);
|
||
|
||
if (TREE_CODE (i_val) == INTEGER_CST)
|
||
{
|
||
unsigned HOST_WIDE_INT index;
|
||
|
||
index = TREE_INT_CST_LOW (i_val);
|
||
if (!tree_fits_uhwi_p (i_val) || index >= elements)
|
||
i_val = build_int_cst (mask_elt_type, index & (elements - 1));
|
||
|
||
if (two_operand_p && (index & elements) != 0)
|
||
t = vector_element (gsi, vec1, i_val, &vec1tmp);
|
||
else
|
||
t = vector_element (gsi, vec0, i_val, &vec0tmp);
|
||
|
||
t = force_gimple_operand_gsi (gsi, t, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
}
|
||
else
|
||
{
|
||
tree cond = NULL_TREE, v0_val;
|
||
|
||
if (two_operand_p)
|
||
{
|
||
cond = fold_build2 (BIT_AND_EXPR, mask_elt_type, i_val,
|
||
build_int_cst (mask_elt_type, elements));
|
||
cond = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
}
|
||
|
||
i_val = fold_build2 (BIT_AND_EXPR, mask_elt_type, i_val,
|
||
build_int_cst (mask_elt_type, elements - 1));
|
||
i_val = force_gimple_operand_gsi (gsi, i_val, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
|
||
v0_val = vector_element (gsi, vec0, i_val, &vec0tmp);
|
||
v0_val = force_gimple_operand_gsi (gsi, v0_val, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
|
||
if (two_operand_p)
|
||
{
|
||
tree v1_val;
|
||
|
||
v1_val = vector_element (gsi, vec1, i_val, &vec1tmp);
|
||
v1_val = force_gimple_operand_gsi (gsi, v1_val, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
|
||
cond = fold_build2 (EQ_EXPR, boolean_type_node,
|
||
cond, build_zero_cst (mask_elt_type));
|
||
cond = fold_build3 (COND_EXPR, vect_elt_type,
|
||
cond, v0_val, v1_val);
|
||
t = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE,
|
||
true, GSI_SAME_STMT);
|
||
}
|
||
else
|
||
t = v0_val;
|
||
}
|
||
|
||
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, t);
|
||
}
|
||
|
||
constr = build_constructor (vect_type, v);
|
||
gimple_assign_set_rhs_from_tree (gsi, constr);
|
||
update_stmt (gsi_stmt (*gsi));
|
||
}
|
||
|
||
/* Process one statement. If we identify a vector operation, expand it. */
|
||
|
||
static void
|
||
expand_vector_operations_1 (gimple_stmt_iterator *gsi)
|
||
{
|
||
gimple stmt = gsi_stmt (*gsi);
|
||
tree lhs, rhs1, rhs2 = NULL, type, compute_type;
|
||
enum tree_code code;
|
||
enum machine_mode compute_mode;
|
||
optab op = unknown_optab;
|
||
enum gimple_rhs_class rhs_class;
|
||
tree new_rhs;
|
||
|
||
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
||
return;
|
||
|
||
code = gimple_assign_rhs_code (stmt);
|
||
rhs_class = get_gimple_rhs_class (code);
|
||
lhs = gimple_assign_lhs (stmt);
|
||
|
||
if (code == VEC_PERM_EXPR)
|
||
{
|
||
lower_vec_perm (gsi);
|
||
return;
|
||
}
|
||
|
||
if (code == VEC_COND_EXPR)
|
||
{
|
||
expand_vector_condition (gsi);
|
||
return;
|
||
}
|
||
|
||
if (code == CONSTRUCTOR
|
||
&& TREE_CODE (lhs) == SSA_NAME
|
||
&& VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (lhs)))
|
||
&& !gimple_clobber_p (stmt)
|
||
&& optimize)
|
||
{
|
||
optimize_vector_constructor (gsi);
|
||
return;
|
||
}
|
||
|
||
if (rhs_class != GIMPLE_UNARY_RHS && rhs_class != GIMPLE_BINARY_RHS)
|
||
return;
|
||
|
||
rhs1 = gimple_assign_rhs1 (stmt);
|
||
type = gimple_expr_type (stmt);
|
||
if (rhs_class == GIMPLE_BINARY_RHS)
|
||
rhs2 = gimple_assign_rhs2 (stmt);
|
||
|
||
if (TREE_CODE (type) != VECTOR_TYPE)
|
||
return;
|
||
|
||
if (code == NOP_EXPR
|
||
|| code == FLOAT_EXPR
|
||
|| code == FIX_TRUNC_EXPR
|
||
|| code == VIEW_CONVERT_EXPR)
|
||
return;
|
||
|
||
gcc_assert (code != CONVERT_EXPR);
|
||
|
||
/* The signedness is determined from input argument. */
|
||
if (code == VEC_UNPACK_FLOAT_HI_EXPR
|
||
|| code == VEC_UNPACK_FLOAT_LO_EXPR)
|
||
type = TREE_TYPE (rhs1);
|
||
|
||
/* For widening/narrowing vector operations, the relevant type is of the
|
||
arguments, not the widened result. VEC_UNPACK_FLOAT_*_EXPR is
|
||
calculated in the same way above. */
|
||
if (code == WIDEN_SUM_EXPR
|
||
|| code == VEC_WIDEN_MULT_HI_EXPR
|
||
|| code == VEC_WIDEN_MULT_LO_EXPR
|
||
|| code == VEC_WIDEN_MULT_EVEN_EXPR
|
||
|| code == VEC_WIDEN_MULT_ODD_EXPR
|
||
|| code == VEC_UNPACK_HI_EXPR
|
||
|| code == VEC_UNPACK_LO_EXPR
|
||
|| code == VEC_PACK_TRUNC_EXPR
|
||
|| code == VEC_PACK_SAT_EXPR
|
||
|| code == VEC_PACK_FIX_TRUNC_EXPR
|
||
|| code == VEC_WIDEN_LSHIFT_HI_EXPR
|
||
|| code == VEC_WIDEN_LSHIFT_LO_EXPR)
|
||
type = TREE_TYPE (rhs1);
|
||
|
||
/* Choose between vector shift/rotate by vector and vector shift/rotate by
|
||
scalar */
|
||
if (code == LSHIFT_EXPR
|
||
|| code == RSHIFT_EXPR
|
||
|| code == LROTATE_EXPR
|
||
|| code == RROTATE_EXPR)
|
||
{
|
||
optab opv;
|
||
|
||
/* Check whether we have vector <op> {x,x,x,x} where x
|
||
could be a scalar variable or a constant. Transform
|
||
vector <op> {x,x,x,x} ==> vector <op> scalar. */
|
||
if (VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
|
||
{
|
||
tree first;
|
||
gimple def_stmt;
|
||
|
||
if ((TREE_CODE (rhs2) == VECTOR_CST
|
||
&& (first = uniform_vector_p (rhs2)) != NULL_TREE)
|
||
|| (TREE_CODE (rhs2) == SSA_NAME
|
||
&& (def_stmt = SSA_NAME_DEF_STMT (rhs2))
|
||
&& gimple_assign_single_p (def_stmt)
|
||
&& (first = uniform_vector_p
|
||
(gimple_assign_rhs1 (def_stmt))) != NULL_TREE))
|
||
{
|
||
gimple_assign_set_rhs2 (stmt, first);
|
||
update_stmt (stmt);
|
||
rhs2 = first;
|
||
}
|
||
}
|
||
|
||
opv = optab_for_tree_code (code, type, optab_vector);
|
||
if (VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
|
||
op = opv;
|
||
else
|
||
{
|
||
op = optab_for_tree_code (code, type, optab_scalar);
|
||
|
||
/* The rtl expander will expand vector/scalar as vector/vector
|
||
if necessary. Don't bother converting the stmt here. */
|
||
if (optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing
|
||
&& optab_handler (opv, TYPE_MODE (type)) != CODE_FOR_nothing)
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
op = optab_for_tree_code (code, type, optab_default);
|
||
|
||
/* Optabs will try converting a negation into a subtraction, so
|
||
look for it as well. TODO: negation of floating-point vectors
|
||
might be turned into an exclusive OR toggling the sign bit. */
|
||
if (op == unknown_optab
|
||
&& code == NEGATE_EXPR
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (type)))
|
||
op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
|
||
|
||
/* For very wide vectors, try using a smaller vector mode. */
|
||
compute_type = type;
|
||
if (!VECTOR_MODE_P (TYPE_MODE (type)) && op)
|
||
{
|
||
tree vector_compute_type
|
||
= type_for_widest_vector_mode (TREE_TYPE (type), op);
|
||
if (vector_compute_type != NULL_TREE
|
||
&& (TYPE_VECTOR_SUBPARTS (vector_compute_type)
|
||
< TYPE_VECTOR_SUBPARTS (compute_type))
|
||
&& (optab_handler (op, TYPE_MODE (vector_compute_type))
|
||
!= CODE_FOR_nothing))
|
||
compute_type = vector_compute_type;
|
||
}
|
||
|
||
/* If we are breaking a BLKmode vector into smaller pieces,
|
||
type_for_widest_vector_mode has already looked into the optab,
|
||
so skip these checks. */
|
||
if (compute_type == type)
|
||
{
|
||
compute_mode = TYPE_MODE (compute_type);
|
||
if (VECTOR_MODE_P (compute_mode))
|
||
{
|
||
if (op && optab_handler (op, compute_mode) != CODE_FOR_nothing)
|
||
return;
|
||
if (code == MULT_HIGHPART_EXPR
|
||
&& can_mult_highpart_p (compute_mode,
|
||
TYPE_UNSIGNED (compute_type)))
|
||
return;
|
||
}
|
||
/* There is no operation in hardware, so fall back to scalars. */
|
||
compute_type = TREE_TYPE (type);
|
||
}
|
||
|
||
gcc_assert (code != VEC_LSHIFT_EXPR && code != VEC_RSHIFT_EXPR);
|
||
new_rhs = expand_vector_operation (gsi, type, compute_type, stmt, code);
|
||
|
||
/* Leave expression untouched for later expansion. */
|
||
if (new_rhs == NULL_TREE)
|
||
return;
|
||
|
||
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs)))
|
||
new_rhs = gimplify_build1 (gsi, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
|
||
new_rhs);
|
||
|
||
/* NOTE: We should avoid using gimple_assign_set_rhs_from_tree. One
|
||
way to do it is change expand_vector_operation and its callees to
|
||
return a tree_code, RHS1 and RHS2 instead of a tree. */
|
||
gimple_assign_set_rhs_from_tree (gsi, new_rhs);
|
||
update_stmt (gsi_stmt (*gsi));
|
||
}
|
||
|
||
/* Use this to lower vector operations introduced by the vectorizer,
|
||
if it may need the bit-twiddling tricks implemented in this file. */
|
||
|
||
static unsigned int
|
||
expand_vector_operations (void)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
basic_block bb;
|
||
bool cfg_changed = false;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
expand_vector_operations_1 (&gsi);
|
||
/* ??? If we do not cleanup EH then we will ICE in
|
||
verification. But in reality we have created wrong-code
|
||
as we did not properly transition EH info and edges to
|
||
the piecewise computations. */
|
||
if (maybe_clean_eh_stmt (gsi_stmt (gsi))
|
||
&& gimple_purge_dead_eh_edges (bb))
|
||
cfg_changed = true;
|
||
}
|
||
}
|
||
|
||
return cfg_changed ? TODO_cleanup_cfg : 0;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_lower_vector =
|
||
{
|
||
GIMPLE_PASS, /* type */
|
||
"veclower", /* name */
|
||
OPTGROUP_VEC, /* optinfo_flags */
|
||
true, /* has_execute */
|
||
TV_NONE, /* tv_id */
|
||
PROP_cfg, /* properties_required */
|
||
PROP_gimple_lvec, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
( TODO_update_ssa
|
||
| TODO_cleanup_cfg ), /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_lower_vector : public gimple_opt_pass
|
||
{
|
||
public:
|
||
pass_lower_vector (gcc::context *ctxt)
|
||
: gimple_opt_pass (pass_data_lower_vector, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *fun)
|
||
{
|
||
return !(fun->curr_properties & PROP_gimple_lvec);
|
||
}
|
||
|
||
virtual unsigned int execute (function *)
|
||
{
|
||
return expand_vector_operations ();
|
||
}
|
||
|
||
}; // class pass_lower_vector
|
||
|
||
} // anon namespace
|
||
|
||
gimple_opt_pass *
|
||
make_pass_lower_vector (gcc::context *ctxt)
|
||
{
|
||
return new pass_lower_vector (ctxt);
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_lower_vector_ssa =
|
||
{
|
||
GIMPLE_PASS, /* type */
|
||
"veclower2", /* name */
|
||
OPTGROUP_VEC, /* optinfo_flags */
|
||
true, /* has_execute */
|
||
TV_NONE, /* tv_id */
|
||
PROP_cfg, /* properties_required */
|
||
PROP_gimple_lvec, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
( TODO_update_ssa
|
||
| TODO_cleanup_cfg ), /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_lower_vector_ssa : public gimple_opt_pass
|
||
{
|
||
public:
|
||
pass_lower_vector_ssa (gcc::context *ctxt)
|
||
: gimple_opt_pass (pass_data_lower_vector_ssa, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
opt_pass * clone () { return new pass_lower_vector_ssa (m_ctxt); }
|
||
virtual unsigned int execute (function *)
|
||
{
|
||
return expand_vector_operations ();
|
||
}
|
||
|
||
}; // class pass_lower_vector_ssa
|
||
|
||
} // anon namespace
|
||
|
||
gimple_opt_pass *
|
||
make_pass_lower_vector_ssa (gcc::context *ctxt)
|
||
{
|
||
return new pass_lower_vector_ssa (ctxt);
|
||
}
|
||
|
||
#include "gt-tree-vect-generic.h"
|