gcc/gcc/ada/s-gearop.adb
2009-04-09 17:00:19 +02:00

527 lines
15 KiB
Ada

------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . G E N E R I C _ A R R A Y _ O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2006-2009, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
package body System.Generic_Array_Operations is
-- The local function Check_Unit_Last computes the index
-- of the last element returned by Unit_Vector or Unit_Matrix.
-- A separate function is needed to allow raising Constraint_Error
-- before declaring the function result variable. The result variable
-- needs to be declared first, to allow front-end inlining.
function Check_Unit_Last
(Index : Integer;
Order : Positive;
First : Integer) return Integer;
pragma Inline_Always (Check_Unit_Last);
function Square_Matrix_Length (A : Matrix) return Natural is
begin
if A'Length (1) /= A'Length (2) then
raise Constraint_Error with "matrix is not square";
end if;
return A'Length (1);
end Square_Matrix_Length;
---------------------
-- Check_Unit_Last --
---------------------
function Check_Unit_Last
(Index : Integer;
Order : Positive;
First : Integer) return Integer is
begin
-- Order the tests carefully to avoid overflow
if Index < First
or else First > Integer'Last - Order + 1
or else Index > First + (Order - 1)
then
raise Constraint_Error;
end if;
return First + (Order - 1);
end Check_Unit_Last;
-------------------
-- Inner_Product --
-------------------
function Inner_Product
(Left : Left_Vector;
Right : Right_Vector)
return Result_Scalar
is
R : Result_Scalar := Zero;
begin
if Left'Length /= Right'Length then
raise Constraint_Error with
"vectors are of different length in inner product";
end if;
for J in Left'Range loop
R := R + Left (J) * Right (J - Left'First + Right'First);
end loop;
return R;
end Inner_Product;
----------------------------------
-- Matrix_Elementwise_Operation --
----------------------------------
function Matrix_Elementwise_Operation (X : X_Matrix) return Result_Matrix is
R : Result_Matrix (X'Range (1), X'Range (2));
begin
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) := Operation (X (J, K));
end loop;
end loop;
return R;
end Matrix_Elementwise_Operation;
----------------------------------
-- Vector_Elementwise_Operation --
----------------------------------
function Vector_Elementwise_Operation (X : X_Vector) return Result_Vector is
R : Result_Vector (X'Range);
begin
for J in R'Range loop
R (J) := Operation (X (J));
end loop;
return R;
end Vector_Elementwise_Operation;
-----------------------------------------
-- Matrix_Matrix_Elementwise_Operation --
-----------------------------------------
function Matrix_Matrix_Elementwise_Operation
(Left : Left_Matrix;
Right : Right_Matrix)
return Result_Matrix
is
R : Result_Matrix (Left'Range (1), Left'Range (2));
begin
if Left'Length (1) /= Right'Length (1)
or else Left'Length (2) /= Right'Length (2)
then
raise Constraint_Error with
"matrices are of different dimension in elementwise operation";
end if;
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) :=
Operation
(Left (J, K),
Right
(J - R'First (1) + Right'First (1),
K - R'First (2) + Right'First (2)));
end loop;
end loop;
return R;
end Matrix_Matrix_Elementwise_Operation;
------------------------------------------------
-- Matrix_Matrix_Scalar_Elementwise_Operation --
------------------------------------------------
function Matrix_Matrix_Scalar_Elementwise_Operation
(X : X_Matrix;
Y : Y_Matrix;
Z : Z_Scalar) return Result_Matrix
is
R : Result_Matrix (X'Range (1), X'Range (2));
begin
if X'Length (1) /= Y'Length (1)
or else X'Length (2) /= Y'Length (2)
then
raise Constraint_Error with
"matrices are of different dimension in elementwise operation";
end if;
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) :=
Operation
(X (J, K),
Y (J - R'First (1) + Y'First (1),
K - R'First (2) + Y'First (2)),
Z);
end loop;
end loop;
return R;
end Matrix_Matrix_Scalar_Elementwise_Operation;
-----------------------------------------
-- Vector_Vector_Elementwise_Operation --
-----------------------------------------
function Vector_Vector_Elementwise_Operation
(Left : Left_Vector;
Right : Right_Vector) return Result_Vector
is
R : Result_Vector (Left'Range);
begin
if Left'Length /= Right'Length then
raise Constraint_Error with
"vectors are of different length in elementwise operation";
end if;
for J in R'Range loop
R (J) := Operation (Left (J), Right (J - R'First + Right'First));
end loop;
return R;
end Vector_Vector_Elementwise_Operation;
------------------------------------------------
-- Vector_Vector_Scalar_Elementwise_Operation --
------------------------------------------------
function Vector_Vector_Scalar_Elementwise_Operation
(X : X_Vector;
Y : Y_Vector;
Z : Z_Scalar) return Result_Vector
is
R : Result_Vector (X'Range);
begin
if X'Length /= Y'Length then
raise Constraint_Error with
"vectors are of different length in elementwise operation";
end if;
for J in R'Range loop
R (J) := Operation (X (J), Y (J - X'First + Y'First), Z);
end loop;
return R;
end Vector_Vector_Scalar_Elementwise_Operation;
-----------------------------------------
-- Matrix_Scalar_Elementwise_Operation --
-----------------------------------------
function Matrix_Scalar_Elementwise_Operation
(Left : Left_Matrix;
Right : Right_Scalar) return Result_Matrix
is
R : Result_Matrix (Left'Range (1), Left'Range (2));
begin
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) := Operation (Left (J, K), Right);
end loop;
end loop;
return R;
end Matrix_Scalar_Elementwise_Operation;
-----------------------------------------
-- Vector_Scalar_Elementwise_Operation --
-----------------------------------------
function Vector_Scalar_Elementwise_Operation
(Left : Left_Vector;
Right : Right_Scalar) return Result_Vector
is
R : Result_Vector (Left'Range);
begin
for J in R'Range loop
R (J) := Operation (Left (J), Right);
end loop;
return R;
end Vector_Scalar_Elementwise_Operation;
-----------------------------------------
-- Scalar_Matrix_Elementwise_Operation --
-----------------------------------------
function Scalar_Matrix_Elementwise_Operation
(Left : Left_Scalar;
Right : Right_Matrix) return Result_Matrix
is
R : Result_Matrix (Right'Range (1), Right'Range (2));
begin
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) := Operation (Left, Right (J, K));
end loop;
end loop;
return R;
end Scalar_Matrix_Elementwise_Operation;
-----------------------------------------
-- Scalar_Vector_Elementwise_Operation --
-----------------------------------------
function Scalar_Vector_Elementwise_Operation
(Left : Left_Scalar;
Right : Right_Vector) return Result_Vector
is
R : Result_Vector (Right'Range);
begin
for J in R'Range loop
R (J) := Operation (Left, Right (J));
end loop;
return R;
end Scalar_Vector_Elementwise_Operation;
---------------------------
-- Matrix_Matrix_Product --
---------------------------
function Matrix_Matrix_Product
(Left : Left_Matrix;
Right : Right_Matrix) return Result_Matrix
is
R : Result_Matrix (Left'Range (1), Right'Range (2));
begin
if Left'Length (2) /= Right'Length (1) then
raise Constraint_Error with
"incompatible dimensions in matrix multiplication";
end if;
for J in R'Range (1) loop
for K in R'Range (2) loop
declare
S : Result_Scalar := Zero;
begin
for M in Left'Range (2) loop
S := S + Left (J, M)
* Right (M - Left'First (2) + Right'First (1), K);
end loop;
R (J, K) := S;
end;
end loop;
end loop;
return R;
end Matrix_Matrix_Product;
---------------------------
-- Matrix_Vector_Product --
---------------------------
function Matrix_Vector_Product
(Left : Matrix;
Right : Right_Vector) return Result_Vector
is
R : Result_Vector (Left'Range (1));
begin
if Left'Length (2) /= Right'Length then
raise Constraint_Error with
"incompatible dimensions in matrix-vector multiplication";
end if;
for J in Left'Range (1) loop
declare
S : Result_Scalar := Zero;
begin
for K in Left'Range (2) loop
S := S + Left (J, K) * Right (K - Left'First (2) + Right'First);
end loop;
R (J) := S;
end;
end loop;
return R;
end Matrix_Vector_Product;
-------------------
-- Outer_Product --
-------------------
function Outer_Product
(Left : Left_Vector;
Right : Right_Vector) return Matrix
is
R : Matrix (Left'Range, Right'Range);
begin
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) := Left (J) * Right (K);
end loop;
end loop;
return R;
end Outer_Product;
---------------
-- Transpose --
---------------
procedure Transpose (A : Matrix; R : out Matrix) is
begin
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) := A (K - R'First (2) + A'First (1),
J - R'First (1) + A'First (2));
end loop;
end loop;
end Transpose;
-------------------------------
-- Update_Matrix_With_Matrix --
-------------------------------
procedure Update_Matrix_With_Matrix (X : in out X_Matrix; Y : Y_Matrix) is
begin
if X'Length (1) /= Y'Length (1)
or else X'Length (2) /= Y'Length (2)
then
raise Constraint_Error with
"matrices are of different dimension in update operation";
end if;
for J in X'Range (1) loop
for K in X'Range (2) loop
Update (X (J, K), Y (J - X'First (1) + Y'First (1),
K - X'First (2) + Y'First (2)));
end loop;
end loop;
end Update_Matrix_With_Matrix;
-------------------------------
-- Update_Vector_With_Vector --
-------------------------------
procedure Update_Vector_With_Vector (X : in out X_Vector; Y : Y_Vector) is
begin
if X'Length /= Y'Length then
raise Constraint_Error with
"vectors are of different length in update operation";
end if;
for J in X'Range loop
Update (X (J), Y (J - X'First + Y'First));
end loop;
end Update_Vector_With_Vector;
-----------------
-- Unit_Matrix --
-----------------
function Unit_Matrix
(Order : Positive;
First_1 : Integer := 1;
First_2 : Integer := 1) return Matrix
is
R : Matrix (First_1 .. Check_Unit_Last (First_1, Order, First_1),
First_2 .. Check_Unit_Last (First_2, Order, First_2));
begin
R := (others => (others => Zero));
for J in 0 .. Order - 1 loop
R (First_1 + J, First_2 + J) := One;
end loop;
return R;
end Unit_Matrix;
-----------------
-- Unit_Vector --
-----------------
function Unit_Vector
(Index : Integer;
Order : Positive;
First : Integer := 1) return Vector
is
R : Vector (First .. Check_Unit_Last (Index, Order, First));
begin
R := (others => Zero);
R (Index) := One;
return R;
end Unit_Vector;
---------------------------
-- Vector_Matrix_Product --
---------------------------
function Vector_Matrix_Product
(Left : Left_Vector;
Right : Matrix) return Result_Vector
is
R : Result_Vector (Right'Range (2));
begin
if Left'Length /= Right'Length (2) then
raise Constraint_Error with
"incompatible dimensions in vector-matrix multiplication";
end if;
for J in Right'Range (2) loop
declare
S : Result_Scalar := Zero;
begin
for K in Right'Range (1) loop
S := S + Left (J - Right'First (1) + Left'First) * Right (K, J);
end loop;
R (J) := S;
end;
end loop;
return R;
end Vector_Matrix_Product;
end System.Generic_Array_Operations;