5c0466b537
2008-09-23 Martin Jambor <mjambor@suse.cz> * cgraph.c (cgraph_free_edge): Use sizeof(*e). (cgraph_node_remove_callees): New temporary f. Hold the next item in f when looping. (cgraph_node_remove_callers): Likewise. * ipa-prop.c (ipa_edge_removal_hook): Use ATTRIBUTE_UNUSED. (ipa_node_removal_hook): Likewise. * doc/gimple.texi (gimple_copy_call_skip_args): Changed to gimple_call_copy_skip_args and moved to the gimple_call section. * gimple.c (gimple_copy_call_skip_args): Renamed to gimple_call_copy_skip_args. Changed al users. From-SVN: r140590
1299 lines
35 KiB
C
1299 lines
35 KiB
C
/* Interprocedural analyses.
|
|
Copyright (C) 2005, 2007 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tree.h"
|
|
#include "langhooks.h"
|
|
#include "ggc.h"
|
|
#include "target.h"
|
|
#include "cgraph.h"
|
|
#include "ipa-prop.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-pass.h"
|
|
#include "tree-inline.h"
|
|
#include "flags.h"
|
|
#include "timevar.h"
|
|
#include "flags.h"
|
|
#include "diagnostic.h"
|
|
|
|
/* Vector where the parameter infos are actually stored. */
|
|
VEC (ipa_node_params_t, heap) *ipa_node_params_vector;
|
|
/* Vector where the parameter infos are actually stored. */
|
|
VEC (ipa_edge_args_t, heap) *ipa_edge_args_vector;
|
|
|
|
/* Holders of ipa cgraph hooks: */
|
|
static struct cgraph_edge_hook_list *edge_removal_hook_holder;
|
|
static struct cgraph_node_hook_list *node_removal_hook_holder;
|
|
static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
|
|
static struct cgraph_2node_hook_list *node_duplication_hook_holder;
|
|
|
|
/* Initialize worklist to contain all functions. */
|
|
|
|
struct ipa_func_list *
|
|
ipa_init_func_list (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
struct ipa_func_list * wl;
|
|
|
|
wl = NULL;
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
if (node->analyzed)
|
|
{
|
|
/* Unreachable nodes should have been eliminated before ipcp and
|
|
inlining. */
|
|
gcc_assert (node->needed || node->reachable);
|
|
ipa_push_func_to_list (&wl, node);
|
|
}
|
|
|
|
return wl;
|
|
}
|
|
|
|
/* Add cgraph node MT to the worklist. Set worklist element WL
|
|
to point to MT. */
|
|
|
|
void
|
|
ipa_push_func_to_list (struct ipa_func_list **wl, struct cgraph_node *mt)
|
|
{
|
|
struct ipa_func_list *temp;
|
|
|
|
temp = XCNEW (struct ipa_func_list);
|
|
temp->node = mt;
|
|
temp->next = *wl;
|
|
*wl = temp;
|
|
}
|
|
|
|
/* Remove a function from the worklist. WL points to the first
|
|
element in the list, which is removed. */
|
|
|
|
struct cgraph_node *
|
|
ipa_pop_func_from_list (struct ipa_func_list ** wl)
|
|
{
|
|
struct ipa_func_list *first;
|
|
struct cgraph_node *return_func;
|
|
|
|
first = *wl;
|
|
*wl = (*wl)->next;
|
|
return_func = first->node;
|
|
free (first);
|
|
return return_func;
|
|
}
|
|
|
|
/* Return index of the formal whose tree is PTREE in function which corresponds
|
|
to INFO. */
|
|
|
|
static int
|
|
ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
|
|
{
|
|
int i, count;
|
|
|
|
count = ipa_get_param_count (info);
|
|
for (i = 0; i < count; i++)
|
|
if (ipa_get_param(info, i) == ptree)
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Populate the param_decl field in parameter descriptors of INFO that
|
|
corresponds to NODE. */
|
|
|
|
static void
|
|
ipa_populate_param_decls (struct cgraph_node *node,
|
|
struct ipa_node_params *info)
|
|
{
|
|
tree fndecl;
|
|
tree fnargs;
|
|
tree parm;
|
|
int param_num;
|
|
|
|
fndecl = node->decl;
|
|
fnargs = DECL_ARGUMENTS (fndecl);
|
|
param_num = 0;
|
|
for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
|
|
{
|
|
info->params[param_num].decl = parm;
|
|
param_num++;
|
|
}
|
|
}
|
|
|
|
/* Count number of formal parameters in NOTE. Store the result to the
|
|
appropriate field of INFO. */
|
|
|
|
static void
|
|
ipa_count_formal_params (struct cgraph_node *node,
|
|
struct ipa_node_params *info)
|
|
{
|
|
tree fndecl;
|
|
tree fnargs;
|
|
tree parm;
|
|
int param_num;
|
|
|
|
fndecl = node->decl;
|
|
fnargs = DECL_ARGUMENTS (fndecl);
|
|
param_num = 0;
|
|
for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
|
|
param_num++;
|
|
ipa_set_param_count (info, param_num);
|
|
}
|
|
|
|
/* Initialize the ipa_node_params structure associated with NODE by counting
|
|
the function parameters, creating the descriptors and populating their
|
|
param_decls. */
|
|
|
|
void
|
|
ipa_initialize_node_params (struct cgraph_node *node)
|
|
{
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
|
|
if (!info->params)
|
|
{
|
|
ipa_count_formal_params (node, info);
|
|
info->params = XCNEWVEC (struct ipa_param_descriptor,
|
|
ipa_get_param_count (info));
|
|
ipa_populate_param_decls (node, info);
|
|
}
|
|
}
|
|
|
|
/* Check STMT to detect whether a formal parameter is directly modified within
|
|
STMT, the appropriate entry is updated in the modified flags of INFO.
|
|
Directly means that this function does not check for modifications through
|
|
pointers or escaping addresses because all TREE_ADDRESSABLE parameters are
|
|
considered modified anyway. */
|
|
|
|
static void
|
|
ipa_check_stmt_modifications (struct ipa_node_params *info, gimple stmt)
|
|
{
|
|
int j;
|
|
int index;
|
|
tree lhs;
|
|
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
lhs = gimple_assign_lhs (stmt);
|
|
|
|
while (handled_component_p (lhs))
|
|
lhs = TREE_OPERAND (lhs, 0);
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
|
lhs = SSA_NAME_VAR (lhs);
|
|
index = ipa_get_param_decl_index (info, lhs);
|
|
if (index >= 0)
|
|
info->params[index].modified = true;
|
|
break;
|
|
|
|
case GIMPLE_ASM:
|
|
/* Asm code could modify any of the parameters. */
|
|
for (j = 0; j < ipa_get_param_count (info); j++)
|
|
info->params[j].modified = true;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Compute which formal parameters of function associated with NODE are locally
|
|
modified. Parameters may be modified in NODE if they are TREE_ADDRESSABLE,
|
|
if they appear on the left hand side of an assignment or if there is an
|
|
ASM_EXPR in the function. */
|
|
|
|
void
|
|
ipa_detect_param_modifications (struct cgraph_node *node)
|
|
{
|
|
tree decl = node->decl;
|
|
basic_block bb;
|
|
struct function *func;
|
|
gimple_stmt_iterator gsi;
|
|
gimple stmt;
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
int i, count;
|
|
|
|
if (ipa_get_param_count (info) == 0 || info->modification_analysis_done)
|
|
return;
|
|
|
|
func = DECL_STRUCT_FUNCTION (decl);
|
|
FOR_EACH_BB_FN (bb, func)
|
|
{
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
ipa_check_stmt_modifications (info, stmt);
|
|
}
|
|
}
|
|
|
|
count = ipa_get_param_count (info);
|
|
for (i = 0; i < count; i++)
|
|
if (TREE_ADDRESSABLE (ipa_get_param (info, i)))
|
|
info->params[i].modified = true;
|
|
|
|
info->modification_analysis_done = 1;
|
|
}
|
|
|
|
/* Count number of arguments callsite CS has and store it in
|
|
ipa_edge_args structure corresponding to this callsite. */
|
|
|
|
void
|
|
ipa_count_arguments (struct cgraph_edge *cs)
|
|
{
|
|
gimple stmt;
|
|
int arg_num;
|
|
|
|
stmt = cs->call_stmt;
|
|
gcc_assert (is_gimple_call (stmt));
|
|
arg_num = gimple_call_num_args (stmt);
|
|
if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
|
|
<= (unsigned) cgraph_edge_max_uid)
|
|
VEC_safe_grow_cleared (ipa_edge_args_t, heap,
|
|
ipa_edge_args_vector, cgraph_edge_max_uid + 1);
|
|
ipa_set_cs_argument_count (IPA_EDGE_REF (cs), arg_num);
|
|
}
|
|
|
|
/* Print the jump functions of all arguments on all call graph edges going from
|
|
NODE to file F. */
|
|
|
|
void
|
|
ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
|
|
{
|
|
int i, count;
|
|
struct cgraph_edge *cs;
|
|
struct ipa_jump_func *jump_func;
|
|
enum jump_func_type type;
|
|
|
|
fprintf (f, " Jump functions of caller %s:\n", cgraph_node_name (node));
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
|
{
|
|
if (!ipa_edge_args_info_available_for_edge_p (cs))
|
|
continue;
|
|
|
|
fprintf (f, " callsite %s ", cgraph_node_name (node));
|
|
fprintf (f, "-> %s :: \n", cgraph_node_name (cs->callee));
|
|
|
|
count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
|
|
type = jump_func->type;
|
|
|
|
fprintf (f, " param %d: ", i);
|
|
if (type == IPA_UNKNOWN)
|
|
fprintf (f, "UNKNOWN\n");
|
|
else if (type == IPA_CONST)
|
|
{
|
|
tree val = jump_func->value.constant;
|
|
fprintf (f, "CONST: ");
|
|
print_generic_expr (f, val, 0);
|
|
fprintf (f, "\n");
|
|
}
|
|
else if (type == IPA_CONST_MEMBER_PTR)
|
|
{
|
|
fprintf (f, "CONST MEMBER PTR: ");
|
|
print_generic_expr (f, jump_func->value.member_cst.pfn, 0);
|
|
fprintf (f, ", ");
|
|
print_generic_expr (f, jump_func->value.member_cst.delta, 0);
|
|
fprintf (f, "\n");
|
|
}
|
|
else if (type == IPA_PASS_THROUGH)
|
|
{
|
|
fprintf (f, "PASS THROUGH: ");
|
|
fprintf (f, "%d\n", jump_func->value.formal_id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Print ipa_jump_func data structures of all nodes in the call graph to F. */
|
|
|
|
void
|
|
ipa_print_all_jump_functions (FILE *f)
|
|
{
|
|
struct cgraph_node *node;
|
|
|
|
fprintf (f, "\nJump functions:\n");
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
{
|
|
ipa_print_node_jump_functions (f, node);
|
|
}
|
|
}
|
|
|
|
/* Determine the jump functions of scalar arguments. Scalar means SSA names
|
|
and constants of a number of selected types. INFO is the ipa_node_params
|
|
structure associated with the caller, FUNCTIONS is a pointer to an array of
|
|
jump function structures associated with CALL which is the call statement
|
|
being examined.*/
|
|
|
|
static void
|
|
compute_scalar_jump_functions (struct ipa_node_params *info,
|
|
struct ipa_jump_func *functions,
|
|
gimple call)
|
|
{
|
|
tree arg;
|
|
unsigned num = 0;
|
|
|
|
for (num = 0; num < gimple_call_num_args (call); num++)
|
|
{
|
|
arg = gimple_call_arg (call, num);
|
|
|
|
if (is_gimple_ip_invariant (arg))
|
|
{
|
|
functions[num].type = IPA_CONST;
|
|
functions[num].value.constant = arg;
|
|
}
|
|
else if ((TREE_CODE (arg) == SSA_NAME) && SSA_NAME_IS_DEFAULT_DEF (arg))
|
|
{
|
|
int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
|
|
|
|
if (index >= 0)
|
|
{
|
|
functions[num].type = IPA_PASS_THROUGH;
|
|
functions[num].value.formal_id = index;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Inspect the given TYPE and return true iff it has the same structure (the
|
|
same number of fields of the same types) as a C++ member pointer. If
|
|
METHOD_PTR and DELTA are non-NULL, store the trees representing the
|
|
corresponding fields there. */
|
|
|
|
static bool
|
|
type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
|
|
{
|
|
tree fld;
|
|
|
|
if (TREE_CODE (type) != RECORD_TYPE)
|
|
return false;
|
|
|
|
fld = TYPE_FIELDS (type);
|
|
if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE)
|
|
return false;
|
|
|
|
if (method_ptr)
|
|
*method_ptr = fld;
|
|
|
|
fld = TREE_CHAIN (fld);
|
|
if (!fld || INTEGRAL_TYPE_P (fld))
|
|
return false;
|
|
if (delta)
|
|
*delta = fld;
|
|
|
|
if (TREE_CHAIN (fld))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Go through arguments of the CALL and for every one that looks like a member
|
|
pointer, check whether it can be safely declared pass-through and if so,
|
|
mark that to the corresponding item of jump FUNCTIONS. Return true iff
|
|
there are non-pass-through member pointers within the arguments. INFO
|
|
describes formal parameters of the caller. */
|
|
|
|
static bool
|
|
compute_pass_through_member_ptrs (struct ipa_node_params *info,
|
|
struct ipa_jump_func *functions,
|
|
gimple call)
|
|
{
|
|
bool undecided_members = false;
|
|
unsigned num;
|
|
tree arg;
|
|
|
|
for (num = 0; num < gimple_call_num_args (call); num++)
|
|
{
|
|
arg = gimple_call_arg (call, num);
|
|
|
|
if (type_like_member_ptr_p (TREE_TYPE (arg), NULL, NULL))
|
|
{
|
|
if (TREE_CODE (arg) == PARM_DECL)
|
|
{
|
|
int index = ipa_get_param_decl_index (info, arg);
|
|
|
|
gcc_assert (index >=0);
|
|
if (!ipa_is_param_modified (info, index))
|
|
{
|
|
functions[num].type = IPA_PASS_THROUGH;
|
|
functions[num].value.formal_id = index;
|
|
}
|
|
else
|
|
undecided_members = true;
|
|
}
|
|
else
|
|
undecided_members = true;
|
|
}
|
|
}
|
|
|
|
return undecided_members;
|
|
}
|
|
|
|
/* Simple function filling in a member pointer constant jump function (with PFN
|
|
and DELTA as the constant value) into JFUNC. */
|
|
|
|
static void
|
|
fill_member_ptr_cst_jump_function (struct ipa_jump_func *jfunc,
|
|
tree pfn, tree delta)
|
|
{
|
|
jfunc->type = IPA_CONST_MEMBER_PTR;
|
|
jfunc->value.member_cst.pfn = pfn;
|
|
jfunc->value.member_cst.delta = delta;
|
|
}
|
|
|
|
/* Traverse statements from CALL backwards, scanning whether the argument ARG
|
|
which is a member pointer is filled in with constant values. If it is, fill
|
|
the jump function JFUNC in appropriately. METHOD_FIELD and DELTA_FIELD are
|
|
fields of the record type of the member pointer. To give an example, we
|
|
look for a pattern looking like the following:
|
|
|
|
D.2515.__pfn ={v} printStuff;
|
|
D.2515.__delta ={v} 0;
|
|
i_1 = doprinting (D.2515); */
|
|
|
|
static void
|
|
determine_cst_member_ptr (gimple call, tree arg, tree method_field,
|
|
tree delta_field, struct ipa_jump_func *jfunc)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
tree method = NULL_TREE;
|
|
tree delta = NULL_TREE;
|
|
|
|
gsi = gsi_for_stmt (call);
|
|
|
|
gsi_prev (&gsi);
|
|
for (; !gsi_end_p (gsi); gsi_prev (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
tree lhs, rhs, fld;
|
|
|
|
if (!is_gimple_assign (stmt) || gimple_num_ops (stmt) != 2)
|
|
return;
|
|
|
|
lhs = gimple_assign_lhs (stmt);
|
|
rhs = gimple_assign_rhs1 (stmt);
|
|
|
|
if (TREE_CODE (lhs) != COMPONENT_REF
|
|
|| TREE_OPERAND (lhs, 0) != arg)
|
|
continue;
|
|
|
|
fld = TREE_OPERAND (lhs, 1);
|
|
if (!method && fld == method_field)
|
|
{
|
|
if (TREE_CODE (rhs) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == FUNCTION_DECL
|
|
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs, 0))) == METHOD_TYPE)
|
|
{
|
|
method = TREE_OPERAND (rhs, 0);
|
|
if (delta)
|
|
{
|
|
fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
|
|
if (!delta && fld == delta_field)
|
|
{
|
|
if (TREE_CODE (rhs) == INTEGER_CST)
|
|
{
|
|
delta = rhs;
|
|
if (method)
|
|
{
|
|
fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* Go through the arguments of the CALL and for every member pointer within
|
|
tries determine whether it is a constant. If it is, create a corresponding
|
|
constant jump function in FUNCTIONS which is an array of jump functions
|
|
associated with the call. */
|
|
|
|
static void
|
|
compute_cst_member_ptr_arguments (struct ipa_jump_func *functions,
|
|
gimple call)
|
|
{
|
|
unsigned num;
|
|
tree arg, method_field, delta_field;
|
|
|
|
for (num = 0; num < gimple_call_num_args (call); num++)
|
|
{
|
|
arg = gimple_call_arg (call, num);
|
|
|
|
if (functions[num].type == IPA_UNKNOWN
|
|
&& type_like_member_ptr_p (TREE_TYPE (arg), &method_field,
|
|
&delta_field))
|
|
determine_cst_member_ptr (call, arg, method_field, delta_field,
|
|
&functions[num]);
|
|
}
|
|
}
|
|
|
|
/* Compute jump function for all arguments of callsite CS and insert the
|
|
information in the jump_functions array in the ipa_edge_args corresponding
|
|
to this callsite. */
|
|
|
|
void
|
|
ipa_compute_jump_functions (struct cgraph_edge *cs)
|
|
{
|
|
struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
|
|
struct ipa_edge_args *arguments = IPA_EDGE_REF (cs);
|
|
gimple call;
|
|
|
|
if (ipa_get_cs_argument_count (arguments) == 0 || arguments->jump_functions)
|
|
return;
|
|
arguments->jump_functions = XCNEWVEC (struct ipa_jump_func,
|
|
ipa_get_cs_argument_count (arguments));
|
|
|
|
call = cs->call_stmt;
|
|
gcc_assert (is_gimple_call (call));
|
|
|
|
/* We will deal with constants and SSA scalars first: */
|
|
compute_scalar_jump_functions (info, arguments->jump_functions, call);
|
|
|
|
/* Let's check whether there are any potential member pointers and if so,
|
|
whether we can determine their functions as pass_through. */
|
|
if (!compute_pass_through_member_ptrs (info, arguments->jump_functions, call))
|
|
return;
|
|
|
|
/* Finally, let's check whether we actually pass a new constant member
|
|
pointer here... */
|
|
compute_cst_member_ptr_arguments (arguments->jump_functions, call);
|
|
}
|
|
|
|
/* If RHS looks like a rhs of a statement loading pfn from a member pointer
|
|
formal parameter, return the parameter, otherwise return NULL. */
|
|
|
|
static tree
|
|
ipa_get_member_ptr_load_param (tree rhs)
|
|
{
|
|
tree rec, fld;
|
|
tree ptr_field;
|
|
|
|
if (TREE_CODE (rhs) != COMPONENT_REF)
|
|
return NULL_TREE;
|
|
|
|
rec = TREE_OPERAND (rhs, 0);
|
|
if (TREE_CODE (rec) != PARM_DECL
|
|
|| !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, NULL))
|
|
return NULL_TREE;
|
|
|
|
fld = TREE_OPERAND (rhs, 1);
|
|
if (fld == ptr_field)
|
|
return rec;
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* If STMT looks like a statement loading a value from a member pointer formal
|
|
parameter, this function returns that parameter. */
|
|
|
|
static tree
|
|
ipa_get_stmt_member_ptr_load_param (gimple stmt)
|
|
{
|
|
tree rhs;
|
|
|
|
if (!is_gimple_assign (stmt) || gimple_num_ops (stmt) != 2)
|
|
return NULL_TREE;
|
|
|
|
rhs = gimple_assign_rhs1 (stmt);
|
|
return ipa_get_member_ptr_load_param (rhs);
|
|
}
|
|
|
|
/* Returns true iff T is an SSA_NAME defined by a statement. */
|
|
|
|
static bool
|
|
ipa_is_ssa_with_stmt_def (tree t)
|
|
{
|
|
if (TREE_CODE (t) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (t))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* Creates a new note describing a call to a parameter number FORMAL_ID and
|
|
attaches it to the linked list of INFO. It also sets the called flag of the
|
|
parameter. STMT is the corresponding call statement. */
|
|
|
|
static void
|
|
ipa_note_param_call (struct ipa_node_params *info, int formal_id,
|
|
gimple stmt)
|
|
{
|
|
struct ipa_param_call_note *note;
|
|
basic_block bb = gimple_bb (stmt);
|
|
|
|
info->params[formal_id].called = 1;
|
|
|
|
note = XCNEW (struct ipa_param_call_note);
|
|
note->formal_id = formal_id;
|
|
note->stmt = stmt;
|
|
note->count = bb->count;
|
|
note->frequency = compute_call_stmt_bb_frequency (bb);
|
|
|
|
note->next = info->param_calls;
|
|
info->param_calls = note;
|
|
|
|
return;
|
|
}
|
|
|
|
/* Analyze the CALL and examine uses of formal parameters of the caller
|
|
(described by INFO). Currently it checks whether the call calls a pointer
|
|
that is a formal parameter and if so, the parameter is marked with the
|
|
called flag and a note describing the call is created. This is very simple
|
|
for ordinary pointers represented in SSA but not-so-nice when it comes to
|
|
member pointers. The ugly part of this function does nothing more than
|
|
tries to match the pattern of such a call. An example of such a pattern is
|
|
the gimple dump below, the call is on the last line:
|
|
|
|
<bb 2>:
|
|
f$__delta_5 = f.__delta;
|
|
f$__pfn_24 = f.__pfn;
|
|
D.2496_3 = (int) f$__pfn_24;
|
|
D.2497_4 = D.2496_3 & 1;
|
|
if (D.2497_4 != 0)
|
|
goto <bb 3>;
|
|
else
|
|
goto <bb 4>;
|
|
|
|
<bb 3>:
|
|
D.2500_7 = (unsigned int) f$__delta_5;
|
|
D.2501_8 = &S + D.2500_7;
|
|
D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
|
|
D.2503_10 = *D.2502_9;
|
|
D.2504_12 = f$__pfn_24 + -1;
|
|
D.2505_13 = (unsigned int) D.2504_12;
|
|
D.2506_14 = D.2503_10 + D.2505_13;
|
|
D.2507_15 = *D.2506_14;
|
|
iftmp.11_16 = (String:: *) D.2507_15;
|
|
|
|
<bb 4>:
|
|
# iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
|
|
D.2500_19 = (unsigned int) f$__delta_5;
|
|
D.2508_20 = &S + D.2500_19;
|
|
D.2493_21 = iftmp.11_1 (D.2508_20, 4);
|
|
|
|
Such patterns are results of simple calls to a member pointer:
|
|
|
|
int doprinting (int (MyString::* f)(int) const)
|
|
{
|
|
MyString S ("somestring");
|
|
|
|
return (S.*f)(4);
|
|
}
|
|
*/
|
|
|
|
static void
|
|
ipa_analyze_call_uses (struct ipa_node_params *info, gimple call)
|
|
{
|
|
tree target = gimple_call_fn (call);
|
|
gimple def;
|
|
tree var;
|
|
tree n1, n2;
|
|
gimple d1, d2;
|
|
tree rec, rec2, cond;
|
|
gimple branch;
|
|
int index;
|
|
basic_block bb, virt_bb, join;
|
|
|
|
if (TREE_CODE (target) != SSA_NAME)
|
|
return;
|
|
|
|
var = SSA_NAME_VAR (target);
|
|
if (SSA_NAME_IS_DEFAULT_DEF (target))
|
|
{
|
|
/* assuming TREE_CODE (var) == PARM_DECL */
|
|
index = ipa_get_param_decl_index (info, var);
|
|
if (index >= 0)
|
|
ipa_note_param_call (info, index, call);
|
|
return;
|
|
}
|
|
|
|
/* Now we need to try to match the complex pattern of calling a member
|
|
pointer. */
|
|
|
|
if (!POINTER_TYPE_P (TREE_TYPE (target))
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
|
|
return;
|
|
|
|
def = SSA_NAME_DEF_STMT (target);
|
|
if (gimple_code (def) != GIMPLE_PHI)
|
|
return;
|
|
|
|
if (gimple_phi_num_args (def) != 2)
|
|
return;
|
|
|
|
/* First, we need to check whether one of these is a load from a member
|
|
pointer that is a parameter to this function. */
|
|
n1 = PHI_ARG_DEF (def, 0);
|
|
n2 = PHI_ARG_DEF (def, 1);
|
|
if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
|
|
return;
|
|
d1 = SSA_NAME_DEF_STMT (n1);
|
|
d2 = SSA_NAME_DEF_STMT (n2);
|
|
|
|
if ((rec = ipa_get_stmt_member_ptr_load_param (d1)))
|
|
{
|
|
if (ipa_get_stmt_member_ptr_load_param (d2))
|
|
return;
|
|
|
|
bb = gimple_bb (d1);
|
|
virt_bb = gimple_bb (d2);
|
|
}
|
|
else if ((rec = ipa_get_stmt_member_ptr_load_param (d2)))
|
|
{
|
|
bb = gimple_bb (d2);
|
|
virt_bb = gimple_bb (d1);
|
|
}
|
|
else
|
|
return;
|
|
|
|
/* Second, we need to check that the basic blocks are laid out in the way
|
|
corresponding to the pattern. */
|
|
|
|
join = gimple_bb (def);
|
|
if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
|
|
|| single_pred (virt_bb) != bb
|
|
|| single_succ (virt_bb) != join)
|
|
return;
|
|
|
|
/* Third, let's see that the branching is done depending on the least
|
|
significant bit of the pfn. */
|
|
|
|
branch = last_stmt (bb);
|
|
if (gimple_code (branch) != GIMPLE_COND)
|
|
return;
|
|
|
|
if (gimple_cond_code (branch) != NE_EXPR
|
|
|| !integer_zerop (gimple_cond_rhs (branch)))
|
|
return;
|
|
|
|
cond = gimple_cond_lhs (branch);
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
|
return;
|
|
|
|
def = SSA_NAME_DEF_STMT (cond);
|
|
if (!is_gimple_assign (def) || gimple_num_ops (def) != 3
|
|
|| gimple_assign_rhs_code (def) != BIT_AND_EXPR
|
|
|| !integer_onep (gimple_assign_rhs2 (def)))
|
|
return;
|
|
|
|
cond = gimple_assign_rhs1 (def);
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
|
return;
|
|
|
|
def = SSA_NAME_DEF_STMT (cond);
|
|
|
|
if (is_gimple_assign (def) && gimple_num_ops (def) == 2
|
|
&& gimple_assign_rhs_code (def) == NOP_EXPR)
|
|
{
|
|
cond = gimple_assign_rhs1 (def);
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
|
return;
|
|
def = SSA_NAME_DEF_STMT (cond);
|
|
}
|
|
|
|
rec2 = ipa_get_stmt_member_ptr_load_param (def);
|
|
if (rec != rec2)
|
|
return;
|
|
|
|
index = ipa_get_param_decl_index (info, rec);
|
|
if (index >= 0 && !ipa_is_param_modified (info, index))
|
|
ipa_note_param_call (info, index, call);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Analyze the statement STMT with respect to formal parameters (described in
|
|
INFO) and their uses. Currently it only checks whether formal parameters
|
|
are called. */
|
|
|
|
static void
|
|
ipa_analyze_stmt_uses (struct ipa_node_params *info, gimple stmt)
|
|
{
|
|
if (is_gimple_call (stmt))
|
|
ipa_analyze_call_uses (info, stmt);
|
|
}
|
|
|
|
/* Scan the function body of NODE and inspect the uses of formal parameters.
|
|
Store the findings in various structures of the associated ipa_node_params
|
|
structure, such as parameter flags, notes etc. */
|
|
|
|
void
|
|
ipa_analyze_params_uses (struct cgraph_node *node)
|
|
{
|
|
tree decl = node->decl;
|
|
basic_block bb;
|
|
struct function *func;
|
|
gimple_stmt_iterator gsi;
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
|
|
if (ipa_get_param_count (info) == 0 || info->uses_analysis_done)
|
|
return;
|
|
|
|
func = DECL_STRUCT_FUNCTION (decl);
|
|
FOR_EACH_BB_FN (bb, func)
|
|
{
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
ipa_analyze_stmt_uses (info, stmt);
|
|
}
|
|
}
|
|
|
|
info->uses_analysis_done = 1;
|
|
}
|
|
|
|
/* Update the jump functions associated with call graph edge E when the call
|
|
graph edge CS is being inlined, assuming that E->caller is already (possibly
|
|
indirectly) inlined into CS->callee and that E has not been inlined. */
|
|
|
|
static void
|
|
update_jump_functions_after_inlining (struct cgraph_edge *cs,
|
|
struct cgraph_edge *e)
|
|
{
|
|
struct ipa_edge_args *top = IPA_EDGE_REF (cs);
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
int count = ipa_get_cs_argument_count (args);
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct ipa_jump_func *src, *dst = ipa_get_ith_jump_func (args, i);
|
|
|
|
if (dst->type != IPA_PASS_THROUGH)
|
|
continue;
|
|
|
|
/* We must check range due to calls with variable number of arguments: */
|
|
if (dst->value.formal_id >= (unsigned) ipa_get_cs_argument_count (top))
|
|
{
|
|
dst->type = IPA_BOTTOM;
|
|
continue;
|
|
}
|
|
|
|
src = ipa_get_ith_jump_func (top, dst->value.formal_id);
|
|
*dst = *src;
|
|
}
|
|
}
|
|
|
|
/* Print out a debug message to file F that we have discovered that an indirect
|
|
call described by NT is in fact a call of a known constant function described
|
|
by JFUNC. NODE is the node where the call is. */
|
|
|
|
static void
|
|
print_edge_addition_message (FILE *f, struct ipa_param_call_note *nt,
|
|
struct ipa_jump_func *jfunc,
|
|
struct cgraph_node *node)
|
|
{
|
|
fprintf (f, "ipa-prop: Discovered an indirect call to a known target (");
|
|
if (jfunc->type == IPA_CONST_MEMBER_PTR)
|
|
{
|
|
print_node_brief (f, "", jfunc->value.member_cst.pfn, 0);
|
|
print_node_brief (f, ", ", jfunc->value.member_cst.delta, 0);
|
|
}
|
|
else
|
|
print_node_brief(f, "", jfunc->value.constant, 0);
|
|
|
|
fprintf (f, ") in %s: ", cgraph_node_name (node));
|
|
print_gimple_stmt (f, nt->stmt, 2, TDF_SLIM);
|
|
}
|
|
|
|
/* Update the param called notes associated with NODE when CS is being inlined,
|
|
assuming NODE is (potentially indirectly) inlined into CS->callee.
|
|
Moreover, if the callee is discovered to be constant, create a new cgraph
|
|
edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
|
|
unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
|
|
|
|
static bool
|
|
update_call_notes_after_inlining (struct cgraph_edge *cs,
|
|
struct cgraph_node *node,
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
|
{
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
struct ipa_edge_args *top = IPA_EDGE_REF (cs);
|
|
struct ipa_param_call_note *nt;
|
|
bool res = false;
|
|
|
|
for (nt = info->param_calls; nt; nt = nt->next)
|
|
{
|
|
struct ipa_jump_func *jfunc;
|
|
|
|
if (nt->processed)
|
|
continue;
|
|
|
|
/* We must check range due to calls with variable number of arguments: */
|
|
if (nt->formal_id >= (unsigned) ipa_get_cs_argument_count (top))
|
|
{
|
|
nt->processed = true;
|
|
continue;
|
|
}
|
|
|
|
jfunc = ipa_get_ith_jump_func (top, nt->formal_id);
|
|
if (jfunc->type == IPA_PASS_THROUGH)
|
|
nt->formal_id = jfunc->value.formal_id;
|
|
else if (jfunc->type == IPA_CONST || jfunc->type == IPA_CONST_MEMBER_PTR)
|
|
{
|
|
struct cgraph_node *callee;
|
|
struct cgraph_edge *new_indirect_edge;
|
|
tree decl;
|
|
|
|
nt->processed = true;
|
|
if (jfunc->type == IPA_CONST_MEMBER_PTR)
|
|
decl = jfunc->value.member_cst.pfn;
|
|
else
|
|
decl = jfunc->value.constant;
|
|
|
|
if (TREE_CODE (decl) != ADDR_EXPR)
|
|
continue;
|
|
decl = TREE_OPERAND (decl, 0);
|
|
|
|
if (TREE_CODE (decl) != FUNCTION_DECL)
|
|
continue;
|
|
callee = cgraph_node (decl);
|
|
if (!callee || !callee->local.inlinable)
|
|
continue;
|
|
|
|
res = true;
|
|
if (dump_file)
|
|
print_edge_addition_message (dump_file, nt, jfunc, node);
|
|
|
|
new_indirect_edge = cgraph_create_edge (node, callee, nt->stmt,
|
|
nt->count, nt->frequency,
|
|
nt->loop_nest);
|
|
new_indirect_edge->indirect_call = 1;
|
|
ipa_check_create_edge_args ();
|
|
if (new_edges)
|
|
VEC_safe_push (cgraph_edge_p, heap, *new_edges, new_indirect_edge);
|
|
top = IPA_EDGE_REF (cs);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Recursively traverse subtree of NODE (including node) made of inlined
|
|
cgraph_edges when CS has been inlined and invoke
|
|
update_call_notes_after_inlining on all nodes and
|
|
update_jump_functions_after_inlining on all non-inlined edges that lead out
|
|
of this subtree. Newly discovered indirect edges will be added to
|
|
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
|
|
created. */
|
|
|
|
static bool
|
|
propagate_info_to_inlined_callees (struct cgraph_edge *cs,
|
|
struct cgraph_node *node,
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
|
{
|
|
struct cgraph_edge *e;
|
|
bool res;
|
|
|
|
res = update_call_notes_after_inlining (cs, node, new_edges);
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
|
|
else
|
|
update_jump_functions_after_inlining (cs, e);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Update jump functions and call note functions on inlining the call site CS.
|
|
CS is expected to lead to a node already cloned by
|
|
cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
|
|
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
|
|
created. */
|
|
|
|
bool
|
|
ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
|
{
|
|
/* Do nothing if the preparation phase has not been carried out yet
|
|
(i.e. during early inlining). */
|
|
if (!ipa_node_params_vector)
|
|
return false;
|
|
gcc_assert (ipa_edge_args_vector);
|
|
|
|
return propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
|
|
}
|
|
|
|
/* Frees all dynamically allocated structures that the argument info points
|
|
to. */
|
|
|
|
void
|
|
ipa_free_edge_args_substructures (struct ipa_edge_args *args)
|
|
{
|
|
if (args->jump_functions)
|
|
free (args->jump_functions);
|
|
|
|
memset (args, 0, sizeof (*args));
|
|
}
|
|
|
|
/* Free all ipa_edge structures. */
|
|
|
|
void
|
|
ipa_free_all_edge_args (void)
|
|
{
|
|
int i;
|
|
struct ipa_edge_args *args;
|
|
|
|
for (i = 0;
|
|
VEC_iterate (ipa_edge_args_t, ipa_edge_args_vector, i, args);
|
|
i++)
|
|
ipa_free_edge_args_substructures (args);
|
|
|
|
VEC_free (ipa_edge_args_t, heap, ipa_edge_args_vector);
|
|
ipa_edge_args_vector = NULL;
|
|
}
|
|
|
|
/* Frees all dynamically allocated structures that the param info points
|
|
to. */
|
|
|
|
void
|
|
ipa_free_node_params_substructures (struct ipa_node_params *info)
|
|
{
|
|
if (info->params)
|
|
free (info->params);
|
|
|
|
while (info->param_calls)
|
|
{
|
|
struct ipa_param_call_note *note = info->param_calls;
|
|
info->param_calls = note->next;
|
|
free (note);
|
|
}
|
|
|
|
memset (info, 0, sizeof (*info));
|
|
}
|
|
|
|
/* Free all ipa_node_params structures. */
|
|
|
|
void
|
|
ipa_free_all_node_params (void)
|
|
{
|
|
int i;
|
|
struct ipa_node_params *info;
|
|
|
|
for (i = 0;
|
|
VEC_iterate (ipa_node_params_t, ipa_node_params_vector, i, info);
|
|
i++)
|
|
ipa_free_node_params_substructures (info);
|
|
|
|
VEC_free (ipa_node_params_t, heap, ipa_node_params_vector);
|
|
ipa_node_params_vector = NULL;
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when an edge is removed. */
|
|
|
|
static void
|
|
ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
/* During IPA-CP updating we can be called on not-yet analyze clones. */
|
|
if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
|
|
<= (unsigned)cs->uid)
|
|
return;
|
|
ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when a node is removed. */
|
|
|
|
static void
|
|
ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
ipa_free_node_params_substructures (IPA_NODE_REF (node));
|
|
}
|
|
|
|
/* Helper function to duplicate an array of size N that is at SRC and store a
|
|
pointer to it to DST. Nothing is done if SRC is NULL. */
|
|
|
|
static void *
|
|
duplicate_array (void *src, size_t n)
|
|
{
|
|
void *p;
|
|
|
|
if (!src)
|
|
return NULL;
|
|
|
|
p = xcalloc (1, n);
|
|
memcpy (p, src, n);
|
|
return p;
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
|
|
|
static void
|
|
ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
|
|
__attribute__((unused)) void *data)
|
|
{
|
|
struct ipa_edge_args *old_args, *new_args;
|
|
int arg_count;
|
|
|
|
ipa_check_create_edge_args ();
|
|
|
|
old_args = IPA_EDGE_REF (src);
|
|
new_args = IPA_EDGE_REF (dst);
|
|
|
|
arg_count = ipa_get_cs_argument_count (old_args);
|
|
ipa_set_cs_argument_count (new_args, arg_count);
|
|
new_args->jump_functions = (struct ipa_jump_func *)
|
|
duplicate_array (old_args->jump_functions,
|
|
sizeof (struct ipa_jump_func) * arg_count);
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
|
|
|
static void
|
|
ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
|
|
__attribute__((unused)) void *data)
|
|
{
|
|
struct ipa_node_params *old_info, *new_info;
|
|
struct ipa_param_call_note *note;
|
|
int param_count;
|
|
|
|
ipa_check_create_node_params ();
|
|
old_info = IPA_NODE_REF (src);
|
|
new_info = IPA_NODE_REF (dst);
|
|
param_count = ipa_get_param_count (old_info);
|
|
|
|
ipa_set_param_count (new_info, param_count);
|
|
new_info->params = (struct ipa_param_descriptor *)
|
|
duplicate_array (old_info->params,
|
|
sizeof (struct ipa_param_descriptor) * param_count);
|
|
new_info->ipcp_orig_node = old_info->ipcp_orig_node;
|
|
new_info->count_scale = old_info->count_scale;
|
|
|
|
for (note = old_info->param_calls; note; note = note->next)
|
|
{
|
|
struct ipa_param_call_note *nn;
|
|
|
|
nn = (struct ipa_param_call_note *)
|
|
xcalloc (1, sizeof (struct ipa_param_call_note));
|
|
memcpy (nn, note, sizeof (struct ipa_param_call_note));
|
|
nn->next = new_info->param_calls;
|
|
new_info->param_calls = nn;
|
|
}
|
|
}
|
|
|
|
/* Register our cgraph hooks if they are not already there. */
|
|
|
|
void
|
|
ipa_register_cgraph_hooks (void)
|
|
{
|
|
if (!edge_removal_hook_holder)
|
|
edge_removal_hook_holder =
|
|
cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
|
|
if (!node_removal_hook_holder)
|
|
node_removal_hook_holder =
|
|
cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL);
|
|
if (!edge_duplication_hook_holder)
|
|
edge_duplication_hook_holder =
|
|
cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
|
|
if (!node_duplication_hook_holder)
|
|
node_duplication_hook_holder =
|
|
cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL);
|
|
}
|
|
|
|
/* Unregister our cgraph hooks if they are not already there. */
|
|
|
|
static void
|
|
ipa_unregister_cgraph_hooks (void)
|
|
{
|
|
cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
|
|
edge_removal_hook_holder = NULL;
|
|
cgraph_remove_node_removal_hook (node_removal_hook_holder);
|
|
node_removal_hook_holder = NULL;
|
|
cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
|
|
edge_duplication_hook_holder = NULL;
|
|
cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
|
|
node_duplication_hook_holder = NULL;
|
|
}
|
|
|
|
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
|
|
longer needed after ipa-cp. */
|
|
|
|
void
|
|
free_all_ipa_structures_after_ipa_cp (void)
|
|
{
|
|
if (!flag_indirect_inlining)
|
|
{
|
|
ipa_free_all_edge_args ();
|
|
ipa_free_all_node_params ();
|
|
ipa_unregister_cgraph_hooks ();
|
|
}
|
|
}
|
|
|
|
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
|
|
longer needed after indirect inlining. */
|
|
|
|
void
|
|
free_all_ipa_structures_after_iinln (void)
|
|
{
|
|
ipa_free_all_edge_args ();
|
|
ipa_free_all_node_params ();
|
|
ipa_unregister_cgraph_hooks ();
|
|
}
|
|
|
|
/* Print ipa_tree_map data structures of all functions in the
|
|
callgraph to F. */
|
|
|
|
void
|
|
ipa_print_node_params (FILE * f, struct cgraph_node *node)
|
|
{
|
|
int i, count;
|
|
tree temp;
|
|
struct ipa_node_params *info;
|
|
|
|
if (!node->analyzed)
|
|
return;
|
|
info = IPA_NODE_REF (node);
|
|
fprintf (f, " function %s Trees :: \n", cgraph_node_name (node));
|
|
count = ipa_get_param_count (info);
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
temp = ipa_get_param (info, i);
|
|
if (TREE_CODE (temp) == PARM_DECL)
|
|
fprintf (f, " param %d : %s", i,
|
|
(*lang_hooks.decl_printable_name) (temp, 2));
|
|
if (ipa_is_param_modified (info, i))
|
|
fprintf (f, " modified");
|
|
if (ipa_is_param_called (info, i))
|
|
fprintf (f, " called");
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
|
|
/* Print ipa_tree_map data structures of all functions in the
|
|
callgraph to F. */
|
|
|
|
void
|
|
ipa_print_all_params (FILE * f)
|
|
{
|
|
struct cgraph_node *node;
|
|
|
|
fprintf (f, "\nFunction parameters:\n");
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
ipa_print_node_params (f, node);
|
|
}
|