109a3af40f
* doc/Makefile.am: Add missing file. Use generate.consistent.ids parameter for DocBook HTML generation. * doc/Makefile.in: Regenerate. * doc/doxygen/user.cfg.in: Unset DOT_FONTNAME. * doc/xml/faq.xml: Update content and improve formatting. * doc/xml/manual/abi.xml: Add stable ID attribute and fix links. * doc/xml/manual/allocator.xml: Add stable ID attribute. * doc/xml/manual/bitmap_allocator.xml: Likewise. * doc/xml/manual/build_hacking.xml: Likewise. * doc/xml/manual/codecvt.xml: Change URL. * doc/xml/manual/ctype.xml: Add stable ID attribute. * doc/xml/manual/debug_mode.xml: Likewise. * doc/xml/manual/documentation_hacking.xml: Likewise. * doc/xml/manual/evolution.xml: Likewise. * doc/xml/manual/extensions.xml: Likewise. * doc/xml/manual/locale.xml: Likewise. * doc/xml/manual/messages.xml: Make section id consistent, improve markup, change URL. * doc/xml/manual/parallel_mode.xml: Add stable ID attributes. * doc/xml/manual/profile_mode.xml: Likewise. * doc/xml/manual/shared_ptr.xml: Likewise. Also remove old info. * doc/xml/manual/status_cxx1998.xml: Add stable ID attributes. * doc/xml/manual/status_cxx2011.xml: Likewise. * doc/xml/manual/status_cxx2014.xml: Likewise. * doc/xml/manual/status_cxxtr1.xml: Likewise. * doc/xml/manual/status_cxxtr24733.xml: Likewise. * doc/xml/manual/using.xml: Likewise. * doc/html/*: Regenerate. From-SVN: r211376
557 lines
46 KiB
HTML
557 lines
46 KiB
HTML
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>Diagnostics</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.78.1" /><meta name="keywords" content="C++, library, profile" /><meta name="keywords" content="ISO C++, library" /><meta name="keywords" content="ISO C++, runtime, library" /><link rel="home" href="../index.html" title="The GNU C++ Library" /><link rel="up" href="profile_mode.html" title="Chapter 19. Profile Mode" /><link rel="prev" href="profile_mode_devel.html" title="Developer Information" /><link rel="next" href="mt_allocator.html" title="Chapter 20. The mt_allocator" /></head><body><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Diagnostics</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="profile_mode_devel.html">Prev</a> </td><th width="60%" align="center">Chapter 19. Profile Mode</th><td width="20%" align="right"> <a accesskey="n" href="mt_allocator.html">Next</a></td></tr></table><hr /></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="manual.ext.profile_mode.diagnostics"></a>Diagnostics</h2></div></div></div><p>
|
||
The table below presents all the diagnostics we intend to implement.
|
||
Each diagnostic has a corresponding compile time switch
|
||
<code class="code">-D_GLIBCXX_PROFILE_<diagnostic></code>.
|
||
Groups of related diagnostics can be turned on with a single switch.
|
||
For instance, <code class="code">-D_GLIBCXX_PROFILE_LOCALITY</code> is equivalent to
|
||
<code class="code">-D_GLIBCXX_PROFILE_SOFTWARE_PREFETCH
|
||
-D_GLIBCXX_PROFILE_RBTREE_LOCALITY</code>.
|
||
</p><p>
|
||
The benefit, cost, expected frequency and accuracy of each diagnostic
|
||
was given a grade from 1 to 10, where 10 is highest.
|
||
A high benefit means that, if the diagnostic is accurate, the expected
|
||
performance improvement is high.
|
||
A high cost means that turning this diagnostic on leads to high slowdown.
|
||
A high frequency means that we expect this to occur relatively often.
|
||
A high accuracy means that the diagnostic is unlikely to be wrong.
|
||
These grades are not perfect. They are just meant to guide users with
|
||
specific needs or time budgets.
|
||
</p><div class="table"><a id="table.profile_diagnostics"></a><p class="title"><strong>Table 19.2. Profile Diagnostics</strong></p><div class="table-contents"><table summary="Profile Diagnostics" border="1"><colgroup><col align="left" class="c1" /><col align="left" class="c2" /><col align="left" class="c3" /><col align="left" class="c4" /><col align="left" class="c5" /><col align="left" class="c6" /><col align="left" class="c7" /></colgroup><thead><tr><th align="left">Group</th><th align="left">Flag</th><th align="left">Benefit</th><th align="left">Cost</th><th align="left">Freq.</th><th align="left">Implemented</th><td class="auto-generated"> </td></tr></thead><tbody><tr><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.containers" title="Containers">
|
||
CONTAINERS</a></td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.hashtable_too_small" title="Hashtable Too Small">
|
||
HASHTABLE_TOO_SMALL</a></td><td align="left">10</td><td align="left">1</td><td align="left"> </td><td align="left">10</td><td align="left">yes</td></tr><tr><td align="left"> </td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.hashtable_too_large" title="Hashtable Too Large">
|
||
HASHTABLE_TOO_LARGE</a></td><td align="left">5</td><td align="left">1</td><td align="left"> </td><td align="left">10</td><td align="left">yes</td></tr><tr><td align="left"> </td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.inefficient_hash" title="Inefficient Hash">
|
||
INEFFICIENT_HASH</a></td><td align="left">7</td><td align="left">3</td><td align="left"> </td><td align="left">10</td><td align="left">yes</td></tr><tr><td align="left"> </td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.vector_too_small" title="Vector Too Small">
|
||
VECTOR_TOO_SMALL</a></td><td align="left">8</td><td align="left">1</td><td align="left"> </td><td align="left">10</td><td align="left">yes</td></tr><tr><td align="left"> </td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.vector_too_large" title="Vector Too Large">
|
||
VECTOR_TOO_LARGE</a></td><td align="left">5</td><td align="left">1</td><td align="left"> </td><td align="left">10</td><td align="left">yes</td></tr><tr><td align="left"> </td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.vector_to_hashtable" title="Vector to Hashtable">
|
||
VECTOR_TO_HASHTABLE</a></td><td align="left">7</td><td align="left">7</td><td align="left"> </td><td align="left">10</td><td align="left">no</td></tr><tr><td align="left"> </td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.hashtable_to_vector" title="Hashtable to Vector">
|
||
HASHTABLE_TO_VECTOR</a></td><td align="left">7</td><td align="left">7</td><td align="left"> </td><td align="left">10</td><td align="left">no</td></tr><tr><td align="left"> </td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.vector_to_list" title="Vector to List">
|
||
VECTOR_TO_LIST</a></td><td align="left">8</td><td align="left">5</td><td align="left"> </td><td align="left">10</td><td align="left">yes</td></tr><tr><td align="left"> </td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.list_to_vector" title="List to Vector">
|
||
LIST_TO_VECTOR</a></td><td align="left">10</td><td align="left">5</td><td align="left"> </td><td align="left">10</td><td align="left">no</td></tr><tr><td align="left"> </td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.assoc_ord_to_unord" title="Ordered to Unordered Associative Container">
|
||
ORDERED_TO_UNORDERED</a></td><td align="left">10</td><td align="left">5</td><td align="left"> </td><td align="left">10</td><td align="left">only map/unordered_map</td></tr><tr><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.algorithms" title="Algorithms">
|
||
ALGORITHMS</a></td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.algorithms.sort" title="Sort Algorithm Performance">
|
||
SORT</a></td><td align="left">7</td><td align="left">8</td><td align="left"> </td><td align="left">7</td><td align="left">no</td></tr><tr><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.locality" title="Data Locality">
|
||
LOCALITY</a></td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.locality.sw_prefetch" title="Need Software Prefetch">
|
||
SOFTWARE_PREFETCH</a></td><td align="left">8</td><td align="left">8</td><td align="left"> </td><td align="left">5</td><td align="left">no</td></tr><tr><td align="left"> </td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.locality.linked" title="Linked Structure Locality">
|
||
RBTREE_LOCALITY</a></td><td align="left">4</td><td align="left">8</td><td align="left"> </td><td align="left">5</td><td align="left">no</td></tr><tr><td align="left"> </td><td align="left"><a class="link" href="profile_mode_diagnostics.html#manual.ext.profile_mode.analysis.mthread.false_share" title="False Sharing">
|
||
FALSE_SHARING</a></td><td align="left">8</td><td align="left">10</td><td align="left"> </td><td align="left">10</td><td align="left">no</td></tr></tbody></table></div></div><br class="table-break" /><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="manual.ext.profile_mode.analysis.template"></a>Diagnostic Template</h3></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_<diagnostic></code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> What problem will it diagnose?
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>.
|
||
What is the fundamental reason why this is a problem</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>
|
||
Percentage reduction in execution time. When reduction is more than
|
||
a constant factor, describe the reduction rate formula.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span>
|
||
What would the advise look like?</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span>
|
||
What stdlibc++ components need to be instrumented?</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
How do we decide when to issue the advice?</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
How do we measure benefits? Math goes here.</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
program code
|
||
...
|
||
advice sample
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="manual.ext.profile_mode.analysis.containers"></a>Containers</h3></div></div></div><p>
|
||
<span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_CONTAINERS</code>.
|
||
</p><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.hashtable_too_small"></a>Hashtable Too Small</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_HASHTABLE_TOO_SMALL</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Detect hashtables with many
|
||
rehash operations, small construction size and large destruction size.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span> Rehash is very expensive.
|
||
Read content, follow chains within bucket, evaluate hash function, place at
|
||
new location in different order.</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span> 36%.
|
||
Code similar to example below.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span>
|
||
Set initial size to N at construction site S.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span>
|
||
<code class="code">unordered_set, unordered_map</code> constructor, destructor, rehash.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
For each dynamic instance of <code class="code">unordered_[multi]set|map</code>,
|
||
record initial size and call context of the constructor.
|
||
Record size increase, if any, after each relevant operation such as insert.
|
||
Record the estimated rehash cost.</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Number of individual rehash operations * cost per rehash.</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 unordered_set<int> us;
|
||
2 for (int k = 0; k < 1000000; ++k) {
|
||
3 us.insert(k);
|
||
4 }
|
||
|
||
foo.cc:1: advice: Changing initial unordered_set size from 10 to 1000000 saves 1025530 rehash operations.
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.hashtable_too_large"></a>Hashtable Too Large</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_HASHTABLE_TOO_LARGE</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Detect hashtables which are
|
||
never filled up because fewer elements than reserved are ever
|
||
inserted.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span> Save memory, which
|
||
is good in itself and may also improve memory reference performance through
|
||
fewer cache and TLB misses.</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span> unknown.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span>
|
||
Set initial size to N at construction site S.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span>
|
||
<code class="code">unordered_set, unordered_map</code> constructor, destructor, rehash.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
For each dynamic instance of <code class="code">unordered_[multi]set|map</code>,
|
||
record initial size and call context of the constructor, and correlate it
|
||
with its size at destruction time.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Number of iteration operations + memory saved.</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 vector<unordered_set<int>> v(100000, unordered_set<int>(100)) ;
|
||
2 for (int k = 0; k < 100000; ++k) {
|
||
3 for (int j = 0; j < 10; ++j) {
|
||
4 v[k].insert(k + j);
|
||
5 }
|
||
6 }
|
||
|
||
foo.cc:1: advice: Changing initial unordered_set size from 100 to 10 saves N
|
||
bytes of memory and M iteration steps.
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.inefficient_hash"></a>Inefficient Hash</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_INEFFICIENT_HASH</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Detect hashtables with polarized
|
||
distribution.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span> A non-uniform
|
||
distribution may lead to long chains, thus possibly increasing complexity
|
||
by a factor up to the number of elements.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span> factor up
|
||
to container size.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span> Change hash function
|
||
for container built at site S. Distribution score = N. Access score = S.
|
||
Longest chain = C, in bucket B.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span>
|
||
<code class="code">unordered_set, unordered_map</code> constructor, destructor, [],
|
||
insert, iterator.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
Count the exact number of link traversals.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Total number of links traversed.</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
class dumb_hash {
|
||
public:
|
||
size_t operator() (int i) const { return 0; }
|
||
};
|
||
...
|
||
unordered_set<int, dumb_hash> hs;
|
||
...
|
||
for (int i = 0; i < COUNT; ++i) {
|
||
hs.find(i);
|
||
}
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.vector_too_small"></a>Vector Too Small</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_VECTOR_TOO_SMALL</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span>Detect vectors with many
|
||
resize operations, small construction size and large destruction size..
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>Resizing can be expensive.
|
||
Copying large amounts of data takes time. Resizing many small vectors may
|
||
have allocation overhead and affect locality.</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>%.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span>
|
||
Set initial size to N at construction site S.</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span><code class="code">vector</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
For each dynamic instance of <code class="code">vector</code>,
|
||
record initial size and call context of the constructor.
|
||
Record size increase, if any, after each relevant operation such as
|
||
<code class="code">push_back</code>. Record the estimated resize cost.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Total number of words copied * time to copy a word.</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 vector<int> v;
|
||
2 for (int k = 0; k < 1000000; ++k) {
|
||
3 v.push_back(k);
|
||
4 }
|
||
|
||
foo.cc:1: advice: Changing initial vector size from 10 to 1000000 saves
|
||
copying 4000000 bytes and 20 memory allocations and deallocations.
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.vector_too_large"></a>Vector Too Large</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_VECTOR_TOO_LARGE</code>
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span>Detect vectors which are
|
||
never filled up because fewer elements than reserved are ever
|
||
inserted.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>Save memory, which
|
||
is good in itself and may also improve memory reference performance through
|
||
fewer cache and TLB misses.</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>%.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span>
|
||
Set initial size to N at construction site S.</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span><code class="code">vector</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
For each dynamic instance of <code class="code">vector</code>,
|
||
record initial size and call context of the constructor, and correlate it
|
||
with its size at destruction time.</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Total amount of memory saved.</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 vector<vector<int>> v(100000, vector<int>(100)) ;
|
||
2 for (int k = 0; k < 100000; ++k) {
|
||
3 for (int j = 0; j < 10; ++j) {
|
||
4 v[k].insert(k + j);
|
||
5 }
|
||
6 }
|
||
|
||
foo.cc:1: advice: Changing initial vector size from 100 to 10 saves N
|
||
bytes of memory and may reduce the number of cache and TLB misses.
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.vector_to_hashtable"></a>Vector to Hashtable</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_VECTOR_TO_HASHTABLE</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Detect uses of
|
||
<code class="code">vector</code> that can be substituted with <code class="code">unordered_set</code>
|
||
to reduce execution time.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>
|
||
Linear search in a vector is very expensive, whereas searching in a hashtable
|
||
is very quick.</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>factor up
|
||
to container size.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span>Replace
|
||
<code class="code">vector</code> with <code class="code">unordered_set</code> at site S.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span><code class="code">vector</code>
|
||
operations and access methods.</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
For each dynamic instance of <code class="code">vector</code>,
|
||
record call context of the constructor. Issue the advice only if the
|
||
only methods called on this <code class="code">vector</code> are <code class="code">push_back</code>,
|
||
<code class="code">insert</code> and <code class="code">find</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Cost(vector::push_back) + cost(vector::insert) + cost(find, vector) -
|
||
cost(unordered_set::insert) + cost(unordered_set::find).
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 vector<int> v;
|
||
...
|
||
2 for (int i = 0; i < 1000; ++i) {
|
||
3 find(v.begin(), v.end(), i);
|
||
4 }
|
||
|
||
foo.cc:1: advice: Changing "vector" to "unordered_set" will save about 500,000
|
||
comparisons.
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.hashtable_to_vector"></a>Hashtable to Vector</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_HASHTABLE_TO_VECTOR</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Detect uses of
|
||
<code class="code">unordered_set</code> that can be substituted with <code class="code">vector</code>
|
||
to reduce execution time.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>
|
||
Hashtable iterator is slower than vector iterator.</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>95%.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span>Replace
|
||
<code class="code">unordered_set</code> with <code class="code">vector</code> at site S.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span><code class="code">unordered_set</code>
|
||
operations and access methods.</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
For each dynamic instance of <code class="code">unordered_set</code>,
|
||
record call context of the constructor. Issue the advice only if the
|
||
number of <code class="code">find</code>, <code class="code">insert</code> and <code class="code">[]</code>
|
||
operations on this <code class="code">unordered_set</code> are small relative to the
|
||
number of elements, and methods <code class="code">begin</code> or <code class="code">end</code>
|
||
are invoked (suggesting iteration).</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Number of .</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 unordered_set<int> us;
|
||
...
|
||
2 int s = 0;
|
||
3 for (unordered_set<int>::iterator it = us.begin(); it != us.end(); ++it) {
|
||
4 s += *it;
|
||
5 }
|
||
|
||
foo.cc:1: advice: Changing "unordered_set" to "vector" will save about N
|
||
indirections and may achieve better data locality.
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.vector_to_list"></a>Vector to List</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_VECTOR_TO_LIST</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Detect cases where
|
||
<code class="code">vector</code> could be substituted with <code class="code">list</code> for
|
||
better performance.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>
|
||
Inserting in the middle of a vector is expensive compared to inserting in a
|
||
list.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>factor up to
|
||
container size.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span>Replace vector with list
|
||
at site S.</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span><code class="code">vector</code>
|
||
operations and access methods.</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
For each dynamic instance of <code class="code">vector</code>,
|
||
record the call context of the constructor. Record the overhead of each
|
||
<code class="code">insert</code> operation based on current size and insert position.
|
||
Report instance with high insertion overhead.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
(Sum(cost(vector::method)) - Sum(cost(list::method)), for
|
||
method in [push_back, insert, erase])
|
||
+ (Cost(iterate vector) - Cost(iterate list))</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 vector<int> v;
|
||
2 for (int i = 0; i < 10000; ++i) {
|
||
3 v.insert(v.begin(), i);
|
||
4 }
|
||
|
||
foo.cc:1: advice: Changing "vector" to "list" will save about 5,000,000
|
||
operations.
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.list_to_vector"></a>List to Vector</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_LIST_TO_VECTOR</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Detect cases where
|
||
<code class="code">list</code> could be substituted with <code class="code">vector</code> for
|
||
better performance.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>
|
||
Iterating through a vector is faster than through a list.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>64%.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span>Replace list with vector
|
||
at site S.</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span><code class="code">vector</code>
|
||
operations and access methods.</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
Issue the advice if there are no <code class="code">insert</code> operations.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
(Sum(cost(vector::method)) - Sum(cost(list::method)), for
|
||
method in [push_back, insert, erase])
|
||
+ (Cost(iterate vector) - Cost(iterate list))</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 list<int> l;
|
||
...
|
||
2 int sum = 0;
|
||
3 for (list<int>::iterator it = l.begin(); it != l.end(); ++it) {
|
||
4 sum += *it;
|
||
5 }
|
||
|
||
foo.cc:1: advice: Changing "list" to "vector" will save about 1000000 indirect
|
||
memory references.
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.list_to_slist"></a>List to Forward List (Slist)</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_LIST_TO_SLIST</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Detect cases where
|
||
<code class="code">list</code> could be substituted with <code class="code">forward_list</code> for
|
||
better performance.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>
|
||
The memory footprint of a forward_list is smaller than that of a list.
|
||
This has beneficial effects on memory subsystem, e.g., fewer cache misses.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>40%.
|
||
Note that the reduction is only noticeable if the size of the forward_list
|
||
node is in fact larger than that of the list node. For memory allocators
|
||
with size classes, you will only notice an effect when the two node sizes
|
||
belong to different allocator size classes.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span>Replace list with
|
||
forward_list at site S.</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span><code class="code">list</code>
|
||
operations and iteration methods.</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
Issue the advice if there are no <code class="code">backwards</code> traversals
|
||
or insertion before a given node.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Always true.</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 list<int> l;
|
||
...
|
||
2 int sum = 0;
|
||
3 for (list<int>::iterator it = l.begin(); it != l.end(); ++it) {
|
||
4 sum += *it;
|
||
5 }
|
||
|
||
foo.cc:1: advice: Change "list" to "forward_list".
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.assoc_ord_to_unord"></a>Ordered to Unordered Associative Container</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_ORDERED_TO_UNORDERED</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Detect cases where ordered
|
||
associative containers can be replaced with unordered ones.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>
|
||
Insert and search are quicker in a hashtable than in
|
||
a red-black tree.</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>52%.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span>
|
||
Replace set with unordered_set at site S.</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span>
|
||
<code class="code">set</code>, <code class="code">multiset</code>, <code class="code">map</code>,
|
||
<code class="code">multimap</code> methods.</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
Issue the advice only if we are not using operator <code class="code">++</code> on any
|
||
iterator on a particular <code class="code">[multi]set|map</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
(Sum(cost(hashtable::method)) - Sum(cost(rbtree::method)), for
|
||
method in [insert, erase, find])
|
||
+ (Cost(iterate hashtable) - Cost(iterate rbtree))</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 set<int> s;
|
||
2 for (int i = 0; i < 100000; ++i) {
|
||
3 s.insert(i);
|
||
4 }
|
||
5 int sum = 0;
|
||
6 for (int i = 0; i < 100000; ++i) {
|
||
7 sum += *s.find(i);
|
||
8 }
|
||
</pre><p>
|
||
</p></li></ul></div></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="manual.ext.profile_mode.analysis.algorithms"></a>Algorithms</h3></div></div></div><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_ALGORITHMS</code>.
|
||
</p><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.algorithms.sort"></a>Sort Algorithm Performance</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_SORT</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Give measure of sort algorithm
|
||
performance based on actual input. For instance, advise Radix Sort over
|
||
Quick Sort for a particular call context.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>
|
||
See papers:
|
||
<a class="link" href="https://dl.acm.org/citation.cfm?doid=1065944.1065981" target="_top">
|
||
A framework for adaptive algorithm selection in STAPL</a> and
|
||
<a class="link" href="http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=4228227" target="_top">
|
||
Optimizing Sorting with Machine Learning Algorithms</a>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>60%.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span> Change sort algorithm
|
||
at site S from X Sort to Y Sort.</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span> <code class="code">sort</code>
|
||
algorithm.</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
Issue the advice if the cost model tells us that another sort algorithm
|
||
would do better on this input. Requires us to know what algorithm we
|
||
are using in our sort implementation in release mode.</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Runtime(algo) for algo in [radix, quick, merge, ...]</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
</pre><p>
|
||
</p></li></ul></div></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="manual.ext.profile_mode.analysis.locality"></a>Data Locality</h3></div></div></div><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_LOCALITY</code>.
|
||
</p><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.locality.sw_prefetch"></a>Need Software Prefetch</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_SOFTWARE_PREFETCH</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Discover sequences of indirect
|
||
memory accesses that are not regular, thus cannot be predicted by
|
||
hardware prefetchers.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>
|
||
Indirect references are hard to predict and are very expensive when they
|
||
miss in caches.</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>25%.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span> Insert prefetch
|
||
instruction.</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span> Vector iterator and
|
||
access operator [].
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
First, get cache line size and page size from system.
|
||
Then record iterator dereference sequences for which the value is a pointer.
|
||
For each sequence within a container, issue a warning if successive pointer
|
||
addresses are not within cache lines and do not form a linear pattern
|
||
(otherwise they may be prefetched by hardware).
|
||
If they also step across page boundaries, make the warning stronger.
|
||
</p><p>The same analysis applies to containers other than vector.
|
||
However, we cannot give the same advice for linked structures, such as list,
|
||
as there is no random access to the n-th element. The user may still be
|
||
able to benefit from this information, for instance by employing frays (user
|
||
level light weight threads) to hide the latency of chasing pointers.
|
||
</p><p>
|
||
This analysis is a little oversimplified. A better cost model could be
|
||
created by understanding the capability of the hardware prefetcher.
|
||
This model could be trained automatically by running a set of synthetic
|
||
cases.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Total distance between pointer values of successive elements in vectors
|
||
of pointers.</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 int zero = 0;
|
||
2 vector<int*> v(10000000, &zero);
|
||
3 for (int k = 0; k < 10000000; ++k) {
|
||
4 v[random() % 10000000] = new int(k);
|
||
5 }
|
||
6 for (int j = 0; j < 10000000; ++j) {
|
||
7 count += (*v[j] == 0 ? 0 : 1);
|
||
8 }
|
||
|
||
foo.cc:7: advice: Insert prefetch instruction.
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.locality.linked"></a>Linked Structure Locality</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_RBTREE_LOCALITY</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Give measure of locality of
|
||
objects stored in linked structures (lists, red-black trees and hashtables)
|
||
with respect to their actual traversal patterns.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>Allocation can be tuned
|
||
to a specific traversal pattern, to result in better data locality.
|
||
See paper:
|
||
<a class="link" href="http://www.springerlink.com/content/8085744l00x72662/" target="_top">
|
||
Custom Memory Allocation for Free</a>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>30%.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span>
|
||
High scatter score N for container built at site S.
|
||
Consider changing allocation sequence or choosing a structure conscious
|
||
allocator.</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span> Methods of all
|
||
containers using linked structures.</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
First, get cache line size and page size from system.
|
||
Then record the number of successive elements that are on different line
|
||
or page, for each traversal method such as <code class="code">find</code>. Give advice
|
||
only if the ratio between this number and the number of total node hops
|
||
is above a threshold.</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Sum(same_cache_line(this,previous))</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 set<int> s;
|
||
2 for (int i = 0; i < 10000000; ++i) {
|
||
3 s.insert(i);
|
||
4 }
|
||
5 set<int> s1, s2;
|
||
6 for (int i = 0; i < 10000000; ++i) {
|
||
7 s1.insert(i);
|
||
8 s2.insert(i);
|
||
9 }
|
||
...
|
||
// Fast, better locality.
|
||
10 for (set<int>::iterator it = s.begin(); it != s.end(); ++it) {
|
||
11 sum += *it;
|
||
12 }
|
||
// Slow, elements are further apart.
|
||
13 for (set<int>::iterator it = s1.begin(); it != s1.end(); ++it) {
|
||
14 sum += *it;
|
||
15 }
|
||
|
||
foo.cc:5: advice: High scatter score NNN for set built here. Consider changing
|
||
the allocation sequence or switching to a structure conscious allocator.
|
||
</pre><p>
|
||
</p></li></ul></div></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="manual.ext.profile_mode.analysis.mthread"></a>Multithreaded Data Access</h3></div></div></div><p>
|
||
The diagnostics in this group are not meant to be implemented short term.
|
||
They require compiler support to know when container elements are written
|
||
to. Instrumentation can only tell us when elements are referenced.
|
||
</p><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_MULTITHREADED</code>.
|
||
</p><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.mthread.ddtest"></a>Data Dependence Violations at Container Level</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_DDTEST</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Detect container elements
|
||
that are referenced from multiple threads in the parallel region or
|
||
across parallel regions.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span>
|
||
Sharing data between threads requires communication and perhaps locking,
|
||
which may be expensive.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>?%.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span> Change data
|
||
distribution or parallel algorithm.</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span> Container access methods
|
||
and iterators.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
Keep a shadow for each container. Record iterator dereferences and
|
||
container member accesses. Issue advice for elements referenced by
|
||
multiple threads.
|
||
See paper: <a class="link" href="https://dl.acm.org/citation.cfm?id=207110.207148" target="_top">
|
||
The LRPD test: speculative run-time parallelization of loops with
|
||
privatization and reduction parallelization</a>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Number of accesses to elements referenced from multiple threads
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
</pre><p>
|
||
</p></li></ul></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="manual.ext.profile_mode.analysis.mthread.false_share"></a>False Sharing</h4></div></div></div><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_FALSE_SHARING</code>.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Goal:</em></span> Detect elements in the
|
||
same container which share a cache line, are written by at least one
|
||
thread, and accessed by different threads.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Fundamentals:</em></span> Under these assumptions,
|
||
cache protocols require
|
||
communication to invalidate lines, which may be expensive.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Sample runtime reduction:</em></span>68%.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Recommendation:</em></span> Reorganize container
|
||
or use padding to avoid false sharing.</p></li><li class="listitem"><p><span class="emphasis"><em>To instrument:</em></span> Container access methods
|
||
and iterators.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Analysis:</em></span>
|
||
First, get the cache line size.
|
||
For each shared container, record all the associated iterator dereferences
|
||
and member access methods with the thread id. Compare the address lists
|
||
across threads to detect references in two different threads to the same
|
||
cache line. Issue a warning only if the ratio to total references is
|
||
significant. Do the same for iterator dereference values if they are
|
||
pointers.</p></li><li class="listitem"><p><span class="emphasis"><em>Cost model:</em></span>
|
||
Number of accesses to same cache line from different threads.
|
||
</p></li><li class="listitem"><p><span class="emphasis"><em>Example:</em></span>
|
||
</p><pre class="programlisting">
|
||
1 vector<int> v(2, 0);
|
||
2 #pragma omp parallel for shared(v, SIZE) schedule(static, 1)
|
||
3 for (i = 0; i < SIZE; ++i) {
|
||
4 v[i % 2] += i;
|
||
5 }
|
||
|
||
OMP_NUM_THREADS=2 ./a.out
|
||
foo.cc:1: advice: Change container structure or padding to avoid false
|
||
sharing in multithreaded access at foo.cc:4. Detected N shared cache lines.
|
||
</pre><p>
|
||
</p></li></ul></div></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="manual.ext.profile_mode.analysis.statistics"></a>Statistics</h3></div></div></div><p>
|
||
<span class="emphasis"><em>Switch:</em></span>
|
||
<code class="code">_GLIBCXX_PROFILE_STATISTICS</code>.
|
||
</p><p>
|
||
In some cases the cost model may not tell us anything because the costs
|
||
appear to offset the benefits. Consider the choice between a vector and
|
||
a list. When there are both inserts and iteration, an automatic advice
|
||
may not be issued. However, the programmer may still be able to make use
|
||
of this information in a different way.
|
||
</p><p>
|
||
This diagnostic will not issue any advice, but it will print statistics for
|
||
each container construction site. The statistics will contain the cost
|
||
of each operation actually performed on the container.
|
||
</p></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="profile_mode_devel.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="profile_mode.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="mt_allocator.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Developer Information </td><td width="20%" align="center"><a accesskey="h" href="../index.html">Home</a></td><td width="40%" align="right" valign="top"> Chapter 20. The mt_allocator</td></tr></table></div></body></html> |