gcc/libstdc++-v3/include/bits/stl_list.h
Phil Edwards 9d6a24bd51 std_bitset.h: Use GLIBCPP in multiple-inclusion guard.
2001-12-06  Phil Edwards  <pme@gcc.gnu.org>

	* include/bits/std_bitset.h:  Use GLIBCPP in multiple-inclusion guard.
	* include/bits/stl_algo.h:  Likewise.
	* include/bits/stl_algobase.h:  Likewise.
	* include/bits/stl_bvector.h:  Likewise.
	* include/bits/stl_deque.h:  Likewise.
	* include/bits/stl_function.h:  Likewise.
	* include/bits/stl_iterator.h:  Likewise.
	* include/bits/stl_iterator_base_funcs.h:  Likewise.
	* include/bits/stl_iterator_base_types.h:  Likewise.
	* include/bits/stl_list.h:  Likewise.
	* include/bits/stl_multimap.h:  Likewise.
	* include/bits/stl_multiset.h:  Likewise.
	* include/bits/stl_pair.h:  Likewise.
	* include/bits/stl_queue.h:  Likewise.
	* include/bits/stl_set.h:  Likewise.
	* include/bits/stl_stack.h:  Likewise.
	* include/bits/stl_tempbuf.h:  Likewise.
	* include/bits/stl_tree.h:  Likewise.
	* include/bits/stl_vector.h:  Likewise.

	* include/bits/stl_alloc.h:  Use our own multiple inclusion guards.
	Doxygenate more comments.  Correct historical artifacts in comments.
	(alloc, single_alloc):  Uglify non-standard names.
	(__default_alloc_template::_NFREELISTS):  Calculate from other
	parameters.
	(__default_alloc_template::_S_free_list):  Remove SunPro workaround.
	(__default_alloc_template::_Lock):  Mark as "unused".
	* include/backward/alloc.h:  Update.
	* include/bits/stl_bvector.h:  Likewise.
	* include/ext/ropeimpl.h:  Likewise.
	* include/ext/stl_hashtable.h:  Likewise.

From-SVN: r47729
2001-12-06 20:29:31 +00:00

978 lines
26 KiB
C++

// List implementation -*- C++ -*-
// Copyright (C) 2001 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file stl_list.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef __GLIBCPP_INTERNAL_LIST_H
#define __GLIBCPP_INTERNAL_LIST_H
#include <bits/concept_check.h>
namespace std
{
struct _List_node_base
{
_List_node_base* _M_next;
_List_node_base* _M_prev;
};
template<typename _Tp>
struct _List_node : public _List_node_base
{
_Tp _M_data;
};
struct _List_iterator_base
{
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef bidirectional_iterator_tag iterator_category;
_List_node_base* _M_node;
_List_iterator_base(_List_node_base* __x)
: _M_node(__x)
{ }
_List_iterator_base()
{ }
void
_M_incr()
{ _M_node = _M_node->_M_next; }
void
_M_decr()
{ _M_node = _M_node->_M_prev; }
bool
operator==(const _List_iterator_base& __x) const
{ return _M_node == __x._M_node; }
bool
operator!=(const _List_iterator_base& __x) const
{ return _M_node != __x._M_node; }
};
template<typename _Tp, typename _Ref, typename _Ptr>
struct _List_iterator : public _List_iterator_base
{
typedef _List_iterator<_Tp,_Tp&,_Tp*> iterator;
typedef _List_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
typedef _List_iterator<_Tp,_Ref,_Ptr> _Self;
typedef _Tp value_type;
typedef _Ptr pointer;
typedef _Ref reference;
typedef _List_node<_Tp> _Node;
_List_iterator(_Node* __x)
: _List_iterator_base(__x)
{ }
_List_iterator()
{ }
_List_iterator(const iterator& __x)
: _List_iterator_base(__x._M_node)
{ }
reference
operator*() const
{ return ((_Node*) _M_node)->_M_data; }
pointer
operator->() const
{ return &(operator*()); }
_Self&
operator++()
{
this->_M_incr();
return *this;
}
_Self
operator++(int)
{
_Self __tmp = *this;
this->_M_incr();
return __tmp;
}
_Self&
operator--()
{
this->_M_decr();
return *this;
}
_Self
operator--(int)
{
_Self __tmp = *this;
this->_M_decr();
return __tmp;
}
};
// Base class that encapsulates details of allocators. Three cases:
// an ordinary standard-conforming allocator, a standard-conforming
// allocator with no non-static data, and an SGI-style allocator.
// This complexity is necessary only because we're worrying about backward
// compatibility and because we want to avoid wasting storage on an
// allocator instance if it isn't necessary.
// Base for general standard-conforming allocators.
template<typename _Tp, typename _Allocator, bool _IsStatic>
class _List_alloc_base
{
public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type;
allocator_type
get_allocator() const
{ return _Node_allocator; }
_List_alloc_base(const allocator_type& __a)
: _Node_allocator(__a)
{ }
protected:
_List_node<_Tp>*
_M_get_node()
{ return _Node_allocator.allocate(1); }
void
_M_put_node(_List_node<_Tp>* __p)
{ _Node_allocator.deallocate(__p, 1); }
protected:
typename _Alloc_traits<_List_node<_Tp>, _Allocator>::allocator_type
_Node_allocator;
_List_node<_Tp>* _M_node;
};
// Specialization for instanceless allocators.
template<typename _Tp, typename _Allocator>
class _List_alloc_base<_Tp, _Allocator, true>
{
public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type;
allocator_type
get_allocator() const
{ return allocator_type(); }
_List_alloc_base(const allocator_type&)
{ }
protected:
typedef typename _Alloc_traits<_List_node<_Tp>, _Allocator>::_Alloc_type
_Alloc_type;
_List_node<_Tp>*
_M_get_node()
{ return _Alloc_type::allocate(1); }
void
_M_put_node(_List_node<_Tp>* __p)
{ _Alloc_type::deallocate(__p, 1); }
protected:
_List_node<_Tp>* _M_node;
};
template<typename _Tp, typename _Alloc>
class _List_base
: public _List_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
public:
typedef _List_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_List_base(const allocator_type& __a)
: _Base(__a)
{
_M_node = _M_get_node();
_M_node->_M_next = _M_node;
_M_node->_M_prev = _M_node;
}
~_List_base()
{
clear();
_M_put_node(_M_node);
}
void clear();
};
template<typename _Tp, typename _Alloc = allocator<_Tp> >
class list : protected _List_base<_Tp, _Alloc>
{
// concept requirements
__glibcpp_class_requires(_Tp, _SGIAssignableConcept)
typedef _List_base<_Tp, _Alloc> _Base;
protected:
typedef void* _Void_pointer;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef _List_node<_Tp> _Node;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
typedef _List_iterator<_Tp,_Tp&,_Tp*> iterator;
typedef _List_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
protected:
using _Base::_M_node;
using _Base::_M_put_node;
using _Base::_M_get_node;
protected:
_Node*
_M_create_node(const _Tp& __x)
{
_Node* __p = _M_get_node();
try {
_Construct(&__p->_M_data, __x);
}
catch(...)
{
_M_put_node(__p);
__throw_exception_again;
}
return __p;
}
_Node*
_M_create_node()
{
_Node* __p = _M_get_node();
try {
_Construct(&__p->_M_data);
}
catch(...)
{
_M_put_node(__p);
__throw_exception_again;
}
return __p;
}
public:
allocator_type
get_allocator() const
{ return _Base::get_allocator(); }
explicit
list(const allocator_type& __a = allocator_type())
: _Base(__a)
{ }
iterator
begin()
{ return static_cast<_Node*>(_M_node->_M_next); }
const_iterator
begin() const
{ return static_cast<_Node*>(_M_node->_M_next); }
iterator
end()
{ return _M_node; }
const_iterator
end() const
{ return _M_node; }
reverse_iterator
rbegin()
{ return reverse_iterator(end()); }
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(end()); }
reverse_iterator
rend()
{ return reverse_iterator(begin()); }
const_reverse_iterator
rend() const
{ return const_reverse_iterator(begin()); }
bool
empty() const
{ return _M_node->_M_next == _M_node; }
size_type
size() const
{ return distance(begin(), end()); }
size_type
max_size() const
{ return size_type(-1); }
reference
front()
{ return *begin(); }
const_reference
front() const
{ return *begin(); }
reference
back()
{ return *(--end()); }
const_reference
back() const
{ return *(--end()); }
void
swap(list<_Tp, _Alloc>& __x)
{ std::swap(_M_node, __x._M_node); }
iterator
insert(iterator __position, const _Tp& __x)
{
_Node* __tmp = _M_create_node(__x);
__tmp->_M_next = __position._M_node;
__tmp->_M_prev = __position._M_node->_M_prev;
__position._M_node->_M_prev->_M_next = __tmp;
__position._M_node->_M_prev = __tmp;
return __tmp;
}
iterator
insert(iterator __position)
{ return insert(__position, _Tp()); }
// Check whether it's an integral type. If so, it's not an iterator.
template<typename _Integer>
void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x, __true_type)
{ _M_fill_insert(__pos, (size_type) __n, (_Tp) __x); }
template<typename _InputIterator>
void
_M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type);
template<typename _InputIterator>
void
insert(iterator __pos, _InputIterator __first, _InputIterator __last)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
}
void
insert(iterator __pos, size_type __n, const _Tp& __x)
{ _M_fill_insert(__pos, __n, __x); }
void
_M_fill_insert(iterator __pos, size_type __n, const _Tp& __x);
void
push_front(const _Tp& __x)
{ insert(begin(), __x); }
void
push_front()
{ insert(begin()); }
void
push_back(const _Tp& __x)
{ insert(end(), __x); }
void
push_back()
{ insert(end()); }
iterator
erase(iterator __position)
{
_List_node_base* __next_node = __position._M_node->_M_next;
_List_node_base* __prev_node = __position._M_node->_M_prev;
_Node* __n = static_cast<_Node*>(__position._M_node);
__prev_node->_M_next = __next_node;
__next_node->_M_prev = __prev_node;
_Destroy(&__n->_M_data);
_M_put_node(__n);
return iterator(static_cast<_Node*>(__next_node));
}
iterator
erase(iterator __first, iterator __last);
void
clear()
{ _Base::clear(); }
void
resize(size_type __new_size, const _Tp& __x);
void
resize(size_type __new_size)
{ this->resize(__new_size, _Tp()); }
void
pop_front()
{ erase(begin()); }
void
pop_back()
{
iterator __tmp = end();
erase(--__tmp);
}
list(size_type __n, const _Tp& __value,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ insert(begin(), __n, __value); }
explicit
list(size_type __n)
: _Base(allocator_type())
{ insert(begin(), __n, _Tp()); }
// We don't need any dispatching tricks here, because insert does all of
// that anyway.
template<typename _InputIterator>
list(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{ insert(begin(), __first, __last); }
list(const list<_Tp, _Alloc>& __x)
: _Base(__x.get_allocator())
{ insert(begin(), __x.begin(), __x.end()); }
~list()
{ }
list<_Tp, _Alloc>&
operator=(const list<_Tp, _Alloc>& __x);
public:
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
void
assign(size_type __n, const _Tp& __val)
{ _M_fill_assign(__n, __val); }
void
_M_fill_assign(size_type __n, const _Tp& __val);
template<typename _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
template<typename _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
template<typename _InputIterator>
void
_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type);
protected:
void
_M_transfer(iterator __position, iterator __first, iterator __last)
{
if (__position != __last) {
// Remove [first, last) from its old position.
__last._M_node->_M_prev->_M_next = __position._M_node;
__first._M_node->_M_prev->_M_next = __last._M_node;
__position._M_node->_M_prev->_M_next = __first._M_node;
// Splice [first, last) into its new position.
_List_node_base* __tmp = __position._M_node->_M_prev;
__position._M_node->_M_prev = __last._M_node->_M_prev;
__last._M_node->_M_prev = __first._M_node->_M_prev;
__first._M_node->_M_prev = __tmp;
}
}
public:
void
splice(iterator __position, list& __x)
{
if (!__x.empty())
this->_M_transfer(__position, __x.begin(), __x.end());
}
void
splice(iterator __position, list&, iterator __i)
{
iterator __j = __i;
++__j;
if (__position == __i || __position == __j) return;
this->_M_transfer(__position, __i, __j);
}
void
splice(iterator __position, list&, iterator __first, iterator __last)
{
if (__first != __last)
this->_M_transfer(__position, __first, __last);
}
void
remove(const _Tp& __value);
void
unique();
void
merge(list& __x);
void
reverse();
void
sort();
template<typename _Predicate>
void
remove_if(_Predicate);
template<typename _BinaryPredicate>
void
unique(_BinaryPredicate);
template<typename _StrictWeakOrdering>
void
merge(list&, _StrictWeakOrdering);
template<typename _StrictWeakOrdering>
void
sort(_StrictWeakOrdering);
};
template<typename _Tp, typename _Alloc>
inline bool
operator==(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{
typedef typename list<_Tp,_Alloc>::const_iterator const_iterator;
const_iterator __end1 = __x.end();
const_iterator __end2 = __y.end();
const_iterator __i1 = __x.begin();
const_iterator __i2 = __y.begin();
while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
++__i1;
++__i2;
}
return __i1 == __end1 && __i2 == __end2;
}
template<typename _Tp, typename _Alloc>
inline bool
operator<(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
template<typename _Tp, typename _Alloc>
inline bool
operator!=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{ return !(__x == __y); }
template<typename _Tp, typename _Alloc>
inline bool
operator>(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{ return __y < __x; }
template<typename _Tp, typename _Alloc>
inline bool
operator<=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{ return !(__y < __x); }
template<typename _Tp, typename _Alloc>
inline bool
operator>=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
{ return !(__x < __y); }
template<typename _Tp, typename _Alloc>
inline void
swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
{ __x.swap(__y); }
// move these to stl_list.tcc
template<typename _Tp, typename _Alloc>
void _List_base<_Tp,_Alloc>::
clear()
{
_List_node<_Tp>* __cur = static_cast<_List_node<_Tp>*>(_M_node->_M_next);
while (__cur != _M_node) {
_List_node<_Tp>* __tmp = __cur;
__cur = static_cast<_List_node<_Tp>*>(__cur->_M_next);
_Destroy(&__tmp->_M_data);
_M_put_node(__tmp);
}
_M_node->_M_next = _M_node;
_M_node->_M_prev = _M_node;
}
template<typename _Tp, typename _Alloc>
template <typename _InputIter>
void list<_Tp, _Alloc>::
_M_insert_dispatch(iterator __position, _InputIter __first, _InputIter __last,
__false_type)
{
for ( ; __first != __last; ++__first)
insert(__position, *__first);
}
template<typename _Tp, typename _Alloc>
void list<_Tp, _Alloc>::
_M_fill_insert(iterator __position, size_type __n, const _Tp& __x)
{
for ( ; __n > 0; --__n)
insert(__position, __x);
}
template<typename _Tp, typename _Alloc>
typename list<_Tp,_Alloc>::iterator list<_Tp, _Alloc>::
erase(iterator __first, iterator __last)
{
while (__first != __last)
erase(__first++);
return __last;
}
template<typename _Tp, typename _Alloc>
void list<_Tp, _Alloc>::
resize(size_type __new_size, const _Tp& __x)
{
iterator __i = begin();
size_type __len = 0;
for ( ; __i != end() && __len < __new_size; ++__i, ++__len)
;
if (__len == __new_size)
erase(__i, end());
else // __i == end()
insert(end(), __new_size - __len, __x);
}
template<typename _Tp, typename _Alloc>
list<_Tp, _Alloc>& list<_Tp, _Alloc>::
operator=(const list<_Tp, _Alloc>& __x)
{
if (this != &__x) {
iterator __first1 = begin();
iterator __last1 = end();
const_iterator __first2 = __x.begin();
const_iterator __last2 = __x.end();
while (__first1 != __last1 && __first2 != __last2)
*__first1++ = *__first2++;
if (__first2 == __last2)
erase(__first1, __last1);
else
insert(__last1, __first2, __last2);
}
return *this;
}
template<typename _Tp, typename _Alloc>
void list<_Tp, _Alloc>::
_M_fill_assign(size_type __n, const _Tp& __val) {
iterator __i = begin();
for ( ; __i != end() && __n > 0; ++__i, --__n)
*__i = __val;
if (__n > 0)
insert(end(), __n, __val);
else
erase(__i, end());
}
template<typename _Tp, typename _Alloc>
template <typename _InputIter>
void list<_Tp, _Alloc>::
_M_assign_dispatch(_InputIter __first2, _InputIter __last2, __false_type)
{
iterator __first1 = begin();
iterator __last1 = end();
for ( ; __first1 != __last1 && __first2 != __last2; ++__first1, ++__first2)
*__first1 = *__first2;
if (__first2 == __last2)
erase(__first1, __last1);
else
insert(__last1, __first2, __last2);
}
template<typename _Tp, typename _Alloc>
void list<_Tp, _Alloc>::
remove(const _Tp& __value)
{
iterator __first = begin();
iterator __last = end();
while (__first != __last) {
iterator __next = __first;
++__next;
if (*__first == __value) erase(__first);
__first = __next;
}
}
template<typename _Tp, typename _Alloc>
void list<_Tp, _Alloc>::
unique()
{
iterator __first = begin();
iterator __last = end();
if (__first == __last) return;
iterator __next = __first;
while (++__next != __last) {
if (*__first == *__next)
erase(__next);
else
__first = __next;
__next = __first;
}
}
template<typename _Tp, typename _Alloc>
void list<_Tp, _Alloc>::
merge(list<_Tp, _Alloc>& __x)
{
iterator __first1 = begin();
iterator __last1 = end();
iterator __first2 = __x.begin();
iterator __last2 = __x.end();
while (__first1 != __last1 && __first2 != __last2)
if (*__first2 < *__first1) {
iterator __next = __first2;
_M_transfer(__first1, __first2, ++__next);
__first2 = __next;
}
else
++__first1;
if (__first2 != __last2) _M_transfer(__last1, __first2, __last2);
}
inline void
__List_base_reverse(_List_node_base* __p)
{
_List_node_base* __tmp = __p;
do {
std::swap(__tmp->_M_next, __tmp->_M_prev);
__tmp = __tmp->_M_prev; // Old next node is now prev.
} while (__tmp != __p);
}
template<typename _Tp, typename _Alloc>
inline void list<_Tp, _Alloc>::
reverse()
{ __List_base_reverse(this->_M_node); }
template<typename _Tp, typename _Alloc>
void list<_Tp, _Alloc>::
sort()
{
// Do nothing if the list has length 0 or 1.
if (_M_node->_M_next != _M_node && _M_node->_M_next->_M_next != _M_node) {
list<_Tp, _Alloc> __carry;
list<_Tp, _Alloc> __counter[64];
int __fill = 0;
while (!empty()) {
__carry.splice(__carry.begin(), *this, begin());
int __i = 0;
while(__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry);
__carry.swap(__counter[__i++]);
}
__carry.swap(__counter[__i]);
if (__i == __fill) ++__fill;
}
for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1]);
swap(__counter[__fill-1]);
}
}
template<typename _Tp, typename _Alloc>
template <typename _Predicate>
void list<_Tp, _Alloc>::
remove_if(_Predicate __pred)
{
iterator __first = begin();
iterator __last = end();
while (__first != __last) {
iterator __next = __first;
++__next;
if (__pred(*__first)) erase(__first);
__first = __next;
}
}
template<typename _Tp, typename _Alloc>
template <typename _BinaryPredicate>
void list<_Tp, _Alloc>::
unique(_BinaryPredicate __binary_pred)
{
iterator __first = begin();
iterator __last = end();
if (__first == __last) return;
iterator __next = __first;
while (++__next != __last) {
if (__binary_pred(*__first, *__next))
erase(__next);
else
__first = __next;
__next = __first;
}
}
template<typename _Tp, typename _Alloc>
template <typename _StrictWeakOrdering>
void list<_Tp, _Alloc>::
merge(list<_Tp, _Alloc>& __x, _StrictWeakOrdering __comp)
{
iterator __first1 = begin();
iterator __last1 = end();
iterator __first2 = __x.begin();
iterator __last2 = __x.end();
while (__first1 != __last1 && __first2 != __last2)
if (__comp(*__first2, *__first1)) {
iterator __next = __first2;
_M_transfer(__first1, __first2, ++__next);
__first2 = __next;
}
else
++__first1;
if (__first2 != __last2) _M_transfer(__last1, __first2, __last2);
}
template<typename _Tp, typename _Alloc>
template <typename _StrictWeakOrdering>
void list<_Tp, _Alloc>::
sort(_StrictWeakOrdering __comp)
{
// Do nothing if the list has length 0 or 1.
if (_M_node->_M_next != _M_node && _M_node->_M_next->_M_next != _M_node) {
list<_Tp, _Alloc> __carry;
list<_Tp, _Alloc> __counter[64];
int __fill = 0;
while (!empty()) {
__carry.splice(__carry.begin(), *this, begin());
int __i = 0;
while(__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry, __comp);
__carry.swap(__counter[__i++]);
}
__carry.swap(__counter[__i]);
if (__i == __fill) ++__fill;
}
for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1], __comp);
swap(__counter[__fill-1]);
}
}
} // namespace std
#endif /* __GLIBCPP_INTERNAL_LIST_H */
// vi:set ts=2 sw=2:
// Local Variables:
// mode:C++
// End: