4a669ac359
* tree-vrp.c (vrp_int_const_binop): Change overflow type to overflow_type. (combine_bound): Use wide-int overflow calculation instead of rolling our own. * calls.c (maybe_warn_alloc_args_overflow): Change overflow type to overflow_type. * fold-const.c (int_const_binop_2): Same. (extract_muldiv_1): Same. (fold_div_compare): Same. (fold_abs_const): Same. * match.pd: Same. * poly-int.h (add): Same. (sub): Same. (neg): Same. (mul): Same. * predict.c (predict_iv_comparison): Same. * profile-count.c (slow_safe_scale_64bit): Same. * simplify-rtx.c (simplify_const_binary_operation): Same. * tree-chrec.c (tree_fold_binomial): Same. * tree-data-ref.c (split_constant_offset_1): Same. * tree-if-conv.c (idx_within_array_bound): Same. * tree-scalar-evolution.c (iv_can_overflow_p): Same. * tree-ssa-phiopt.c (minmax_replacement): Same. * tree-vect-loop.c (is_nonwrapping_integer_induction): Same. * tree-vect-stmts.c (vect_truncate_gather_scatter_offset): Same. * vr-values.c (vr_values::adjust_range_with_scev): Same. * wide-int.cc (wi::add_large): Same. (wi::mul_internal): Same. (wi::sub_large): Same. (wi::divmod_internal): Same. * wide-int.h: Change overflow type to overflow_type for neg, add, mul, smul, umul, div_trunc, div_floor, div_ceil, div_round, mod_trunc, mod_ceil, mod_round, add_large, sub_large, mul_internal, divmod_internal. (overflow_type): New enum. (accumulate_overflow): New. cp/ * decl.c (build_enumerator): Change overflow type to overflow_type. * init.c (build_new_1): Same. From-SVN: r262494
8984 lines
296 KiB
C
8984 lines
296 KiB
C
/* Loop Vectorization
|
|
Copyright (C) 2003-2018 Free Software Foundation, Inc.
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com> and
|
|
Ira Rosen <irar@il.ibm.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "target.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "cfghooks.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "optabs-tree.h"
|
|
#include "diagnostic-core.h"
|
|
#include "fold-const.h"
|
|
#include "stor-layout.h"
|
|
#include "cfganal.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimplify-me.h"
|
|
#include "tree-ssa-loop-ivopts.h"
|
|
#include "tree-ssa-loop-manip.h"
|
|
#include "tree-ssa-loop-niter.h"
|
|
#include "tree-ssa-loop.h"
|
|
#include "cfgloop.h"
|
|
#include "params.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "tree-vectorizer.h"
|
|
#include "gimple-fold.h"
|
|
#include "cgraph.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-if-conv.h"
|
|
#include "internal-fn.h"
|
|
#include "tree-vector-builder.h"
|
|
#include "vec-perm-indices.h"
|
|
#include "tree-eh.h"
|
|
|
|
/* Loop Vectorization Pass.
|
|
|
|
This pass tries to vectorize loops.
|
|
|
|
For example, the vectorizer transforms the following simple loop:
|
|
|
|
short a[N]; short b[N]; short c[N]; int i;
|
|
|
|
for (i=0; i<N; i++){
|
|
a[i] = b[i] + c[i];
|
|
}
|
|
|
|
as if it was manually vectorized by rewriting the source code into:
|
|
|
|
typedef int __attribute__((mode(V8HI))) v8hi;
|
|
short a[N]; short b[N]; short c[N]; int i;
|
|
v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
|
|
v8hi va, vb, vc;
|
|
|
|
for (i=0; i<N/8; i++){
|
|
vb = pb[i];
|
|
vc = pc[i];
|
|
va = vb + vc;
|
|
pa[i] = va;
|
|
}
|
|
|
|
The main entry to this pass is vectorize_loops(), in which
|
|
the vectorizer applies a set of analyses on a given set of loops,
|
|
followed by the actual vectorization transformation for the loops that
|
|
had successfully passed the analysis phase.
|
|
Throughout this pass we make a distinction between two types of
|
|
data: scalars (which are represented by SSA_NAMES), and memory references
|
|
("data-refs"). These two types of data require different handling both
|
|
during analysis and transformation. The types of data-refs that the
|
|
vectorizer currently supports are ARRAY_REFS which base is an array DECL
|
|
(not a pointer), and INDIRECT_REFS through pointers; both array and pointer
|
|
accesses are required to have a simple (consecutive) access pattern.
|
|
|
|
Analysis phase:
|
|
===============
|
|
The driver for the analysis phase is vect_analyze_loop().
|
|
It applies a set of analyses, some of which rely on the scalar evolution
|
|
analyzer (scev) developed by Sebastian Pop.
|
|
|
|
During the analysis phase the vectorizer records some information
|
|
per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
|
|
loop, as well as general information about the loop as a whole, which is
|
|
recorded in a "loop_vec_info" struct attached to each loop.
|
|
|
|
Transformation phase:
|
|
=====================
|
|
The loop transformation phase scans all the stmts in the loop, and
|
|
creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
|
|
the loop that needs to be vectorized. It inserts the vector code sequence
|
|
just before the scalar stmt S, and records a pointer to the vector code
|
|
in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
|
|
attached to S). This pointer will be used for the vectorization of following
|
|
stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
|
|
otherwise, we rely on dead code elimination for removing it.
|
|
|
|
For example, say stmt S1 was vectorized into stmt VS1:
|
|
|
|
VS1: vb = px[i];
|
|
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
|
|
S2: a = b;
|
|
|
|
To vectorize stmt S2, the vectorizer first finds the stmt that defines
|
|
the operand 'b' (S1), and gets the relevant vector def 'vb' from the
|
|
vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
|
|
resulting sequence would be:
|
|
|
|
VS1: vb = px[i];
|
|
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
|
|
VS2: va = vb;
|
|
S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
|
|
|
|
Operands that are not SSA_NAMEs, are data-refs that appear in
|
|
load/store operations (like 'x[i]' in S1), and are handled differently.
|
|
|
|
Target modeling:
|
|
=================
|
|
Currently the only target specific information that is used is the
|
|
size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
|
|
Targets that can support different sizes of vectors, for now will need
|
|
to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
|
|
flexibility will be added in the future.
|
|
|
|
Since we only vectorize operations which vector form can be
|
|
expressed using existing tree codes, to verify that an operation is
|
|
supported, the vectorizer checks the relevant optab at the relevant
|
|
machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
|
|
the value found is CODE_FOR_nothing, then there's no target support, and
|
|
we can't vectorize the stmt.
|
|
|
|
For additional information on this project see:
|
|
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
|
|
*/
|
|
|
|
static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
|
|
|
|
/* Subroutine of vect_determine_vf_for_stmt that handles only one
|
|
statement. VECTYPE_MAYBE_SET_P is true if STMT_VINFO_VECTYPE
|
|
may already be set for general statements (not just data refs). */
|
|
|
|
static bool
|
|
vect_determine_vf_for_stmt_1 (stmt_vec_info stmt_info,
|
|
bool vectype_maybe_set_p,
|
|
poly_uint64 *vf,
|
|
vec<stmt_vec_info > *mask_producers)
|
|
{
|
|
gimple *stmt = stmt_info->stmt;
|
|
|
|
if ((!STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
|| gimple_clobber_p (stmt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
|
|
return true;
|
|
}
|
|
|
|
tree stmt_vectype, nunits_vectype;
|
|
if (!vect_get_vector_types_for_stmt (stmt_info, &stmt_vectype,
|
|
&nunits_vectype))
|
|
return false;
|
|
|
|
if (stmt_vectype)
|
|
{
|
|
if (STMT_VINFO_VECTYPE (stmt_info))
|
|
/* The only case when a vectype had been already set is for stmts
|
|
that contain a data ref, or for "pattern-stmts" (stmts generated
|
|
by the vectorizer to represent/replace a certain idiom). */
|
|
gcc_assert ((STMT_VINFO_DATA_REF (stmt_info)
|
|
|| vectype_maybe_set_p)
|
|
&& STMT_VINFO_VECTYPE (stmt_info) == stmt_vectype);
|
|
else if (stmt_vectype == boolean_type_node)
|
|
mask_producers->safe_push (stmt_info);
|
|
else
|
|
STMT_VINFO_VECTYPE (stmt_info) = stmt_vectype;
|
|
}
|
|
|
|
if (nunits_vectype)
|
|
vect_update_max_nunits (vf, nunits_vectype);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Subroutine of vect_determine_vectorization_factor. Set the vector
|
|
types of STMT_INFO and all attached pattern statements and update
|
|
the vectorization factor VF accordingly. If some of the statements
|
|
produce a mask result whose vector type can only be calculated later,
|
|
add them to MASK_PRODUCERS. Return true on success or false if
|
|
something prevented vectorization. */
|
|
|
|
static bool
|
|
vect_determine_vf_for_stmt (stmt_vec_info stmt_info, poly_uint64 *vf,
|
|
vec<stmt_vec_info > *mask_producers)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt_info->stmt, 0);
|
|
}
|
|
if (!vect_determine_vf_for_stmt_1 (stmt_info, false, vf, mask_producers))
|
|
return false;
|
|
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
|
&& STMT_VINFO_RELATED_STMT (stmt_info))
|
|
{
|
|
gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
|
|
stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
|
|
|
|
/* If a pattern statement has def stmts, analyze them too. */
|
|
for (gimple_stmt_iterator si = gsi_start (pattern_def_seq);
|
|
!gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
stmt_vec_info def_stmt_info = vinfo_for_stmt (gsi_stmt (si));
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"==> examining pattern def stmt: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
|
|
def_stmt_info->stmt, 0);
|
|
}
|
|
if (!vect_determine_vf_for_stmt_1 (def_stmt_info, true,
|
|
vf, mask_producers))
|
|
return false;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"==> examining pattern statement: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt_info->stmt, 0);
|
|
}
|
|
if (!vect_determine_vf_for_stmt_1 (stmt_info, true, vf, mask_producers))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function vect_determine_vectorization_factor
|
|
|
|
Determine the vectorization factor (VF). VF is the number of data elements
|
|
that are operated upon in parallel in a single iteration of the vectorized
|
|
loop. For example, when vectorizing a loop that operates on 4byte elements,
|
|
on a target with vector size (VS) 16byte, the VF is set to 4, since 4
|
|
elements can fit in a single vector register.
|
|
|
|
We currently support vectorization of loops in which all types operated upon
|
|
are of the same size. Therefore this function currently sets VF according to
|
|
the size of the types operated upon, and fails if there are multiple sizes
|
|
in the loop.
|
|
|
|
VF is also the factor by which the loop iterations are strip-mined, e.g.:
|
|
original loop:
|
|
for (i=0; i<N; i++){
|
|
a[i] = b[i] + c[i];
|
|
}
|
|
|
|
vectorized loop:
|
|
for (i=0; i<N; i+=VF){
|
|
a[i:VF] = b[i:VF] + c[i:VF];
|
|
}
|
|
*/
|
|
|
|
static bool
|
|
vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
unsigned nbbs = loop->num_nodes;
|
|
poly_uint64 vectorization_factor = 1;
|
|
tree scalar_type = NULL_TREE;
|
|
gphi *phi;
|
|
tree vectype;
|
|
stmt_vec_info stmt_info;
|
|
unsigned i;
|
|
auto_vec<stmt_vec_info> mask_producers;
|
|
|
|
DUMP_VECT_SCOPE ("vect_determine_vectorization_factor");
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
phi = si.phi ();
|
|
stmt_info = vinfo_for_stmt (phi);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
|
|
}
|
|
|
|
gcc_assert (stmt_info);
|
|
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info)
|
|
|| STMT_VINFO_LIVE_P (stmt_info))
|
|
{
|
|
gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
|
|
scalar_type = TREE_TYPE (PHI_RESULT (phi));
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"get vectype for scalar type: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
|
if (!vectype)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: unsupported "
|
|
"data-type ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
|
|
scalar_type);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return false;
|
|
}
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype;
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "nunits = ");
|
|
dump_dec (MSG_NOTE, TYPE_VECTOR_SUBPARTS (vectype));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
vect_update_max_nunits (&vectorization_factor, vectype);
|
|
}
|
|
}
|
|
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
stmt_info = vinfo_for_stmt (gsi_stmt (si));
|
|
if (!vect_determine_vf_for_stmt (stmt_info, &vectorization_factor,
|
|
&mask_producers))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* TODO: Analyze cost. Decide if worth while to vectorize. */
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = ");
|
|
dump_dec (MSG_NOTE, vectorization_factor);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
if (known_le (vectorization_factor, 1U))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: unsupported data-type\n");
|
|
return false;
|
|
}
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
|
|
|
|
for (i = 0; i < mask_producers.length (); i++)
|
|
{
|
|
stmt_info = mask_producers[i];
|
|
tree mask_type = vect_get_mask_type_for_stmt (stmt_info);
|
|
if (!mask_type)
|
|
return false;
|
|
STMT_VINFO_VECTYPE (stmt_info) = mask_type;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_is_simple_iv_evolution.
|
|
|
|
FORNOW: A simple evolution of an induction variables in the loop is
|
|
considered a polynomial evolution. */
|
|
|
|
static bool
|
|
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
|
|
tree * step)
|
|
{
|
|
tree init_expr;
|
|
tree step_expr;
|
|
tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
|
|
basic_block bb;
|
|
|
|
/* When there is no evolution in this loop, the evolution function
|
|
is not "simple". */
|
|
if (evolution_part == NULL_TREE)
|
|
return false;
|
|
|
|
/* When the evolution is a polynomial of degree >= 2
|
|
the evolution function is not "simple". */
|
|
if (tree_is_chrec (evolution_part))
|
|
return false;
|
|
|
|
step_expr = evolution_part;
|
|
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "step: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
|
|
dump_printf (MSG_NOTE, ", init: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
*init = init_expr;
|
|
*step = step_expr;
|
|
|
|
if (TREE_CODE (step_expr) != INTEGER_CST
|
|
&& (TREE_CODE (step_expr) != SSA_NAME
|
|
|| ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
|
|
&& flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
|
|
|| (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
|
|
&& (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
|
|
|| !flag_associative_math)))
|
|
&& (TREE_CODE (step_expr) != REAL_CST
|
|
|| !flag_associative_math))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"step unknown.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function vect_analyze_scalar_cycles_1.
|
|
|
|
Examine the cross iteration def-use cycles of scalar variables
|
|
in LOOP. LOOP_VINFO represents the loop that is now being
|
|
considered for vectorization (can be LOOP, or an outer-loop
|
|
enclosing LOOP). */
|
|
|
|
static void
|
|
vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
|
|
{
|
|
basic_block bb = loop->header;
|
|
tree init, step;
|
|
auto_vec<gimple *, 64> worklist;
|
|
gphi_iterator gsi;
|
|
bool double_reduc;
|
|
|
|
DUMP_VECT_SCOPE ("vect_analyze_scalar_cycles");
|
|
|
|
/* First - identify all inductions. Reduction detection assumes that all the
|
|
inductions have been identified, therefore, this order must not be
|
|
changed. */
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gphi *phi = gsi.phi ();
|
|
tree access_fn = NULL;
|
|
tree def = PHI_RESULT (phi);
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
|
|
}
|
|
|
|
/* Skip virtual phi's. The data dependences that are associated with
|
|
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
|
|
if (virtual_operand_p (def))
|
|
continue;
|
|
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
|
|
|
|
/* Analyze the evolution function. */
|
|
access_fn = analyze_scalar_evolution (loop, def);
|
|
if (access_fn)
|
|
{
|
|
STRIP_NOPS (access_fn);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Access function of PHI: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
|
|
= initial_condition_in_loop_num (access_fn, loop->num);
|
|
STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
|
|
= evolution_part_in_loop_num (access_fn, loop->num);
|
|
}
|
|
|
|
if (!access_fn
|
|
|| !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
|
|
|| (LOOP_VINFO_LOOP (loop_vinfo) != loop
|
|
&& TREE_CODE (step) != INTEGER_CST))
|
|
{
|
|
worklist.safe_push (phi);
|
|
continue;
|
|
}
|
|
|
|
gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
|
|
!= NULL_TREE);
|
|
gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
|
|
}
|
|
|
|
|
|
/* Second - identify all reductions and nested cycles. */
|
|
while (worklist.length () > 0)
|
|
{
|
|
gimple *phi = worklist.pop ();
|
|
tree def = PHI_RESULT (phi);
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
|
|
gimple *reduc_stmt;
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
|
|
}
|
|
|
|
gcc_assert (!virtual_operand_p (def)
|
|
&& STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
|
|
|
|
reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi,
|
|
&double_reduc, false);
|
|
if (reduc_stmt)
|
|
{
|
|
if (double_reduc)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Detected double reduction.\n");
|
|
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
|
|
vect_double_reduction_def;
|
|
}
|
|
else
|
|
{
|
|
if (loop != LOOP_VINFO_LOOP (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Detected vectorizable nested cycle.\n");
|
|
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
|
|
vect_nested_cycle;
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Detected reduction.\n");
|
|
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
|
|
vect_reduction_def;
|
|
/* Store the reduction cycles for possible vectorization in
|
|
loop-aware SLP if it was not detected as reduction
|
|
chain. */
|
|
if (! REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (reduc_stmt)))
|
|
LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Unknown def-use cycle pattern.\n");
|
|
}
|
|
}
|
|
|
|
|
|
/* Function vect_analyze_scalar_cycles.
|
|
|
|
Examine the cross iteration def-use cycles of scalar variables, by
|
|
analyzing the loop-header PHIs of scalar variables. Classify each
|
|
cycle as one of the following: invariant, induction, reduction, unknown.
|
|
We do that for the loop represented by LOOP_VINFO, and also to its
|
|
inner-loop, if exists.
|
|
Examples for scalar cycles:
|
|
|
|
Example1: reduction:
|
|
|
|
loop1:
|
|
for (i=0; i<N; i++)
|
|
sum += a[i];
|
|
|
|
Example2: induction:
|
|
|
|
loop2:
|
|
for (i=0; i<N; i++)
|
|
a[i] = i; */
|
|
|
|
static void
|
|
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
|
|
|
|
/* When vectorizing an outer-loop, the inner-loop is executed sequentially.
|
|
Reductions in such inner-loop therefore have different properties than
|
|
the reductions in the nest that gets vectorized:
|
|
1. When vectorized, they are executed in the same order as in the original
|
|
scalar loop, so we can't change the order of computation when
|
|
vectorizing them.
|
|
2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
|
|
current checks are too strict. */
|
|
|
|
if (loop->inner)
|
|
vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
|
|
}
|
|
|
|
/* Transfer group and reduction information from STMT to its pattern stmt. */
|
|
|
|
static void
|
|
vect_fixup_reduc_chain (gimple *stmt)
|
|
{
|
|
gimple *firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
|
|
gimple *stmtp;
|
|
gcc_assert (!REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
|
|
&& REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
|
|
REDUC_GROUP_SIZE (vinfo_for_stmt (firstp))
|
|
= REDUC_GROUP_SIZE (vinfo_for_stmt (stmt));
|
|
do
|
|
{
|
|
stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
|
|
REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
|
|
stmt = REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
|
|
if (stmt)
|
|
REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
|
|
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
|
|
}
|
|
while (stmt);
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
|
|
}
|
|
|
|
/* Fixup scalar cycles that now have their stmts detected as patterns. */
|
|
|
|
static void
|
|
vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
|
|
{
|
|
gimple *first;
|
|
unsigned i;
|
|
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
|
|
if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
|
|
{
|
|
gimple *next = REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
|
|
while (next)
|
|
{
|
|
if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next)))
|
|
break;
|
|
next = REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
|
|
}
|
|
/* If not all stmt in the chain are patterns try to handle
|
|
the chain without patterns. */
|
|
if (! next)
|
|
{
|
|
vect_fixup_reduc_chain (first);
|
|
LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
|
|
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Function vect_get_loop_niters.
|
|
|
|
Determine how many iterations the loop is executed and place it
|
|
in NUMBER_OF_ITERATIONS. Place the number of latch iterations
|
|
in NUMBER_OF_ITERATIONSM1. Place the condition under which the
|
|
niter information holds in ASSUMPTIONS.
|
|
|
|
Return the loop exit condition. */
|
|
|
|
|
|
static gcond *
|
|
vect_get_loop_niters (struct loop *loop, tree *assumptions,
|
|
tree *number_of_iterations, tree *number_of_iterationsm1)
|
|
{
|
|
edge exit = single_exit (loop);
|
|
struct tree_niter_desc niter_desc;
|
|
tree niter_assumptions, niter, may_be_zero;
|
|
gcond *cond = get_loop_exit_condition (loop);
|
|
|
|
*assumptions = boolean_true_node;
|
|
*number_of_iterationsm1 = chrec_dont_know;
|
|
*number_of_iterations = chrec_dont_know;
|
|
DUMP_VECT_SCOPE ("get_loop_niters");
|
|
|
|
if (!exit)
|
|
return cond;
|
|
|
|
niter = chrec_dont_know;
|
|
may_be_zero = NULL_TREE;
|
|
niter_assumptions = boolean_true_node;
|
|
if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
|
|
|| chrec_contains_undetermined (niter_desc.niter))
|
|
return cond;
|
|
|
|
niter_assumptions = niter_desc.assumptions;
|
|
may_be_zero = niter_desc.may_be_zero;
|
|
niter = niter_desc.niter;
|
|
|
|
if (may_be_zero && integer_zerop (may_be_zero))
|
|
may_be_zero = NULL_TREE;
|
|
|
|
if (may_be_zero)
|
|
{
|
|
if (COMPARISON_CLASS_P (may_be_zero))
|
|
{
|
|
/* Try to combine may_be_zero with assumptions, this can simplify
|
|
computation of niter expression. */
|
|
if (niter_assumptions && !integer_nonzerop (niter_assumptions))
|
|
niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
|
niter_assumptions,
|
|
fold_build1 (TRUTH_NOT_EXPR,
|
|
boolean_type_node,
|
|
may_be_zero));
|
|
else
|
|
niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
|
|
build_int_cst (TREE_TYPE (niter), 0),
|
|
rewrite_to_non_trapping_overflow (niter));
|
|
|
|
may_be_zero = NULL_TREE;
|
|
}
|
|
else if (integer_nonzerop (may_be_zero))
|
|
{
|
|
*number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
|
|
*number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
|
|
return cond;
|
|
}
|
|
else
|
|
return cond;
|
|
}
|
|
|
|
*assumptions = niter_assumptions;
|
|
*number_of_iterationsm1 = niter;
|
|
|
|
/* We want the number of loop header executions which is the number
|
|
of latch executions plus one.
|
|
??? For UINT_MAX latch executions this number overflows to zero
|
|
for loops like do { n++; } while (n != 0); */
|
|
if (niter && !chrec_contains_undetermined (niter))
|
|
niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
|
|
build_int_cst (TREE_TYPE (niter), 1));
|
|
*number_of_iterations = niter;
|
|
|
|
return cond;
|
|
}
|
|
|
|
/* Function bb_in_loop_p
|
|
|
|
Used as predicate for dfs order traversal of the loop bbs. */
|
|
|
|
static bool
|
|
bb_in_loop_p (const_basic_block bb, const void *data)
|
|
{
|
|
const struct loop *const loop = (const struct loop *)data;
|
|
if (flow_bb_inside_loop_p (loop, bb))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Create and initialize a new loop_vec_info struct for LOOP_IN, as well as
|
|
stmt_vec_info structs for all the stmts in LOOP_IN. */
|
|
|
|
_loop_vec_info::_loop_vec_info (struct loop *loop_in, vec_info_shared *shared)
|
|
: vec_info (vec_info::loop, init_cost (loop_in), shared),
|
|
loop (loop_in),
|
|
bbs (XCNEWVEC (basic_block, loop->num_nodes)),
|
|
num_itersm1 (NULL_TREE),
|
|
num_iters (NULL_TREE),
|
|
num_iters_unchanged (NULL_TREE),
|
|
num_iters_assumptions (NULL_TREE),
|
|
th (0),
|
|
versioning_threshold (0),
|
|
vectorization_factor (0),
|
|
max_vectorization_factor (0),
|
|
mask_skip_niters (NULL_TREE),
|
|
mask_compare_type (NULL_TREE),
|
|
unaligned_dr (NULL),
|
|
peeling_for_alignment (0),
|
|
ptr_mask (0),
|
|
ivexpr_map (NULL),
|
|
slp_unrolling_factor (1),
|
|
single_scalar_iteration_cost (0),
|
|
vectorizable (false),
|
|
can_fully_mask_p (true),
|
|
fully_masked_p (false),
|
|
peeling_for_gaps (false),
|
|
peeling_for_niter (false),
|
|
operands_swapped (false),
|
|
no_data_dependencies (false),
|
|
has_mask_store (false),
|
|
scalar_loop (NULL),
|
|
orig_loop_info (NULL)
|
|
{
|
|
/* Create/Update stmt_info for all stmts in the loop. */
|
|
basic_block *body = get_loop_body (loop);
|
|
for (unsigned int i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = body[i];
|
|
gimple_stmt_iterator si;
|
|
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple *phi = gsi_stmt (si);
|
|
gimple_set_uid (phi, 0);
|
|
set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, this));
|
|
}
|
|
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
gimple_set_uid (stmt, 0);
|
|
set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, this));
|
|
}
|
|
}
|
|
free (body);
|
|
|
|
/* CHECKME: We want to visit all BBs before their successors (except for
|
|
latch blocks, for which this assertion wouldn't hold). In the simple
|
|
case of the loop forms we allow, a dfs order of the BBs would the same
|
|
as reversed postorder traversal, so we are safe. */
|
|
|
|
unsigned int nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
|
|
bbs, loop->num_nodes, loop);
|
|
gcc_assert (nbbs == loop->num_nodes);
|
|
}
|
|
|
|
/* Free all levels of MASKS. */
|
|
|
|
void
|
|
release_vec_loop_masks (vec_loop_masks *masks)
|
|
{
|
|
rgroup_masks *rgm;
|
|
unsigned int i;
|
|
FOR_EACH_VEC_ELT (*masks, i, rgm)
|
|
rgm->masks.release ();
|
|
masks->release ();
|
|
}
|
|
|
|
/* Free all memory used by the _loop_vec_info, as well as all the
|
|
stmt_vec_info structs of all the stmts in the loop. */
|
|
|
|
_loop_vec_info::~_loop_vec_info ()
|
|
{
|
|
int nbbs;
|
|
gimple_stmt_iterator si;
|
|
int j;
|
|
|
|
/* ??? We're releasing loop_vinfos en-block. */
|
|
set_stmt_vec_info_vec (&stmt_vec_infos);
|
|
nbbs = loop->num_nodes;
|
|
for (j = 0; j < nbbs; j++)
|
|
{
|
|
basic_block bb = bbs[j];
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
|
free_stmt_vec_info (gsi_stmt (si));
|
|
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); )
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
|
|
/* We may have broken canonical form by moving a constant
|
|
into RHS1 of a commutative op. Fix such occurrences. */
|
|
if (operands_swapped && is_gimple_assign (stmt))
|
|
{
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
|
|
if ((code == PLUS_EXPR
|
|
|| code == POINTER_PLUS_EXPR
|
|
|| code == MULT_EXPR)
|
|
&& CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
|
|
swap_ssa_operands (stmt,
|
|
gimple_assign_rhs1_ptr (stmt),
|
|
gimple_assign_rhs2_ptr (stmt));
|
|
else if (code == COND_EXPR
|
|
&& CONSTANT_CLASS_P (gimple_assign_rhs2 (stmt)))
|
|
{
|
|
tree cond_expr = gimple_assign_rhs1 (stmt);
|
|
enum tree_code cond_code = TREE_CODE (cond_expr);
|
|
|
|
if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
|
|
{
|
|
bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr,
|
|
0));
|
|
cond_code = invert_tree_comparison (cond_code,
|
|
honor_nans);
|
|
if (cond_code != ERROR_MARK)
|
|
{
|
|
TREE_SET_CODE (cond_expr, cond_code);
|
|
swap_ssa_operands (stmt,
|
|
gimple_assign_rhs2_ptr (stmt),
|
|
gimple_assign_rhs3_ptr (stmt));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Free stmt_vec_info. */
|
|
free_stmt_vec_info (stmt);
|
|
gsi_next (&si);
|
|
}
|
|
}
|
|
|
|
free (bbs);
|
|
|
|
release_vec_loop_masks (&masks);
|
|
delete ivexpr_map;
|
|
|
|
loop->aux = NULL;
|
|
}
|
|
|
|
/* Return an invariant or register for EXPR and emit necessary
|
|
computations in the LOOP_VINFO loop preheader. */
|
|
|
|
tree
|
|
cse_and_gimplify_to_preheader (loop_vec_info loop_vinfo, tree expr)
|
|
{
|
|
if (is_gimple_reg (expr)
|
|
|| is_gimple_min_invariant (expr))
|
|
return expr;
|
|
|
|
if (! loop_vinfo->ivexpr_map)
|
|
loop_vinfo->ivexpr_map = new hash_map<tree_operand_hash, tree>;
|
|
tree &cached = loop_vinfo->ivexpr_map->get_or_insert (expr);
|
|
if (! cached)
|
|
{
|
|
gimple_seq stmts = NULL;
|
|
cached = force_gimple_operand (unshare_expr (expr),
|
|
&stmts, true, NULL_TREE);
|
|
if (stmts)
|
|
{
|
|
edge e = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
|
|
gsi_insert_seq_on_edge_immediate (e, stmts);
|
|
}
|
|
}
|
|
return cached;
|
|
}
|
|
|
|
/* Return true if we can use CMP_TYPE as the comparison type to produce
|
|
all masks required to mask LOOP_VINFO. */
|
|
|
|
static bool
|
|
can_produce_all_loop_masks_p (loop_vec_info loop_vinfo, tree cmp_type)
|
|
{
|
|
rgroup_masks *rgm;
|
|
unsigned int i;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), i, rgm)
|
|
if (rgm->mask_type != NULL_TREE
|
|
&& !direct_internal_fn_supported_p (IFN_WHILE_ULT,
|
|
cmp_type, rgm->mask_type,
|
|
OPTIMIZE_FOR_SPEED))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Calculate the maximum number of scalars per iteration for every
|
|
rgroup in LOOP_VINFO. */
|
|
|
|
static unsigned int
|
|
vect_get_max_nscalars_per_iter (loop_vec_info loop_vinfo)
|
|
{
|
|
unsigned int res = 1;
|
|
unsigned int i;
|
|
rgroup_masks *rgm;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), i, rgm)
|
|
res = MAX (res, rgm->max_nscalars_per_iter);
|
|
return res;
|
|
}
|
|
|
|
/* Each statement in LOOP_VINFO can be masked where necessary. Check
|
|
whether we can actually generate the masks required. Return true if so,
|
|
storing the type of the scalar IV in LOOP_VINFO_MASK_COMPARE_TYPE. */
|
|
|
|
static bool
|
|
vect_verify_full_masking (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
unsigned int min_ni_width;
|
|
|
|
/* Use a normal loop if there are no statements that need masking.
|
|
This only happens in rare degenerate cases: it means that the loop
|
|
has no loads, no stores, and no live-out values. */
|
|
if (LOOP_VINFO_MASKS (loop_vinfo).is_empty ())
|
|
return false;
|
|
|
|
/* Get the maximum number of iterations that is representable
|
|
in the counter type. */
|
|
tree ni_type = TREE_TYPE (LOOP_VINFO_NITERSM1 (loop_vinfo));
|
|
widest_int max_ni = wi::to_widest (TYPE_MAX_VALUE (ni_type)) + 1;
|
|
|
|
/* Get a more refined estimate for the number of iterations. */
|
|
widest_int max_back_edges;
|
|
if (max_loop_iterations (loop, &max_back_edges))
|
|
max_ni = wi::smin (max_ni, max_back_edges + 1);
|
|
|
|
/* Account for rgroup masks, in which each bit is replicated N times. */
|
|
max_ni *= vect_get_max_nscalars_per_iter (loop_vinfo);
|
|
|
|
/* Work out how many bits we need to represent the limit. */
|
|
min_ni_width = wi::min_precision (max_ni, UNSIGNED);
|
|
|
|
/* Find a scalar mode for which WHILE_ULT is supported. */
|
|
opt_scalar_int_mode cmp_mode_iter;
|
|
tree cmp_type = NULL_TREE;
|
|
FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
|
|
{
|
|
unsigned int cmp_bits = GET_MODE_BITSIZE (cmp_mode_iter.require ());
|
|
if (cmp_bits >= min_ni_width
|
|
&& targetm.scalar_mode_supported_p (cmp_mode_iter.require ()))
|
|
{
|
|
tree this_type = build_nonstandard_integer_type (cmp_bits, true);
|
|
if (this_type
|
|
&& can_produce_all_loop_masks_p (loop_vinfo, this_type))
|
|
{
|
|
/* Although we could stop as soon as we find a valid mode,
|
|
it's often better to continue until we hit Pmode, since the
|
|
operands to the WHILE are more likely to be reusable in
|
|
address calculations. */
|
|
cmp_type = this_type;
|
|
if (cmp_bits >= GET_MODE_BITSIZE (Pmode))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!cmp_type)
|
|
return false;
|
|
|
|
LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo) = cmp_type;
|
|
return true;
|
|
}
|
|
|
|
/* Calculate the cost of one scalar iteration of the loop. */
|
|
static void
|
|
vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes, factor;
|
|
int innerloop_iters, i;
|
|
|
|
/* Gather costs for statements in the scalar loop. */
|
|
|
|
/* FORNOW. */
|
|
innerloop_iters = 1;
|
|
if (loop->inner)
|
|
innerloop_iters = 50; /* FIXME */
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
gimple_stmt_iterator si;
|
|
basic_block bb = bbs[i];
|
|
|
|
if (bb->loop_father == loop->inner)
|
|
factor = innerloop_iters;
|
|
else
|
|
factor = 1;
|
|
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
|
|
continue;
|
|
|
|
/* Skip stmts that are not vectorized inside the loop. */
|
|
if (stmt_info
|
|
&& !STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& (!STMT_VINFO_LIVE_P (stmt_info)
|
|
|| !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
|
|
&& !STMT_VINFO_IN_PATTERN_P (stmt_info))
|
|
continue;
|
|
|
|
vect_cost_for_stmt kind;
|
|
if (STMT_VINFO_DATA_REF (stmt_info))
|
|
{
|
|
if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
|
|
kind = scalar_load;
|
|
else
|
|
kind = scalar_store;
|
|
}
|
|
else
|
|
kind = scalar_stmt;
|
|
|
|
record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
|
|
factor, kind, stmt_info, 0, vect_prologue);
|
|
}
|
|
}
|
|
|
|
/* Now accumulate cost. */
|
|
void *target_cost_data = init_cost (loop);
|
|
stmt_info_for_cost *si;
|
|
int j;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
|
|
j, si)
|
|
{
|
|
struct _stmt_vec_info *stmt_info
|
|
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
|
|
(void) add_stmt_cost (target_cost_data, si->count,
|
|
si->kind, stmt_info, si->misalign,
|
|
vect_body);
|
|
}
|
|
unsigned dummy, body_cost = 0;
|
|
finish_cost (target_cost_data, &dummy, &body_cost, &dummy);
|
|
destroy_cost_data (target_cost_data);
|
|
LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo) = body_cost;
|
|
}
|
|
|
|
|
|
/* Function vect_analyze_loop_form_1.
|
|
|
|
Verify that certain CFG restrictions hold, including:
|
|
- the loop has a pre-header
|
|
- the loop has a single entry and exit
|
|
- the loop exit condition is simple enough
|
|
- the number of iterations can be analyzed, i.e, a countable loop. The
|
|
niter could be analyzed under some assumptions. */
|
|
|
|
bool
|
|
vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
|
|
tree *assumptions, tree *number_of_iterationsm1,
|
|
tree *number_of_iterations, gcond **inner_loop_cond)
|
|
{
|
|
DUMP_VECT_SCOPE ("vect_analyze_loop_form");
|
|
|
|
/* Different restrictions apply when we are considering an inner-most loop,
|
|
vs. an outer (nested) loop.
|
|
(FORNOW. May want to relax some of these restrictions in the future). */
|
|
|
|
if (!loop->inner)
|
|
{
|
|
/* Inner-most loop. We currently require that the number of BBs is
|
|
exactly 2 (the header and latch). Vectorizable inner-most loops
|
|
look like this:
|
|
|
|
(pre-header)
|
|
|
|
|
header <--------+
|
|
| | |
|
|
| +--> latch --+
|
|
|
|
|
(exit-bb) */
|
|
|
|
if (loop->num_nodes != 2)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: control flow in loop.\n");
|
|
return false;
|
|
}
|
|
|
|
if (empty_block_p (loop->header))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: empty loop.\n");
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
struct loop *innerloop = loop->inner;
|
|
edge entryedge;
|
|
|
|
/* Nested loop. We currently require that the loop is doubly-nested,
|
|
contains a single inner loop, and the number of BBs is exactly 5.
|
|
Vectorizable outer-loops look like this:
|
|
|
|
(pre-header)
|
|
|
|
|
header <---+
|
|
| |
|
|
inner-loop |
|
|
| |
|
|
tail ------+
|
|
|
|
|
(exit-bb)
|
|
|
|
The inner-loop has the properties expected of inner-most loops
|
|
as described above. */
|
|
|
|
if ((loop->inner)->inner || (loop->inner)->next)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: multiple nested loops.\n");
|
|
return false;
|
|
}
|
|
|
|
if (loop->num_nodes != 5)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: control flow in loop.\n");
|
|
return false;
|
|
}
|
|
|
|
entryedge = loop_preheader_edge (innerloop);
|
|
if (entryedge->src != loop->header
|
|
|| !single_exit (innerloop)
|
|
|| single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: unsupported outerloop form.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Analyze the inner-loop. */
|
|
tree inner_niterm1, inner_niter, inner_assumptions;
|
|
if (! vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
|
|
&inner_assumptions, &inner_niterm1,
|
|
&inner_niter, NULL)
|
|
/* Don't support analyzing niter under assumptions for inner
|
|
loop. */
|
|
|| !integer_onep (inner_assumptions))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: Bad inner loop.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!expr_invariant_in_loop_p (loop, inner_niter))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: inner-loop count not"
|
|
" invariant.\n");
|
|
return false;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Considering outer-loop vectorization.\n");
|
|
}
|
|
|
|
if (!single_exit (loop)
|
|
|| EDGE_COUNT (loop->header->preds) != 2)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
if (!single_exit (loop))
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: multiple exits.\n");
|
|
else if (EDGE_COUNT (loop->header->preds) != 2)
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: too many incoming edges.\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* We assume that the loop exit condition is at the end of the loop. i.e,
|
|
that the loop is represented as a do-while (with a proper if-guard
|
|
before the loop if needed), where the loop header contains all the
|
|
executable statements, and the latch is empty. */
|
|
if (!empty_block_p (loop->latch)
|
|
|| !gimple_seq_empty_p (phi_nodes (loop->latch)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: latch block not empty.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Make sure the exit is not abnormal. */
|
|
edge e = single_exit (loop);
|
|
if (e->flags & EDGE_ABNORMAL)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: abnormal loop exit edge.\n");
|
|
return false;
|
|
}
|
|
|
|
*loop_cond = vect_get_loop_niters (loop, assumptions, number_of_iterations,
|
|
number_of_iterationsm1);
|
|
if (!*loop_cond)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: complicated exit condition.\n");
|
|
return false;
|
|
}
|
|
|
|
if (integer_zerop (*assumptions)
|
|
|| !*number_of_iterations
|
|
|| chrec_contains_undetermined (*number_of_iterations))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: number of iterations cannot be "
|
|
"computed.\n");
|
|
return false;
|
|
}
|
|
|
|
if (integer_zerop (*number_of_iterations))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: number of iterations = 0.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
|
|
|
|
loop_vec_info
|
|
vect_analyze_loop_form (struct loop *loop, vec_info_shared *shared)
|
|
{
|
|
tree assumptions, number_of_iterations, number_of_iterationsm1;
|
|
gcond *loop_cond, *inner_loop_cond = NULL;
|
|
|
|
if (! vect_analyze_loop_form_1 (loop, &loop_cond,
|
|
&assumptions, &number_of_iterationsm1,
|
|
&number_of_iterations, &inner_loop_cond))
|
|
return NULL;
|
|
|
|
loop_vec_info loop_vinfo = new _loop_vec_info (loop, shared);
|
|
LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
|
|
LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
|
|
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
|
|
if (!integer_onep (assumptions))
|
|
{
|
|
/* We consider to vectorize this loop by versioning it under
|
|
some assumptions. In order to do this, we need to clear
|
|
existing information computed by scev and niter analyzer. */
|
|
scev_reset_htab ();
|
|
free_numbers_of_iterations_estimates (loop);
|
|
/* Also set flag for this loop so that following scev and niter
|
|
analysis are done under the assumptions. */
|
|
loop_constraint_set (loop, LOOP_C_FINITE);
|
|
/* Also record the assumptions for versioning. */
|
|
LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = assumptions;
|
|
}
|
|
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Symbolic number of iterations is ");
|
|
dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
}
|
|
|
|
STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
|
|
if (inner_loop_cond)
|
|
STMT_VINFO_TYPE (vinfo_for_stmt (inner_loop_cond))
|
|
= loop_exit_ctrl_vec_info_type;
|
|
|
|
gcc_assert (!loop->aux);
|
|
loop->aux = loop_vinfo;
|
|
return loop_vinfo;
|
|
}
|
|
|
|
|
|
|
|
/* Scan the loop stmts and dependent on whether there are any (non-)SLP
|
|
statements update the vectorization factor. */
|
|
|
|
static void
|
|
vect_update_vf_for_slp (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes;
|
|
poly_uint64 vectorization_factor;
|
|
int i;
|
|
|
|
DUMP_VECT_SCOPE ("vect_update_vf_for_slp");
|
|
|
|
vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
gcc_assert (known_ne (vectorization_factor, 0U));
|
|
|
|
/* If all the stmts in the loop can be SLPed, we perform only SLP, and
|
|
vectorization factor of the loop is the unrolling factor required by
|
|
the SLP instances. If that unrolling factor is 1, we say, that we
|
|
perform pure SLP on loop - cross iteration parallelism is not
|
|
exploited. */
|
|
bool only_slp_in_loop = true;
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
|
&& STMT_VINFO_RELATED_STMT (stmt_info))
|
|
{
|
|
stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
}
|
|
if ((STMT_VINFO_RELEVANT_P (stmt_info)
|
|
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
|
|
&& !PURE_SLP_STMT (stmt_info))
|
|
/* STMT needs both SLP and loop-based vectorization. */
|
|
only_slp_in_loop = false;
|
|
}
|
|
}
|
|
|
|
if (only_slp_in_loop)
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Loop contains only SLP stmts\n");
|
|
vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
|
|
}
|
|
else
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Loop contains SLP and non-SLP stmts\n");
|
|
/* Both the vectorization factor and unroll factor have the form
|
|
current_vector_size * X for some rational X, so they must have
|
|
a common multiple. */
|
|
vectorization_factor
|
|
= force_common_multiple (vectorization_factor,
|
|
LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
|
|
}
|
|
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Updating vectorization factor to ");
|
|
dump_dec (MSG_NOTE, vectorization_factor);
|
|
dump_printf (MSG_NOTE, ".\n");
|
|
}
|
|
}
|
|
|
|
/* Return true if STMT_INFO describes a double reduction phi and if
|
|
the other phi in the reduction is also relevant for vectorization.
|
|
This rejects cases such as:
|
|
|
|
outer1:
|
|
x_1 = PHI <x_3(outer2), ...>;
|
|
...
|
|
|
|
inner:
|
|
x_2 = ...;
|
|
...
|
|
|
|
outer2:
|
|
x_3 = PHI <x_2(inner)>;
|
|
|
|
if nothing in x_2 or elsewhere makes x_1 relevant. */
|
|
|
|
static bool
|
|
vect_active_double_reduction_p (stmt_vec_info stmt_info)
|
|
{
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def)
|
|
return false;
|
|
|
|
gimple *other_phi = STMT_VINFO_REDUC_DEF (stmt_info);
|
|
return STMT_VINFO_RELEVANT_P (vinfo_for_stmt (other_phi));
|
|
}
|
|
|
|
/* Function vect_analyze_loop_operations.
|
|
|
|
Scan the loop stmts and make sure they are all vectorizable. */
|
|
|
|
static bool
|
|
vect_analyze_loop_operations (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes;
|
|
int i;
|
|
stmt_vec_info stmt_info;
|
|
bool need_to_vectorize = false;
|
|
bool ok;
|
|
|
|
DUMP_VECT_SCOPE ("vect_analyze_loop_operations");
|
|
|
|
stmt_vector_for_cost cost_vec;
|
|
cost_vec.create (2);
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gphi *phi = si.phi ();
|
|
ok = true;
|
|
|
|
stmt_info = vinfo_for_stmt (phi);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
|
|
}
|
|
if (virtual_operand_p (gimple_phi_result (phi)))
|
|
continue;
|
|
|
|
/* Inner-loop loop-closed exit phi in outer-loop vectorization
|
|
(i.e., a phi in the tail of the outer-loop). */
|
|
if (! is_loop_header_bb_p (bb))
|
|
{
|
|
/* FORNOW: we currently don't support the case that these phis
|
|
are not used in the outerloop (unless it is double reduction,
|
|
i.e., this phi is vect_reduction_def), cause this case
|
|
requires to actually do something here. */
|
|
if (STMT_VINFO_LIVE_P (stmt_info)
|
|
&& !vect_active_double_reduction_p (stmt_info))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Unsupported loop-closed phi in "
|
|
"outer-loop.\n");
|
|
return false;
|
|
}
|
|
|
|
/* If PHI is used in the outer loop, we check that its operand
|
|
is defined in the inner loop. */
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
|
{
|
|
tree phi_op;
|
|
gimple *op_def_stmt;
|
|
|
|
if (gimple_phi_num_args (phi) != 1)
|
|
return false;
|
|
|
|
phi_op = PHI_ARG_DEF (phi, 0);
|
|
if (TREE_CODE (phi_op) != SSA_NAME)
|
|
return false;
|
|
|
|
op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
|
|
if (gimple_nop_p (op_def_stmt)
|
|
|| !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
|
|
|| !vinfo_for_stmt (op_def_stmt))
|
|
return false;
|
|
|
|
if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
|
|
!= vect_used_in_outer
|
|
&& STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
|
|
!= vect_used_in_outer_by_reduction)
|
|
return false;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
gcc_assert (stmt_info);
|
|
|
|
if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
|
|
|| STMT_VINFO_LIVE_P (stmt_info))
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
|
|
{
|
|
/* A scalar-dependence cycle that we don't support. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: scalar dependence cycle.\n");
|
|
return false;
|
|
}
|
|
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
|
{
|
|
need_to_vectorize = true;
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
|
|
&& ! PURE_SLP_STMT (stmt_info))
|
|
ok = vectorizable_induction (phi, NULL, NULL, NULL, &cost_vec);
|
|
else if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
|
|
&& ! PURE_SLP_STMT (stmt_info))
|
|
ok = vectorizable_reduction (phi, NULL, NULL, NULL, NULL,
|
|
&cost_vec);
|
|
}
|
|
|
|
/* SLP PHIs are tested by vect_slp_analyze_node_operations. */
|
|
if (ok
|
|
&& STMT_VINFO_LIVE_P (stmt_info)
|
|
&& !PURE_SLP_STMT (stmt_info))
|
|
ok = vectorizable_live_operation (phi, NULL, NULL, -1, NULL,
|
|
&cost_vec);
|
|
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: relevant phi not "
|
|
"supported: ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
if (!gimple_clobber_p (stmt)
|
|
&& !vect_analyze_stmt (stmt, &need_to_vectorize, NULL, NULL,
|
|
&cost_vec))
|
|
return false;
|
|
}
|
|
} /* bbs */
|
|
|
|
add_stmt_costs (loop_vinfo->target_cost_data, &cost_vec);
|
|
cost_vec.release ();
|
|
|
|
/* All operations in the loop are either irrelevant (deal with loop
|
|
control, or dead), or only used outside the loop and can be moved
|
|
out of the loop (e.g. invariants, inductions). The loop can be
|
|
optimized away by scalar optimizations. We're better off not
|
|
touching this loop. */
|
|
if (!need_to_vectorize)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"All the computation can be taken out of the loop.\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: redundant loop. no profit to "
|
|
"vectorize.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Analyze the cost of the loop described by LOOP_VINFO. Decide if it
|
|
is worthwhile to vectorize. Return 1 if definitely yes, 0 if
|
|
definitely no, or -1 if it's worth retrying. */
|
|
|
|
static int
|
|
vect_analyze_loop_costing (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
|
|
|
|
/* Only fully-masked loops can have iteration counts less than the
|
|
vectorization factor. */
|
|
if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
{
|
|
HOST_WIDE_INT max_niter;
|
|
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
max_niter = LOOP_VINFO_INT_NITERS (loop_vinfo);
|
|
else
|
|
max_niter = max_stmt_executions_int (loop);
|
|
|
|
if (max_niter != -1
|
|
&& (unsigned HOST_WIDE_INT) max_niter < assumed_vf)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: iteration count smaller than "
|
|
"vectorization factor.\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int min_profitable_iters, min_profitable_estimate;
|
|
vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
|
|
&min_profitable_estimate);
|
|
|
|
if (min_profitable_iters < 0)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: vectorization not profitable.\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: vector version will never be "
|
|
"profitable.\n");
|
|
return -1;
|
|
}
|
|
|
|
int min_scalar_loop_bound = (PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
|
|
* assumed_vf);
|
|
|
|
/* Use the cost model only if it is more conservative than user specified
|
|
threshold. */
|
|
unsigned int th = (unsigned) MAX (min_scalar_loop_bound,
|
|
min_profitable_iters);
|
|
|
|
LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
|
|
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
&& LOOP_VINFO_INT_NITERS (loop_vinfo) < th)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: vectorization not profitable.\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"not vectorized: iteration count smaller than user "
|
|
"specified loop bound parameter or minimum profitable "
|
|
"iterations (whichever is more conservative).\n");
|
|
return 0;
|
|
}
|
|
|
|
HOST_WIDE_INT estimated_niter = estimated_stmt_executions_int (loop);
|
|
if (estimated_niter == -1)
|
|
estimated_niter = likely_max_stmt_executions_int (loop);
|
|
if (estimated_niter != -1
|
|
&& ((unsigned HOST_WIDE_INT) estimated_niter
|
|
< MAX (th, (unsigned) min_profitable_estimate)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: estimated iteration count too "
|
|
"small.\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"not vectorized: estimated iteration count smaller "
|
|
"than specified loop bound parameter or minimum "
|
|
"profitable iterations (whichever is more "
|
|
"conservative).\n");
|
|
return -1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static bool
|
|
vect_get_datarefs_in_loop (loop_p loop, basic_block *bbs,
|
|
vec<data_reference_p> *datarefs,
|
|
unsigned int *n_stmts)
|
|
{
|
|
*n_stmts = 0;
|
|
for (unsigned i = 0; i < loop->num_nodes; i++)
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
|
|
!gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
++(*n_stmts);
|
|
if (!vect_find_stmt_data_reference (loop, stmt, datarefs))
|
|
{
|
|
if (is_gimple_call (stmt) && loop->safelen)
|
|
{
|
|
tree fndecl = gimple_call_fndecl (stmt), op;
|
|
if (fndecl != NULL_TREE)
|
|
{
|
|
cgraph_node *node = cgraph_node::get (fndecl);
|
|
if (node != NULL && node->simd_clones != NULL)
|
|
{
|
|
unsigned int j, n = gimple_call_num_args (stmt);
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
op = gimple_call_arg (stmt, j);
|
|
if (DECL_P (op)
|
|
|| (REFERENCE_CLASS_P (op)
|
|
&& get_base_address (op)))
|
|
break;
|
|
}
|
|
op = gimple_call_lhs (stmt);
|
|
/* Ignore #pragma omp declare simd functions
|
|
if they don't have data references in the
|
|
call stmt itself. */
|
|
if (j == n
|
|
&& !(op
|
|
&& (DECL_P (op)
|
|
|| (REFERENCE_CLASS_P (op)
|
|
&& get_base_address (op)))))
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
/* If dependence analysis will give up due to the limit on the
|
|
number of datarefs stop here and fail fatally. */
|
|
if (datarefs->length ()
|
|
> (unsigned)PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Function vect_analyze_loop_2.
|
|
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
|
for it. The different analyses will record information in the
|
|
loop_vec_info struct. */
|
|
static bool
|
|
vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal, unsigned *n_stmts)
|
|
{
|
|
bool ok;
|
|
int res;
|
|
unsigned int max_vf = MAX_VECTORIZATION_FACTOR;
|
|
poly_uint64 min_vf = 2;
|
|
|
|
/* The first group of checks is independent of the vector size. */
|
|
fatal = true;
|
|
|
|
/* Find all data references in the loop (which correspond to vdefs/vuses)
|
|
and analyze their evolution in the loop. */
|
|
|
|
loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
/* Gather the data references and count stmts in the loop. */
|
|
if (!LOOP_VINFO_DATAREFS (loop_vinfo).exists ())
|
|
{
|
|
if (!vect_get_datarefs_in_loop (loop, LOOP_VINFO_BBS (loop_vinfo),
|
|
&LOOP_VINFO_DATAREFS (loop_vinfo),
|
|
n_stmts))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: loop contains function "
|
|
"calls or data references that cannot "
|
|
"be analyzed\n");
|
|
return false;
|
|
}
|
|
loop_vinfo->shared->save_datarefs ();
|
|
}
|
|
else
|
|
loop_vinfo->shared->check_datarefs ();
|
|
|
|
/* Analyze the data references and also adjust the minimal
|
|
vectorization factor according to the loads and stores. */
|
|
|
|
ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data references.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Classify all cross-iteration scalar data-flow cycles.
|
|
Cross-iteration cycles caused by virtual phis are analyzed separately. */
|
|
vect_analyze_scalar_cycles (loop_vinfo);
|
|
|
|
vect_pattern_recog (loop_vinfo);
|
|
|
|
vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
|
|
|
|
/* Analyze the access patterns of the data-refs in the loop (consecutive,
|
|
complex, etc.). FORNOW: Only handle consecutive access pattern. */
|
|
|
|
ok = vect_analyze_data_ref_accesses (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data access.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Data-flow analysis to detect stmts that do not need to be vectorized. */
|
|
|
|
ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unexpected pattern.\n");
|
|
return false;
|
|
}
|
|
|
|
/* While the rest of the analysis below depends on it in some way. */
|
|
fatal = false;
|
|
|
|
/* Analyze data dependences between the data-refs in the loop
|
|
and adjust the maximum vectorization factor according to
|
|
the dependences.
|
|
FORNOW: fail at the first data dependence that we encounter. */
|
|
|
|
ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
|
|
if (!ok
|
|
|| (max_vf != MAX_VECTORIZATION_FACTOR
|
|
&& maybe_lt (max_vf, min_vf)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data dependence.\n");
|
|
return false;
|
|
}
|
|
LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo) = max_vf;
|
|
|
|
ok = vect_determine_vectorization_factor (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't determine vectorization factor.\n");
|
|
return false;
|
|
}
|
|
if (max_vf != MAX_VECTORIZATION_FACTOR
|
|
&& maybe_lt (max_vf, LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data dependence.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Compute the scalar iteration cost. */
|
|
vect_compute_single_scalar_iteration_cost (loop_vinfo);
|
|
|
|
poly_uint64 saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
unsigned th;
|
|
|
|
/* Check the SLP opportunities in the loop, analyze and build SLP trees. */
|
|
ok = vect_analyze_slp (loop_vinfo, *n_stmts);
|
|
if (!ok)
|
|
return false;
|
|
|
|
/* If there are any SLP instances mark them as pure_slp. */
|
|
bool slp = vect_make_slp_decision (loop_vinfo);
|
|
if (slp)
|
|
{
|
|
/* Find stmts that need to be both vectorized and SLPed. */
|
|
vect_detect_hybrid_slp (loop_vinfo);
|
|
|
|
/* Update the vectorization factor based on the SLP decision. */
|
|
vect_update_vf_for_slp (loop_vinfo);
|
|
}
|
|
|
|
bool saved_can_fully_mask_p = LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo);
|
|
|
|
/* We don't expect to have to roll back to anything other than an empty
|
|
set of rgroups. */
|
|
gcc_assert (LOOP_VINFO_MASKS (loop_vinfo).is_empty ());
|
|
|
|
/* This is the point where we can re-start analysis with SLP forced off. */
|
|
start_over:
|
|
|
|
/* Now the vectorization factor is final. */
|
|
poly_uint64 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
gcc_assert (known_ne (vectorization_factor, 0U));
|
|
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vectorization_factor = ");
|
|
dump_dec (MSG_NOTE, vectorization_factor);
|
|
dump_printf (MSG_NOTE, ", niters = " HOST_WIDE_INT_PRINT_DEC "\n",
|
|
LOOP_VINFO_INT_NITERS (loop_vinfo));
|
|
}
|
|
|
|
HOST_WIDE_INT max_niter
|
|
= likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
|
|
|
|
/* Analyze the alignment of the data-refs in the loop.
|
|
Fail if a data reference is found that cannot be vectorized. */
|
|
|
|
ok = vect_analyze_data_refs_alignment (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data alignment.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Prune the list of ddrs to be tested at run-time by versioning for alias.
|
|
It is important to call pruning after vect_analyze_data_ref_accesses,
|
|
since we use grouping information gathered by interleaving analysis. */
|
|
ok = vect_prune_runtime_alias_test_list (loop_vinfo);
|
|
if (!ok)
|
|
return false;
|
|
|
|
/* Do not invoke vect_enhance_data_refs_alignment for eplilogue
|
|
vectorization. */
|
|
if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
|
|
{
|
|
/* This pass will decide on using loop versioning and/or loop peeling in
|
|
order to enhance the alignment of data references in the loop. */
|
|
ok = vect_enhance_data_refs_alignment (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data alignment.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (slp)
|
|
{
|
|
/* Analyze operations in the SLP instances. Note this may
|
|
remove unsupported SLP instances which makes the above
|
|
SLP kind detection invalid. */
|
|
unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
|
|
vect_slp_analyze_operations (loop_vinfo);
|
|
if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
|
|
goto again;
|
|
}
|
|
|
|
/* Scan all the remaining operations in the loop that are not subject
|
|
to SLP and make sure they are vectorizable. */
|
|
ok = vect_analyze_loop_operations (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad operation or unsupported loop bound.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Decide whether to use a fully-masked loop for this vectorization
|
|
factor. */
|
|
LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
|
|
= (LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo)
|
|
&& vect_verify_full_masking (loop_vinfo));
|
|
if (dump_enabled_p ())
|
|
{
|
|
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"using a fully-masked loop.\n");
|
|
else
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"not using a fully-masked loop.\n");
|
|
}
|
|
|
|
/* If epilog loop is required because of data accesses with gaps,
|
|
one additional iteration needs to be peeled. Check if there is
|
|
enough iterations for vectorization. */
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|
|
&& LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
&& !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
{
|
|
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
tree scalar_niters = LOOP_VINFO_NITERSM1 (loop_vinfo);
|
|
|
|
if (known_lt (wi::to_widest (scalar_niters), vf))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"loop has no enough iterations to support"
|
|
" peeling for gaps.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Check the costings of the loop make vectorizing worthwhile. */
|
|
res = vect_analyze_loop_costing (loop_vinfo);
|
|
if (res < 0)
|
|
goto again;
|
|
if (!res)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Loop costings not worthwhile.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Decide whether we need to create an epilogue loop to handle
|
|
remaining scalar iterations. */
|
|
th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
|
|
|
|
unsigned HOST_WIDE_INT const_vf;
|
|
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
/* The main loop handles all iterations. */
|
|
LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
|
|
else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
&& LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
|
|
{
|
|
if (!multiple_p (LOOP_VINFO_INT_NITERS (loop_vinfo)
|
|
- LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo),
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
|
|
LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
|
|
}
|
|
else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
|
|
|| !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&const_vf)
|
|
|| ((tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
|
|
< (unsigned) exact_log2 (const_vf))
|
|
/* In case of versioning, check if the maximum number of
|
|
iterations is greater than th. If they are identical,
|
|
the epilogue is unnecessary. */
|
|
&& (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
|
|
|| ((unsigned HOST_WIDE_INT) max_niter
|
|
> (th / const_vf) * const_vf))))
|
|
LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
|
|
|
|
/* If an epilogue loop is required make sure we can create one. */
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|
|
|| LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
|
|
if (!vect_can_advance_ivs_p (loop_vinfo)
|
|
|| !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
|
|
single_exit (LOOP_VINFO_LOOP
|
|
(loop_vinfo))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: can't create required "
|
|
"epilog loop\n");
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/* During peeling, we need to check if number of loop iterations is
|
|
enough for both peeled prolog loop and vector loop. This check
|
|
can be merged along with threshold check of loop versioning, so
|
|
increase threshold for this case if necessary. */
|
|
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
|
|
{
|
|
poly_uint64 niters_th = 0;
|
|
|
|
if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
|
|
{
|
|
/* Niters for peeled prolog loop. */
|
|
if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
|
|
{
|
|
struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
|
|
tree vectype
|
|
= STMT_VINFO_VECTYPE (vinfo_for_stmt (vect_dr_stmt (dr)));
|
|
niters_th += TYPE_VECTOR_SUBPARTS (vectype) - 1;
|
|
}
|
|
else
|
|
niters_th += LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
|
}
|
|
|
|
/* Niters for at least one iteration of vectorized loop. */
|
|
if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
/* One additional iteration because of peeling for gap. */
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
|
|
niters_th += 1;
|
|
LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = niters_th;
|
|
}
|
|
|
|
gcc_assert (known_eq (vectorization_factor,
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo)));
|
|
|
|
/* Ok to vectorize! */
|
|
return true;
|
|
|
|
again:
|
|
/* Try again with SLP forced off but if we didn't do any SLP there is
|
|
no point in re-trying. */
|
|
if (!slp)
|
|
return false;
|
|
|
|
/* If there are reduction chains re-trying will fail anyway. */
|
|
if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
|
|
return false;
|
|
|
|
/* Likewise if the grouped loads or stores in the SLP cannot be handled
|
|
via interleaving or lane instructions. */
|
|
slp_instance instance;
|
|
slp_tree node;
|
|
unsigned i, j;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
|
|
{
|
|
stmt_vec_info vinfo;
|
|
vinfo = vinfo_for_stmt
|
|
(SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0]);
|
|
if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
|
|
continue;
|
|
vinfo = vinfo_for_stmt (DR_GROUP_FIRST_ELEMENT (vinfo));
|
|
unsigned int size = DR_GROUP_SIZE (vinfo);
|
|
tree vectype = STMT_VINFO_VECTYPE (vinfo);
|
|
if (! vect_store_lanes_supported (vectype, size, false)
|
|
&& ! known_eq (TYPE_VECTOR_SUBPARTS (vectype), 1U)
|
|
&& ! vect_grouped_store_supported (vectype, size))
|
|
return false;
|
|
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
|
|
{
|
|
vinfo = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
|
|
vinfo = vinfo_for_stmt (DR_GROUP_FIRST_ELEMENT (vinfo));
|
|
bool single_element_p = !DR_GROUP_NEXT_ELEMENT (vinfo);
|
|
size = DR_GROUP_SIZE (vinfo);
|
|
vectype = STMT_VINFO_VECTYPE (vinfo);
|
|
if (! vect_load_lanes_supported (vectype, size, false)
|
|
&& ! vect_grouped_load_supported (vectype, single_element_p,
|
|
size))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"re-trying with SLP disabled\n");
|
|
|
|
/* Roll back state appropriately. No SLP this time. */
|
|
slp = false;
|
|
/* Restore vectorization factor as it were without SLP. */
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
|
|
/* Free the SLP instances. */
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
|
|
vect_free_slp_instance (instance);
|
|
LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
|
|
/* Reset SLP type to loop_vect on all stmts. */
|
|
for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
|
|
{
|
|
basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
|
|
for (gimple_stmt_iterator si = gsi_start_phis (bb);
|
|
!gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
|
|
STMT_SLP_TYPE (stmt_info) = loop_vect;
|
|
}
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb);
|
|
!gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
|
|
STMT_SLP_TYPE (stmt_info) = loop_vect;
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
|
|
{
|
|
gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
|
|
stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
|
|
STMT_SLP_TYPE (stmt_info) = loop_vect;
|
|
for (gimple_stmt_iterator pi = gsi_start (pattern_def_seq);
|
|
!gsi_end_p (pi); gsi_next (&pi))
|
|
{
|
|
gimple *pstmt = gsi_stmt (pi);
|
|
STMT_SLP_TYPE (vinfo_for_stmt (pstmt)) = loop_vect;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Free optimized alias test DDRS. */
|
|
LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).truncate (0);
|
|
LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
|
|
LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).release ();
|
|
/* Reset target cost data. */
|
|
destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
|
|
LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
|
|
= init_cost (LOOP_VINFO_LOOP (loop_vinfo));
|
|
/* Reset accumulated rgroup information. */
|
|
release_vec_loop_masks (&LOOP_VINFO_MASKS (loop_vinfo));
|
|
/* Reset assorted flags. */
|
|
LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
|
|
LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
|
|
LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
|
|
LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = 0;
|
|
LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = saved_can_fully_mask_p;
|
|
|
|
goto start_over;
|
|
}
|
|
|
|
/* Function vect_analyze_loop.
|
|
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
|
for it. The different analyses will record information in the
|
|
loop_vec_info struct. If ORIG_LOOP_VINFO is not NULL epilogue must
|
|
be vectorized. */
|
|
loop_vec_info
|
|
vect_analyze_loop (struct loop *loop, loop_vec_info orig_loop_vinfo,
|
|
vec_info_shared *shared)
|
|
{
|
|
loop_vec_info loop_vinfo;
|
|
auto_vector_sizes vector_sizes;
|
|
|
|
/* Autodetect first vector size we try. */
|
|
current_vector_size = 0;
|
|
targetm.vectorize.autovectorize_vector_sizes (&vector_sizes);
|
|
unsigned int next_size = 0;
|
|
|
|
DUMP_VECT_SCOPE ("analyze_loop_nest");
|
|
|
|
if (loop_outer (loop)
|
|
&& loop_vec_info_for_loop (loop_outer (loop))
|
|
&& LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"outer-loop already vectorized.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (!find_loop_nest (loop, &shared->loop_nest))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: loop nest containing two "
|
|
"or more consecutive inner loops cannot be "
|
|
"vectorized\n");
|
|
return NULL;
|
|
}
|
|
|
|
unsigned n_stmts = 0;
|
|
poly_uint64 autodetected_vector_size = 0;
|
|
while (1)
|
|
{
|
|
/* Check the CFG characteristics of the loop (nesting, entry/exit). */
|
|
loop_vinfo = vect_analyze_loop_form (loop, shared);
|
|
if (!loop_vinfo)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad loop form.\n");
|
|
return NULL;
|
|
}
|
|
|
|
bool fatal = false;
|
|
|
|
if (orig_loop_vinfo)
|
|
LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = orig_loop_vinfo;
|
|
|
|
if (vect_analyze_loop_2 (loop_vinfo, fatal, &n_stmts))
|
|
{
|
|
LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
|
|
|
|
return loop_vinfo;
|
|
}
|
|
|
|
delete loop_vinfo;
|
|
|
|
if (next_size == 0)
|
|
autodetected_vector_size = current_vector_size;
|
|
|
|
if (next_size < vector_sizes.length ()
|
|
&& known_eq (vector_sizes[next_size], autodetected_vector_size))
|
|
next_size += 1;
|
|
|
|
if (fatal
|
|
|| next_size == vector_sizes.length ()
|
|
|| known_eq (current_vector_size, 0U))
|
|
return NULL;
|
|
|
|
/* Try the next biggest vector size. */
|
|
current_vector_size = vector_sizes[next_size++];
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"***** Re-trying analysis with "
|
|
"vector size ");
|
|
dump_dec (MSG_NOTE, current_vector_size);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return true if there is an in-order reduction function for CODE, storing
|
|
it in *REDUC_FN if so. */
|
|
|
|
static bool
|
|
fold_left_reduction_fn (tree_code code, internal_fn *reduc_fn)
|
|
{
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR:
|
|
*reduc_fn = IFN_FOLD_LEFT_PLUS;
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Function reduction_fn_for_scalar_code
|
|
|
|
Input:
|
|
CODE - tree_code of a reduction operations.
|
|
|
|
Output:
|
|
REDUC_FN - the corresponding internal function to be used to reduce the
|
|
vector of partial results into a single scalar result, or IFN_LAST
|
|
if the operation is a supported reduction operation, but does not have
|
|
such an internal function.
|
|
|
|
Return FALSE if CODE currently cannot be vectorized as reduction. */
|
|
|
|
static bool
|
|
reduction_fn_for_scalar_code (enum tree_code code, internal_fn *reduc_fn)
|
|
{
|
|
switch (code)
|
|
{
|
|
case MAX_EXPR:
|
|
*reduc_fn = IFN_REDUC_MAX;
|
|
return true;
|
|
|
|
case MIN_EXPR:
|
|
*reduc_fn = IFN_REDUC_MIN;
|
|
return true;
|
|
|
|
case PLUS_EXPR:
|
|
*reduc_fn = IFN_REDUC_PLUS;
|
|
return true;
|
|
|
|
case BIT_AND_EXPR:
|
|
*reduc_fn = IFN_REDUC_AND;
|
|
return true;
|
|
|
|
case BIT_IOR_EXPR:
|
|
*reduc_fn = IFN_REDUC_IOR;
|
|
return true;
|
|
|
|
case BIT_XOR_EXPR:
|
|
*reduc_fn = IFN_REDUC_XOR;
|
|
return true;
|
|
|
|
case MULT_EXPR:
|
|
case MINUS_EXPR:
|
|
*reduc_fn = IFN_LAST;
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* If there is a neutral value X such that SLP reduction NODE would not
|
|
be affected by the introduction of additional X elements, return that X,
|
|
otherwise return null. CODE is the code of the reduction. REDUC_CHAIN
|
|
is true if the SLP statements perform a single reduction, false if each
|
|
statement performs an independent reduction. */
|
|
|
|
static tree
|
|
neutral_op_for_slp_reduction (slp_tree slp_node, tree_code code,
|
|
bool reduc_chain)
|
|
{
|
|
vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
|
|
gimple *stmt = stmts[0];
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
|
tree vector_type = STMT_VINFO_VECTYPE (stmt_vinfo);
|
|
tree scalar_type = TREE_TYPE (vector_type);
|
|
struct loop *loop = gimple_bb (stmt)->loop_father;
|
|
gcc_assert (loop);
|
|
|
|
switch (code)
|
|
{
|
|
case WIDEN_SUM_EXPR:
|
|
case DOT_PROD_EXPR:
|
|
case SAD_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
return build_zero_cst (scalar_type);
|
|
|
|
case MULT_EXPR:
|
|
return build_one_cst (scalar_type);
|
|
|
|
case BIT_AND_EXPR:
|
|
return build_all_ones_cst (scalar_type);
|
|
|
|
case MAX_EXPR:
|
|
case MIN_EXPR:
|
|
/* For MIN/MAX the initial values are neutral. A reduction chain
|
|
has only a single initial value, so that value is neutral for
|
|
all statements. */
|
|
if (reduc_chain)
|
|
return PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
|
|
return NULL_TREE;
|
|
|
|
default:
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
|
|
STMT is printed with a message MSG. */
|
|
|
|
static void
|
|
report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
|
|
{
|
|
dump_printf_loc (msg_type, vect_location, "%s", msg);
|
|
dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
|
|
}
|
|
|
|
|
|
/* Detect SLP reduction of the form:
|
|
|
|
#a1 = phi <a5, a0>
|
|
a2 = operation (a1)
|
|
a3 = operation (a2)
|
|
a4 = operation (a3)
|
|
a5 = operation (a4)
|
|
|
|
#a = phi <a5>
|
|
|
|
PHI is the reduction phi node (#a1 = phi <a5, a0> above)
|
|
FIRST_STMT is the first reduction stmt in the chain
|
|
(a2 = operation (a1)).
|
|
|
|
Return TRUE if a reduction chain was detected. */
|
|
|
|
static bool
|
|
vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
|
|
gimple *first_stmt)
|
|
{
|
|
struct loop *loop = (gimple_bb (phi))->loop_father;
|
|
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
|
|
enum tree_code code;
|
|
gimple *current_stmt = NULL, *loop_use_stmt = NULL, *first, *next_stmt;
|
|
stmt_vec_info use_stmt_info, current_stmt_info;
|
|
tree lhs;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
int nloop_uses, size = 0, n_out_of_loop_uses;
|
|
bool found = false;
|
|
|
|
if (loop != vect_loop)
|
|
return false;
|
|
|
|
lhs = PHI_RESULT (phi);
|
|
code = gimple_assign_rhs_code (first_stmt);
|
|
while (1)
|
|
{
|
|
nloop_uses = 0;
|
|
n_out_of_loop_uses = 0;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
|
|
/* Check if we got back to the reduction phi. */
|
|
if (use_stmt == phi)
|
|
{
|
|
loop_use_stmt = use_stmt;
|
|
found = true;
|
|
break;
|
|
}
|
|
|
|
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
|
{
|
|
loop_use_stmt = use_stmt;
|
|
nloop_uses++;
|
|
}
|
|
else
|
|
n_out_of_loop_uses++;
|
|
|
|
/* There are can be either a single use in the loop or two uses in
|
|
phi nodes. */
|
|
if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
|
|
return false;
|
|
}
|
|
|
|
if (found)
|
|
break;
|
|
|
|
/* We reached a statement with no loop uses. */
|
|
if (nloop_uses == 0)
|
|
return false;
|
|
|
|
/* This is a loop exit phi, and we haven't reached the reduction phi. */
|
|
if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
|
|
return false;
|
|
|
|
if (!is_gimple_assign (loop_use_stmt)
|
|
|| code != gimple_assign_rhs_code (loop_use_stmt)
|
|
|| !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
|
|
return false;
|
|
|
|
/* Insert USE_STMT into reduction chain. */
|
|
use_stmt_info = vinfo_for_stmt (loop_use_stmt);
|
|
if (current_stmt)
|
|
{
|
|
current_stmt_info = vinfo_for_stmt (current_stmt);
|
|
REDUC_GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
|
|
REDUC_GROUP_FIRST_ELEMENT (use_stmt_info)
|
|
= REDUC_GROUP_FIRST_ELEMENT (current_stmt_info);
|
|
}
|
|
else
|
|
REDUC_GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
|
|
|
|
lhs = gimple_assign_lhs (loop_use_stmt);
|
|
current_stmt = loop_use_stmt;
|
|
size++;
|
|
}
|
|
|
|
if (!found || loop_use_stmt != phi || size < 2)
|
|
return false;
|
|
|
|
/* Swap the operands, if needed, to make the reduction operand be the second
|
|
operand. */
|
|
lhs = PHI_RESULT (phi);
|
|
next_stmt = REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
|
|
while (next_stmt)
|
|
{
|
|
if (gimple_assign_rhs2 (next_stmt) == lhs)
|
|
{
|
|
tree op = gimple_assign_rhs1 (next_stmt);
|
|
gimple *def_stmt = NULL;
|
|
|
|
if (TREE_CODE (op) == SSA_NAME)
|
|
def_stmt = SSA_NAME_DEF_STMT (op);
|
|
|
|
/* Check that the other def is either defined in the loop
|
|
("vect_internal_def"), or it's an induction (defined by a
|
|
loop-header phi-node). */
|
|
if (def_stmt
|
|
&& gimple_bb (def_stmt)
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
|
&& (is_gimple_assign (def_stmt)
|
|
|| is_gimple_call (def_stmt)
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
|
== vect_induction_def
|
|
|| (gimple_code (def_stmt) == GIMPLE_PHI
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
|
== vect_internal_def
|
|
&& !is_loop_header_bb_p (gimple_bb (def_stmt)))))
|
|
{
|
|
lhs = gimple_assign_lhs (next_stmt);
|
|
next_stmt = REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
tree op = gimple_assign_rhs2 (next_stmt);
|
|
gimple *def_stmt = NULL;
|
|
|
|
if (TREE_CODE (op) == SSA_NAME)
|
|
def_stmt = SSA_NAME_DEF_STMT (op);
|
|
|
|
/* Check that the other def is either defined in the loop
|
|
("vect_internal_def"), or it's an induction (defined by a
|
|
loop-header phi-node). */
|
|
if (def_stmt
|
|
&& gimple_bb (def_stmt)
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
|
&& (is_gimple_assign (def_stmt)
|
|
|| is_gimple_call (def_stmt)
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
|
== vect_induction_def
|
|
|| (gimple_code (def_stmt) == GIMPLE_PHI
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
|
== vect_internal_def
|
|
&& !is_loop_header_bb_p (gimple_bb (def_stmt)))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
|
|
}
|
|
|
|
swap_ssa_operands (next_stmt,
|
|
gimple_assign_rhs1_ptr (next_stmt),
|
|
gimple_assign_rhs2_ptr (next_stmt));
|
|
update_stmt (next_stmt);
|
|
|
|
if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
|
|
LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
lhs = gimple_assign_lhs (next_stmt);
|
|
next_stmt = REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
|
}
|
|
|
|
/* Save the chain for further analysis in SLP detection. */
|
|
first = REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
|
|
LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
|
|
REDUC_GROUP_SIZE (vinfo_for_stmt (first)) = size;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true if we need an in-order reduction for operation CODE
|
|
on type TYPE. NEED_WRAPPING_INTEGRAL_OVERFLOW is true if integer
|
|
overflow must wrap. */
|
|
|
|
static bool
|
|
needs_fold_left_reduction_p (tree type, tree_code code,
|
|
bool need_wrapping_integral_overflow)
|
|
{
|
|
/* CHECKME: check for !flag_finite_math_only too? */
|
|
if (SCALAR_FLOAT_TYPE_P (type))
|
|
switch (code)
|
|
{
|
|
case MIN_EXPR:
|
|
case MAX_EXPR:
|
|
return false;
|
|
|
|
default:
|
|
return !flag_associative_math;
|
|
}
|
|
|
|
if (INTEGRAL_TYPE_P (type))
|
|
{
|
|
if (!operation_no_trapping_overflow (type, code))
|
|
return true;
|
|
if (need_wrapping_integral_overflow
|
|
&& !TYPE_OVERFLOW_WRAPS (type)
|
|
&& operation_can_overflow (code))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
if (SAT_FIXED_POINT_TYPE_P (type))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true if the reduction PHI in LOOP with latch arg LOOP_ARG and
|
|
reduction operation CODE has a handled computation expression. */
|
|
|
|
bool
|
|
check_reduction_path (dump_user_location_t loc, loop_p loop, gphi *phi,
|
|
tree loop_arg, enum tree_code code)
|
|
{
|
|
auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
|
|
auto_bitmap visited;
|
|
tree lookfor = PHI_RESULT (phi);
|
|
ssa_op_iter curri;
|
|
use_operand_p curr = op_iter_init_phiuse (&curri, phi, SSA_OP_USE);
|
|
while (USE_FROM_PTR (curr) != loop_arg)
|
|
curr = op_iter_next_use (&curri);
|
|
curri.i = curri.numops;
|
|
do
|
|
{
|
|
path.safe_push (std::make_pair (curri, curr));
|
|
tree use = USE_FROM_PTR (curr);
|
|
if (use == lookfor)
|
|
break;
|
|
gimple *def = SSA_NAME_DEF_STMT (use);
|
|
if (gimple_nop_p (def)
|
|
|| ! flow_bb_inside_loop_p (loop, gimple_bb (def)))
|
|
{
|
|
pop:
|
|
do
|
|
{
|
|
std::pair<ssa_op_iter, use_operand_p> x = path.pop ();
|
|
curri = x.first;
|
|
curr = x.second;
|
|
do
|
|
curr = op_iter_next_use (&curri);
|
|
/* Skip already visited or non-SSA operands (from iterating
|
|
over PHI args). */
|
|
while (curr != NULL_USE_OPERAND_P
|
|
&& (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
|
|
|| ! bitmap_set_bit (visited,
|
|
SSA_NAME_VERSION
|
|
(USE_FROM_PTR (curr)))));
|
|
}
|
|
while (curr == NULL_USE_OPERAND_P && ! path.is_empty ());
|
|
if (curr == NULL_USE_OPERAND_P)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
if (gimple_code (def) == GIMPLE_PHI)
|
|
curr = op_iter_init_phiuse (&curri, as_a <gphi *>(def), SSA_OP_USE);
|
|
else
|
|
curr = op_iter_init_use (&curri, def, SSA_OP_USE);
|
|
while (curr != NULL_USE_OPERAND_P
|
|
&& (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
|
|
|| ! bitmap_set_bit (visited,
|
|
SSA_NAME_VERSION
|
|
(USE_FROM_PTR (curr)))))
|
|
curr = op_iter_next_use (&curri);
|
|
if (curr == NULL_USE_OPERAND_P)
|
|
goto pop;
|
|
}
|
|
}
|
|
while (1);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
dump_printf_loc (MSG_NOTE, loc, "reduction path: ");
|
|
unsigned i;
|
|
std::pair<ssa_op_iter, use_operand_p> *x;
|
|
FOR_EACH_VEC_ELT (path, i, x)
|
|
{
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, USE_FROM_PTR (x->second));
|
|
dump_printf (MSG_NOTE, " ");
|
|
}
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
/* Check whether the reduction path detected is valid. */
|
|
bool fail = path.length () == 0;
|
|
bool neg = false;
|
|
for (unsigned i = 1; i < path.length (); ++i)
|
|
{
|
|
gimple *use_stmt = USE_STMT (path[i].second);
|
|
tree op = USE_FROM_PTR (path[i].second);
|
|
if (! has_single_use (op)
|
|
|| ! is_gimple_assign (use_stmt))
|
|
{
|
|
fail = true;
|
|
break;
|
|
}
|
|
if (gimple_assign_rhs_code (use_stmt) != code)
|
|
{
|
|
if (code == PLUS_EXPR
|
|
&& gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
|
|
{
|
|
/* Track whether we negate the reduction value each iteration. */
|
|
if (gimple_assign_rhs2 (use_stmt) == op)
|
|
neg = ! neg;
|
|
}
|
|
else
|
|
{
|
|
fail = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return ! fail && ! neg;
|
|
}
|
|
|
|
|
|
/* Function vect_is_simple_reduction
|
|
|
|
(1) Detect a cross-iteration def-use cycle that represents a simple
|
|
reduction computation. We look for the following pattern:
|
|
|
|
loop_header:
|
|
a1 = phi < a0, a2 >
|
|
a3 = ...
|
|
a2 = operation (a3, a1)
|
|
|
|
or
|
|
|
|
a3 = ...
|
|
loop_header:
|
|
a1 = phi < a0, a2 >
|
|
a2 = operation (a3, a1)
|
|
|
|
such that:
|
|
1. operation is commutative and associative and it is safe to
|
|
change the order of the computation
|
|
2. no uses for a2 in the loop (a2 is used out of the loop)
|
|
3. no uses of a1 in the loop besides the reduction operation
|
|
4. no uses of a1 outside the loop.
|
|
|
|
Conditions 1,4 are tested here.
|
|
Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
|
|
|
|
(2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
|
|
nested cycles.
|
|
|
|
(3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
|
|
reductions:
|
|
|
|
a1 = phi < a0, a2 >
|
|
inner loop (def of a3)
|
|
a2 = phi < a3 >
|
|
|
|
(4) Detect condition expressions, ie:
|
|
for (int i = 0; i < N; i++)
|
|
if (a[i] < val)
|
|
ret_val = a[i];
|
|
|
|
*/
|
|
|
|
static gimple *
|
|
vect_is_simple_reduction (loop_vec_info loop_info, gimple *phi,
|
|
bool *double_reduc,
|
|
bool need_wrapping_integral_overflow,
|
|
enum vect_reduction_type *v_reduc_type)
|
|
{
|
|
struct loop *loop = (gimple_bb (phi))->loop_father;
|
|
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
|
|
gimple *def_stmt, *def1 = NULL, *def2 = NULL, *phi_use_stmt = NULL;
|
|
enum tree_code orig_code, code;
|
|
tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
|
|
tree type;
|
|
int nloop_uses;
|
|
tree name;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
bool phi_def;
|
|
|
|
*double_reduc = false;
|
|
*v_reduc_type = TREE_CODE_REDUCTION;
|
|
|
|
tree phi_name = PHI_RESULT (phi);
|
|
/* ??? If there are no uses of the PHI result the inner loop reduction
|
|
won't be detected as possibly double-reduction by vectorizable_reduction
|
|
because that tries to walk the PHI arg from the preheader edge which
|
|
can be constant. See PR60382. */
|
|
if (has_zero_uses (phi_name))
|
|
return NULL;
|
|
nloop_uses = 0;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, phi_name)
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"intermediate value used outside loop.\n");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
nloop_uses++;
|
|
if (nloop_uses > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction value used in loop.\n");
|
|
return NULL;
|
|
}
|
|
|
|
phi_use_stmt = use_stmt;
|
|
}
|
|
|
|
edge latch_e = loop_latch_edge (loop);
|
|
tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
|
|
if (TREE_CODE (loop_arg) != SSA_NAME)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction: not ssa_name: ");
|
|
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
|
|
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
def_stmt = SSA_NAME_DEF_STMT (loop_arg);
|
|
if (is_gimple_assign (def_stmt))
|
|
{
|
|
name = gimple_assign_lhs (def_stmt);
|
|
phi_def = false;
|
|
}
|
|
else if (gimple_code (def_stmt) == GIMPLE_PHI)
|
|
{
|
|
name = PHI_RESULT (def_stmt);
|
|
phi_def = true;
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction: unhandled reduction operation: ");
|
|
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, def_stmt, 0);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
if (! flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
|
|
return NULL;
|
|
|
|
nloop_uses = 0;
|
|
auto_vec<gphi *, 3> lcphis;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
|
nloop_uses++;
|
|
else
|
|
/* We can have more than one loop-closed PHI. */
|
|
lcphis.safe_push (as_a <gphi *> (use_stmt));
|
|
if (nloop_uses > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction used in loop.\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* If DEF_STMT is a phi node itself, we expect it to have a single argument
|
|
defined in the inner loop. */
|
|
if (phi_def)
|
|
{
|
|
op1 = PHI_ARG_DEF (def_stmt, 0);
|
|
|
|
if (gimple_phi_num_args (def_stmt) != 1
|
|
|| TREE_CODE (op1) != SSA_NAME)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unsupported phi node definition.\n");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
def1 = SSA_NAME_DEF_STMT (op1);
|
|
if (gimple_bb (def1)
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
|
&& loop->inner
|
|
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
|
|
&& is_gimple_assign (def1)
|
|
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt,
|
|
"detected double reduction: ");
|
|
|
|
*double_reduc = true;
|
|
return def_stmt;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* If we are vectorizing an inner reduction we are executing that
|
|
in the original order only in case we are not dealing with a
|
|
double reduction. */
|
|
bool check_reduction = true;
|
|
if (flow_loop_nested_p (vect_loop, loop))
|
|
{
|
|
gphi *lcphi;
|
|
unsigned i;
|
|
check_reduction = false;
|
|
FOR_EACH_VEC_ELT (lcphis, i, lcphi)
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (lcphi))
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
if (! flow_bb_inside_loop_p (vect_loop, gimple_bb (use_stmt)))
|
|
check_reduction = true;
|
|
}
|
|
}
|
|
|
|
bool nested_in_vect_loop = flow_loop_nested_p (vect_loop, loop);
|
|
code = orig_code = gimple_assign_rhs_code (def_stmt);
|
|
|
|
/* We can handle "res -= x[i]", which is non-associative by
|
|
simply rewriting this into "res += -x[i]". Avoid changing
|
|
gimple instruction for the first simple tests and only do this
|
|
if we're allowed to change code at all. */
|
|
if (code == MINUS_EXPR && gimple_assign_rhs2 (def_stmt) != phi_name)
|
|
code = PLUS_EXPR;
|
|
|
|
if (code == COND_EXPR)
|
|
{
|
|
if (! nested_in_vect_loop)
|
|
*v_reduc_type = COND_REDUCTION;
|
|
|
|
op3 = gimple_assign_rhs1 (def_stmt);
|
|
if (COMPARISON_CLASS_P (op3))
|
|
{
|
|
op4 = TREE_OPERAND (op3, 1);
|
|
op3 = TREE_OPERAND (op3, 0);
|
|
}
|
|
if (op3 == phi_name || op4 == phi_name)
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: condition depends on previous"
|
|
" iteration: ");
|
|
return NULL;
|
|
}
|
|
|
|
op1 = gimple_assign_rhs2 (def_stmt);
|
|
op2 = gimple_assign_rhs3 (def_stmt);
|
|
}
|
|
else if (!commutative_tree_code (code) || !associative_tree_code (code))
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: not commutative/associative: ");
|
|
return NULL;
|
|
}
|
|
else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
|
|
{
|
|
op1 = gimple_assign_rhs1 (def_stmt);
|
|
op2 = gimple_assign_rhs2 (def_stmt);
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: not handled operation: ");
|
|
return NULL;
|
|
}
|
|
|
|
if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: both uses not ssa_names: ");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
type = TREE_TYPE (gimple_assign_lhs (def_stmt));
|
|
if ((TREE_CODE (op1) == SSA_NAME
|
|
&& !types_compatible_p (type,TREE_TYPE (op1)))
|
|
|| (TREE_CODE (op2) == SSA_NAME
|
|
&& !types_compatible_p (type, TREE_TYPE (op2)))
|
|
|| (op3 && TREE_CODE (op3) == SSA_NAME
|
|
&& !types_compatible_p (type, TREE_TYPE (op3)))
|
|
|| (op4 && TREE_CODE (op4) == SSA_NAME
|
|
&& !types_compatible_p (type, TREE_TYPE (op4))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"reduction: multiple types: operation type: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
|
|
dump_printf (MSG_NOTE, ", operands types: ");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
TREE_TYPE (op1));
|
|
dump_printf (MSG_NOTE, ",");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
TREE_TYPE (op2));
|
|
if (op3)
|
|
{
|
|
dump_printf (MSG_NOTE, ",");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
TREE_TYPE (op3));
|
|
}
|
|
|
|
if (op4)
|
|
{
|
|
dump_printf (MSG_NOTE, ",");
|
|
dump_generic_expr (MSG_NOTE, TDF_SLIM,
|
|
TREE_TYPE (op4));
|
|
}
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Check whether it's ok to change the order of the computation.
|
|
Generally, when vectorizing a reduction we change the order of the
|
|
computation. This may change the behavior of the program in some
|
|
cases, so we need to check that this is ok. One exception is when
|
|
vectorizing an outer-loop: the inner-loop is executed sequentially,
|
|
and therefore vectorizing reductions in the inner-loop during
|
|
outer-loop vectorization is safe. */
|
|
if (check_reduction
|
|
&& *v_reduc_type == TREE_CODE_REDUCTION
|
|
&& needs_fold_left_reduction_p (type, code,
|
|
need_wrapping_integral_overflow))
|
|
*v_reduc_type = FOLD_LEFT_REDUCTION;
|
|
|
|
/* Reduction is safe. We're dealing with one of the following:
|
|
1) integer arithmetic and no trapv
|
|
2) floating point arithmetic, and special flags permit this optimization
|
|
3) nested cycle (i.e., outer loop vectorization). */
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
|
def1 = SSA_NAME_DEF_STMT (op1);
|
|
|
|
if (TREE_CODE (op2) == SSA_NAME)
|
|
def2 = SSA_NAME_DEF_STMT (op2);
|
|
|
|
if (code != COND_EXPR
|
|
&& ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
|
|
return NULL;
|
|
}
|
|
|
|
/* Check that one def is the reduction def, defined by PHI,
|
|
the other def is either defined in the loop ("vect_internal_def"),
|
|
or it's an induction (defined by a loop-header phi-node). */
|
|
|
|
if (def2 && def2 == phi
|
|
&& (code == COND_EXPR
|
|
|| !def1 || gimple_nop_p (def1)
|
|
|| !flow_bb_inside_loop_p (loop, gimple_bb (def1))
|
|
|| (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
|
|
&& (is_gimple_assign (def1)
|
|
|| is_gimple_call (def1)
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
|
|
== vect_induction_def
|
|
|| (gimple_code (def1) == GIMPLE_PHI
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
|
|
== vect_internal_def
|
|
&& !is_loop_header_bb_p (gimple_bb (def1)))))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
|
|
return def_stmt;
|
|
}
|
|
|
|
if (def1 && def1 == phi
|
|
&& (code == COND_EXPR
|
|
|| !def2 || gimple_nop_p (def2)
|
|
|| !flow_bb_inside_loop_p (loop, gimple_bb (def2))
|
|
|| (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
|
|
&& (is_gimple_assign (def2)
|
|
|| is_gimple_call (def2)
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
|
|
== vect_induction_def
|
|
|| (gimple_code (def2) == GIMPLE_PHI
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
|
|
== vect_internal_def
|
|
&& !is_loop_header_bb_p (gimple_bb (def2)))))))
|
|
{
|
|
if (! nested_in_vect_loop && orig_code != MINUS_EXPR)
|
|
{
|
|
/* Check if we can swap operands (just for simplicity - so that
|
|
the rest of the code can assume that the reduction variable
|
|
is always the last (second) argument). */
|
|
if (code == COND_EXPR)
|
|
{
|
|
/* Swap cond_expr by inverting the condition. */
|
|
tree cond_expr = gimple_assign_rhs1 (def_stmt);
|
|
enum tree_code invert_code = ERROR_MARK;
|
|
enum tree_code cond_code = TREE_CODE (cond_expr);
|
|
|
|
if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
|
|
{
|
|
bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
|
|
invert_code = invert_tree_comparison (cond_code, honor_nans);
|
|
}
|
|
if (invert_code != ERROR_MARK)
|
|
{
|
|
TREE_SET_CODE (cond_expr, invert_code);
|
|
swap_ssa_operands (def_stmt,
|
|
gimple_assign_rhs2_ptr (def_stmt),
|
|
gimple_assign_rhs3_ptr (def_stmt));
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt,
|
|
"detected reduction: cannot swap operands "
|
|
"for cond_expr");
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
|
|
gimple_assign_rhs2_ptr (def_stmt));
|
|
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt,
|
|
"detected reduction: need to swap operands: ");
|
|
|
|
if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
|
|
LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
|
|
}
|
|
|
|
return def_stmt;
|
|
}
|
|
|
|
/* Try to find SLP reduction chain. */
|
|
if (! nested_in_vect_loop
|
|
&& code != COND_EXPR
|
|
&& orig_code != MINUS_EXPR
|
|
&& vect_is_slp_reduction (loop_info, phi, def_stmt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt,
|
|
"reduction: detected reduction chain: ");
|
|
|
|
return def_stmt;
|
|
}
|
|
|
|
/* Dissolve group eventually half-built by vect_is_slp_reduction. */
|
|
gimple *first = REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (def_stmt));
|
|
while (first)
|
|
{
|
|
gimple *next = REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
|
|
REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (first)) = NULL;
|
|
REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (first)) = NULL;
|
|
first = next;
|
|
}
|
|
|
|
/* Look for the expression computing loop_arg from loop PHI result. */
|
|
if (check_reduction_path (vect_location, loop, as_a <gphi *> (phi), loop_arg,
|
|
code))
|
|
return def_stmt;
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
|
|
"reduction: unknown pattern: ");
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Wrapper around vect_is_simple_reduction, which will modify code
|
|
in-place if it enables detection of more reductions. Arguments
|
|
as there. */
|
|
|
|
gimple *
|
|
vect_force_simple_reduction (loop_vec_info loop_info, gimple *phi,
|
|
bool *double_reduc,
|
|
bool need_wrapping_integral_overflow)
|
|
{
|
|
enum vect_reduction_type v_reduc_type;
|
|
gimple *def = vect_is_simple_reduction (loop_info, phi, double_reduc,
|
|
need_wrapping_integral_overflow,
|
|
&v_reduc_type);
|
|
if (def)
|
|
{
|
|
stmt_vec_info reduc_def_info = vinfo_for_stmt (phi);
|
|
STMT_VINFO_REDUC_TYPE (reduc_def_info) = v_reduc_type;
|
|
STMT_VINFO_REDUC_DEF (reduc_def_info) = def;
|
|
reduc_def_info = vinfo_for_stmt (def);
|
|
STMT_VINFO_REDUC_TYPE (reduc_def_info) = v_reduc_type;
|
|
STMT_VINFO_REDUC_DEF (reduc_def_info) = phi;
|
|
}
|
|
return def;
|
|
}
|
|
|
|
/* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
|
|
int
|
|
vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
|
|
int *peel_iters_epilogue,
|
|
stmt_vector_for_cost *scalar_cost_vec,
|
|
stmt_vector_for_cost *prologue_cost_vec,
|
|
stmt_vector_for_cost *epilogue_cost_vec)
|
|
{
|
|
int retval = 0;
|
|
int assumed_vf = vect_vf_for_cost (loop_vinfo);
|
|
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
{
|
|
*peel_iters_epilogue = assumed_vf / 2;
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"cost model: epilogue peel iters set to vf/2 "
|
|
"because loop iterations are unknown .\n");
|
|
|
|
/* If peeled iterations are known but number of scalar loop
|
|
iterations are unknown, count a taken branch per peeled loop. */
|
|
retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
|
|
NULL, 0, vect_prologue);
|
|
retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
|
|
NULL, 0, vect_epilogue);
|
|
}
|
|
else
|
|
{
|
|
int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
|
|
peel_iters_prologue = niters < peel_iters_prologue ?
|
|
niters : peel_iters_prologue;
|
|
*peel_iters_epilogue = (niters - peel_iters_prologue) % assumed_vf;
|
|
/* If we need to peel for gaps, but no peeling is required, we have to
|
|
peel VF iterations. */
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
|
|
*peel_iters_epilogue = assumed_vf;
|
|
}
|
|
|
|
stmt_info_for_cost *si;
|
|
int j;
|
|
if (peel_iters_prologue)
|
|
FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
|
|
{
|
|
stmt_vec_info stmt_info
|
|
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
|
|
retval += record_stmt_cost (prologue_cost_vec,
|
|
si->count * peel_iters_prologue,
|
|
si->kind, stmt_info, si->misalign,
|
|
vect_prologue);
|
|
}
|
|
if (*peel_iters_epilogue)
|
|
FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
|
|
{
|
|
stmt_vec_info stmt_info
|
|
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
|
|
retval += record_stmt_cost (epilogue_cost_vec,
|
|
si->count * *peel_iters_epilogue,
|
|
si->kind, stmt_info, si->misalign,
|
|
vect_epilogue);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Function vect_estimate_min_profitable_iters
|
|
|
|
Return the number of iterations required for the vector version of the
|
|
loop to be profitable relative to the cost of the scalar version of the
|
|
loop.
|
|
|
|
*RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
|
|
of iterations for vectorization. -1 value means loop vectorization
|
|
is not profitable. This returned value may be used for dynamic
|
|
profitability check.
|
|
|
|
*RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
|
|
for static check against estimated number of iterations. */
|
|
|
|
static void
|
|
vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
|
|
int *ret_min_profitable_niters,
|
|
int *ret_min_profitable_estimate)
|
|
{
|
|
int min_profitable_iters;
|
|
int min_profitable_estimate;
|
|
int peel_iters_prologue;
|
|
int peel_iters_epilogue;
|
|
unsigned vec_inside_cost = 0;
|
|
int vec_outside_cost = 0;
|
|
unsigned vec_prologue_cost = 0;
|
|
unsigned vec_epilogue_cost = 0;
|
|
int scalar_single_iter_cost = 0;
|
|
int scalar_outside_cost = 0;
|
|
int assumed_vf = vect_vf_for_cost (loop_vinfo);
|
|
int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
|
void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
|
|
|
|
/* Cost model disabled. */
|
|
if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
|
|
*ret_min_profitable_niters = 0;
|
|
*ret_min_profitable_estimate = 0;
|
|
return;
|
|
}
|
|
|
|
/* Requires loop versioning tests to handle misalignment. */
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
|
|
{
|
|
/* FIXME: Make cost depend on complexity of individual check. */
|
|
unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
|
|
(void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
|
|
vect_prologue);
|
|
dump_printf (MSG_NOTE,
|
|
"cost model: Adding cost of checks for loop "
|
|
"versioning to treat misalignment.\n");
|
|
}
|
|
|
|
/* Requires loop versioning with alias checks. */
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
|
{
|
|
/* FIXME: Make cost depend on complexity of individual check. */
|
|
unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
|
|
(void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
|
|
vect_prologue);
|
|
len = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).length ();
|
|
if (len)
|
|
/* Count LEN - 1 ANDs and LEN comparisons. */
|
|
(void) add_stmt_cost (target_cost_data, len * 2 - 1, scalar_stmt,
|
|
NULL, 0, vect_prologue);
|
|
len = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).length ();
|
|
if (len)
|
|
{
|
|
/* Count LEN - 1 ANDs and LEN comparisons. */
|
|
unsigned int nstmts = len * 2 - 1;
|
|
/* +1 for each bias that needs adding. */
|
|
for (unsigned int i = 0; i < len; ++i)
|
|
if (!LOOP_VINFO_LOWER_BOUNDS (loop_vinfo)[i].unsigned_p)
|
|
nstmts += 1;
|
|
(void) add_stmt_cost (target_cost_data, nstmts, scalar_stmt,
|
|
NULL, 0, vect_prologue);
|
|
}
|
|
dump_printf (MSG_NOTE,
|
|
"cost model: Adding cost of checks for loop "
|
|
"versioning aliasing.\n");
|
|
}
|
|
|
|
/* Requires loop versioning with niter checks. */
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
|
|
{
|
|
/* FIXME: Make cost depend on complexity of individual check. */
|
|
(void) add_stmt_cost (target_cost_data, 1, vector_stmt, NULL, 0,
|
|
vect_prologue);
|
|
dump_printf (MSG_NOTE,
|
|
"cost model: Adding cost of checks for loop "
|
|
"versioning niters.\n");
|
|
}
|
|
|
|
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
|
|
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
|
|
vect_prologue);
|
|
|
|
/* Count statements in scalar loop. Using this as scalar cost for a single
|
|
iteration for now.
|
|
|
|
TODO: Add outer loop support.
|
|
|
|
TODO: Consider assigning different costs to different scalar
|
|
statements. */
|
|
|
|
scalar_single_iter_cost
|
|
= LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
|
|
|
|
/* Add additional cost for the peeled instructions in prologue and epilogue
|
|
loop. (For fully-masked loops there will be no peeling.)
|
|
|
|
FORNOW: If we don't know the value of peel_iters for prologue or epilogue
|
|
at compile-time - we assume it's vf/2 (the worst would be vf-1).
|
|
|
|
TODO: Build an expression that represents peel_iters for prologue and
|
|
epilogue to be used in a run-time test. */
|
|
|
|
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
{
|
|
peel_iters_prologue = 0;
|
|
peel_iters_epilogue = 0;
|
|
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
|
|
{
|
|
/* We need to peel exactly one iteration. */
|
|
peel_iters_epilogue += 1;
|
|
stmt_info_for_cost *si;
|
|
int j;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
|
|
j, si)
|
|
{
|
|
struct _stmt_vec_info *stmt_info
|
|
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
|
|
(void) add_stmt_cost (target_cost_data, si->count,
|
|
si->kind, stmt_info, si->misalign,
|
|
vect_epilogue);
|
|
}
|
|
}
|
|
}
|
|
else if (npeel < 0)
|
|
{
|
|
peel_iters_prologue = assumed_vf / 2;
|
|
dump_printf (MSG_NOTE, "cost model: "
|
|
"prologue peel iters set to vf/2.\n");
|
|
|
|
/* If peeling for alignment is unknown, loop bound of main loop becomes
|
|
unknown. */
|
|
peel_iters_epilogue = assumed_vf / 2;
|
|
dump_printf (MSG_NOTE, "cost model: "
|
|
"epilogue peel iters set to vf/2 because "
|
|
"peeling for alignment is unknown.\n");
|
|
|
|
/* If peeled iterations are unknown, count a taken branch and a not taken
|
|
branch per peeled loop. Even if scalar loop iterations are known,
|
|
vector iterations are not known since peeled prologue iterations are
|
|
not known. Hence guards remain the same. */
|
|
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
|
|
NULL, 0, vect_prologue);
|
|
(void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
|
|
NULL, 0, vect_prologue);
|
|
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
|
|
NULL, 0, vect_epilogue);
|
|
(void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
|
|
NULL, 0, vect_epilogue);
|
|
stmt_info_for_cost *si;
|
|
int j;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
|
|
{
|
|
struct _stmt_vec_info *stmt_info
|
|
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
|
|
(void) add_stmt_cost (target_cost_data,
|
|
si->count * peel_iters_prologue,
|
|
si->kind, stmt_info, si->misalign,
|
|
vect_prologue);
|
|
(void) add_stmt_cost (target_cost_data,
|
|
si->count * peel_iters_epilogue,
|
|
si->kind, stmt_info, si->misalign,
|
|
vect_epilogue);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
|
|
stmt_info_for_cost *si;
|
|
int j;
|
|
void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
|
|
|
|
prologue_cost_vec.create (2);
|
|
epilogue_cost_vec.create (2);
|
|
peel_iters_prologue = npeel;
|
|
|
|
(void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
|
|
&peel_iters_epilogue,
|
|
&LOOP_VINFO_SCALAR_ITERATION_COST
|
|
(loop_vinfo),
|
|
&prologue_cost_vec,
|
|
&epilogue_cost_vec);
|
|
|
|
FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
|
|
{
|
|
struct _stmt_vec_info *stmt_info
|
|
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
|
|
(void) add_stmt_cost (data, si->count, si->kind, stmt_info,
|
|
si->misalign, vect_prologue);
|
|
}
|
|
|
|
FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
|
|
{
|
|
struct _stmt_vec_info *stmt_info
|
|
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
|
|
(void) add_stmt_cost (data, si->count, si->kind, stmt_info,
|
|
si->misalign, vect_epilogue);
|
|
}
|
|
|
|
prologue_cost_vec.release ();
|
|
epilogue_cost_vec.release ();
|
|
}
|
|
|
|
/* FORNOW: The scalar outside cost is incremented in one of the
|
|
following ways:
|
|
|
|
1. The vectorizer checks for alignment and aliasing and generates
|
|
a condition that allows dynamic vectorization. A cost model
|
|
check is ANDED with the versioning condition. Hence scalar code
|
|
path now has the added cost of the versioning check.
|
|
|
|
if (cost > th & versioning_check)
|
|
jmp to vector code
|
|
|
|
Hence run-time scalar is incremented by not-taken branch cost.
|
|
|
|
2. The vectorizer then checks if a prologue is required. If the
|
|
cost model check was not done before during versioning, it has to
|
|
be done before the prologue check.
|
|
|
|
if (cost <= th)
|
|
prologue = scalar_iters
|
|
if (prologue == 0)
|
|
jmp to vector code
|
|
else
|
|
execute prologue
|
|
if (prologue == num_iters)
|
|
go to exit
|
|
|
|
Hence the run-time scalar cost is incremented by a taken branch,
|
|
plus a not-taken branch, plus a taken branch cost.
|
|
|
|
3. The vectorizer then checks if an epilogue is required. If the
|
|
cost model check was not done before during prologue check, it
|
|
has to be done with the epilogue check.
|
|
|
|
if (prologue == 0)
|
|
jmp to vector code
|
|
else
|
|
execute prologue
|
|
if (prologue == num_iters)
|
|
go to exit
|
|
vector code:
|
|
if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
|
|
jmp to epilogue
|
|
|
|
Hence the run-time scalar cost should be incremented by 2 taken
|
|
branches.
|
|
|
|
TODO: The back end may reorder the BBS's differently and reverse
|
|
conditions/branch directions. Change the estimates below to
|
|
something more reasonable. */
|
|
|
|
/* If the number of iterations is known and we do not do versioning, we can
|
|
decide whether to vectorize at compile time. Hence the scalar version
|
|
do not carry cost model guard costs. */
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
|| LOOP_REQUIRES_VERSIONING (loop_vinfo))
|
|
{
|
|
/* Cost model check occurs at versioning. */
|
|
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
|
|
scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
|
|
else
|
|
{
|
|
/* Cost model check occurs at prologue generation. */
|
|
if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
|
|
scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
|
|
+ vect_get_stmt_cost (cond_branch_not_taken);
|
|
/* Cost model check occurs at epilogue generation. */
|
|
else
|
|
scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
|
|
}
|
|
}
|
|
|
|
/* Complete the target-specific cost calculations. */
|
|
finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
|
|
&vec_inside_cost, &vec_epilogue_cost);
|
|
|
|
vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
|
|
dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
|
|
vec_inside_cost);
|
|
dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
|
|
vec_prologue_cost);
|
|
dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
|
|
vec_epilogue_cost);
|
|
dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
|
|
scalar_single_iter_cost);
|
|
dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
|
|
scalar_outside_cost);
|
|
dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
|
|
vec_outside_cost);
|
|
dump_printf (MSG_NOTE, " prologue iterations: %d\n",
|
|
peel_iters_prologue);
|
|
dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
|
|
peel_iters_epilogue);
|
|
}
|
|
|
|
/* Calculate number of iterations required to make the vector version
|
|
profitable, relative to the loop bodies only. The following condition
|
|
must hold true:
|
|
SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
|
|
where
|
|
SIC = scalar iteration cost, VIC = vector iteration cost,
|
|
VOC = vector outside cost, VF = vectorization factor,
|
|
PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
|
|
SOC = scalar outside cost for run time cost model check. */
|
|
|
|
if ((scalar_single_iter_cost * assumed_vf) > (int) vec_inside_cost)
|
|
{
|
|
min_profitable_iters = ((vec_outside_cost - scalar_outside_cost)
|
|
* assumed_vf
|
|
- vec_inside_cost * peel_iters_prologue
|
|
- vec_inside_cost * peel_iters_epilogue);
|
|
if (min_profitable_iters <= 0)
|
|
min_profitable_iters = 0;
|
|
else
|
|
{
|
|
min_profitable_iters /= ((scalar_single_iter_cost * assumed_vf)
|
|
- vec_inside_cost);
|
|
|
|
if ((scalar_single_iter_cost * assumed_vf * min_profitable_iters)
|
|
<= (((int) vec_inside_cost * min_profitable_iters)
|
|
+ (((int) vec_outside_cost - scalar_outside_cost)
|
|
* assumed_vf)))
|
|
min_profitable_iters++;
|
|
}
|
|
}
|
|
/* vector version will never be profitable. */
|
|
else
|
|
{
|
|
if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
|
|
warning_at (vect_location.get_location_t (), OPT_Wopenmp_simd,
|
|
"vectorization did not happen for a simd loop");
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"cost model: the vector iteration cost = %d "
|
|
"divided by the scalar iteration cost = %d "
|
|
"is greater or equal to the vectorization factor = %d"
|
|
".\n",
|
|
vec_inside_cost, scalar_single_iter_cost, assumed_vf);
|
|
*ret_min_profitable_niters = -1;
|
|
*ret_min_profitable_estimate = -1;
|
|
return;
|
|
}
|
|
|
|
dump_printf (MSG_NOTE,
|
|
" Calculated minimum iters for profitability: %d\n",
|
|
min_profitable_iters);
|
|
|
|
if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
|
|
&& min_profitable_iters < (assumed_vf + peel_iters_prologue))
|
|
/* We want the vectorized loop to execute at least once. */
|
|
min_profitable_iters = assumed_vf + peel_iters_prologue;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
" Runtime profitability threshold = %d\n",
|
|
min_profitable_iters);
|
|
|
|
*ret_min_profitable_niters = min_profitable_iters;
|
|
|
|
/* Calculate number of iterations required to make the vector version
|
|
profitable, relative to the loop bodies only.
|
|
|
|
Non-vectorized variant is SIC * niters and it must win over vector
|
|
variant on the expected loop trip count. The following condition must hold true:
|
|
SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
|
|
|
|
if (vec_outside_cost <= 0)
|
|
min_profitable_estimate = 0;
|
|
else
|
|
{
|
|
min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost)
|
|
* assumed_vf
|
|
- vec_inside_cost * peel_iters_prologue
|
|
- vec_inside_cost * peel_iters_epilogue)
|
|
/ ((scalar_single_iter_cost * assumed_vf)
|
|
- vec_inside_cost);
|
|
}
|
|
min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
" Static estimate profitability threshold = %d\n",
|
|
min_profitable_estimate);
|
|
|
|
*ret_min_profitable_estimate = min_profitable_estimate;
|
|
}
|
|
|
|
/* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
|
|
vector elements (not bits) for a vector with NELT elements. */
|
|
static void
|
|
calc_vec_perm_mask_for_shift (unsigned int offset, unsigned int nelt,
|
|
vec_perm_builder *sel)
|
|
{
|
|
/* The encoding is a single stepped pattern. Any wrap-around is handled
|
|
by vec_perm_indices. */
|
|
sel->new_vector (nelt, 1, 3);
|
|
for (unsigned int i = 0; i < 3; i++)
|
|
sel->quick_push (i + offset);
|
|
}
|
|
|
|
/* Checks whether the target supports whole-vector shifts for vectors of mode
|
|
MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
|
|
it supports vec_perm_const with masks for all necessary shift amounts. */
|
|
static bool
|
|
have_whole_vector_shift (machine_mode mode)
|
|
{
|
|
if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
|
|
return true;
|
|
|
|
/* Variable-length vectors should be handled via the optab. */
|
|
unsigned int nelt;
|
|
if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
|
|
return false;
|
|
|
|
vec_perm_builder sel;
|
|
vec_perm_indices indices;
|
|
for (unsigned int i = nelt / 2; i >= 1; i /= 2)
|
|
{
|
|
calc_vec_perm_mask_for_shift (i, nelt, &sel);
|
|
indices.new_vector (sel, 2, nelt);
|
|
if (!can_vec_perm_const_p (mode, indices, false))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* TODO: Close dependency between vect_model_*_cost and vectorizable_*
|
|
functions. Design better to avoid maintenance issues. */
|
|
|
|
/* Function vect_model_reduction_cost.
|
|
|
|
Models cost for a reduction operation, including the vector ops
|
|
generated within the strip-mine loop, the initial definition before
|
|
the loop, and the epilogue code that must be generated. */
|
|
|
|
static void
|
|
vect_model_reduction_cost (stmt_vec_info stmt_info, internal_fn reduc_fn,
|
|
int ncopies, stmt_vector_for_cost *cost_vec)
|
|
{
|
|
int prologue_cost = 0, epilogue_cost = 0, inside_cost;
|
|
enum tree_code code;
|
|
optab optab;
|
|
tree vectype;
|
|
gimple *orig_stmt;
|
|
machine_mode mode;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = NULL;
|
|
|
|
if (loop_vinfo)
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
/* Condition reductions generate two reductions in the loop. */
|
|
vect_reduction_type reduction_type
|
|
= STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info);
|
|
if (reduction_type == COND_REDUCTION)
|
|
ncopies *= 2;
|
|
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
mode = TYPE_MODE (vectype);
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
|
|
if (!orig_stmt)
|
|
orig_stmt = STMT_VINFO_STMT (stmt_info);
|
|
|
|
code = gimple_assign_rhs_code (orig_stmt);
|
|
|
|
if (reduction_type == EXTRACT_LAST_REDUCTION
|
|
|| reduction_type == FOLD_LEFT_REDUCTION)
|
|
{
|
|
/* No extra instructions needed in the prologue. */
|
|
prologue_cost = 0;
|
|
|
|
if (reduction_type == EXTRACT_LAST_REDUCTION || reduc_fn != IFN_LAST)
|
|
/* Count one reduction-like operation per vector. */
|
|
inside_cost = record_stmt_cost (cost_vec, ncopies, vec_to_scalar,
|
|
stmt_info, 0, vect_body);
|
|
else
|
|
{
|
|
/* Use NELEMENTS extracts and NELEMENTS scalar ops. */
|
|
unsigned int nelements = ncopies * vect_nunits_for_cost (vectype);
|
|
inside_cost = record_stmt_cost (cost_vec, nelements,
|
|
vec_to_scalar, stmt_info, 0,
|
|
vect_body);
|
|
inside_cost += record_stmt_cost (cost_vec, nelements,
|
|
scalar_stmt, stmt_info, 0,
|
|
vect_body);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Add in cost for initial definition.
|
|
For cond reduction we have four vectors: initial index, step,
|
|
initial result of the data reduction, initial value of the index
|
|
reduction. */
|
|
int prologue_stmts = reduction_type == COND_REDUCTION ? 4 : 1;
|
|
prologue_cost += record_stmt_cost (cost_vec, prologue_stmts,
|
|
scalar_to_vec, stmt_info, 0,
|
|
vect_prologue);
|
|
|
|
/* Cost of reduction op inside loop. */
|
|
inside_cost = record_stmt_cost (cost_vec, ncopies, vector_stmt,
|
|
stmt_info, 0, vect_body);
|
|
}
|
|
|
|
/* Determine cost of epilogue code.
|
|
|
|
We have a reduction operator that will reduce the vector in one statement.
|
|
Also requires scalar extract. */
|
|
|
|
if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
|
|
{
|
|
if (reduc_fn != IFN_LAST)
|
|
{
|
|
if (reduction_type == COND_REDUCTION)
|
|
{
|
|
/* An EQ stmt and an COND_EXPR stmt. */
|
|
epilogue_cost += record_stmt_cost (cost_vec, 2,
|
|
vector_stmt, stmt_info, 0,
|
|
vect_epilogue);
|
|
/* Reduction of the max index and a reduction of the found
|
|
values. */
|
|
epilogue_cost += record_stmt_cost (cost_vec, 2,
|
|
vec_to_scalar, stmt_info, 0,
|
|
vect_epilogue);
|
|
/* A broadcast of the max value. */
|
|
epilogue_cost += record_stmt_cost (cost_vec, 1,
|
|
scalar_to_vec, stmt_info, 0,
|
|
vect_epilogue);
|
|
}
|
|
else
|
|
{
|
|
epilogue_cost += record_stmt_cost (cost_vec, 1, vector_stmt,
|
|
stmt_info, 0, vect_epilogue);
|
|
epilogue_cost += record_stmt_cost (cost_vec, 1,
|
|
vec_to_scalar, stmt_info, 0,
|
|
vect_epilogue);
|
|
}
|
|
}
|
|
else if (reduction_type == COND_REDUCTION)
|
|
{
|
|
unsigned estimated_nunits = vect_nunits_for_cost (vectype);
|
|
/* Extraction of scalar elements. */
|
|
epilogue_cost += record_stmt_cost (cost_vec,
|
|
2 * estimated_nunits,
|
|
vec_to_scalar, stmt_info, 0,
|
|
vect_epilogue);
|
|
/* Scalar max reductions via COND_EXPR / MAX_EXPR. */
|
|
epilogue_cost += record_stmt_cost (cost_vec,
|
|
2 * estimated_nunits - 3,
|
|
scalar_stmt, stmt_info, 0,
|
|
vect_epilogue);
|
|
}
|
|
else if (reduction_type == EXTRACT_LAST_REDUCTION
|
|
|| reduction_type == FOLD_LEFT_REDUCTION)
|
|
/* No extra instructions need in the epilogue. */
|
|
;
|
|
else
|
|
{
|
|
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
|
|
tree bitsize =
|
|
TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
|
|
int element_bitsize = tree_to_uhwi (bitsize);
|
|
int nelements = vec_size_in_bits / element_bitsize;
|
|
|
|
if (code == COND_EXPR)
|
|
code = MAX_EXPR;
|
|
|
|
optab = optab_for_tree_code (code, vectype, optab_default);
|
|
|
|
/* We have a whole vector shift available. */
|
|
if (optab != unknown_optab
|
|
&& VECTOR_MODE_P (mode)
|
|
&& optab_handler (optab, mode) != CODE_FOR_nothing
|
|
&& have_whole_vector_shift (mode))
|
|
{
|
|
/* Final reduction via vector shifts and the reduction operator.
|
|
Also requires scalar extract. */
|
|
epilogue_cost += record_stmt_cost (cost_vec,
|
|
exact_log2 (nelements) * 2,
|
|
vector_stmt, stmt_info, 0,
|
|
vect_epilogue);
|
|
epilogue_cost += record_stmt_cost (cost_vec, 1,
|
|
vec_to_scalar, stmt_info, 0,
|
|
vect_epilogue);
|
|
}
|
|
else
|
|
/* Use extracts and reduction op for final reduction. For N
|
|
elements, we have N extracts and N-1 reduction ops. */
|
|
epilogue_cost += record_stmt_cost (cost_vec,
|
|
nelements + nelements - 1,
|
|
vector_stmt, stmt_info, 0,
|
|
vect_epilogue);
|
|
}
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE,
|
|
"vect_model_reduction_cost: inside_cost = %d, "
|
|
"prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
|
|
prologue_cost, epilogue_cost);
|
|
}
|
|
|
|
|
|
/* Function vect_model_induction_cost.
|
|
|
|
Models cost for induction operations. */
|
|
|
|
static void
|
|
vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies,
|
|
stmt_vector_for_cost *cost_vec)
|
|
{
|
|
unsigned inside_cost, prologue_cost;
|
|
|
|
if (PURE_SLP_STMT (stmt_info))
|
|
return;
|
|
|
|
/* loop cost for vec_loop. */
|
|
inside_cost = record_stmt_cost (cost_vec, ncopies, vector_stmt,
|
|
stmt_info, 0, vect_body);
|
|
|
|
/* prologue cost for vec_init and vec_step. */
|
|
prologue_cost = record_stmt_cost (cost_vec, 2, scalar_to_vec,
|
|
stmt_info, 0, vect_prologue);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_model_induction_cost: inside_cost = %d, "
|
|
"prologue_cost = %d .\n", inside_cost, prologue_cost);
|
|
}
|
|
|
|
|
|
|
|
/* Function get_initial_def_for_reduction
|
|
|
|
Input:
|
|
STMT - a stmt that performs a reduction operation in the loop.
|
|
INIT_VAL - the initial value of the reduction variable
|
|
|
|
Output:
|
|
ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
|
|
of the reduction (used for adjusting the epilog - see below).
|
|
Return a vector variable, initialized according to the operation that STMT
|
|
performs. This vector will be used as the initial value of the
|
|
vector of partial results.
|
|
|
|
Option1 (adjust in epilog): Initialize the vector as follows:
|
|
add/bit or/xor: [0,0,...,0,0]
|
|
mult/bit and: [1,1,...,1,1]
|
|
min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
|
|
and when necessary (e.g. add/mult case) let the caller know
|
|
that it needs to adjust the result by init_val.
|
|
|
|
Option2: Initialize the vector as follows:
|
|
add/bit or/xor: [init_val,0,0,...,0]
|
|
mult/bit and: [init_val,1,1,...,1]
|
|
min/max/cond_expr: [init_val,init_val,...,init_val]
|
|
and no adjustments are needed.
|
|
|
|
For example, for the following code:
|
|
|
|
s = init_val;
|
|
for (i=0;i<n;i++)
|
|
s = s + a[i];
|
|
|
|
STMT is 's = s + a[i]', and the reduction variable is 's'.
|
|
For a vector of 4 units, we want to return either [0,0,0,init_val],
|
|
or [0,0,0,0] and let the caller know that it needs to adjust
|
|
the result at the end by 'init_val'.
|
|
|
|
FORNOW, we are using the 'adjust in epilog' scheme, because this way the
|
|
initialization vector is simpler (same element in all entries), if
|
|
ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
|
|
|
|
A cost model should help decide between these two schemes. */
|
|
|
|
tree
|
|
get_initial_def_for_reduction (gimple *stmt, tree init_val,
|
|
tree *adjustment_def)
|
|
{
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
tree scalar_type = TREE_TYPE (init_val);
|
|
tree vectype = get_vectype_for_scalar_type (scalar_type);
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
tree def_for_init;
|
|
tree init_def;
|
|
bool nested_in_vect_loop = false;
|
|
REAL_VALUE_TYPE real_init_val = dconst0;
|
|
int int_init_val = 0;
|
|
gimple *def_stmt = NULL;
|
|
gimple_seq stmts = NULL;
|
|
|
|
gcc_assert (vectype);
|
|
|
|
gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
|
|
|| SCALAR_FLOAT_TYPE_P (scalar_type));
|
|
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
|
nested_in_vect_loop = true;
|
|
else
|
|
gcc_assert (loop == (gimple_bb (stmt))->loop_father);
|
|
|
|
/* In case of double reduction we only create a vector variable to be put
|
|
in the reduction phi node. The actual statement creation is done in
|
|
vect_create_epilog_for_reduction. */
|
|
if (adjustment_def && nested_in_vect_loop
|
|
&& TREE_CODE (init_val) == SSA_NAME
|
|
&& (def_stmt = SSA_NAME_DEF_STMT (init_val))
|
|
&& gimple_code (def_stmt) == GIMPLE_PHI
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
|
&& vinfo_for_stmt (def_stmt)
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
|
== vect_double_reduction_def)
|
|
{
|
|
*adjustment_def = NULL;
|
|
return vect_create_destination_var (init_val, vectype);
|
|
}
|
|
|
|
vect_reduction_type reduction_type
|
|
= STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo);
|
|
|
|
/* In case of a nested reduction do not use an adjustment def as
|
|
that case is not supported by the epilogue generation correctly
|
|
if ncopies is not one. */
|
|
if (adjustment_def && nested_in_vect_loop)
|
|
{
|
|
*adjustment_def = NULL;
|
|
return vect_get_vec_def_for_operand (init_val, stmt);
|
|
}
|
|
|
|
switch (code)
|
|
{
|
|
case WIDEN_SUM_EXPR:
|
|
case DOT_PROD_EXPR:
|
|
case SAD_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
case MULT_EXPR:
|
|
case BIT_AND_EXPR:
|
|
{
|
|
/* ADJUSTMENT_DEF is NULL when called from
|
|
vect_create_epilog_for_reduction to vectorize double reduction. */
|
|
if (adjustment_def)
|
|
*adjustment_def = init_val;
|
|
|
|
if (code == MULT_EXPR)
|
|
{
|
|
real_init_val = dconst1;
|
|
int_init_val = 1;
|
|
}
|
|
|
|
if (code == BIT_AND_EXPR)
|
|
int_init_val = -1;
|
|
|
|
if (SCALAR_FLOAT_TYPE_P (scalar_type))
|
|
def_for_init = build_real (scalar_type, real_init_val);
|
|
else
|
|
def_for_init = build_int_cst (scalar_type, int_init_val);
|
|
|
|
if (adjustment_def)
|
|
/* Option1: the first element is '0' or '1' as well. */
|
|
init_def = gimple_build_vector_from_val (&stmts, vectype,
|
|
def_for_init);
|
|
else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant ())
|
|
{
|
|
/* Option2 (variable length): the first element is INIT_VAL. */
|
|
init_def = gimple_build_vector_from_val (&stmts, vectype,
|
|
def_for_init);
|
|
init_def = gimple_build (&stmts, CFN_VEC_SHL_INSERT,
|
|
vectype, init_def, init_val);
|
|
}
|
|
else
|
|
{
|
|
/* Option2: the first element is INIT_VAL. */
|
|
tree_vector_builder elts (vectype, 1, 2);
|
|
elts.quick_push (init_val);
|
|
elts.quick_push (def_for_init);
|
|
init_def = gimple_build_vector (&stmts, &elts);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case MIN_EXPR:
|
|
case MAX_EXPR:
|
|
case COND_EXPR:
|
|
{
|
|
if (adjustment_def)
|
|
{
|
|
*adjustment_def = NULL_TREE;
|
|
if (reduction_type != COND_REDUCTION
|
|
&& reduction_type != EXTRACT_LAST_REDUCTION)
|
|
{
|
|
init_def = vect_get_vec_def_for_operand (init_val, stmt);
|
|
break;
|
|
}
|
|
}
|
|
init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
|
|
init_def = gimple_build_vector_from_val (&stmts, vectype, init_val);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
if (stmts)
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
|
return init_def;
|
|
}
|
|
|
|
/* Get at the initial defs for the reduction PHIs in SLP_NODE.
|
|
NUMBER_OF_VECTORS is the number of vector defs to create.
|
|
If NEUTRAL_OP is nonnull, introducing extra elements of that
|
|
value will not change the result. */
|
|
|
|
static void
|
|
get_initial_defs_for_reduction (slp_tree slp_node,
|
|
vec<tree> *vec_oprnds,
|
|
unsigned int number_of_vectors,
|
|
bool reduc_chain, tree neutral_op)
|
|
{
|
|
vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
|
|
gimple *stmt = stmts[0];
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
|
unsigned HOST_WIDE_INT nunits;
|
|
unsigned j, number_of_places_left_in_vector;
|
|
tree vector_type;
|
|
tree vop;
|
|
int group_size = stmts.length ();
|
|
unsigned int vec_num, i;
|
|
unsigned number_of_copies = 1;
|
|
vec<tree> voprnds;
|
|
voprnds.create (number_of_vectors);
|
|
struct loop *loop;
|
|
auto_vec<tree, 16> permute_results;
|
|
|
|
vector_type = STMT_VINFO_VECTYPE (stmt_vinfo);
|
|
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def);
|
|
|
|
loop = (gimple_bb (stmt))->loop_father;
|
|
gcc_assert (loop);
|
|
edge pe = loop_preheader_edge (loop);
|
|
|
|
gcc_assert (!reduc_chain || neutral_op);
|
|
|
|
/* NUMBER_OF_COPIES is the number of times we need to use the same values in
|
|
created vectors. It is greater than 1 if unrolling is performed.
|
|
|
|
For example, we have two scalar operands, s1 and s2 (e.g., group of
|
|
strided accesses of size two), while NUNITS is four (i.e., four scalars
|
|
of this type can be packed in a vector). The output vector will contain
|
|
two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
|
|
will be 2).
|
|
|
|
If REDUC_GROUP_SIZE > NUNITS, the scalars will be split into several
|
|
vectors containing the operands.
|
|
|
|
For example, NUNITS is four as before, and the group size is 8
|
|
(s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
|
|
{s5, s6, s7, s8}. */
|
|
|
|
if (!TYPE_VECTOR_SUBPARTS (vector_type).is_constant (&nunits))
|
|
nunits = group_size;
|
|
|
|
number_of_copies = nunits * number_of_vectors / group_size;
|
|
|
|
number_of_places_left_in_vector = nunits;
|
|
bool constant_p = true;
|
|
tree_vector_builder elts (vector_type, nunits, 1);
|
|
elts.quick_grow (nunits);
|
|
for (j = 0; j < number_of_copies; j++)
|
|
{
|
|
for (i = group_size - 1; stmts.iterate (i, &stmt); i--)
|
|
{
|
|
tree op;
|
|
/* Get the def before the loop. In reduction chain we have only
|
|
one initial value. */
|
|
if ((j != (number_of_copies - 1)
|
|
|| (reduc_chain && i != 0))
|
|
&& neutral_op)
|
|
op = neutral_op;
|
|
else
|
|
op = PHI_ARG_DEF_FROM_EDGE (stmt, pe);
|
|
|
|
/* Create 'vect_ = {op0,op1,...,opn}'. */
|
|
number_of_places_left_in_vector--;
|
|
elts[number_of_places_left_in_vector] = op;
|
|
if (!CONSTANT_CLASS_P (op))
|
|
constant_p = false;
|
|
|
|
if (number_of_places_left_in_vector == 0)
|
|
{
|
|
gimple_seq ctor_seq = NULL;
|
|
tree init;
|
|
if (constant_p && !neutral_op
|
|
? multiple_p (TYPE_VECTOR_SUBPARTS (vector_type), nunits)
|
|
: known_eq (TYPE_VECTOR_SUBPARTS (vector_type), nunits))
|
|
/* Build the vector directly from ELTS. */
|
|
init = gimple_build_vector (&ctor_seq, &elts);
|
|
else if (neutral_op)
|
|
{
|
|
/* Build a vector of the neutral value and shift the
|
|
other elements into place. */
|
|
init = gimple_build_vector_from_val (&ctor_seq, vector_type,
|
|
neutral_op);
|
|
int k = nunits;
|
|
while (k > 0 && elts[k - 1] == neutral_op)
|
|
k -= 1;
|
|
while (k > 0)
|
|
{
|
|
k -= 1;
|
|
init = gimple_build (&ctor_seq, CFN_VEC_SHL_INSERT,
|
|
vector_type, init, elts[k]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* First time round, duplicate ELTS to fill the
|
|
required number of vectors, then cherry pick the
|
|
appropriate result for each iteration. */
|
|
if (vec_oprnds->is_empty ())
|
|
duplicate_and_interleave (&ctor_seq, vector_type, elts,
|
|
number_of_vectors,
|
|
permute_results);
|
|
init = permute_results[number_of_vectors - j - 1];
|
|
}
|
|
if (ctor_seq != NULL)
|
|
gsi_insert_seq_on_edge_immediate (pe, ctor_seq);
|
|
voprnds.quick_push (init);
|
|
|
|
number_of_places_left_in_vector = nunits;
|
|
elts.new_vector (vector_type, nunits, 1);
|
|
elts.quick_grow (nunits);
|
|
constant_p = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Since the vectors are created in the reverse order, we should invert
|
|
them. */
|
|
vec_num = voprnds.length ();
|
|
for (j = vec_num; j != 0; j--)
|
|
{
|
|
vop = voprnds[j - 1];
|
|
vec_oprnds->quick_push (vop);
|
|
}
|
|
|
|
voprnds.release ();
|
|
|
|
/* In case that VF is greater than the unrolling factor needed for the SLP
|
|
group of stmts, NUMBER_OF_VECTORS to be created is greater than
|
|
NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
|
|
to replicate the vectors. */
|
|
tree neutral_vec = NULL;
|
|
while (number_of_vectors > vec_oprnds->length ())
|
|
{
|
|
if (neutral_op)
|
|
{
|
|
if (!neutral_vec)
|
|
{
|
|
gimple_seq ctor_seq = NULL;
|
|
neutral_vec = gimple_build_vector_from_val
|
|
(&ctor_seq, vector_type, neutral_op);
|
|
if (ctor_seq != NULL)
|
|
gsi_insert_seq_on_edge_immediate (pe, ctor_seq);
|
|
}
|
|
vec_oprnds->quick_push (neutral_vec);
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; vec_oprnds->iterate (i, &vop) && i < vec_num; i++)
|
|
vec_oprnds->quick_push (vop);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Function vect_create_epilog_for_reduction
|
|
|
|
Create code at the loop-epilog to finalize the result of a reduction
|
|
computation.
|
|
|
|
VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
|
|
reduction statements.
|
|
STMT is the scalar reduction stmt that is being vectorized.
|
|
NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
|
|
number of elements that we can fit in a vectype (nunits). In this case
|
|
we have to generate more than one vector stmt - i.e - we need to "unroll"
|
|
the vector stmt by a factor VF/nunits. For more details see documentation
|
|
in vectorizable_operation.
|
|
REDUC_FN is the internal function for the epilog reduction.
|
|
REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
|
|
computation.
|
|
REDUC_INDEX is the index of the operand in the right hand side of the
|
|
statement that is defined by REDUCTION_PHI.
|
|
DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
|
|
SLP_NODE is an SLP node containing a group of reduction statements. The
|
|
first one in this group is STMT.
|
|
INDUC_VAL is for INTEGER_INDUC_COND_REDUCTION the value to use for the case
|
|
when the COND_EXPR is never true in the loop. For MAX_EXPR, it needs to
|
|
be smaller than any value of the IV in the loop, for MIN_EXPR larger than
|
|
any value of the IV in the loop.
|
|
INDUC_CODE is the code for epilog reduction if INTEGER_INDUC_COND_REDUCTION.
|
|
NEUTRAL_OP is the value given by neutral_op_for_slp_reduction; it is
|
|
null if this is not an SLP reduction
|
|
|
|
This function:
|
|
1. Creates the reduction def-use cycles: sets the arguments for
|
|
REDUCTION_PHIS:
|
|
The loop-entry argument is the vectorized initial-value of the reduction.
|
|
The loop-latch argument is taken from VECT_DEFS - the vector of partial
|
|
sums.
|
|
2. "Reduces" each vector of partial results VECT_DEFS into a single result,
|
|
by calling the function specified by REDUC_FN if available, or by
|
|
other means (whole-vector shifts or a scalar loop).
|
|
The function also creates a new phi node at the loop exit to preserve
|
|
loop-closed form, as illustrated below.
|
|
|
|
The flow at the entry to this function:
|
|
|
|
loop:
|
|
vec_def = phi <null, null> # REDUCTION_PHI
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
|
s_loop = scalar_stmt # (scalar) STMT
|
|
loop_exit:
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
|
use <s_out0>
|
|
use <s_out0>
|
|
|
|
The above is transformed by this function into:
|
|
|
|
loop:
|
|
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
|
s_loop = scalar_stmt # (scalar) STMT
|
|
loop_exit:
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
|
v_out2 = reduce <v_out1>
|
|
s_out3 = extract_field <v_out2, 0>
|
|
s_out4 = adjust_result <s_out3>
|
|
use <s_out4>
|
|
use <s_out4>
|
|
*/
|
|
|
|
static void
|
|
vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple *stmt,
|
|
gimple *reduc_def_stmt,
|
|
int ncopies, internal_fn reduc_fn,
|
|
vec<gimple *> reduction_phis,
|
|
bool double_reduc,
|
|
slp_tree slp_node,
|
|
slp_instance slp_node_instance,
|
|
tree induc_val, enum tree_code induc_code,
|
|
tree neutral_op)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
stmt_vec_info prev_phi_info;
|
|
tree vectype;
|
|
machine_mode mode;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
|
|
basic_block exit_bb;
|
|
tree scalar_dest;
|
|
tree scalar_type;
|
|
gimple *new_phi = NULL, *phi;
|
|
gimple_stmt_iterator exit_gsi;
|
|
tree vec_dest;
|
|
tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
|
|
gimple *epilog_stmt = NULL;
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
gimple *exit_phi;
|
|
tree bitsize;
|
|
tree adjustment_def = NULL;
|
|
tree vec_initial_def = NULL;
|
|
tree expr, def, initial_def = NULL;
|
|
tree orig_name, scalar_result;
|
|
imm_use_iterator imm_iter, phi_imm_iter;
|
|
use_operand_p use_p, phi_use_p;
|
|
gimple *use_stmt, *orig_stmt, *reduction_phi = NULL;
|
|
bool nested_in_vect_loop = false;
|
|
auto_vec<gimple *> new_phis;
|
|
auto_vec<gimple *> inner_phis;
|
|
enum vect_def_type dt = vect_unknown_def_type;
|
|
int j, i;
|
|
auto_vec<tree> scalar_results;
|
|
unsigned int group_size = 1, k, ratio;
|
|
auto_vec<tree> vec_initial_defs;
|
|
auto_vec<gimple *> phis;
|
|
bool slp_reduc = false;
|
|
bool direct_slp_reduc;
|
|
tree new_phi_result;
|
|
gimple *inner_phi = NULL;
|
|
tree induction_index = NULL_TREE;
|
|
|
|
if (slp_node)
|
|
group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
|
|
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
|
{
|
|
outer_loop = loop;
|
|
loop = loop->inner;
|
|
nested_in_vect_loop = true;
|
|
gcc_assert (!slp_node);
|
|
}
|
|
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
gcc_assert (vectype);
|
|
mode = TYPE_MODE (vectype);
|
|
|
|
/* 1. Create the reduction def-use cycle:
|
|
Set the arguments of REDUCTION_PHIS, i.e., transform
|
|
|
|
loop:
|
|
vec_def = phi <null, null> # REDUCTION_PHI
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
|
...
|
|
|
|
into:
|
|
|
|
loop:
|
|
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
|
...
|
|
|
|
(in case of SLP, do it for all the phis). */
|
|
|
|
/* Get the loop-entry arguments. */
|
|
enum vect_def_type initial_def_dt = vect_unknown_def_type;
|
|
if (slp_node)
|
|
{
|
|
unsigned vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
|
vec_initial_defs.reserve (vec_num);
|
|
get_initial_defs_for_reduction (slp_node_instance->reduc_phis,
|
|
&vec_initial_defs, vec_num,
|
|
REDUC_GROUP_FIRST_ELEMENT (stmt_info),
|
|
neutral_op);
|
|
}
|
|
else
|
|
{
|
|
/* Get at the scalar def before the loop, that defines the initial value
|
|
of the reduction variable. */
|
|
initial_def = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
|
|
loop_preheader_edge (loop));
|
|
/* Optimize: if initial_def is for REDUC_MAX smaller than the base
|
|
and we can't use zero for induc_val, use initial_def. Similarly
|
|
for REDUC_MIN and initial_def larger than the base. */
|
|
if (TREE_CODE (initial_def) == INTEGER_CST
|
|
&& (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
|
|
== INTEGER_INDUC_COND_REDUCTION)
|
|
&& !integer_zerop (induc_val)
|
|
&& ((induc_code == MAX_EXPR
|
|
&& tree_int_cst_lt (initial_def, induc_val))
|
|
|| (induc_code == MIN_EXPR
|
|
&& tree_int_cst_lt (induc_val, initial_def))))
|
|
induc_val = initial_def;
|
|
vect_is_simple_use (initial_def, loop_vinfo, &initial_def_dt);
|
|
vec_initial_def = get_initial_def_for_reduction (stmt, initial_def,
|
|
&adjustment_def);
|
|
vec_initial_defs.create (1);
|
|
vec_initial_defs.quick_push (vec_initial_def);
|
|
}
|
|
|
|
/* Set phi nodes arguments. */
|
|
FOR_EACH_VEC_ELT (reduction_phis, i, phi)
|
|
{
|
|
tree vec_init_def = vec_initial_defs[i];
|
|
tree def = vect_defs[i];
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
if (j != 0)
|
|
{
|
|
phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
|
|
if (nested_in_vect_loop)
|
|
vec_init_def
|
|
= vect_get_vec_def_for_stmt_copy (initial_def_dt,
|
|
vec_init_def);
|
|
}
|
|
|
|
/* Set the loop-entry arg of the reduction-phi. */
|
|
|
|
if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
|
|
== INTEGER_INDUC_COND_REDUCTION)
|
|
{
|
|
/* Initialise the reduction phi to zero. This prevents initial
|
|
values of non-zero interferring with the reduction op. */
|
|
gcc_assert (ncopies == 1);
|
|
gcc_assert (i == 0);
|
|
|
|
tree vec_init_def_type = TREE_TYPE (vec_init_def);
|
|
tree induc_val_vec
|
|
= build_vector_from_val (vec_init_def_type, induc_val);
|
|
|
|
add_phi_arg (as_a <gphi *> (phi), induc_val_vec,
|
|
loop_preheader_edge (loop), UNKNOWN_LOCATION);
|
|
}
|
|
else
|
|
add_phi_arg (as_a <gphi *> (phi), vec_init_def,
|
|
loop_preheader_edge (loop), UNKNOWN_LOCATION);
|
|
|
|
/* Set the loop-latch arg for the reduction-phi. */
|
|
if (j > 0)
|
|
def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
|
|
|
|
add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
|
|
UNKNOWN_LOCATION);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"transform reduction: created def-use cycle: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
|
|
which is updated with the current index of the loop for every match of
|
|
the original loop's cond_expr (VEC_STMT). This results in a vector
|
|
containing the last time the condition passed for that vector lane.
|
|
The first match will be a 1 to allow 0 to be used for non-matching
|
|
indexes. If there are no matches at all then the vector will be all
|
|
zeroes. */
|
|
if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
|
|
{
|
|
tree indx_before_incr, indx_after_incr;
|
|
poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype);
|
|
|
|
gimple *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
|
gcc_assert (gimple_assign_rhs_code (vec_stmt) == VEC_COND_EXPR);
|
|
|
|
int scalar_precision
|
|
= GET_MODE_PRECISION (SCALAR_TYPE_MODE (TREE_TYPE (vectype)));
|
|
tree cr_index_scalar_type = make_unsigned_type (scalar_precision);
|
|
tree cr_index_vector_type = build_vector_type
|
|
(cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype));
|
|
|
|
/* First we create a simple vector induction variable which starts
|
|
with the values {1,2,3,...} (SERIES_VECT) and increments by the
|
|
vector size (STEP). */
|
|
|
|
/* Create a {1,2,3,...} vector. */
|
|
tree series_vect = build_index_vector (cr_index_vector_type, 1, 1);
|
|
|
|
/* Create a vector of the step value. */
|
|
tree step = build_int_cst (cr_index_scalar_type, nunits_out);
|
|
tree vec_step = build_vector_from_val (cr_index_vector_type, step);
|
|
|
|
/* Create an induction variable. */
|
|
gimple_stmt_iterator incr_gsi;
|
|
bool insert_after;
|
|
standard_iv_increment_position (loop, &incr_gsi, &insert_after);
|
|
create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
|
|
insert_after, &indx_before_incr, &indx_after_incr);
|
|
|
|
/* Next create a new phi node vector (NEW_PHI_TREE) which starts
|
|
filled with zeros (VEC_ZERO). */
|
|
|
|
/* Create a vector of 0s. */
|
|
tree zero = build_zero_cst (cr_index_scalar_type);
|
|
tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
|
|
|
|
/* Create a vector phi node. */
|
|
tree new_phi_tree = make_ssa_name (cr_index_vector_type);
|
|
new_phi = create_phi_node (new_phi_tree, loop->header);
|
|
set_vinfo_for_stmt (new_phi,
|
|
new_stmt_vec_info (new_phi, loop_vinfo));
|
|
add_phi_arg (as_a <gphi *> (new_phi), vec_zero,
|
|
loop_preheader_edge (loop), UNKNOWN_LOCATION);
|
|
|
|
/* Now take the condition from the loops original cond_expr
|
|
(VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
|
|
every match uses values from the induction variable
|
|
(INDEX_BEFORE_INCR) otherwise uses values from the phi node
|
|
(NEW_PHI_TREE).
|
|
Finally, we update the phi (NEW_PHI_TREE) to take the value of
|
|
the new cond_expr (INDEX_COND_EXPR). */
|
|
|
|
/* Duplicate the condition from vec_stmt. */
|
|
tree ccompare = unshare_expr (gimple_assign_rhs1 (vec_stmt));
|
|
|
|
/* Create a conditional, where the condition is taken from vec_stmt
|
|
(CCOMPARE), then is the induction index (INDEX_BEFORE_INCR) and
|
|
else is the phi (NEW_PHI_TREE). */
|
|
tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
|
|
ccompare, indx_before_incr,
|
|
new_phi_tree);
|
|
induction_index = make_ssa_name (cr_index_vector_type);
|
|
gimple *index_condition = gimple_build_assign (induction_index,
|
|
index_cond_expr);
|
|
gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
|
|
stmt_vec_info index_vec_info = new_stmt_vec_info (index_condition,
|
|
loop_vinfo);
|
|
STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;
|
|
set_vinfo_for_stmt (index_condition, index_vec_info);
|
|
|
|
/* Update the phi with the vec cond. */
|
|
add_phi_arg (as_a <gphi *> (new_phi), induction_index,
|
|
loop_latch_edge (loop), UNKNOWN_LOCATION);
|
|
}
|
|
|
|
/* 2. Create epilog code.
|
|
The reduction epilog code operates across the elements of the vector
|
|
of partial results computed by the vectorized loop.
|
|
The reduction epilog code consists of:
|
|
|
|
step 1: compute the scalar result in a vector (v_out2)
|
|
step 2: extract the scalar result (s_out3) from the vector (v_out2)
|
|
step 3: adjust the scalar result (s_out3) if needed.
|
|
|
|
Step 1 can be accomplished using one the following three schemes:
|
|
(scheme 1) using reduc_fn, if available.
|
|
(scheme 2) using whole-vector shifts, if available.
|
|
(scheme 3) using a scalar loop. In this case steps 1+2 above are
|
|
combined.
|
|
|
|
The overall epilog code looks like this:
|
|
|
|
s_out0 = phi <s_loop> # original EXIT_PHI
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
|
v_out2 = reduce <v_out1> # step 1
|
|
s_out3 = extract_field <v_out2, 0> # step 2
|
|
s_out4 = adjust_result <s_out3> # step 3
|
|
|
|
(step 3 is optional, and steps 1 and 2 may be combined).
|
|
Lastly, the uses of s_out0 are replaced by s_out4. */
|
|
|
|
|
|
/* 2.1 Create new loop-exit-phis to preserve loop-closed form:
|
|
v_out1 = phi <VECT_DEF>
|
|
Store them in NEW_PHIS. */
|
|
|
|
exit_bb = single_exit (loop)->dest;
|
|
prev_phi_info = NULL;
|
|
new_phis.create (vect_defs.length ());
|
|
FOR_EACH_VEC_ELT (vect_defs, i, def)
|
|
{
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
tree new_def = copy_ssa_name (def);
|
|
phi = create_phi_node (new_def, exit_bb);
|
|
set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
|
|
if (j == 0)
|
|
new_phis.quick_push (phi);
|
|
else
|
|
{
|
|
def = vect_get_vec_def_for_stmt_copy (dt, def);
|
|
STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
|
|
}
|
|
|
|
SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
|
|
prev_phi_info = vinfo_for_stmt (phi);
|
|
}
|
|
}
|
|
|
|
/* The epilogue is created for the outer-loop, i.e., for the loop being
|
|
vectorized. Create exit phis for the outer loop. */
|
|
if (double_reduc)
|
|
{
|
|
loop = outer_loop;
|
|
exit_bb = single_exit (loop)->dest;
|
|
inner_phis.create (vect_defs.length ());
|
|
FOR_EACH_VEC_ELT (new_phis, i, phi)
|
|
{
|
|
tree new_result = copy_ssa_name (PHI_RESULT (phi));
|
|
gphi *outer_phi = create_phi_node (new_result, exit_bb);
|
|
SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
|
|
PHI_RESULT (phi));
|
|
set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
|
|
loop_vinfo));
|
|
inner_phis.quick_push (phi);
|
|
new_phis[i] = outer_phi;
|
|
prev_phi_info = vinfo_for_stmt (outer_phi);
|
|
while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
|
|
{
|
|
phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
|
|
new_result = copy_ssa_name (PHI_RESULT (phi));
|
|
outer_phi = create_phi_node (new_result, exit_bb);
|
|
SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
|
|
PHI_RESULT (phi));
|
|
set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
|
|
loop_vinfo));
|
|
STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
|
|
prev_phi_info = vinfo_for_stmt (outer_phi);
|
|
}
|
|
}
|
|
}
|
|
|
|
exit_gsi = gsi_after_labels (exit_bb);
|
|
|
|
/* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
|
|
(i.e. when reduc_fn is not available) and in the final adjustment
|
|
code (if needed). Also get the original scalar reduction variable as
|
|
defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
|
|
represents a reduction pattern), the tree-code and scalar-def are
|
|
taken from the original stmt that the pattern-stmt (STMT) replaces.
|
|
Otherwise (it is a regular reduction) - the tree-code and scalar-def
|
|
are taken from STMT. */
|
|
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
if (!orig_stmt)
|
|
{
|
|
/* Regular reduction */
|
|
orig_stmt = stmt;
|
|
}
|
|
else
|
|
{
|
|
/* Reduction pattern */
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
|
|
gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
|
|
}
|
|
|
|
code = gimple_assign_rhs_code (orig_stmt);
|
|
/* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
|
|
partial results are added and not subtracted. */
|
|
if (code == MINUS_EXPR)
|
|
code = PLUS_EXPR;
|
|
|
|
scalar_dest = gimple_assign_lhs (orig_stmt);
|
|
scalar_type = TREE_TYPE (scalar_dest);
|
|
scalar_results.create (group_size);
|
|
new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
|
|
bitsize = TYPE_SIZE (scalar_type);
|
|
|
|
/* In case this is a reduction in an inner-loop while vectorizing an outer
|
|
loop - we don't need to extract a single scalar result at the end of the
|
|
inner-loop (unless it is double reduction, i.e., the use of reduction is
|
|
outside the outer-loop). The final vector of partial results will be used
|
|
in the vectorized outer-loop, or reduced to a scalar result at the end of
|
|
the outer-loop. */
|
|
if (nested_in_vect_loop && !double_reduc)
|
|
goto vect_finalize_reduction;
|
|
|
|
/* SLP reduction without reduction chain, e.g.,
|
|
# a1 = phi <a2, a0>
|
|
# b1 = phi <b2, b0>
|
|
a2 = operation (a1)
|
|
b2 = operation (b1) */
|
|
slp_reduc = (slp_node && !REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
|
|
|
|
/* True if we should implement SLP_REDUC using native reduction operations
|
|
instead of scalar operations. */
|
|
direct_slp_reduc = (reduc_fn != IFN_LAST
|
|
&& slp_reduc
|
|
&& !TYPE_VECTOR_SUBPARTS (vectype).is_constant ());
|
|
|
|
/* In case of reduction chain, e.g.,
|
|
# a1 = phi <a3, a0>
|
|
a2 = operation (a1)
|
|
a3 = operation (a2),
|
|
|
|
we may end up with more than one vector result. Here we reduce them to
|
|
one vector. */
|
|
if (REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) || direct_slp_reduc)
|
|
{
|
|
tree first_vect = PHI_RESULT (new_phis[0]);
|
|
gassign *new_vec_stmt = NULL;
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
for (k = 1; k < new_phis.length (); k++)
|
|
{
|
|
gimple *next_phi = new_phis[k];
|
|
tree second_vect = PHI_RESULT (next_phi);
|
|
tree tem = make_ssa_name (vec_dest, new_vec_stmt);
|
|
new_vec_stmt = gimple_build_assign (tem, code,
|
|
first_vect, second_vect);
|
|
gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
|
|
first_vect = tem;
|
|
}
|
|
|
|
new_phi_result = first_vect;
|
|
if (new_vec_stmt)
|
|
{
|
|
new_phis.truncate (0);
|
|
new_phis.safe_push (new_vec_stmt);
|
|
}
|
|
}
|
|
/* Likewise if we couldn't use a single defuse cycle. */
|
|
else if (ncopies > 1)
|
|
{
|
|
gcc_assert (new_phis.length () == 1);
|
|
tree first_vect = PHI_RESULT (new_phis[0]);
|
|
gassign *new_vec_stmt = NULL;
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
gimple *next_phi = new_phis[0];
|
|
for (int k = 1; k < ncopies; ++k)
|
|
{
|
|
next_phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (next_phi));
|
|
tree second_vect = PHI_RESULT (next_phi);
|
|
tree tem = make_ssa_name (vec_dest, new_vec_stmt);
|
|
new_vec_stmt = gimple_build_assign (tem, code,
|
|
first_vect, second_vect);
|
|
gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
|
|
first_vect = tem;
|
|
}
|
|
new_phi_result = first_vect;
|
|
new_phis.truncate (0);
|
|
new_phis.safe_push (new_vec_stmt);
|
|
}
|
|
else
|
|
new_phi_result = PHI_RESULT (new_phis[0]);
|
|
|
|
if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
|
|
&& reduc_fn != IFN_LAST)
|
|
{
|
|
/* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
|
|
various data values where the condition matched and another vector
|
|
(INDUCTION_INDEX) containing all the indexes of those matches. We
|
|
need to extract the last matching index (which will be the index with
|
|
highest value) and use this to index into the data vector.
|
|
For the case where there were no matches, the data vector will contain
|
|
all default values and the index vector will be all zeros. */
|
|
|
|
/* Get various versions of the type of the vector of indexes. */
|
|
tree index_vec_type = TREE_TYPE (induction_index);
|
|
gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
|
|
tree index_scalar_type = TREE_TYPE (index_vec_type);
|
|
tree index_vec_cmp_type = build_same_sized_truth_vector_type
|
|
(index_vec_type);
|
|
|
|
/* Get an unsigned integer version of the type of the data vector. */
|
|
int scalar_precision
|
|
= GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
|
|
tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
|
|
tree vectype_unsigned = build_vector_type
|
|
(scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));
|
|
|
|
/* First we need to create a vector (ZERO_VEC) of zeros and another
|
|
vector (MAX_INDEX_VEC) filled with the last matching index, which we
|
|
can create using a MAX reduction and then expanding.
|
|
In the case where the loop never made any matches, the max index will
|
|
be zero. */
|
|
|
|
/* Vector of {0, 0, 0,...}. */
|
|
tree zero_vec = make_ssa_name (vectype);
|
|
tree zero_vec_rhs = build_zero_cst (vectype);
|
|
gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
|
|
gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);
|
|
|
|
/* Find maximum value from the vector of found indexes. */
|
|
tree max_index = make_ssa_name (index_scalar_type);
|
|
gcall *max_index_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
|
|
1, induction_index);
|
|
gimple_call_set_lhs (max_index_stmt, max_index);
|
|
gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
|
|
|
|
/* Vector of {max_index, max_index, max_index,...}. */
|
|
tree max_index_vec = make_ssa_name (index_vec_type);
|
|
tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
|
|
max_index);
|
|
gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
|
|
max_index_vec_rhs);
|
|
gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
|
|
|
|
/* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
|
|
with the vector (INDUCTION_INDEX) of found indexes, choosing values
|
|
from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
|
|
otherwise. Only one value should match, resulting in a vector
|
|
(VEC_COND) with one data value and the rest zeros.
|
|
In the case where the loop never made any matches, every index will
|
|
match, resulting in a vector with all data values (which will all be
|
|
the default value). */
|
|
|
|
/* Compare the max index vector to the vector of found indexes to find
|
|
the position of the max value. */
|
|
tree vec_compare = make_ssa_name (index_vec_cmp_type);
|
|
gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
|
|
induction_index,
|
|
max_index_vec);
|
|
gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
|
|
|
|
/* Use the compare to choose either values from the data vector or
|
|
zero. */
|
|
tree vec_cond = make_ssa_name (vectype);
|
|
gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
|
|
vec_compare, new_phi_result,
|
|
zero_vec);
|
|
gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
|
|
|
|
/* Finally we need to extract the data value from the vector (VEC_COND)
|
|
into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
|
|
reduction, but because this doesn't exist, we can use a MAX reduction
|
|
instead. The data value might be signed or a float so we need to cast
|
|
it first.
|
|
In the case where the loop never made any matches, the data values are
|
|
all identical, and so will reduce down correctly. */
|
|
|
|
/* Make the matched data values unsigned. */
|
|
tree vec_cond_cast = make_ssa_name (vectype_unsigned);
|
|
tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
|
|
vec_cond);
|
|
gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
|
|
VIEW_CONVERT_EXPR,
|
|
vec_cond_cast_rhs);
|
|
gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
|
|
|
|
/* Reduce down to a scalar value. */
|
|
tree data_reduc = make_ssa_name (scalar_type_unsigned);
|
|
gcall *data_reduc_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
|
|
1, vec_cond_cast);
|
|
gimple_call_set_lhs (data_reduc_stmt, data_reduc);
|
|
gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
|
|
|
|
/* Convert the reduced value back to the result type and set as the
|
|
result. */
|
|
gimple_seq stmts = NULL;
|
|
new_temp = gimple_build (&stmts, VIEW_CONVERT_EXPR, scalar_type,
|
|
data_reduc);
|
|
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
|
|
scalar_results.safe_push (new_temp);
|
|
}
|
|
else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
|
|
&& reduc_fn == IFN_LAST)
|
|
{
|
|
/* Condition reduction without supported IFN_REDUC_MAX. Generate
|
|
idx = 0;
|
|
idx_val = induction_index[0];
|
|
val = data_reduc[0];
|
|
for (idx = 0, val = init, i = 0; i < nelts; ++i)
|
|
if (induction_index[i] > idx_val)
|
|
val = data_reduc[i], idx_val = induction_index[i];
|
|
return val; */
|
|
|
|
tree data_eltype = TREE_TYPE (TREE_TYPE (new_phi_result));
|
|
tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
|
|
unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
|
|
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
|
|
/* Enforced by vectorizable_reduction, which ensures we have target
|
|
support before allowing a conditional reduction on variable-length
|
|
vectors. */
|
|
unsigned HOST_WIDE_INT v_size = el_size * nunits.to_constant ();
|
|
tree idx_val = NULL_TREE, val = NULL_TREE;
|
|
for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
|
|
{
|
|
tree old_idx_val = idx_val;
|
|
tree old_val = val;
|
|
idx_val = make_ssa_name (idx_eltype);
|
|
epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
|
|
build3 (BIT_FIELD_REF, idx_eltype,
|
|
induction_index,
|
|
bitsize_int (el_size),
|
|
bitsize_int (off)));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
val = make_ssa_name (data_eltype);
|
|
epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
|
|
build3 (BIT_FIELD_REF,
|
|
data_eltype,
|
|
new_phi_result,
|
|
bitsize_int (el_size),
|
|
bitsize_int (off)));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
if (off != 0)
|
|
{
|
|
tree new_idx_val = idx_val;
|
|
tree new_val = val;
|
|
if (off != v_size - el_size)
|
|
{
|
|
new_idx_val = make_ssa_name (idx_eltype);
|
|
epilog_stmt = gimple_build_assign (new_idx_val,
|
|
MAX_EXPR, idx_val,
|
|
old_idx_val);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
}
|
|
new_val = make_ssa_name (data_eltype);
|
|
epilog_stmt = gimple_build_assign (new_val,
|
|
COND_EXPR,
|
|
build2 (GT_EXPR,
|
|
boolean_type_node,
|
|
idx_val,
|
|
old_idx_val),
|
|
val, old_val);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
idx_val = new_idx_val;
|
|
val = new_val;
|
|
}
|
|
}
|
|
/* Convert the reduced value back to the result type and set as the
|
|
result. */
|
|
gimple_seq stmts = NULL;
|
|
val = gimple_convert (&stmts, scalar_type, val);
|
|
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
|
|
scalar_results.safe_push (val);
|
|
}
|
|
|
|
/* 2.3 Create the reduction code, using one of the three schemes described
|
|
above. In SLP we simply need to extract all the elements from the
|
|
vector (without reducing them), so we use scalar shifts. */
|
|
else if (reduc_fn != IFN_LAST && !slp_reduc)
|
|
{
|
|
tree tmp;
|
|
tree vec_elem_type;
|
|
|
|
/* Case 1: Create:
|
|
v_out2 = reduc_expr <v_out1> */
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Reduce using direct vector reduction.\n");
|
|
|
|
vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
|
|
if (!useless_type_conversion_p (scalar_type, vec_elem_type))
|
|
{
|
|
tree tmp_dest
|
|
= vect_create_destination_var (scalar_dest, vec_elem_type);
|
|
epilog_stmt = gimple_build_call_internal (reduc_fn, 1,
|
|
new_phi_result);
|
|
gimple_set_lhs (epilog_stmt, tmp_dest);
|
|
new_temp = make_ssa_name (tmp_dest, epilog_stmt);
|
|
gimple_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, NOP_EXPR,
|
|
new_temp);
|
|
}
|
|
else
|
|
{
|
|
epilog_stmt = gimple_build_call_internal (reduc_fn, 1,
|
|
new_phi_result);
|
|
gimple_set_lhs (epilog_stmt, new_scalar_dest);
|
|
}
|
|
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
|
gimple_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
|
|
if ((STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
|
|
== INTEGER_INDUC_COND_REDUCTION)
|
|
&& !operand_equal_p (initial_def, induc_val, 0))
|
|
{
|
|
/* Earlier we set the initial value to be a vector if induc_val
|
|
values. Check the result and if it is induc_val then replace
|
|
with the original initial value, unless induc_val is
|
|
the same as initial_def already. */
|
|
tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
|
|
induc_val);
|
|
|
|
tmp = make_ssa_name (new_scalar_dest);
|
|
epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
|
|
initial_def, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
new_temp = tmp;
|
|
}
|
|
|
|
scalar_results.safe_push (new_temp);
|
|
}
|
|
else if (direct_slp_reduc)
|
|
{
|
|
/* Here we create one vector for each of the REDUC_GROUP_SIZE results,
|
|
with the elements for other SLP statements replaced with the
|
|
neutral value. We can then do a normal reduction on each vector. */
|
|
|
|
/* Enforced by vectorizable_reduction. */
|
|
gcc_assert (new_phis.length () == 1);
|
|
gcc_assert (pow2p_hwi (group_size));
|
|
|
|
slp_tree orig_phis_slp_node = slp_node_instance->reduc_phis;
|
|
vec<gimple *> orig_phis = SLP_TREE_SCALAR_STMTS (orig_phis_slp_node);
|
|
gimple_seq seq = NULL;
|
|
|
|
/* Build a vector {0, 1, 2, ...}, with the same number of elements
|
|
and the same element size as VECTYPE. */
|
|
tree index = build_index_vector (vectype, 0, 1);
|
|
tree index_type = TREE_TYPE (index);
|
|
tree index_elt_type = TREE_TYPE (index_type);
|
|
tree mask_type = build_same_sized_truth_vector_type (index_type);
|
|
|
|
/* Create a vector that, for each element, identifies which of
|
|
the REDUC_GROUP_SIZE results should use it. */
|
|
tree index_mask = build_int_cst (index_elt_type, group_size - 1);
|
|
index = gimple_build (&seq, BIT_AND_EXPR, index_type, index,
|
|
build_vector_from_val (index_type, index_mask));
|
|
|
|
/* Get a neutral vector value. This is simply a splat of the neutral
|
|
scalar value if we have one, otherwise the initial scalar value
|
|
is itself a neutral value. */
|
|
tree vector_identity = NULL_TREE;
|
|
if (neutral_op)
|
|
vector_identity = gimple_build_vector_from_val (&seq, vectype,
|
|
neutral_op);
|
|
for (unsigned int i = 0; i < group_size; ++i)
|
|
{
|
|
/* If there's no univeral neutral value, we can use the
|
|
initial scalar value from the original PHI. This is used
|
|
for MIN and MAX reduction, for example. */
|
|
if (!neutral_op)
|
|
{
|
|
tree scalar_value
|
|
= PHI_ARG_DEF_FROM_EDGE (orig_phis[i],
|
|
loop_preheader_edge (loop));
|
|
vector_identity = gimple_build_vector_from_val (&seq, vectype,
|
|
scalar_value);
|
|
}
|
|
|
|
/* Calculate the equivalent of:
|
|
|
|
sel[j] = (index[j] == i);
|
|
|
|
which selects the elements of NEW_PHI_RESULT that should
|
|
be included in the result. */
|
|
tree compare_val = build_int_cst (index_elt_type, i);
|
|
compare_val = build_vector_from_val (index_type, compare_val);
|
|
tree sel = gimple_build (&seq, EQ_EXPR, mask_type,
|
|
index, compare_val);
|
|
|
|
/* Calculate the equivalent of:
|
|
|
|
vec = seq ? new_phi_result : vector_identity;
|
|
|
|
VEC is now suitable for a full vector reduction. */
|
|
tree vec = gimple_build (&seq, VEC_COND_EXPR, vectype,
|
|
sel, new_phi_result, vector_identity);
|
|
|
|
/* Do the reduction and convert it to the appropriate type. */
|
|
tree scalar = gimple_build (&seq, as_combined_fn (reduc_fn),
|
|
TREE_TYPE (vectype), vec);
|
|
scalar = gimple_convert (&seq, scalar_type, scalar);
|
|
scalar_results.safe_push (scalar);
|
|
}
|
|
gsi_insert_seq_before (&exit_gsi, seq, GSI_SAME_STMT);
|
|
}
|
|
else
|
|
{
|
|
bool reduce_with_shift;
|
|
tree vec_temp;
|
|
|
|
/* COND reductions all do the final reduction with MAX_EXPR
|
|
or MIN_EXPR. */
|
|
if (code == COND_EXPR)
|
|
{
|
|
if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
|
|
== INTEGER_INDUC_COND_REDUCTION)
|
|
code = induc_code;
|
|
else
|
|
code = MAX_EXPR;
|
|
}
|
|
|
|
/* See if the target wants to do the final (shift) reduction
|
|
in a vector mode of smaller size and first reduce upper/lower
|
|
halves against each other. */
|
|
enum machine_mode mode1 = mode;
|
|
tree vectype1 = vectype;
|
|
unsigned sz = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
|
|
unsigned sz1 = sz;
|
|
if (!slp_reduc
|
|
&& (mode1 = targetm.vectorize.split_reduction (mode)) != mode)
|
|
sz1 = GET_MODE_SIZE (mode1).to_constant ();
|
|
|
|
vectype1 = get_vectype_for_scalar_type_and_size (scalar_type, sz1);
|
|
reduce_with_shift = have_whole_vector_shift (mode1);
|
|
if (!VECTOR_MODE_P (mode1))
|
|
reduce_with_shift = false;
|
|
else
|
|
{
|
|
optab optab = optab_for_tree_code (code, vectype1, optab_default);
|
|
if (optab_handler (optab, mode1) == CODE_FOR_nothing)
|
|
reduce_with_shift = false;
|
|
}
|
|
|
|
/* First reduce the vector to the desired vector size we should
|
|
do shift reduction on by combining upper and lower halves. */
|
|
new_temp = new_phi_result;
|
|
while (sz > sz1)
|
|
{
|
|
gcc_assert (!slp_reduc);
|
|
sz /= 2;
|
|
vectype1 = get_vectype_for_scalar_type_and_size (scalar_type, sz);
|
|
|
|
/* The target has to make sure we support lowpart/highpart
|
|
extraction, either via direct vector extract or through
|
|
an integer mode punning. */
|
|
tree dst1, dst2;
|
|
if (convert_optab_handler (vec_extract_optab,
|
|
TYPE_MODE (TREE_TYPE (new_temp)),
|
|
TYPE_MODE (vectype1))
|
|
!= CODE_FOR_nothing)
|
|
{
|
|
/* Extract sub-vectors directly once vec_extract becomes
|
|
a conversion optab. */
|
|
dst1 = make_ssa_name (vectype1);
|
|
epilog_stmt
|
|
= gimple_build_assign (dst1, BIT_FIELD_REF,
|
|
build3 (BIT_FIELD_REF, vectype1,
|
|
new_temp, TYPE_SIZE (vectype1),
|
|
bitsize_int (0)));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
dst2 = make_ssa_name (vectype1);
|
|
epilog_stmt
|
|
= gimple_build_assign (dst2, BIT_FIELD_REF,
|
|
build3 (BIT_FIELD_REF, vectype1,
|
|
new_temp, TYPE_SIZE (vectype1),
|
|
bitsize_int (sz * BITS_PER_UNIT)));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
}
|
|
else
|
|
{
|
|
/* Extract via punning to appropriately sized integer mode
|
|
vector. */
|
|
tree eltype = build_nonstandard_integer_type (sz * BITS_PER_UNIT,
|
|
1);
|
|
tree etype = build_vector_type (eltype, 2);
|
|
gcc_assert (convert_optab_handler (vec_extract_optab,
|
|
TYPE_MODE (etype),
|
|
TYPE_MODE (eltype))
|
|
!= CODE_FOR_nothing);
|
|
tree tem = make_ssa_name (etype);
|
|
epilog_stmt = gimple_build_assign (tem, VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR,
|
|
etype, new_temp));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
new_temp = tem;
|
|
tem = make_ssa_name (eltype);
|
|
epilog_stmt
|
|
= gimple_build_assign (tem, BIT_FIELD_REF,
|
|
build3 (BIT_FIELD_REF, eltype,
|
|
new_temp, TYPE_SIZE (eltype),
|
|
bitsize_int (0)));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
dst1 = make_ssa_name (vectype1);
|
|
epilog_stmt = gimple_build_assign (dst1, VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR,
|
|
vectype1, tem));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
tem = make_ssa_name (eltype);
|
|
epilog_stmt
|
|
= gimple_build_assign (tem, BIT_FIELD_REF,
|
|
build3 (BIT_FIELD_REF, eltype,
|
|
new_temp, TYPE_SIZE (eltype),
|
|
bitsize_int (sz * BITS_PER_UNIT)));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
dst2 = make_ssa_name (vectype1);
|
|
epilog_stmt = gimple_build_assign (dst2, VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR,
|
|
vectype1, tem));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
}
|
|
|
|
new_temp = make_ssa_name (vectype1);
|
|
epilog_stmt = gimple_build_assign (new_temp, code, dst1, dst2);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
}
|
|
|
|
if (reduce_with_shift && !slp_reduc)
|
|
{
|
|
int element_bitsize = tree_to_uhwi (bitsize);
|
|
/* Enforced by vectorizable_reduction, which disallows SLP reductions
|
|
for variable-length vectors and also requires direct target support
|
|
for loop reductions. */
|
|
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
|
|
int nelements = vec_size_in_bits / element_bitsize;
|
|
vec_perm_builder sel;
|
|
vec_perm_indices indices;
|
|
|
|
int elt_offset;
|
|
|
|
tree zero_vec = build_zero_cst (vectype1);
|
|
/* Case 2: Create:
|
|
for (offset = nelements/2; offset >= 1; offset/=2)
|
|
{
|
|
Create: va' = vec_shift <va, offset>
|
|
Create: va = vop <va, va'>
|
|
} */
|
|
|
|
tree rhs;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Reduce using vector shifts\n");
|
|
|
|
mode1 = TYPE_MODE (vectype1);
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype1);
|
|
for (elt_offset = nelements / 2;
|
|
elt_offset >= 1;
|
|
elt_offset /= 2)
|
|
{
|
|
calc_vec_perm_mask_for_shift (elt_offset, nelements, &sel);
|
|
indices.new_vector (sel, 2, nelements);
|
|
tree mask = vect_gen_perm_mask_any (vectype1, indices);
|
|
epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
|
|
new_temp, zero_vec, mask);
|
|
new_name = make_ssa_name (vec_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_name);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
|
|
epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
|
|
new_temp);
|
|
new_temp = make_ssa_name (vec_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
}
|
|
|
|
/* 2.4 Extract the final scalar result. Create:
|
|
s_out3 = extract_field <v_out2, bitpos> */
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"extract scalar result\n");
|
|
|
|
rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
|
|
bitsize, bitsize_zero_node);
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
scalar_results.safe_push (new_temp);
|
|
}
|
|
else
|
|
{
|
|
/* Case 3: Create:
|
|
s = extract_field <v_out2, 0>
|
|
for (offset = element_size;
|
|
offset < vector_size;
|
|
offset += element_size;)
|
|
{
|
|
Create: s' = extract_field <v_out2, offset>
|
|
Create: s = op <s, s'> // For non SLP cases
|
|
} */
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Reduce using scalar code.\n");
|
|
|
|
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
|
|
int element_bitsize = tree_to_uhwi (bitsize);
|
|
FOR_EACH_VEC_ELT (new_phis, i, new_phi)
|
|
{
|
|
int bit_offset;
|
|
if (gimple_code (new_phi) == GIMPLE_PHI)
|
|
vec_temp = PHI_RESULT (new_phi);
|
|
else
|
|
vec_temp = gimple_assign_lhs (new_phi);
|
|
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
|
|
bitsize_zero_node);
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
|
|
/* In SLP we don't need to apply reduction operation, so we just
|
|
collect s' values in SCALAR_RESULTS. */
|
|
if (slp_reduc)
|
|
scalar_results.safe_push (new_temp);
|
|
|
|
for (bit_offset = element_bitsize;
|
|
bit_offset < vec_size_in_bits;
|
|
bit_offset += element_bitsize)
|
|
{
|
|
tree bitpos = bitsize_int (bit_offset);
|
|
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
|
|
bitsize, bitpos);
|
|
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
|
new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_name);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
|
|
if (slp_reduc)
|
|
{
|
|
/* In SLP we don't need to apply reduction operation, so
|
|
we just collect s' values in SCALAR_RESULTS. */
|
|
new_temp = new_name;
|
|
scalar_results.safe_push (new_name);
|
|
}
|
|
else
|
|
{
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, code,
|
|
new_name, new_temp);
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The only case where we need to reduce scalar results in SLP, is
|
|
unrolling. If the size of SCALAR_RESULTS is greater than
|
|
REDUC_GROUP_SIZE, we reduce them combining elements modulo
|
|
REDUC_GROUP_SIZE. */
|
|
if (slp_reduc)
|
|
{
|
|
tree res, first_res, new_res;
|
|
gimple *new_stmt;
|
|
|
|
/* Reduce multiple scalar results in case of SLP unrolling. */
|
|
for (j = group_size; scalar_results.iterate (j, &res);
|
|
j++)
|
|
{
|
|
first_res = scalar_results[j % group_size];
|
|
new_stmt = gimple_build_assign (new_scalar_dest, code,
|
|
first_res, res);
|
|
new_res = make_ssa_name (new_scalar_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_res);
|
|
gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
|
|
scalar_results[j % group_size] = new_res;
|
|
}
|
|
}
|
|
else
|
|
/* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
|
|
scalar_results.safe_push (new_temp);
|
|
}
|
|
|
|
if ((STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
|
|
== INTEGER_INDUC_COND_REDUCTION)
|
|
&& !operand_equal_p (initial_def, induc_val, 0))
|
|
{
|
|
/* Earlier we set the initial value to be a vector if induc_val
|
|
values. Check the result and if it is induc_val then replace
|
|
with the original initial value, unless induc_val is
|
|
the same as initial_def already. */
|
|
tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
|
|
induc_val);
|
|
|
|
tree tmp = make_ssa_name (new_scalar_dest);
|
|
epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
|
|
initial_def, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
scalar_results[0] = tmp;
|
|
}
|
|
}
|
|
|
|
vect_finalize_reduction:
|
|
|
|
if (double_reduc)
|
|
loop = loop->inner;
|
|
|
|
/* 2.5 Adjust the final result by the initial value of the reduction
|
|
variable. (When such adjustment is not needed, then
|
|
'adjustment_def' is zero). For example, if code is PLUS we create:
|
|
new_temp = loop_exit_def + adjustment_def */
|
|
|
|
if (adjustment_def)
|
|
{
|
|
gcc_assert (!slp_reduc);
|
|
if (nested_in_vect_loop)
|
|
{
|
|
new_phi = new_phis[0];
|
|
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
|
|
expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
|
|
new_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
}
|
|
else
|
|
{
|
|
new_temp = scalar_results[0];
|
|
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
|
|
expr = build2 (code, scalar_type, new_temp, adjustment_def);
|
|
new_dest = vect_create_destination_var (scalar_dest, scalar_type);
|
|
}
|
|
|
|
epilog_stmt = gimple_build_assign (new_dest, expr);
|
|
new_temp = make_ssa_name (new_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
if (nested_in_vect_loop)
|
|
{
|
|
set_vinfo_for_stmt (epilog_stmt,
|
|
new_stmt_vec_info (epilog_stmt, loop_vinfo));
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
|
|
|
|
if (!double_reduc)
|
|
scalar_results.quick_push (new_temp);
|
|
else
|
|
scalar_results[0] = new_temp;
|
|
}
|
|
else
|
|
scalar_results[0] = new_temp;
|
|
|
|
new_phis[0] = epilog_stmt;
|
|
}
|
|
|
|
/* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
|
|
phis with new adjusted scalar results, i.e., replace use <s_out0>
|
|
with use <s_out4>.
|
|
|
|
Transform:
|
|
loop_exit:
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
|
v_out2 = reduce <v_out1>
|
|
s_out3 = extract_field <v_out2, 0>
|
|
s_out4 = adjust_result <s_out3>
|
|
use <s_out0>
|
|
use <s_out0>
|
|
|
|
into:
|
|
|
|
loop_exit:
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
|
v_out2 = reduce <v_out1>
|
|
s_out3 = extract_field <v_out2, 0>
|
|
s_out4 = adjust_result <s_out3>
|
|
use <s_out4>
|
|
use <s_out4> */
|
|
|
|
|
|
/* In SLP reduction chain we reduce vector results into one vector if
|
|
necessary, hence we set here REDUC_GROUP_SIZE to 1. SCALAR_DEST is the
|
|
LHS of the last stmt in the reduction chain, since we are looking for
|
|
the loop exit phi node. */
|
|
if (REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
|
{
|
|
gimple *dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
|
|
/* Handle reduction patterns. */
|
|
if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
|
|
dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
|
|
|
|
scalar_dest = gimple_assign_lhs (dest_stmt);
|
|
group_size = 1;
|
|
}
|
|
|
|
/* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
|
|
case that REDUC_GROUP_SIZE is greater than vectorization factor).
|
|
Therefore, we need to match SCALAR_RESULTS with corresponding statements.
|
|
The first (REDUC_GROUP_SIZE / number of new vector stmts) scalar results
|
|
correspond to the first vector stmt, etc.
|
|
(RATIO is equal to (REDUC_GROUP_SIZE / number of new vector stmts)). */
|
|
if (group_size > new_phis.length ())
|
|
{
|
|
ratio = group_size / new_phis.length ();
|
|
gcc_assert (!(group_size % new_phis.length ()));
|
|
}
|
|
else
|
|
ratio = 1;
|
|
|
|
for (k = 0; k < group_size; k++)
|
|
{
|
|
if (k % ratio == 0)
|
|
{
|
|
epilog_stmt = new_phis[k / ratio];
|
|
reduction_phi = reduction_phis[k / ratio];
|
|
if (double_reduc)
|
|
inner_phi = inner_phis[k / ratio];
|
|
}
|
|
|
|
if (slp_reduc)
|
|
{
|
|
gimple *current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
|
|
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
|
|
/* SLP statements can't participate in patterns. */
|
|
gcc_assert (!orig_stmt);
|
|
scalar_dest = gimple_assign_lhs (current_stmt);
|
|
}
|
|
|
|
phis.create (3);
|
|
/* Find the loop-closed-use at the loop exit of the original scalar
|
|
result. (The reduction result is expected to have two immediate uses -
|
|
one at the latch block, and one at the loop exit). */
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
|
|
&& !is_gimple_debug (USE_STMT (use_p)))
|
|
phis.safe_push (USE_STMT (use_p));
|
|
|
|
/* While we expect to have found an exit_phi because of loop-closed-ssa
|
|
form we can end up without one if the scalar cycle is dead. */
|
|
|
|
FOR_EACH_VEC_ELT (phis, i, exit_phi)
|
|
{
|
|
if (outer_loop)
|
|
{
|
|
stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
|
|
gphi *vect_phi;
|
|
|
|
/* FORNOW. Currently not supporting the case that an inner-loop
|
|
reduction is not used in the outer-loop (but only outside the
|
|
outer-loop), unless it is double reduction. */
|
|
gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
|
|
&& !STMT_VINFO_LIVE_P (exit_phi_vinfo))
|
|
|| double_reduc);
|
|
|
|
if (double_reduc)
|
|
STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
|
|
else
|
|
STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
|
|
if (!double_reduc
|
|
|| STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
|
|
!= vect_double_reduction_def)
|
|
continue;
|
|
|
|
/* Handle double reduction:
|
|
|
|
stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
|
|
stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
|
|
stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
|
|
stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
|
|
|
|
At that point the regular reduction (stmt2 and stmt3) is
|
|
already vectorized, as well as the exit phi node, stmt4.
|
|
Here we vectorize the phi node of double reduction, stmt1, and
|
|
update all relevant statements. */
|
|
|
|
/* Go through all the uses of s2 to find double reduction phi
|
|
node, i.e., stmt1 above. */
|
|
orig_name = PHI_RESULT (exit_phi);
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
|
|
{
|
|
stmt_vec_info use_stmt_vinfo;
|
|
stmt_vec_info new_phi_vinfo;
|
|
tree vect_phi_init, preheader_arg, vect_phi_res;
|
|
basic_block bb = gimple_bb (use_stmt);
|
|
gimple *use;
|
|
|
|
/* Check that USE_STMT is really double reduction phi
|
|
node. */
|
|
if (gimple_code (use_stmt) != GIMPLE_PHI
|
|
|| gimple_phi_num_args (use_stmt) != 2
|
|
|| bb->loop_father != outer_loop)
|
|
continue;
|
|
use_stmt_vinfo = vinfo_for_stmt (use_stmt);
|
|
if (!use_stmt_vinfo
|
|
|| STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
|
|
!= vect_double_reduction_def)
|
|
continue;
|
|
|
|
/* Create vector phi node for double reduction:
|
|
vs1 = phi <vs0, vs2>
|
|
vs1 was created previously in this function by a call to
|
|
vect_get_vec_def_for_operand and is stored in
|
|
vec_initial_def;
|
|
vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
|
|
vs0 is created here. */
|
|
|
|
/* Create vector phi node. */
|
|
vect_phi = create_phi_node (vec_initial_def, bb);
|
|
new_phi_vinfo = new_stmt_vec_info (vect_phi,
|
|
loop_vec_info_for_loop (outer_loop));
|
|
set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
|
|
|
|
/* Create vs0 - initial def of the double reduction phi. */
|
|
preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
|
|
loop_preheader_edge (outer_loop));
|
|
vect_phi_init = get_initial_def_for_reduction
|
|
(stmt, preheader_arg, NULL);
|
|
|
|
/* Update phi node arguments with vs0 and vs2. */
|
|
add_phi_arg (vect_phi, vect_phi_init,
|
|
loop_preheader_edge (outer_loop),
|
|
UNKNOWN_LOCATION);
|
|
add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
|
|
loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"created double reduction phi node: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
|
|
}
|
|
|
|
vect_phi_res = PHI_RESULT (vect_phi);
|
|
|
|
/* Replace the use, i.e., set the correct vs1 in the regular
|
|
reduction phi node. FORNOW, NCOPIES is always 1, so the
|
|
loop is redundant. */
|
|
use = reduction_phi;
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
edge pr_edge = loop_preheader_edge (loop);
|
|
SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
|
|
use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
phis.release ();
|
|
if (nested_in_vect_loop)
|
|
{
|
|
if (double_reduc)
|
|
loop = outer_loop;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
phis.create (3);
|
|
/* Find the loop-closed-use at the loop exit of the original scalar
|
|
result. (The reduction result is expected to have two immediate uses,
|
|
one at the latch block, and one at the loop exit). For double
|
|
reductions we are looking for exit phis of the outer loop. */
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
|
{
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
|
|
{
|
|
if (!is_gimple_debug (USE_STMT (use_p)))
|
|
phis.safe_push (USE_STMT (use_p));
|
|
}
|
|
else
|
|
{
|
|
if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
|
|
{
|
|
tree phi_res = PHI_RESULT (USE_STMT (use_p));
|
|
|
|
FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
|
|
{
|
|
if (!flow_bb_inside_loop_p (loop,
|
|
gimple_bb (USE_STMT (phi_use_p)))
|
|
&& !is_gimple_debug (USE_STMT (phi_use_p)))
|
|
phis.safe_push (USE_STMT (phi_use_p));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
FOR_EACH_VEC_ELT (phis, i, exit_phi)
|
|
{
|
|
/* Replace the uses: */
|
|
orig_name = PHI_RESULT (exit_phi);
|
|
scalar_result = scalar_results[k];
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
|
SET_USE (use_p, scalar_result);
|
|
}
|
|
|
|
phis.release ();
|
|
}
|
|
}
|
|
|
|
/* Return a vector of type VECTYPE that is equal to the vector select
|
|
operation "MASK ? VEC : IDENTITY". Insert the select statements
|
|
before GSI. */
|
|
|
|
static tree
|
|
merge_with_identity (gimple_stmt_iterator *gsi, tree mask, tree vectype,
|
|
tree vec, tree identity)
|
|
{
|
|
tree cond = make_temp_ssa_name (vectype, NULL, "cond");
|
|
gimple *new_stmt = gimple_build_assign (cond, VEC_COND_EXPR,
|
|
mask, vec, identity);
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
return cond;
|
|
}
|
|
|
|
/* Successively apply CODE to each element of VECTOR_RHS, in left-to-right
|
|
order, starting with LHS. Insert the extraction statements before GSI and
|
|
associate the new scalar SSA names with variable SCALAR_DEST.
|
|
Return the SSA name for the result. */
|
|
|
|
static tree
|
|
vect_expand_fold_left (gimple_stmt_iterator *gsi, tree scalar_dest,
|
|
tree_code code, tree lhs, tree vector_rhs)
|
|
{
|
|
tree vectype = TREE_TYPE (vector_rhs);
|
|
tree scalar_type = TREE_TYPE (vectype);
|
|
tree bitsize = TYPE_SIZE (scalar_type);
|
|
unsigned HOST_WIDE_INT vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
|
|
unsigned HOST_WIDE_INT element_bitsize = tree_to_uhwi (bitsize);
|
|
|
|
for (unsigned HOST_WIDE_INT bit_offset = 0;
|
|
bit_offset < vec_size_in_bits;
|
|
bit_offset += element_bitsize)
|
|
{
|
|
tree bitpos = bitsize_int (bit_offset);
|
|
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vector_rhs,
|
|
bitsize, bitpos);
|
|
|
|
gassign *stmt = gimple_build_assign (scalar_dest, rhs);
|
|
rhs = make_ssa_name (scalar_dest, stmt);
|
|
gimple_assign_set_lhs (stmt, rhs);
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
|
|
|
stmt = gimple_build_assign (scalar_dest, code, lhs, rhs);
|
|
tree new_name = make_ssa_name (scalar_dest, stmt);
|
|
gimple_assign_set_lhs (stmt, new_name);
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
|
lhs = new_name;
|
|
}
|
|
return lhs;
|
|
}
|
|
|
|
/* Perform an in-order reduction (FOLD_LEFT_REDUCTION). STMT is the
|
|
statement that sets the live-out value. REDUC_DEF_STMT is the phi
|
|
statement. CODE is the operation performed by STMT and OPS are
|
|
its scalar operands. REDUC_INDEX is the index of the operand in
|
|
OPS that is set by REDUC_DEF_STMT. REDUC_FN is the function that
|
|
implements in-order reduction, or IFN_LAST if we should open-code it.
|
|
VECTYPE_IN is the type of the vector input. MASKS specifies the masks
|
|
that should be used to control the operation in a fully-masked loop. */
|
|
|
|
static bool
|
|
vectorize_fold_left_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
|
|
gimple **vec_stmt, slp_tree slp_node,
|
|
gimple *reduc_def_stmt,
|
|
tree_code code, internal_fn reduc_fn,
|
|
tree ops[3], tree vectype_in,
|
|
int reduc_index, vec_loop_masks *masks)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
gimple *new_stmt = NULL;
|
|
|
|
int ncopies;
|
|
if (slp_node)
|
|
ncopies = 1;
|
|
else
|
|
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
|
|
|
|
gcc_assert (!nested_in_vect_loop_p (loop, stmt));
|
|
gcc_assert (ncopies == 1);
|
|
gcc_assert (TREE_CODE_LENGTH (code) == binary_op);
|
|
gcc_assert (reduc_index == (code == MINUS_EXPR ? 0 : 1));
|
|
gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
|
|
== FOLD_LEFT_REDUCTION);
|
|
|
|
if (slp_node)
|
|
gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (vectype_out),
|
|
TYPE_VECTOR_SUBPARTS (vectype_in)));
|
|
|
|
tree op0 = ops[1 - reduc_index];
|
|
|
|
int group_size = 1;
|
|
gimple *scalar_dest_def;
|
|
auto_vec<tree> vec_oprnds0;
|
|
if (slp_node)
|
|
{
|
|
vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL, slp_node);
|
|
group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
|
|
scalar_dest_def = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
|
|
}
|
|
else
|
|
{
|
|
tree loop_vec_def0 = vect_get_vec_def_for_operand (op0, stmt);
|
|
vec_oprnds0.create (1);
|
|
vec_oprnds0.quick_push (loop_vec_def0);
|
|
scalar_dest_def = stmt;
|
|
}
|
|
|
|
tree scalar_dest = gimple_assign_lhs (scalar_dest_def);
|
|
tree scalar_type = TREE_TYPE (scalar_dest);
|
|
tree reduc_var = gimple_phi_result (reduc_def_stmt);
|
|
|
|
int vec_num = vec_oprnds0.length ();
|
|
gcc_assert (vec_num == 1 || slp_node);
|
|
tree vec_elem_type = TREE_TYPE (vectype_out);
|
|
gcc_checking_assert (useless_type_conversion_p (scalar_type, vec_elem_type));
|
|
|
|
tree vector_identity = NULL_TREE;
|
|
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
vector_identity = build_zero_cst (vectype_out);
|
|
|
|
tree scalar_dest_var = vect_create_destination_var (scalar_dest, NULL);
|
|
int i;
|
|
tree def0;
|
|
FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
|
|
{
|
|
tree mask = NULL_TREE;
|
|
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
mask = vect_get_loop_mask (gsi, masks, vec_num, vectype_in, i);
|
|
|
|
/* Handle MINUS by adding the negative. */
|
|
if (reduc_fn != IFN_LAST && code == MINUS_EXPR)
|
|
{
|
|
tree negated = make_ssa_name (vectype_out);
|
|
new_stmt = gimple_build_assign (negated, NEGATE_EXPR, def0);
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
def0 = negated;
|
|
}
|
|
|
|
if (mask)
|
|
def0 = merge_with_identity (gsi, mask, vectype_out, def0,
|
|
vector_identity);
|
|
|
|
/* On the first iteration the input is simply the scalar phi
|
|
result, and for subsequent iterations it is the output of
|
|
the preceding operation. */
|
|
if (reduc_fn != IFN_LAST)
|
|
{
|
|
new_stmt = gimple_build_call_internal (reduc_fn, 2, reduc_var, def0);
|
|
/* For chained SLP reductions the output of the previous reduction
|
|
operation serves as the input of the next. For the final statement
|
|
the output cannot be a temporary - we reuse the original
|
|
scalar destination of the last statement. */
|
|
if (i != vec_num - 1)
|
|
{
|
|
gimple_set_lhs (new_stmt, scalar_dest_var);
|
|
reduc_var = make_ssa_name (scalar_dest_var, new_stmt);
|
|
gimple_set_lhs (new_stmt, reduc_var);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
reduc_var = vect_expand_fold_left (gsi, scalar_dest_var, code,
|
|
reduc_var, def0);
|
|
new_stmt = SSA_NAME_DEF_STMT (reduc_var);
|
|
/* Remove the statement, so that we can use the same code paths
|
|
as for statements that we've just created. */
|
|
gimple_stmt_iterator tmp_gsi = gsi_for_stmt (new_stmt);
|
|
gsi_remove (&tmp_gsi, false);
|
|
}
|
|
|
|
if (i == vec_num - 1)
|
|
{
|
|
gimple_set_lhs (new_stmt, scalar_dest);
|
|
vect_finish_replace_stmt (scalar_dest_def, new_stmt);
|
|
}
|
|
else
|
|
vect_finish_stmt_generation (scalar_dest_def, new_stmt, gsi);
|
|
|
|
if (slp_node)
|
|
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
|
|
}
|
|
|
|
if (!slp_node)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function is_nonwrapping_integer_induction.
|
|
|
|
Check if STMT (which is part of loop LOOP) both increments and
|
|
does not cause overflow. */
|
|
|
|
static bool
|
|
is_nonwrapping_integer_induction (gimple *stmt, struct loop *loop)
|
|
{
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
|
tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
|
|
tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
|
|
tree lhs_type = TREE_TYPE (gimple_phi_result (stmt));
|
|
widest_int ni, max_loop_value, lhs_max;
|
|
wi::overflow_type overflow = wi::OVF_NONE;
|
|
|
|
/* Make sure the loop is integer based. */
|
|
if (TREE_CODE (base) != INTEGER_CST
|
|
|| TREE_CODE (step) != INTEGER_CST)
|
|
return false;
|
|
|
|
/* Check that the max size of the loop will not wrap. */
|
|
|
|
if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
|
|
return true;
|
|
|
|
if (! max_stmt_executions (loop, &ni))
|
|
return false;
|
|
|
|
max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
|
|
&overflow);
|
|
if (overflow)
|
|
return false;
|
|
|
|
max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
|
|
TYPE_SIGN (lhs_type), &overflow);
|
|
if (overflow)
|
|
return false;
|
|
|
|
return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
|
|
<= TYPE_PRECISION (lhs_type));
|
|
}
|
|
|
|
/* Function vectorizable_reduction.
|
|
|
|
Check if STMT performs a reduction operation that can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
|
stmt to replace it, put it in VEC_STMT, and insert it at GSI.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise.
|
|
|
|
This function also handles reduction idioms (patterns) that have been
|
|
recognized in advance during vect_pattern_recog. In this case, STMT may be
|
|
of this form:
|
|
X = pattern_expr (arg0, arg1, ..., X)
|
|
and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
|
|
sequence that had been detected and replaced by the pattern-stmt (STMT).
|
|
|
|
This function also handles reduction of condition expressions, for example:
|
|
for (int i = 0; i < N; i++)
|
|
if (a[i] < value)
|
|
last = a[i];
|
|
This is handled by vectorising the loop and creating an additional vector
|
|
containing the loop indexes for which "a[i] < value" was true. In the
|
|
function epilogue this is reduced to a single max value and then used to
|
|
index into the vector of results.
|
|
|
|
In some cases of reduction patterns, the type of the reduction variable X is
|
|
different than the type of the other arguments of STMT.
|
|
In such cases, the vectype that is used when transforming STMT into a vector
|
|
stmt is different than the vectype that is used to determine the
|
|
vectorization factor, because it consists of a different number of elements
|
|
than the actual number of elements that are being operated upon in parallel.
|
|
|
|
For example, consider an accumulation of shorts into an int accumulator.
|
|
On some targets it's possible to vectorize this pattern operating on 8
|
|
shorts at a time (hence, the vectype for purposes of determining the
|
|
vectorization factor should be V8HI); on the other hand, the vectype that
|
|
is used to create the vector form is actually V4SI (the type of the result).
|
|
|
|
Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
|
|
indicates what is the actual level of parallelism (V8HI in the example), so
|
|
that the right vectorization factor would be derived. This vectype
|
|
corresponds to the type of arguments to the reduction stmt, and should *NOT*
|
|
be used to create the vectorized stmt. The right vectype for the vectorized
|
|
stmt is obtained from the type of the result X:
|
|
get_vectype_for_scalar_type (TREE_TYPE (X))
|
|
|
|
This means that, contrary to "regular" reductions (or "regular" stmts in
|
|
general), the following equation:
|
|
STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
|
|
does *NOT* necessarily hold for reduction patterns. */
|
|
|
|
bool
|
|
vectorizable_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
|
|
gimple **vec_stmt, slp_tree slp_node,
|
|
slp_instance slp_node_instance,
|
|
stmt_vector_for_cost *cost_vec)
|
|
{
|
|
tree vec_dest;
|
|
tree scalar_dest;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
tree vectype_in = NULL_TREE;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
enum tree_code code, orig_code;
|
|
internal_fn reduc_fn;
|
|
machine_mode vec_mode;
|
|
int op_type;
|
|
optab optab;
|
|
tree new_temp = NULL_TREE;
|
|
gimple *def_stmt;
|
|
enum vect_def_type dt, cond_reduc_dt = vect_unknown_def_type;
|
|
gimple *cond_reduc_def_stmt = NULL;
|
|
enum tree_code cond_reduc_op_code = ERROR_MARK;
|
|
tree scalar_type;
|
|
bool is_simple_use;
|
|
gimple *orig_stmt;
|
|
stmt_vec_info orig_stmt_info = NULL;
|
|
int i;
|
|
int ncopies;
|
|
int epilog_copies;
|
|
stmt_vec_info prev_stmt_info, prev_phi_info;
|
|
bool single_defuse_cycle = false;
|
|
gimple *new_stmt = NULL;
|
|
int j;
|
|
tree ops[3];
|
|
enum vect_def_type dts[3];
|
|
bool nested_cycle = false, found_nested_cycle_def = false;
|
|
bool double_reduc = false;
|
|
basic_block def_bb;
|
|
struct loop * def_stmt_loop, *outer_loop = NULL;
|
|
tree def_arg;
|
|
gimple *def_arg_stmt;
|
|
auto_vec<tree> vec_oprnds0;
|
|
auto_vec<tree> vec_oprnds1;
|
|
auto_vec<tree> vec_oprnds2;
|
|
auto_vec<tree> vect_defs;
|
|
auto_vec<gimple *> phis;
|
|
int vec_num;
|
|
tree def0, tem;
|
|
bool first_p = true;
|
|
tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
|
|
tree cond_reduc_val = NULL_TREE;
|
|
|
|
/* Make sure it was already recognized as a reduction computation. */
|
|
if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
|
|
return false;
|
|
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
|
{
|
|
outer_loop = loop;
|
|
loop = loop->inner;
|
|
nested_cycle = true;
|
|
}
|
|
|
|
/* In case of reduction chain we switch to the first stmt in the chain, but
|
|
we don't update STMT_INFO, since only the last stmt is marked as reduction
|
|
and has reduction properties. */
|
|
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info)
|
|
&& REDUC_GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
|
{
|
|
stmt = REDUC_GROUP_FIRST_ELEMENT (stmt_info);
|
|
first_p = false;
|
|
}
|
|
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
{
|
|
/* Analysis is fully done on the reduction stmt invocation. */
|
|
if (! vec_stmt)
|
|
{
|
|
if (slp_node)
|
|
slp_node_instance->reduc_phis = slp_node;
|
|
|
|
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
|
|
return true;
|
|
}
|
|
|
|
if (STMT_VINFO_REDUC_TYPE (stmt_info) == FOLD_LEFT_REDUCTION)
|
|
/* Leave the scalar phi in place. Note that checking
|
|
STMT_VINFO_VEC_REDUCTION_TYPE (as below) only works
|
|
for reductions involving a single statement. */
|
|
return true;
|
|
|
|
gimple *reduc_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
|
|
if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (reduc_stmt)))
|
|
reduc_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (reduc_stmt));
|
|
|
|
if (STMT_VINFO_VEC_REDUCTION_TYPE (vinfo_for_stmt (reduc_stmt))
|
|
== EXTRACT_LAST_REDUCTION)
|
|
/* Leave the scalar phi in place. */
|
|
return true;
|
|
|
|
gcc_assert (is_gimple_assign (reduc_stmt));
|
|
for (unsigned k = 1; k < gimple_num_ops (reduc_stmt); ++k)
|
|
{
|
|
tree op = gimple_op (reduc_stmt, k);
|
|
if (op == gimple_phi_result (stmt))
|
|
continue;
|
|
if (k == 1
|
|
&& gimple_assign_rhs_code (reduc_stmt) == COND_EXPR)
|
|
continue;
|
|
if (!vectype_in
|
|
|| (GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_in)))
|
|
< GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (op)))))
|
|
vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op));
|
|
break;
|
|
}
|
|
gcc_assert (vectype_in);
|
|
|
|
if (slp_node)
|
|
ncopies = 1;
|
|
else
|
|
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
|
|
|
|
use_operand_p use_p;
|
|
gimple *use_stmt;
|
|
if (ncopies > 1
|
|
&& (STMT_VINFO_RELEVANT (vinfo_for_stmt (reduc_stmt))
|
|
<= vect_used_only_live)
|
|
&& single_imm_use (gimple_phi_result (stmt), &use_p, &use_stmt)
|
|
&& (use_stmt == reduc_stmt
|
|
|| (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt))
|
|
== reduc_stmt)))
|
|
single_defuse_cycle = true;
|
|
|
|
/* Create the destination vector */
|
|
scalar_dest = gimple_assign_lhs (reduc_stmt);
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
|
|
|
if (slp_node)
|
|
/* The size vect_schedule_slp_instance computes is off for us. */
|
|
vec_num = vect_get_num_vectors
|
|
(LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
|
* SLP_TREE_SCALAR_STMTS (slp_node).length (),
|
|
vectype_in);
|
|
else
|
|
vec_num = 1;
|
|
|
|
/* Generate the reduction PHIs upfront. */
|
|
prev_phi_info = NULL;
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
if (j == 0 || !single_defuse_cycle)
|
|
{
|
|
for (i = 0; i < vec_num; i++)
|
|
{
|
|
/* Create the reduction-phi that defines the reduction
|
|
operand. */
|
|
gimple *new_phi = create_phi_node (vec_dest, loop->header);
|
|
set_vinfo_for_stmt (new_phi,
|
|
new_stmt_vec_info (new_phi, loop_vinfo));
|
|
|
|
if (slp_node)
|
|
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
|
|
else
|
|
{
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_phi;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
|
|
prev_phi_info = vinfo_for_stmt (new_phi);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* 1. Is vectorizable reduction? */
|
|
/* Not supportable if the reduction variable is used in the loop, unless
|
|
it's a reduction chain. */
|
|
if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
|
|
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info))
|
|
return false;
|
|
|
|
/* Reductions that are not used even in an enclosing outer-loop,
|
|
are expected to be "live" (used out of the loop). */
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
return false;
|
|
|
|
/* 2. Has this been recognized as a reduction pattern?
|
|
|
|
Check if STMT represents a pattern that has been recognized
|
|
in earlier analysis stages. For stmts that represent a pattern,
|
|
the STMT_VINFO_RELATED_STMT field records the last stmt in
|
|
the original sequence that constitutes the pattern. */
|
|
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
|
|
if (orig_stmt)
|
|
{
|
|
orig_stmt_info = vinfo_for_stmt (orig_stmt);
|
|
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
|
|
gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
|
|
}
|
|
|
|
/* 3. Check the operands of the operation. The first operands are defined
|
|
inside the loop body. The last operand is the reduction variable,
|
|
which is defined by the loop-header-phi. */
|
|
|
|
gcc_assert (is_gimple_assign (stmt));
|
|
|
|
/* Flatten RHS. */
|
|
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
|
|
{
|
|
case GIMPLE_BINARY_RHS:
|
|
code = gimple_assign_rhs_code (stmt);
|
|
op_type = TREE_CODE_LENGTH (code);
|
|
gcc_assert (op_type == binary_op);
|
|
ops[0] = gimple_assign_rhs1 (stmt);
|
|
ops[1] = gimple_assign_rhs2 (stmt);
|
|
break;
|
|
|
|
case GIMPLE_TERNARY_RHS:
|
|
code = gimple_assign_rhs_code (stmt);
|
|
op_type = TREE_CODE_LENGTH (code);
|
|
gcc_assert (op_type == ternary_op);
|
|
ops[0] = gimple_assign_rhs1 (stmt);
|
|
ops[1] = gimple_assign_rhs2 (stmt);
|
|
ops[2] = gimple_assign_rhs3 (stmt);
|
|
break;
|
|
|
|
case GIMPLE_UNARY_RHS:
|
|
return false;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
if (code == COND_EXPR && slp_node)
|
|
return false;
|
|
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
scalar_type = TREE_TYPE (scalar_dest);
|
|
if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
|
|
&& !SCALAR_FLOAT_TYPE_P (scalar_type))
|
|
return false;
|
|
|
|
/* Do not try to vectorize bit-precision reductions. */
|
|
if (!type_has_mode_precision_p (scalar_type))
|
|
return false;
|
|
|
|
/* All uses but the last are expected to be defined in the loop.
|
|
The last use is the reduction variable. In case of nested cycle this
|
|
assumption is not true: we use reduc_index to record the index of the
|
|
reduction variable. */
|
|
gimple *reduc_def_stmt = NULL;
|
|
int reduc_index = -1;
|
|
for (i = 0; i < op_type; i++)
|
|
{
|
|
/* The condition of COND_EXPR is checked in vectorizable_condition(). */
|
|
if (i == 0 && code == COND_EXPR)
|
|
continue;
|
|
|
|
is_simple_use = vect_is_simple_use (ops[i], loop_vinfo,
|
|
&dts[i], &tem, &def_stmt);
|
|
dt = dts[i];
|
|
gcc_assert (is_simple_use);
|
|
if (dt == vect_reduction_def)
|
|
{
|
|
reduc_def_stmt = def_stmt;
|
|
reduc_index = i;
|
|
continue;
|
|
}
|
|
else if (tem)
|
|
{
|
|
/* To properly compute ncopies we are interested in the widest
|
|
input type in case we're looking at a widening accumulation. */
|
|
if (!vectype_in
|
|
|| (GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_in)))
|
|
< GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (tem)))))
|
|
vectype_in = tem;
|
|
}
|
|
|
|
if (dt != vect_internal_def
|
|
&& dt != vect_external_def
|
|
&& dt != vect_constant_def
|
|
&& dt != vect_induction_def
|
|
&& !(dt == vect_nested_cycle && nested_cycle))
|
|
return false;
|
|
|
|
if (dt == vect_nested_cycle)
|
|
{
|
|
found_nested_cycle_def = true;
|
|
reduc_def_stmt = def_stmt;
|
|
reduc_index = i;
|
|
}
|
|
|
|
if (i == 1 && code == COND_EXPR)
|
|
{
|
|
/* Record how value of COND_EXPR is defined. */
|
|
if (dt == vect_constant_def)
|
|
{
|
|
cond_reduc_dt = dt;
|
|
cond_reduc_val = ops[i];
|
|
}
|
|
if (dt == vect_induction_def
|
|
&& def_stmt != NULL
|
|
&& is_nonwrapping_integer_induction (def_stmt, loop))
|
|
{
|
|
cond_reduc_dt = dt;
|
|
cond_reduc_def_stmt = def_stmt;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!vectype_in)
|
|
vectype_in = vectype_out;
|
|
|
|
/* When vectorizing a reduction chain w/o SLP the reduction PHI is not
|
|
directy used in stmt. */
|
|
if (reduc_index == -1)
|
|
{
|
|
if (STMT_VINFO_REDUC_TYPE (stmt_info) == FOLD_LEFT_REDUCTION)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"in-order reduction chain without SLP.\n");
|
|
return false;
|
|
}
|
|
|
|
if (orig_stmt)
|
|
reduc_def_stmt = STMT_VINFO_REDUC_DEF (orig_stmt_info);
|
|
else
|
|
reduc_def_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
|
|
}
|
|
|
|
if (! reduc_def_stmt || gimple_code (reduc_def_stmt) != GIMPLE_PHI)
|
|
return false;
|
|
|
|
if (!(reduc_index == -1
|
|
|| dts[reduc_index] == vect_reduction_def
|
|
|| dts[reduc_index] == vect_nested_cycle
|
|
|| ((dts[reduc_index] == vect_internal_def
|
|
|| dts[reduc_index] == vect_external_def
|
|
|| dts[reduc_index] == vect_constant_def
|
|
|| dts[reduc_index] == vect_induction_def)
|
|
&& nested_cycle && found_nested_cycle_def)))
|
|
{
|
|
/* For pattern recognized stmts, orig_stmt might be a reduction,
|
|
but some helper statements for the pattern might not, or
|
|
might be COND_EXPRs with reduction uses in the condition. */
|
|
gcc_assert (orig_stmt);
|
|
return false;
|
|
}
|
|
|
|
stmt_vec_info reduc_def_info = vinfo_for_stmt (reduc_def_stmt);
|
|
/* PHIs should not participate in patterns. */
|
|
gcc_assert (!STMT_VINFO_RELATED_STMT (reduc_def_info));
|
|
enum vect_reduction_type v_reduc_type
|
|
= STMT_VINFO_REDUC_TYPE (reduc_def_info);
|
|
gimple *tmp = STMT_VINFO_REDUC_DEF (reduc_def_info);
|
|
|
|
STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
|
|
/* If we have a condition reduction, see if we can simplify it further. */
|
|
if (v_reduc_type == COND_REDUCTION)
|
|
{
|
|
/* TODO: We can't yet handle reduction chains, since we need to treat
|
|
each COND_EXPR in the chain specially, not just the last one.
|
|
E.g. for:
|
|
|
|
x_1 = PHI <x_3, ...>
|
|
x_2 = a_2 ? ... : x_1;
|
|
x_3 = a_3 ? ... : x_2;
|
|
|
|
we're interested in the last element in x_3 for which a_2 || a_3
|
|
is true, whereas the current reduction chain handling would
|
|
vectorize x_2 as a normal VEC_COND_EXPR and only treat x_3
|
|
as a reduction operation. */
|
|
if (reduc_index == -1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"conditional reduction chains not supported\n");
|
|
return false;
|
|
}
|
|
|
|
/* vect_is_simple_reduction ensured that operand 2 is the
|
|
loop-carried operand. */
|
|
gcc_assert (reduc_index == 2);
|
|
|
|
/* Loop peeling modifies initial value of reduction PHI, which
|
|
makes the reduction stmt to be transformed different to the
|
|
original stmt analyzed. We need to record reduction code for
|
|
CONST_COND_REDUCTION type reduction at analyzing stage, thus
|
|
it can be used directly at transform stage. */
|
|
if (STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MAX_EXPR
|
|
|| STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MIN_EXPR)
|
|
{
|
|
/* Also set the reduction type to CONST_COND_REDUCTION. */
|
|
gcc_assert (cond_reduc_dt == vect_constant_def);
|
|
STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = CONST_COND_REDUCTION;
|
|
}
|
|
else if (direct_internal_fn_supported_p (IFN_FOLD_EXTRACT_LAST,
|
|
vectype_in, OPTIMIZE_FOR_SPEED))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"optimizing condition reduction with"
|
|
" FOLD_EXTRACT_LAST.\n");
|
|
STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = EXTRACT_LAST_REDUCTION;
|
|
}
|
|
else if (cond_reduc_dt == vect_induction_def)
|
|
{
|
|
stmt_vec_info cond_stmt_vinfo = vinfo_for_stmt (cond_reduc_def_stmt);
|
|
tree base
|
|
= STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (cond_stmt_vinfo);
|
|
tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (cond_stmt_vinfo);
|
|
|
|
gcc_assert (TREE_CODE (base) == INTEGER_CST
|
|
&& TREE_CODE (step) == INTEGER_CST);
|
|
cond_reduc_val = NULL_TREE;
|
|
/* Find a suitable value, for MAX_EXPR below base, for MIN_EXPR
|
|
above base; punt if base is the minimum value of the type for
|
|
MAX_EXPR or maximum value of the type for MIN_EXPR for now. */
|
|
if (tree_int_cst_sgn (step) == -1)
|
|
{
|
|
cond_reduc_op_code = MIN_EXPR;
|
|
if (tree_int_cst_sgn (base) == -1)
|
|
cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
|
|
else if (tree_int_cst_lt (base,
|
|
TYPE_MAX_VALUE (TREE_TYPE (base))))
|
|
cond_reduc_val
|
|
= int_const_binop (PLUS_EXPR, base, integer_one_node);
|
|
}
|
|
else
|
|
{
|
|
cond_reduc_op_code = MAX_EXPR;
|
|
if (tree_int_cst_sgn (base) == 1)
|
|
cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
|
|
else if (tree_int_cst_lt (TYPE_MIN_VALUE (TREE_TYPE (base)),
|
|
base))
|
|
cond_reduc_val
|
|
= int_const_binop (MINUS_EXPR, base, integer_one_node);
|
|
}
|
|
if (cond_reduc_val)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"condition expression based on "
|
|
"integer induction.\n");
|
|
STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
|
|
= INTEGER_INDUC_COND_REDUCTION;
|
|
}
|
|
}
|
|
else if (cond_reduc_dt == vect_constant_def)
|
|
{
|
|
enum vect_def_type cond_initial_dt;
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (ops[reduc_index]);
|
|
tree cond_initial_val
|
|
= PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
|
|
|
|
gcc_assert (cond_reduc_val != NULL_TREE);
|
|
vect_is_simple_use (cond_initial_val, loop_vinfo, &cond_initial_dt);
|
|
if (cond_initial_dt == vect_constant_def
|
|
&& types_compatible_p (TREE_TYPE (cond_initial_val),
|
|
TREE_TYPE (cond_reduc_val)))
|
|
{
|
|
tree e = fold_binary (LE_EXPR, boolean_type_node,
|
|
cond_initial_val, cond_reduc_val);
|
|
if (e && (integer_onep (e) || integer_zerop (e)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"condition expression based on "
|
|
"compile time constant.\n");
|
|
/* Record reduction code at analysis stage. */
|
|
STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info)
|
|
= integer_onep (e) ? MAX_EXPR : MIN_EXPR;
|
|
STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
|
|
= CONST_COND_REDUCTION;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (orig_stmt)
|
|
gcc_assert (tmp == orig_stmt
|
|
|| (REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp))
|
|
== orig_stmt));
|
|
else
|
|
/* We changed STMT to be the first stmt in reduction chain, hence we
|
|
check that in this case the first element in the chain is STMT. */
|
|
gcc_assert (stmt == tmp
|
|
|| REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
|
|
|
|
if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
|
|
return false;
|
|
|
|
if (slp_node)
|
|
ncopies = 1;
|
|
else
|
|
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
|
|
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
vec_mode = TYPE_MODE (vectype_in);
|
|
poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
|
|
|
if (code == COND_EXPR)
|
|
{
|
|
/* Only call during the analysis stage, otherwise we'll lose
|
|
STMT_VINFO_TYPE. */
|
|
if (!vec_stmt && !vectorizable_condition (stmt, gsi, NULL,
|
|
ops[reduc_index], 0, NULL,
|
|
cost_vec))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unsupported condition in reduction\n");
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* 4. Supportable by target? */
|
|
|
|
if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
|
|
|| code == LROTATE_EXPR || code == RROTATE_EXPR)
|
|
{
|
|
/* Shifts and rotates are only supported by vectorizable_shifts,
|
|
not vectorizable_reduction. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unsupported shift or rotation.\n");
|
|
return false;
|
|
}
|
|
|
|
/* 4.1. check support for the operation in the loop */
|
|
optab = optab_for_tree_code (code, vectype_in, optab_default);
|
|
if (!optab)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"no optab.\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "op not supported by target.\n");
|
|
|
|
if (maybe_ne (GET_MODE_SIZE (vec_mode), UNITS_PER_WORD)
|
|
|| !vect_worthwhile_without_simd_p (loop_vinfo, code))
|
|
return false;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "proceeding using word mode.\n");
|
|
}
|
|
|
|
/* Worthwhile without SIMD support? */
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
|
|
&& !vect_worthwhile_without_simd_p (loop_vinfo, code))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not worthwhile without SIMD support.\n");
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* 4.2. Check support for the epilog operation.
|
|
|
|
If STMT represents a reduction pattern, then the type of the
|
|
reduction variable may be different than the type of the rest
|
|
of the arguments. For example, consider the case of accumulation
|
|
of shorts into an int accumulator; The original code:
|
|
S1: int_a = (int) short_a;
|
|
orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
|
|
|
|
was replaced with:
|
|
STMT: int_acc = widen_sum <short_a, int_acc>
|
|
|
|
This means that:
|
|
1. The tree-code that is used to create the vector operation in the
|
|
epilog code (that reduces the partial results) is not the
|
|
tree-code of STMT, but is rather the tree-code of the original
|
|
stmt from the pattern that STMT is replacing. I.e, in the example
|
|
above we want to use 'widen_sum' in the loop, but 'plus' in the
|
|
epilog.
|
|
2. The type (mode) we use to check available target support
|
|
for the vector operation to be created in the *epilog*, is
|
|
determined by the type of the reduction variable (in the example
|
|
above we'd check this: optab_handler (plus_optab, vect_int_mode])).
|
|
However the type (mode) we use to check available target support
|
|
for the vector operation to be created *inside the loop*, is
|
|
determined by the type of the other arguments to STMT (in the
|
|
example we'd check this: optab_handler (widen_sum_optab,
|
|
vect_short_mode)).
|
|
|
|
This is contrary to "regular" reductions, in which the types of all
|
|
the arguments are the same as the type of the reduction variable.
|
|
For "regular" reductions we can therefore use the same vector type
|
|
(and also the same tree-code) when generating the epilog code and
|
|
when generating the code inside the loop. */
|
|
|
|
vect_reduction_type reduction_type
|
|
= STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info);
|
|
if (orig_stmt
|
|
&& (reduction_type == TREE_CODE_REDUCTION
|
|
|| reduction_type == FOLD_LEFT_REDUCTION))
|
|
{
|
|
/* This is a reduction pattern: get the vectype from the type of the
|
|
reduction variable, and get the tree-code from orig_stmt. */
|
|
orig_code = gimple_assign_rhs_code (orig_stmt);
|
|
gcc_assert (vectype_out);
|
|
vec_mode = TYPE_MODE (vectype_out);
|
|
}
|
|
else
|
|
{
|
|
/* Regular reduction: use the same vectype and tree-code as used for
|
|
the vector code inside the loop can be used for the epilog code. */
|
|
orig_code = code;
|
|
|
|
if (code == MINUS_EXPR)
|
|
orig_code = PLUS_EXPR;
|
|
|
|
/* For simple condition reductions, replace with the actual expression
|
|
we want to base our reduction around. */
|
|
if (reduction_type == CONST_COND_REDUCTION)
|
|
{
|
|
orig_code = STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info);
|
|
gcc_assert (orig_code == MAX_EXPR || orig_code == MIN_EXPR);
|
|
}
|
|
else if (reduction_type == INTEGER_INDUC_COND_REDUCTION)
|
|
orig_code = cond_reduc_op_code;
|
|
}
|
|
|
|
if (nested_cycle)
|
|
{
|
|
def_bb = gimple_bb (reduc_def_stmt);
|
|
def_stmt_loop = def_bb->loop_father;
|
|
def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
|
|
loop_preheader_edge (def_stmt_loop));
|
|
if (TREE_CODE (def_arg) == SSA_NAME
|
|
&& (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
|
|
&& gimple_code (def_arg_stmt) == GIMPLE_PHI
|
|
&& flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
|
|
&& vinfo_for_stmt (def_arg_stmt)
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
|
|
== vect_double_reduction_def)
|
|
double_reduc = true;
|
|
}
|
|
|
|
reduc_fn = IFN_LAST;
|
|
|
|
if (reduction_type == TREE_CODE_REDUCTION
|
|
|| reduction_type == FOLD_LEFT_REDUCTION
|
|
|| reduction_type == INTEGER_INDUC_COND_REDUCTION
|
|
|| reduction_type == CONST_COND_REDUCTION)
|
|
{
|
|
if (reduction_type == FOLD_LEFT_REDUCTION
|
|
? fold_left_reduction_fn (orig_code, &reduc_fn)
|
|
: reduction_fn_for_scalar_code (orig_code, &reduc_fn))
|
|
{
|
|
if (reduc_fn != IFN_LAST
|
|
&& !direct_internal_fn_supported_p (reduc_fn, vectype_out,
|
|
OPTIMIZE_FOR_SPEED))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduc op not supported by target.\n");
|
|
|
|
reduc_fn = IFN_LAST;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!nested_cycle || double_reduc)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"no reduc code for scalar code.\n");
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else if (reduction_type == COND_REDUCTION)
|
|
{
|
|
int scalar_precision
|
|
= GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
|
|
cr_index_scalar_type = make_unsigned_type (scalar_precision);
|
|
cr_index_vector_type = build_vector_type (cr_index_scalar_type,
|
|
nunits_out);
|
|
|
|
if (direct_internal_fn_supported_p (IFN_REDUC_MAX, cr_index_vector_type,
|
|
OPTIMIZE_FOR_SPEED))
|
|
reduc_fn = IFN_REDUC_MAX;
|
|
}
|
|
|
|
if (reduction_type != EXTRACT_LAST_REDUCTION
|
|
&& reduc_fn == IFN_LAST
|
|
&& !nunits_out.is_constant ())
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"missing target support for reduction on"
|
|
" variable-length vectors.\n");
|
|
return false;
|
|
}
|
|
|
|
if ((double_reduc || reduction_type != TREE_CODE_REDUCTION)
|
|
&& ncopies > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"multiple types in double reduction or condition "
|
|
"reduction.\n");
|
|
return false;
|
|
}
|
|
|
|
/* For SLP reductions, see if there is a neutral value we can use. */
|
|
tree neutral_op = NULL_TREE;
|
|
if (slp_node)
|
|
neutral_op = neutral_op_for_slp_reduction
|
|
(slp_node_instance->reduc_phis, code,
|
|
REDUC_GROUP_FIRST_ELEMENT (stmt_info) != NULL);
|
|
|
|
if (double_reduc && reduction_type == FOLD_LEFT_REDUCTION)
|
|
{
|
|
/* We can't support in-order reductions of code such as this:
|
|
|
|
for (int i = 0; i < n1; ++i)
|
|
for (int j = 0; j < n2; ++j)
|
|
l += a[j];
|
|
|
|
since GCC effectively transforms the loop when vectorizing:
|
|
|
|
for (int i = 0; i < n1 / VF; ++i)
|
|
for (int j = 0; j < n2; ++j)
|
|
for (int k = 0; k < VF; ++k)
|
|
l += a[j];
|
|
|
|
which is a reassociation of the original operation. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"in-order double reduction not supported.\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
if (reduction_type == FOLD_LEFT_REDUCTION
|
|
&& slp_node
|
|
&& !REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
|
{
|
|
/* We cannot use in-order reductions in this case because there is
|
|
an implicit reassociation of the operations involved. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"in-order unchained SLP reductions not supported.\n");
|
|
return false;
|
|
}
|
|
|
|
/* For double reductions, and for SLP reductions with a neutral value,
|
|
we construct a variable-length initial vector by loading a vector
|
|
full of the neutral value and then shift-and-inserting the start
|
|
values into the low-numbered elements. */
|
|
if ((double_reduc || neutral_op)
|
|
&& !nunits_out.is_constant ()
|
|
&& !direct_internal_fn_supported_p (IFN_VEC_SHL_INSERT,
|
|
vectype_out, OPTIMIZE_FOR_SPEED))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction on variable-length vectors requires"
|
|
" target support for a vector-shift-and-insert"
|
|
" operation.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Check extra constraints for variable-length unchained SLP reductions. */
|
|
if (STMT_SLP_TYPE (stmt_info)
|
|
&& !REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt))
|
|
&& !nunits_out.is_constant ())
|
|
{
|
|
/* We checked above that we could build the initial vector when
|
|
there's a neutral element value. Check here for the case in
|
|
which each SLP statement has its own initial value and in which
|
|
that value needs to be repeated for every instance of the
|
|
statement within the initial vector. */
|
|
unsigned int group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
|
|
scalar_mode elt_mode = SCALAR_TYPE_MODE (TREE_TYPE (vectype_out));
|
|
if (!neutral_op
|
|
&& !can_duplicate_and_interleave_p (group_size, elt_mode))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unsupported form of SLP reduction for"
|
|
" variable-length vectors: cannot build"
|
|
" initial vector.\n");
|
|
return false;
|
|
}
|
|
/* The epilogue code relies on the number of elements being a multiple
|
|
of the group size. The duplicate-and-interleave approach to setting
|
|
up the the initial vector does too. */
|
|
if (!multiple_p (nunits_out, group_size))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unsupported form of SLP reduction for"
|
|
" variable-length vectors: the vector size"
|
|
" is not a multiple of the number of results.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* In case of widenning multiplication by a constant, we update the type
|
|
of the constant to be the type of the other operand. We check that the
|
|
constant fits the type in the pattern recognition pass. */
|
|
if (code == DOT_PROD_EXPR
|
|
&& !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
|
|
{
|
|
if (TREE_CODE (ops[0]) == INTEGER_CST)
|
|
ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
|
|
else if (TREE_CODE (ops[1]) == INTEGER_CST)
|
|
ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"invalid types in dot-prod\n");
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (reduction_type == COND_REDUCTION)
|
|
{
|
|
widest_int ni;
|
|
|
|
if (! max_loop_iterations (loop, &ni))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"loop count not known, cannot create cond "
|
|
"reduction.\n");
|
|
return false;
|
|
}
|
|
/* Convert backedges to iterations. */
|
|
ni += 1;
|
|
|
|
/* The additional index will be the same type as the condition. Check
|
|
that the loop can fit into this less one (because we'll use up the
|
|
zero slot for when there are no matches). */
|
|
tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
|
|
if (wi::geu_p (ni, wi::to_widest (max_index)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"loop size is greater than data size.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
|
vector stmt by a factor VF/nunits. For more details see documentation
|
|
in vectorizable_operation. */
|
|
|
|
/* If the reduction is used in an outer loop we need to generate
|
|
VF intermediate results, like so (e.g. for ncopies=2):
|
|
r0 = phi (init, r0)
|
|
r1 = phi (init, r1)
|
|
r0 = x0 + r0;
|
|
r1 = x1 + r1;
|
|
(i.e. we generate VF results in 2 registers).
|
|
In this case we have a separate def-use cycle for each copy, and therefore
|
|
for each copy we get the vector def for the reduction variable from the
|
|
respective phi node created for this copy.
|
|
|
|
Otherwise (the reduction is unused in the loop nest), we can combine
|
|
together intermediate results, like so (e.g. for ncopies=2):
|
|
r = phi (init, r)
|
|
r = x0 + r;
|
|
r = x1 + r;
|
|
(i.e. we generate VF/2 results in a single register).
|
|
In this case for each copy we get the vector def for the reduction variable
|
|
from the vectorized reduction operation generated in the previous iteration.
|
|
|
|
This only works when we see both the reduction PHI and its only consumer
|
|
in vectorizable_reduction and there are no intermediate stmts
|
|
participating. */
|
|
use_operand_p use_p;
|
|
gimple *use_stmt;
|
|
if (ncopies > 1
|
|
&& (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
|
|
&& single_imm_use (gimple_phi_result (reduc_def_stmt), &use_p, &use_stmt)
|
|
&& (use_stmt == stmt
|
|
|| STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) == stmt))
|
|
{
|
|
single_defuse_cycle = true;
|
|
epilog_copies = 1;
|
|
}
|
|
else
|
|
epilog_copies = ncopies;
|
|
|
|
/* If the reduction stmt is one of the patterns that have lane
|
|
reduction embedded we cannot handle the case of ! single_defuse_cycle. */
|
|
if ((ncopies > 1
|
|
&& ! single_defuse_cycle)
|
|
&& (code == DOT_PROD_EXPR
|
|
|| code == WIDEN_SUM_EXPR
|
|
|| code == SAD_EXPR))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"multi def-use cycle not possible for lane-reducing "
|
|
"reduction operation\n");
|
|
return false;
|
|
}
|
|
|
|
if (slp_node)
|
|
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
|
else
|
|
vec_num = 1;
|
|
|
|
internal_fn cond_fn = get_conditional_internal_fn (code);
|
|
vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
if (first_p)
|
|
vect_model_reduction_cost (stmt_info, reduc_fn, ncopies, cost_vec);
|
|
if (loop_vinfo && LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo))
|
|
{
|
|
if (reduction_type != FOLD_LEFT_REDUCTION
|
|
&& (cond_fn == IFN_LAST
|
|
|| !direct_internal_fn_supported_p (cond_fn, vectype_in,
|
|
OPTIMIZE_FOR_SPEED)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't use a fully-masked loop because no"
|
|
" conditional operation is available.\n");
|
|
LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
|
|
}
|
|
else if (reduc_index == -1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't use a fully-masked loop for chained"
|
|
" reductions.\n");
|
|
LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
|
|
}
|
|
else
|
|
vect_record_loop_mask (loop_vinfo, masks, ncopies * vec_num,
|
|
vectype_in);
|
|
}
|
|
if (dump_enabled_p ()
|
|
&& reduction_type == FOLD_LEFT_REDUCTION)
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"using an in-order (fold-left) reduction.\n");
|
|
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
|
|
return true;
|
|
}
|
|
|
|
/* Transform. */
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
|
|
|
|
/* FORNOW: Multiple types are not supported for condition. */
|
|
if (code == COND_EXPR)
|
|
gcc_assert (ncopies == 1);
|
|
|
|
bool masked_loop_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
|
|
|
|
if (reduction_type == FOLD_LEFT_REDUCTION)
|
|
return vectorize_fold_left_reduction
|
|
(stmt, gsi, vec_stmt, slp_node, reduc_def_stmt, code,
|
|
reduc_fn, ops, vectype_in, reduc_index, masks);
|
|
|
|
if (reduction_type == EXTRACT_LAST_REDUCTION)
|
|
{
|
|
gcc_assert (!slp_node);
|
|
return vectorizable_condition (stmt, gsi, vec_stmt,
|
|
NULL, reduc_index, NULL, NULL);
|
|
}
|
|
|
|
/* Create the destination vector */
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
|
|
|
prev_stmt_info = NULL;
|
|
prev_phi_info = NULL;
|
|
if (!slp_node)
|
|
{
|
|
vec_oprnds0.create (1);
|
|
vec_oprnds1.create (1);
|
|
if (op_type == ternary_op)
|
|
vec_oprnds2.create (1);
|
|
}
|
|
|
|
phis.create (vec_num);
|
|
vect_defs.create (vec_num);
|
|
if (!slp_node)
|
|
vect_defs.quick_push (NULL_TREE);
|
|
|
|
if (slp_node)
|
|
phis.splice (SLP_TREE_VEC_STMTS (slp_node_instance->reduc_phis));
|
|
else
|
|
phis.quick_push (STMT_VINFO_VEC_STMT (vinfo_for_stmt (reduc_def_stmt)));
|
|
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
if (code == COND_EXPR)
|
|
{
|
|
gcc_assert (!slp_node);
|
|
vectorizable_condition (stmt, gsi, vec_stmt,
|
|
PHI_RESULT (phis[0]),
|
|
reduc_index, NULL, NULL);
|
|
/* Multiple types are not supported for condition. */
|
|
break;
|
|
}
|
|
|
|
/* Handle uses. */
|
|
if (j == 0)
|
|
{
|
|
if (slp_node)
|
|
{
|
|
/* Get vec defs for all the operands except the reduction index,
|
|
ensuring the ordering of the ops in the vector is kept. */
|
|
auto_vec<tree, 3> slp_ops;
|
|
auto_vec<vec<tree>, 3> vec_defs;
|
|
|
|
slp_ops.quick_push (ops[0]);
|
|
slp_ops.quick_push (ops[1]);
|
|
if (op_type == ternary_op)
|
|
slp_ops.quick_push (ops[2]);
|
|
|
|
vect_get_slp_defs (slp_ops, slp_node, &vec_defs);
|
|
|
|
vec_oprnds0.safe_splice (vec_defs[0]);
|
|
vec_defs[0].release ();
|
|
vec_oprnds1.safe_splice (vec_defs[1]);
|
|
vec_defs[1].release ();
|
|
if (op_type == ternary_op)
|
|
{
|
|
vec_oprnds2.safe_splice (vec_defs[2]);
|
|
vec_defs[2].release ();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
vec_oprnds0.quick_push
|
|
(vect_get_vec_def_for_operand (ops[0], stmt));
|
|
vec_oprnds1.quick_push
|
|
(vect_get_vec_def_for_operand (ops[1], stmt));
|
|
if (op_type == ternary_op)
|
|
vec_oprnds2.quick_push
|
|
(vect_get_vec_def_for_operand (ops[2], stmt));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!slp_node)
|
|
{
|
|
gcc_assert (reduc_index != -1 || ! single_defuse_cycle);
|
|
|
|
if (single_defuse_cycle && reduc_index == 0)
|
|
vec_oprnds0[0] = gimple_get_lhs (new_stmt);
|
|
else
|
|
vec_oprnds0[0]
|
|
= vect_get_vec_def_for_stmt_copy (dts[0], vec_oprnds0[0]);
|
|
if (single_defuse_cycle && reduc_index == 1)
|
|
vec_oprnds1[0] = gimple_get_lhs (new_stmt);
|
|
else
|
|
vec_oprnds1[0]
|
|
= vect_get_vec_def_for_stmt_copy (dts[1], vec_oprnds1[0]);
|
|
if (op_type == ternary_op)
|
|
{
|
|
if (single_defuse_cycle && reduc_index == 2)
|
|
vec_oprnds2[0] = gimple_get_lhs (new_stmt);
|
|
else
|
|
vec_oprnds2[0]
|
|
= vect_get_vec_def_for_stmt_copy (dts[2], vec_oprnds2[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
|
|
{
|
|
tree vop[3] = { def0, vec_oprnds1[i], NULL_TREE };
|
|
if (masked_loop_p)
|
|
{
|
|
/* Make sure that the reduction accumulator is vop[0]. */
|
|
if (reduc_index == 1)
|
|
{
|
|
gcc_assert (commutative_tree_code (code));
|
|
std::swap (vop[0], vop[1]);
|
|
}
|
|
tree mask = vect_get_loop_mask (gsi, masks, vec_num * ncopies,
|
|
vectype_in, i * ncopies + j);
|
|
gcall *call = gimple_build_call_internal (cond_fn, 4, mask,
|
|
vop[0], vop[1],
|
|
vop[0]);
|
|
new_temp = make_ssa_name (vec_dest, call);
|
|
gimple_call_set_lhs (call, new_temp);
|
|
gimple_call_set_nothrow (call, true);
|
|
new_stmt = call;
|
|
}
|
|
else
|
|
{
|
|
if (op_type == ternary_op)
|
|
vop[2] = vec_oprnds2[i];
|
|
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
new_stmt = gimple_build_assign (new_temp, code,
|
|
vop[0], vop[1], vop[2]);
|
|
}
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
|
|
|
if (slp_node)
|
|
{
|
|
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
|
|
vect_defs.quick_push (new_temp);
|
|
}
|
|
else
|
|
vect_defs[0] = new_temp;
|
|
}
|
|
|
|
if (slp_node)
|
|
continue;
|
|
|
|
if (j == 0)
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
|
else
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
|
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
|
}
|
|
|
|
/* Finalize the reduction-phi (set its arguments) and create the
|
|
epilog reduction code. */
|
|
if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
|
|
vect_defs[0] = gimple_get_lhs (*vec_stmt);
|
|
|
|
vect_create_epilog_for_reduction (vect_defs, stmt, reduc_def_stmt,
|
|
epilog_copies, reduc_fn, phis,
|
|
double_reduc, slp_node, slp_node_instance,
|
|
cond_reduc_val, cond_reduc_op_code,
|
|
neutral_op);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function vect_min_worthwhile_factor.
|
|
|
|
For a loop where we could vectorize the operation indicated by CODE,
|
|
return the minimum vectorization factor that makes it worthwhile
|
|
to use generic vectors. */
|
|
static unsigned int
|
|
vect_min_worthwhile_factor (enum tree_code code)
|
|
{
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case NEGATE_EXPR:
|
|
return 4;
|
|
|
|
case BIT_AND_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
case BIT_NOT_EXPR:
|
|
return 2;
|
|
|
|
default:
|
|
return INT_MAX;
|
|
}
|
|
}
|
|
|
|
/* Return true if VINFO indicates we are doing loop vectorization and if
|
|
it is worth decomposing CODE operations into scalar operations for
|
|
that loop's vectorization factor. */
|
|
|
|
bool
|
|
vect_worthwhile_without_simd_p (vec_info *vinfo, tree_code code)
|
|
{
|
|
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
|
|
unsigned HOST_WIDE_INT value;
|
|
return (loop_vinfo
|
|
&& LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&value)
|
|
&& value >= vect_min_worthwhile_factor (code));
|
|
}
|
|
|
|
/* Function vectorizable_induction
|
|
|
|
Check if PHI performs an induction computation that can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
|
|
phi to replace it, put it in VEC_STMT, and add it to the same basic block.
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
|
|
|
bool
|
|
vectorizable_induction (gimple *phi,
|
|
gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
|
|
gimple **vec_stmt, slp_tree slp_node,
|
|
stmt_vector_for_cost *cost_vec)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (phi);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
unsigned ncopies;
|
|
bool nested_in_vect_loop = false;
|
|
struct loop *iv_loop;
|
|
tree vec_def;
|
|
edge pe = loop_preheader_edge (loop);
|
|
basic_block new_bb;
|
|
tree new_vec, vec_init, vec_step, t;
|
|
tree new_name;
|
|
gimple *new_stmt;
|
|
gphi *induction_phi;
|
|
tree induc_def, vec_dest;
|
|
tree init_expr, step_expr;
|
|
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
unsigned i;
|
|
tree expr;
|
|
gimple_seq stmts;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
gimple *exit_phi;
|
|
edge latch_e;
|
|
tree loop_arg;
|
|
gimple_stmt_iterator si;
|
|
basic_block bb = gimple_bb (phi);
|
|
|
|
if (gimple_code (phi) != GIMPLE_PHI)
|
|
return false;
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
|
return false;
|
|
|
|
/* Make sure it was recognized as induction computation. */
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
|
|
return false;
|
|
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
|
|
if (slp_node)
|
|
ncopies = 1;
|
|
else
|
|
ncopies = vect_get_num_copies (loop_vinfo, vectype);
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
/* FORNOW. These restrictions should be relaxed. */
|
|
if (nested_in_vect_loop_p (loop, phi))
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
gimple *exit_phi;
|
|
edge latch_e;
|
|
tree loop_arg;
|
|
|
|
if (ncopies > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"multiple types in nested loop.\n");
|
|
return false;
|
|
}
|
|
|
|
/* FORNOW: outer loop induction with SLP not supported. */
|
|
if (STMT_SLP_TYPE (stmt_info))
|
|
return false;
|
|
|
|
exit_phi = NULL;
|
|
latch_e = loop_latch_edge (loop->inner);
|
|
loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
|
|
if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
|
|
{
|
|
exit_phi = use_stmt;
|
|
break;
|
|
}
|
|
}
|
|
if (exit_phi)
|
|
{
|
|
stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
|
|
if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
|
|
&& !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"inner-loop induction only used outside "
|
|
"of the outer vectorized loop.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
nested_in_vect_loop = true;
|
|
iv_loop = loop->inner;
|
|
}
|
|
else
|
|
iv_loop = loop;
|
|
gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
|
|
|
|
if (slp_node && !nunits.is_constant ())
|
|
{
|
|
/* The current SLP code creates the initial value element-by-element. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"SLP induction not supported for variable-length"
|
|
" vectors.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
|
|
DUMP_VECT_SCOPE ("vectorizable_induction");
|
|
vect_model_induction_cost (stmt_info, ncopies, cost_vec);
|
|
return true;
|
|
}
|
|
|
|
/* Transform. */
|
|
|
|
/* Compute a vector variable, initialized with the first VF values of
|
|
the induction variable. E.g., for an iv with IV_PHI='X' and
|
|
evolution S, for a vector of 4 units, we want to compute:
|
|
[X, X + S, X + 2*S, X + 3*S]. */
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
|
|
|
|
latch_e = loop_latch_edge (iv_loop);
|
|
loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
|
|
|
|
step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
|
|
gcc_assert (step_expr != NULL_TREE);
|
|
|
|
pe = loop_preheader_edge (iv_loop);
|
|
init_expr = PHI_ARG_DEF_FROM_EDGE (phi,
|
|
loop_preheader_edge (iv_loop));
|
|
|
|
stmts = NULL;
|
|
if (!nested_in_vect_loop)
|
|
{
|
|
/* Convert the initial value to the desired type. */
|
|
tree new_type = TREE_TYPE (vectype);
|
|
init_expr = gimple_convert (&stmts, new_type, init_expr);
|
|
|
|
/* If we are using the loop mask to "peel" for alignment then we need
|
|
to adjust the start value here. */
|
|
tree skip_niters = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
|
|
if (skip_niters != NULL_TREE)
|
|
{
|
|
if (FLOAT_TYPE_P (vectype))
|
|
skip_niters = gimple_build (&stmts, FLOAT_EXPR, new_type,
|
|
skip_niters);
|
|
else
|
|
skip_niters = gimple_convert (&stmts, new_type, skip_niters);
|
|
tree skip_step = gimple_build (&stmts, MULT_EXPR, new_type,
|
|
skip_niters, step_expr);
|
|
init_expr = gimple_build (&stmts, MINUS_EXPR, new_type,
|
|
init_expr, skip_step);
|
|
}
|
|
}
|
|
|
|
/* Convert the step to the desired type. */
|
|
step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
|
|
|
|
if (stmts)
|
|
{
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
|
|
/* Find the first insertion point in the BB. */
|
|
si = gsi_after_labels (bb);
|
|
|
|
/* For SLP induction we have to generate several IVs as for example
|
|
with group size 3 we need [i, i, i, i + S] [i + S, i + S, i + 2*S, i + 2*S]
|
|
[i + 2*S, i + 3*S, i + 3*S, i + 3*S]. The step is the same uniform
|
|
[VF*S, VF*S, VF*S, VF*S] for all. */
|
|
if (slp_node)
|
|
{
|
|
/* Enforced above. */
|
|
unsigned int const_nunits = nunits.to_constant ();
|
|
|
|
/* Generate [VF*S, VF*S, ... ]. */
|
|
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
|
|
{
|
|
expr = build_int_cst (integer_type_node, vf);
|
|
expr = fold_convert (TREE_TYPE (step_expr), expr);
|
|
}
|
|
else
|
|
expr = build_int_cst (TREE_TYPE (step_expr), vf);
|
|
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
|
|
expr, step_expr);
|
|
if (! CONSTANT_CLASS_P (new_name))
|
|
new_name = vect_init_vector (phi, new_name,
|
|
TREE_TYPE (step_expr), NULL);
|
|
new_vec = build_vector_from_val (vectype, new_name);
|
|
vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
|
|
|
|
/* Now generate the IVs. */
|
|
unsigned group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
|
|
unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
|
unsigned elts = const_nunits * nvects;
|
|
unsigned nivs = least_common_multiple (group_size,
|
|
const_nunits) / const_nunits;
|
|
gcc_assert (elts % group_size == 0);
|
|
tree elt = init_expr;
|
|
unsigned ivn;
|
|
for (ivn = 0; ivn < nivs; ++ivn)
|
|
{
|
|
tree_vector_builder elts (vectype, const_nunits, 1);
|
|
stmts = NULL;
|
|
for (unsigned eltn = 0; eltn < const_nunits; ++eltn)
|
|
{
|
|
if (ivn*const_nunits + eltn >= group_size
|
|
&& (ivn * const_nunits + eltn) % group_size == 0)
|
|
elt = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (elt),
|
|
elt, step_expr);
|
|
elts.quick_push (elt);
|
|
}
|
|
vec_init = gimple_build_vector (&stmts, &elts);
|
|
if (stmts)
|
|
{
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
|
|
/* Create the induction-phi that defines the induction-operand. */
|
|
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
|
|
induction_phi = create_phi_node (vec_dest, iv_loop->header);
|
|
set_vinfo_for_stmt (induction_phi,
|
|
new_stmt_vec_info (induction_phi, loop_vinfo));
|
|
induc_def = PHI_RESULT (induction_phi);
|
|
|
|
/* Create the iv update inside the loop */
|
|
vec_def = make_ssa_name (vec_dest);
|
|
new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
|
set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
|
|
|
|
/* Set the arguments of the phi node: */
|
|
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
|
|
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
|
|
UNKNOWN_LOCATION);
|
|
|
|
SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi);
|
|
}
|
|
|
|
/* Re-use IVs when we can. */
|
|
if (ivn < nvects)
|
|
{
|
|
unsigned vfp
|
|
= least_common_multiple (group_size, const_nunits) / group_size;
|
|
/* Generate [VF'*S, VF'*S, ... ]. */
|
|
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
|
|
{
|
|
expr = build_int_cst (integer_type_node, vfp);
|
|
expr = fold_convert (TREE_TYPE (step_expr), expr);
|
|
}
|
|
else
|
|
expr = build_int_cst (TREE_TYPE (step_expr), vfp);
|
|
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
|
|
expr, step_expr);
|
|
if (! CONSTANT_CLASS_P (new_name))
|
|
new_name = vect_init_vector (phi, new_name,
|
|
TREE_TYPE (step_expr), NULL);
|
|
new_vec = build_vector_from_val (vectype, new_name);
|
|
vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
|
|
for (; ivn < nvects; ++ivn)
|
|
{
|
|
gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs];
|
|
tree def;
|
|
if (gimple_code (iv) == GIMPLE_PHI)
|
|
def = gimple_phi_result (iv);
|
|
else
|
|
def = gimple_assign_lhs (iv);
|
|
new_stmt = gimple_build_assign (make_ssa_name (vectype),
|
|
PLUS_EXPR,
|
|
def, vec_step);
|
|
if (gimple_code (iv) == GIMPLE_PHI)
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
|
else
|
|
{
|
|
gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
|
|
gsi_insert_after (&tgsi, new_stmt, GSI_CONTINUE_LINKING);
|
|
}
|
|
set_vinfo_for_stmt (new_stmt,
|
|
new_stmt_vec_info (new_stmt, loop_vinfo));
|
|
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Create the vector that holds the initial_value of the induction. */
|
|
if (nested_in_vect_loop)
|
|
{
|
|
/* iv_loop is nested in the loop to be vectorized. init_expr had already
|
|
been created during vectorization of previous stmts. We obtain it
|
|
from the STMT_VINFO_VEC_STMT of the defining stmt. */
|
|
vec_init = vect_get_vec_def_for_operand (init_expr, phi);
|
|
/* If the initial value is not of proper type, convert it. */
|
|
if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
|
|
{
|
|
new_stmt
|
|
= gimple_build_assign (vect_get_new_ssa_name (vectype,
|
|
vect_simple_var,
|
|
"vec_iv_"),
|
|
VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR, vectype,
|
|
vec_init));
|
|
vec_init = gimple_assign_lhs (new_stmt);
|
|
new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
|
|
new_stmt);
|
|
gcc_assert (!new_bb);
|
|
set_vinfo_for_stmt (new_stmt,
|
|
new_stmt_vec_info (new_stmt, loop_vinfo));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* iv_loop is the loop to be vectorized. Create:
|
|
vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
|
|
stmts = NULL;
|
|
new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
|
|
|
|
unsigned HOST_WIDE_INT const_nunits;
|
|
if (nunits.is_constant (&const_nunits))
|
|
{
|
|
tree_vector_builder elts (vectype, const_nunits, 1);
|
|
elts.quick_push (new_name);
|
|
for (i = 1; i < const_nunits; i++)
|
|
{
|
|
/* Create: new_name_i = new_name + step_expr */
|
|
new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
|
|
new_name, step_expr);
|
|
elts.quick_push (new_name);
|
|
}
|
|
/* Create a vector from [new_name_0, new_name_1, ...,
|
|
new_name_nunits-1] */
|
|
vec_init = gimple_build_vector (&stmts, &elts);
|
|
}
|
|
else if (INTEGRAL_TYPE_P (TREE_TYPE (step_expr)))
|
|
/* Build the initial value directly from a VEC_SERIES_EXPR. */
|
|
vec_init = gimple_build (&stmts, VEC_SERIES_EXPR, vectype,
|
|
new_name, step_expr);
|
|
else
|
|
{
|
|
/* Build:
|
|
[base, base, base, ...]
|
|
+ (vectype) [0, 1, 2, ...] * [step, step, step, ...]. */
|
|
gcc_assert (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)));
|
|
gcc_assert (flag_associative_math);
|
|
tree index = build_index_vector (vectype, 0, 1);
|
|
tree base_vec = gimple_build_vector_from_val (&stmts, vectype,
|
|
new_name);
|
|
tree step_vec = gimple_build_vector_from_val (&stmts, vectype,
|
|
step_expr);
|
|
vec_init = gimple_build (&stmts, FLOAT_EXPR, vectype, index);
|
|
vec_init = gimple_build (&stmts, MULT_EXPR, vectype,
|
|
vec_init, step_vec);
|
|
vec_init = gimple_build (&stmts, PLUS_EXPR, vectype,
|
|
vec_init, base_vec);
|
|
}
|
|
|
|
if (stmts)
|
|
{
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
}
|
|
|
|
|
|
/* Create the vector that holds the step of the induction. */
|
|
if (nested_in_vect_loop)
|
|
/* iv_loop is nested in the loop to be vectorized. Generate:
|
|
vec_step = [S, S, S, S] */
|
|
new_name = step_expr;
|
|
else
|
|
{
|
|
/* iv_loop is the loop to be vectorized. Generate:
|
|
vec_step = [VF*S, VF*S, VF*S, VF*S] */
|
|
gimple_seq seq = NULL;
|
|
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
|
|
{
|
|
expr = build_int_cst (integer_type_node, vf);
|
|
expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
|
|
}
|
|
else
|
|
expr = build_int_cst (TREE_TYPE (step_expr), vf);
|
|
new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
|
|
expr, step_expr);
|
|
if (seq)
|
|
{
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
}
|
|
|
|
t = unshare_expr (new_name);
|
|
gcc_assert (CONSTANT_CLASS_P (new_name)
|
|
|| TREE_CODE (new_name) == SSA_NAME);
|
|
new_vec = build_vector_from_val (vectype, t);
|
|
vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
|
|
|
|
|
|
/* Create the following def-use cycle:
|
|
loop prolog:
|
|
vec_init = ...
|
|
vec_step = ...
|
|
loop:
|
|
vec_iv = PHI <vec_init, vec_loop>
|
|
...
|
|
STMT
|
|
...
|
|
vec_loop = vec_iv + vec_step; */
|
|
|
|
/* Create the induction-phi that defines the induction-operand. */
|
|
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
|
|
induction_phi = create_phi_node (vec_dest, iv_loop->header);
|
|
set_vinfo_for_stmt (induction_phi,
|
|
new_stmt_vec_info (induction_phi, loop_vinfo));
|
|
induc_def = PHI_RESULT (induction_phi);
|
|
|
|
/* Create the iv update inside the loop */
|
|
vec_def = make_ssa_name (vec_dest);
|
|
new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
|
set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
|
|
|
|
/* Set the arguments of the phi node: */
|
|
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
|
|
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
|
|
UNKNOWN_LOCATION);
|
|
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = induction_phi;
|
|
|
|
/* In case that vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
|
vector stmt by a factor VF/nunits. For more details see documentation
|
|
in vectorizable_operation. */
|
|
|
|
if (ncopies > 1)
|
|
{
|
|
gimple_seq seq = NULL;
|
|
stmt_vec_info prev_stmt_vinfo;
|
|
/* FORNOW. This restriction should be relaxed. */
|
|
gcc_assert (!nested_in_vect_loop);
|
|
|
|
/* Create the vector that holds the step of the induction. */
|
|
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
|
|
{
|
|
expr = build_int_cst (integer_type_node, nunits);
|
|
expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
|
|
}
|
|
else
|
|
expr = build_int_cst (TREE_TYPE (step_expr), nunits);
|
|
new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
|
|
expr, step_expr);
|
|
if (seq)
|
|
{
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
|
|
t = unshare_expr (new_name);
|
|
gcc_assert (CONSTANT_CLASS_P (new_name)
|
|
|| TREE_CODE (new_name) == SSA_NAME);
|
|
new_vec = build_vector_from_val (vectype, t);
|
|
vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
|
|
|
|
vec_def = induc_def;
|
|
prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
|
|
for (i = 1; i < ncopies; i++)
|
|
{
|
|
/* vec_i = vec_prev + vec_step */
|
|
new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
|
|
vec_def, vec_step);
|
|
vec_def = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, vec_def);
|
|
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
|
set_vinfo_for_stmt (new_stmt,
|
|
new_stmt_vec_info (new_stmt, loop_vinfo));
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
|
|
prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
|
|
}
|
|
}
|
|
|
|
if (nested_in_vect_loop)
|
|
{
|
|
/* Find the loop-closed exit-phi of the induction, and record
|
|
the final vector of induction results: */
|
|
exit_phi = NULL;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
|
|
if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
|
|
{
|
|
exit_phi = use_stmt;
|
|
break;
|
|
}
|
|
}
|
|
if (exit_phi)
|
|
{
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
|
|
/* FORNOW. Currently not supporting the case that an inner-loop induction
|
|
is not used in the outer-loop (i.e. only outside the outer-loop). */
|
|
gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
|
|
&& !STMT_VINFO_LIVE_P (stmt_vinfo));
|
|
|
|
STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vector of inductions after inner-loop:");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"transform induction: created def-use cycle: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
|
|
SSA_NAME_DEF_STMT (vec_def), 0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function vectorizable_live_operation.
|
|
|
|
STMT computes a value that is used outside the loop. Check if
|
|
it can be supported. */
|
|
|
|
bool
|
|
vectorizable_live_operation (gimple *stmt,
|
|
gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
|
|
slp_tree slp_node, int slp_index,
|
|
gimple **vec_stmt,
|
|
stmt_vector_for_cost *)
|
|
{
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
imm_use_iterator imm_iter;
|
|
tree lhs, lhs_type, bitsize, vec_bitsize;
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
int ncopies;
|
|
gimple *use_stmt;
|
|
auto_vec<tree> vec_oprnds;
|
|
int vec_entry = 0;
|
|
poly_uint64 vec_index = 0;
|
|
|
|
gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
|
|
return false;
|
|
|
|
/* FORNOW. CHECKME. */
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
|
return false;
|
|
|
|
/* If STMT is not relevant and it is a simple assignment and its inputs are
|
|
invariant then it can remain in place, unvectorized. The original last
|
|
scalar value that it computes will be used. */
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
|
{
|
|
gcc_assert (is_simple_and_all_uses_invariant (stmt, loop_vinfo));
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"statement is simple and uses invariant. Leaving in "
|
|
"place.\n");
|
|
return true;
|
|
}
|
|
|
|
if (slp_node)
|
|
ncopies = 1;
|
|
else
|
|
ncopies = vect_get_num_copies (loop_vinfo, vectype);
|
|
|
|
if (slp_node)
|
|
{
|
|
gcc_assert (slp_index >= 0);
|
|
|
|
int num_scalar = SLP_TREE_SCALAR_STMTS (slp_node).length ();
|
|
int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
|
|
|
/* Get the last occurrence of the scalar index from the concatenation of
|
|
all the slp vectors. Calculate which slp vector it is and the index
|
|
within. */
|
|
poly_uint64 pos = (num_vec * nunits) - num_scalar + slp_index;
|
|
|
|
/* Calculate which vector contains the result, and which lane of
|
|
that vector we need. */
|
|
if (!can_div_trunc_p (pos, nunits, &vec_entry, &vec_index))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Cannot determine which vector holds the"
|
|
" final result.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!vec_stmt)
|
|
{
|
|
/* No transformation required. */
|
|
if (LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo))
|
|
{
|
|
if (!direct_internal_fn_supported_p (IFN_EXTRACT_LAST, vectype,
|
|
OPTIMIZE_FOR_SPEED))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't use a fully-masked loop because "
|
|
"the target doesn't support extract last "
|
|
"reduction.\n");
|
|
LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
|
|
}
|
|
else if (slp_node)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't use a fully-masked loop because an "
|
|
"SLP statement is live after the loop.\n");
|
|
LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
|
|
}
|
|
else if (ncopies > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't use a fully-masked loop because"
|
|
" ncopies is greater than 1.\n");
|
|
LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (ncopies == 1 && !slp_node);
|
|
vect_record_loop_mask (loop_vinfo,
|
|
&LOOP_VINFO_MASKS (loop_vinfo),
|
|
1, vectype);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* If stmt has a related stmt, then use that for getting the lhs. */
|
|
if (is_pattern_stmt_p (stmt_info))
|
|
stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
|
|
lhs = (is_a <gphi *> (stmt)) ? gimple_phi_result (stmt)
|
|
: gimple_get_lhs (stmt);
|
|
lhs_type = TREE_TYPE (lhs);
|
|
|
|
bitsize = (VECTOR_BOOLEAN_TYPE_P (vectype)
|
|
? bitsize_int (TYPE_PRECISION (TREE_TYPE (vectype)))
|
|
: TYPE_SIZE (TREE_TYPE (vectype)));
|
|
vec_bitsize = TYPE_SIZE (vectype);
|
|
|
|
/* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
|
|
tree vec_lhs, bitstart;
|
|
if (slp_node)
|
|
{
|
|
gcc_assert (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo));
|
|
|
|
/* Get the correct slp vectorized stmt. */
|
|
gimple *vec_stmt = SLP_TREE_VEC_STMTS (slp_node)[vec_entry];
|
|
if (gphi *phi = dyn_cast <gphi *> (vec_stmt))
|
|
vec_lhs = gimple_phi_result (phi);
|
|
else
|
|
vec_lhs = gimple_get_lhs (vec_stmt);
|
|
|
|
/* Get entry to use. */
|
|
bitstart = bitsize_int (vec_index);
|
|
bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
|
|
}
|
|
else
|
|
{
|
|
enum vect_def_type dt = STMT_VINFO_DEF_TYPE (stmt_info);
|
|
vec_lhs = vect_get_vec_def_for_operand_1 (stmt, dt);
|
|
gcc_checking_assert (ncopies == 1
|
|
|| !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo));
|
|
|
|
/* For multiple copies, get the last copy. */
|
|
for (int i = 1; i < ncopies; ++i)
|
|
vec_lhs = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type,
|
|
vec_lhs);
|
|
|
|
/* Get the last lane in the vector. */
|
|
bitstart = int_const_binop (MINUS_EXPR, vec_bitsize, bitsize);
|
|
}
|
|
|
|
gimple_seq stmts = NULL;
|
|
tree new_tree;
|
|
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
{
|
|
/* Emit:
|
|
|
|
SCALAR_RES = EXTRACT_LAST <VEC_LHS, MASK>
|
|
|
|
where VEC_LHS is the vectorized live-out result and MASK is
|
|
the loop mask for the final iteration. */
|
|
gcc_assert (ncopies == 1 && !slp_node);
|
|
tree scalar_type = TREE_TYPE (STMT_VINFO_VECTYPE (stmt_info));
|
|
tree mask = vect_get_loop_mask (gsi, &LOOP_VINFO_MASKS (loop_vinfo),
|
|
1, vectype, 0);
|
|
tree scalar_res = gimple_build (&stmts, CFN_EXTRACT_LAST,
|
|
scalar_type, mask, vec_lhs);
|
|
|
|
/* Convert the extracted vector element to the required scalar type. */
|
|
new_tree = gimple_convert (&stmts, lhs_type, scalar_res);
|
|
}
|
|
else
|
|
{
|
|
tree bftype = TREE_TYPE (vectype);
|
|
if (VECTOR_BOOLEAN_TYPE_P (vectype))
|
|
bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
|
|
new_tree = build3 (BIT_FIELD_REF, bftype, vec_lhs, bitsize, bitstart);
|
|
new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree),
|
|
&stmts, true, NULL_TREE);
|
|
}
|
|
|
|
if (stmts)
|
|
gsi_insert_seq_on_edge_immediate (single_exit (loop), stmts);
|
|
|
|
/* Replace use of lhs with newly computed result. If the use stmt is a
|
|
single arg PHI, just replace all uses of PHI result. It's necessary
|
|
because lcssa PHI defining lhs may be before newly inserted stmt. */
|
|
use_operand_p use_p;
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
|
|
&& !is_gimple_debug (use_stmt))
|
|
{
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI
|
|
&& gimple_phi_num_args (use_stmt) == 1)
|
|
{
|
|
replace_uses_by (gimple_phi_result (use_stmt), new_tree);
|
|
}
|
|
else
|
|
{
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
|
SET_USE (use_p, new_tree);
|
|
}
|
|
update_stmt (use_stmt);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Kill any debug uses outside LOOP of SSA names defined in STMT. */
|
|
|
|
static void
|
|
vect_loop_kill_debug_uses (struct loop *loop, gimple *stmt)
|
|
{
|
|
ssa_op_iter op_iter;
|
|
imm_use_iterator imm_iter;
|
|
def_operand_p def_p;
|
|
gimple *ustmt;
|
|
|
|
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
|
|
{
|
|
FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
|
|
{
|
|
basic_block bb;
|
|
|
|
if (!is_gimple_debug (ustmt))
|
|
continue;
|
|
|
|
bb = gimple_bb (ustmt);
|
|
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
|
{
|
|
if (gimple_debug_bind_p (ustmt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"killing debug use\n");
|
|
|
|
gimple_debug_bind_reset_value (ustmt);
|
|
update_stmt (ustmt);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Given loop represented by LOOP_VINFO, return true if computation of
|
|
LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
|
|
otherwise. */
|
|
|
|
static bool
|
|
loop_niters_no_overflow (loop_vec_info loop_vinfo)
|
|
{
|
|
/* Constant case. */
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
{
|
|
tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
|
|
tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
|
|
|
|
gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
|
|
gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
|
|
if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
|
|
return true;
|
|
}
|
|
|
|
widest_int max;
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
/* Check the upper bound of loop niters. */
|
|
if (get_max_loop_iterations (loop, &max))
|
|
{
|
|
tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
|
|
signop sgn = TYPE_SIGN (type);
|
|
widest_int type_max = widest_int::from (wi::max_value (type), sgn);
|
|
if (max < type_max)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Return a mask type with half the number of elements as TYPE. */
|
|
|
|
tree
|
|
vect_halve_mask_nunits (tree type)
|
|
{
|
|
poly_uint64 nunits = exact_div (TYPE_VECTOR_SUBPARTS (type), 2);
|
|
return build_truth_vector_type (nunits, current_vector_size);
|
|
}
|
|
|
|
/* Return a mask type with twice as many elements as TYPE. */
|
|
|
|
tree
|
|
vect_double_mask_nunits (tree type)
|
|
{
|
|
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type) * 2;
|
|
return build_truth_vector_type (nunits, current_vector_size);
|
|
}
|
|
|
|
/* Record that a fully-masked version of LOOP_VINFO would need MASKS to
|
|
contain a sequence of NVECTORS masks that each control a vector of type
|
|
VECTYPE. */
|
|
|
|
void
|
|
vect_record_loop_mask (loop_vec_info loop_vinfo, vec_loop_masks *masks,
|
|
unsigned int nvectors, tree vectype)
|
|
{
|
|
gcc_assert (nvectors != 0);
|
|
if (masks->length () < nvectors)
|
|
masks->safe_grow_cleared (nvectors);
|
|
rgroup_masks *rgm = &(*masks)[nvectors - 1];
|
|
/* The number of scalars per iteration and the number of vectors are
|
|
both compile-time constants. */
|
|
unsigned int nscalars_per_iter
|
|
= exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
|
|
if (rgm->max_nscalars_per_iter < nscalars_per_iter)
|
|
{
|
|
rgm->max_nscalars_per_iter = nscalars_per_iter;
|
|
rgm->mask_type = build_same_sized_truth_vector_type (vectype);
|
|
}
|
|
}
|
|
|
|
/* Given a complete set of masks MASKS, extract mask number INDEX
|
|
for an rgroup that operates on NVECTORS vectors of type VECTYPE,
|
|
where 0 <= INDEX < NVECTORS. Insert any set-up statements before GSI.
|
|
|
|
See the comment above vec_loop_masks for more details about the mask
|
|
arrangement. */
|
|
|
|
tree
|
|
vect_get_loop_mask (gimple_stmt_iterator *gsi, vec_loop_masks *masks,
|
|
unsigned int nvectors, tree vectype, unsigned int index)
|
|
{
|
|
rgroup_masks *rgm = &(*masks)[nvectors - 1];
|
|
tree mask_type = rgm->mask_type;
|
|
|
|
/* Populate the rgroup's mask array, if this is the first time we've
|
|
used it. */
|
|
if (rgm->masks.is_empty ())
|
|
{
|
|
rgm->masks.safe_grow_cleared (nvectors);
|
|
for (unsigned int i = 0; i < nvectors; ++i)
|
|
{
|
|
tree mask = make_temp_ssa_name (mask_type, NULL, "loop_mask");
|
|
/* Provide a dummy definition until the real one is available. */
|
|
SSA_NAME_DEF_STMT (mask) = gimple_build_nop ();
|
|
rgm->masks[i] = mask;
|
|
}
|
|
}
|
|
|
|
tree mask = rgm->masks[index];
|
|
if (maybe_ne (TYPE_VECTOR_SUBPARTS (mask_type),
|
|
TYPE_VECTOR_SUBPARTS (vectype)))
|
|
{
|
|
/* A loop mask for data type X can be reused for data type Y
|
|
if X has N times more elements than Y and if Y's elements
|
|
are N times bigger than X's. In this case each sequence
|
|
of N elements in the loop mask will be all-zero or all-one.
|
|
We can then view-convert the mask so that each sequence of
|
|
N elements is replaced by a single element. */
|
|
gcc_assert (multiple_p (TYPE_VECTOR_SUBPARTS (mask_type),
|
|
TYPE_VECTOR_SUBPARTS (vectype)));
|
|
gimple_seq seq = NULL;
|
|
mask_type = build_same_sized_truth_vector_type (vectype);
|
|
mask = gimple_build (&seq, VIEW_CONVERT_EXPR, mask_type, mask);
|
|
if (seq)
|
|
gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/* Scale profiling counters by estimation for LOOP which is vectorized
|
|
by factor VF. */
|
|
|
|
static void
|
|
scale_profile_for_vect_loop (struct loop *loop, unsigned vf)
|
|
{
|
|
edge preheader = loop_preheader_edge (loop);
|
|
/* Reduce loop iterations by the vectorization factor. */
|
|
gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
|
|
profile_count freq_h = loop->header->count, freq_e = preheader->count ();
|
|
|
|
if (freq_h.nonzero_p ())
|
|
{
|
|
profile_probability p;
|
|
|
|
/* Avoid dropping loop body profile counter to 0 because of zero count
|
|
in loop's preheader. */
|
|
if (!(freq_e == profile_count::zero ()))
|
|
freq_e = freq_e.force_nonzero ();
|
|
p = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
|
|
scale_loop_frequencies (loop, p);
|
|
}
|
|
|
|
edge exit_e = single_exit (loop);
|
|
exit_e->probability = profile_probability::always ()
|
|
.apply_scale (1, new_est_niter + 1);
|
|
|
|
edge exit_l = single_pred_edge (loop->latch);
|
|
profile_probability prob = exit_l->probability;
|
|
exit_l->probability = exit_e->probability.invert ();
|
|
if (prob.initialized_p () && exit_l->probability.initialized_p ())
|
|
scale_bbs_frequencies (&loop->latch, 1, exit_l->probability / prob);
|
|
}
|
|
|
|
/* Vectorize STMT if relevant, inserting any new instructions before GSI.
|
|
When vectorizing STMT as a store, set *SEEN_STORE to its stmt_vec_info.
|
|
*SLP_SCHEDULE is a running record of whether we have called
|
|
vect_schedule_slp. */
|
|
|
|
static void
|
|
vect_transform_loop_stmt (loop_vec_info loop_vinfo, gimple *stmt,
|
|
gimple_stmt_iterator *gsi,
|
|
stmt_vec_info *seen_store, bool *slp_scheduled)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
if (!stmt_info)
|
|
return;
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"------>vectorizing statement: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
|
|
}
|
|
|
|
if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
|
|
vect_loop_kill_debug_uses (loop, stmt);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
return;
|
|
|
|
if (STMT_VINFO_VECTYPE (stmt_info))
|
|
{
|
|
poly_uint64 nunits
|
|
= TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
|
|
if (!STMT_SLP_TYPE (stmt_info)
|
|
&& maybe_ne (nunits, vf)
|
|
&& dump_enabled_p ())
|
|
/* For SLP VF is set according to unrolling factor, and not
|
|
to vector size, hence for SLP this print is not valid. */
|
|
dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
|
|
}
|
|
|
|
/* SLP. Schedule all the SLP instances when the first SLP stmt is
|
|
reached. */
|
|
if (slp_vect_type slptype = STMT_SLP_TYPE (stmt_info))
|
|
{
|
|
|
|
if (!*slp_scheduled)
|
|
{
|
|
*slp_scheduled = true;
|
|
|
|
DUMP_VECT_SCOPE ("scheduling SLP instances");
|
|
|
|
vect_schedule_slp (loop_vinfo);
|
|
}
|
|
|
|
/* Hybrid SLP stmts must be vectorized in addition to SLP. */
|
|
if (slptype == pure_slp)
|
|
return;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
|
|
|
|
bool grouped_store = false;
|
|
if (vect_transform_stmt (stmt, gsi, &grouped_store, NULL, NULL))
|
|
*seen_store = stmt_info;
|
|
}
|
|
|
|
/* Function vect_transform_loop.
|
|
|
|
The analysis phase has determined that the loop is vectorizable.
|
|
Vectorize the loop - created vectorized stmts to replace the scalar
|
|
stmts in the loop, and update the loop exit condition.
|
|
Returns scalar epilogue loop if any. */
|
|
|
|
struct loop *
|
|
vect_transform_loop (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
struct loop *epilogue = NULL;
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes;
|
|
int i;
|
|
tree niters_vector = NULL_TREE;
|
|
tree step_vector = NULL_TREE;
|
|
tree niters_vector_mult_vf = NULL_TREE;
|
|
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
unsigned int lowest_vf = constant_lower_bound (vf);
|
|
bool slp_scheduled = false;
|
|
gimple *stmt;
|
|
bool check_profitability = false;
|
|
unsigned int th;
|
|
|
|
DUMP_VECT_SCOPE ("vec_transform_loop");
|
|
|
|
loop_vinfo->shared->check_datarefs ();
|
|
|
|
/* Use the more conservative vectorization threshold. If the number
|
|
of iterations is constant assume the cost check has been performed
|
|
by our caller. If the threshold makes all loops profitable that
|
|
run at least the (estimated) vectorization factor number of times
|
|
checking is pointless, too. */
|
|
th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
|
|
if (th >= vect_vf_for_cost (loop_vinfo)
|
|
&& !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Profitability threshold is %d loop iterations.\n",
|
|
th);
|
|
check_profitability = true;
|
|
}
|
|
|
|
/* Make sure there exists a single-predecessor exit bb. Do this before
|
|
versioning. */
|
|
edge e = single_exit (loop);
|
|
if (! single_pred_p (e->dest))
|
|
{
|
|
split_loop_exit_edge (e);
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "split exit edge\n");
|
|
}
|
|
|
|
/* Version the loop first, if required, so the profitability check
|
|
comes first. */
|
|
|
|
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
|
|
{
|
|
poly_uint64 versioning_threshold
|
|
= LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
|
|
if (check_profitability
|
|
&& ordered_p (poly_uint64 (th), versioning_threshold))
|
|
{
|
|
versioning_threshold = ordered_max (poly_uint64 (th),
|
|
versioning_threshold);
|
|
check_profitability = false;
|
|
}
|
|
vect_loop_versioning (loop_vinfo, th, check_profitability,
|
|
versioning_threshold);
|
|
check_profitability = false;
|
|
}
|
|
|
|
/* Make sure there exists a single-predecessor exit bb also on the
|
|
scalar loop copy. Do this after versioning but before peeling
|
|
so CFG structure is fine for both scalar and if-converted loop
|
|
to make slpeel_duplicate_current_defs_from_edges face matched
|
|
loop closed PHI nodes on the exit. */
|
|
if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
|
|
{
|
|
e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
|
|
if (! single_pred_p (e->dest))
|
|
{
|
|
split_loop_exit_edge (e);
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
|
|
}
|
|
}
|
|
|
|
tree niters = vect_build_loop_niters (loop_vinfo);
|
|
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
|
|
tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
|
|
bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
|
|
epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector,
|
|
&step_vector, &niters_vector_mult_vf, th,
|
|
check_profitability, niters_no_overflow);
|
|
|
|
if (niters_vector == NULL_TREE)
|
|
{
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
&& !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
|
|
&& known_eq (lowest_vf, vf))
|
|
{
|
|
niters_vector
|
|
= build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
|
|
LOOP_VINFO_INT_NITERS (loop_vinfo) / lowest_vf);
|
|
step_vector = build_one_cst (TREE_TYPE (niters));
|
|
}
|
|
else
|
|
vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
|
|
&step_vector, niters_no_overflow);
|
|
}
|
|
|
|
/* 1) Make sure the loop header has exactly two entries
|
|
2) Make sure we have a preheader basic block. */
|
|
|
|
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
|
|
|
|
split_edge (loop_preheader_edge (loop));
|
|
|
|
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
|
|
&& vect_use_loop_mask_for_alignment_p (loop_vinfo))
|
|
/* This will deal with any possible peeling. */
|
|
vect_prepare_for_masked_peels (loop_vinfo);
|
|
|
|
/* FORNOW: the vectorizer supports only loops which body consist
|
|
of one basic block (header + empty latch). When the vectorizer will
|
|
support more involved loop forms, the order by which the BBs are
|
|
traversed need to be reconsidered. */
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
stmt_vec_info stmt_info;
|
|
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gphi *phi = si.phi ();
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"------>vectorizing phi: ");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
|
|
}
|
|
stmt_info = vinfo_for_stmt (phi);
|
|
if (!stmt_info)
|
|
continue;
|
|
|
|
if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
|
|
vect_loop_kill_debug_uses (loop, phi);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
continue;
|
|
|
|
if (STMT_VINFO_VECTYPE (stmt_info)
|
|
&& (maybe_ne
|
|
(TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info)), vf))
|
|
&& dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
|
|
|
|
if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
|
|
&& ! PURE_SLP_STMT (stmt_info))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
|
|
vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb);
|
|
!gsi_end_p (si);)
|
|
{
|
|
stmt = gsi_stmt (si);
|
|
/* During vectorization remove existing clobber stmts. */
|
|
if (gimple_clobber_p (stmt))
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
gsi_remove (&si, true);
|
|
release_defs (stmt);
|
|
}
|
|
else
|
|
{
|
|
stmt_info = vinfo_for_stmt (stmt);
|
|
|
|
/* vector stmts created in the outer-loop during vectorization of
|
|
stmts in an inner-loop may not have a stmt_info, and do not
|
|
need to be vectorized. */
|
|
stmt_vec_info seen_store = NULL;
|
|
if (stmt_info)
|
|
{
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
|
|
{
|
|
gimple *def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
|
|
for (gimple_stmt_iterator subsi = gsi_start (def_seq);
|
|
!gsi_end_p (subsi); gsi_next (&subsi))
|
|
vect_transform_loop_stmt (loop_vinfo,
|
|
gsi_stmt (subsi), &si,
|
|
&seen_store,
|
|
&slp_scheduled);
|
|
gimple *pat_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
vect_transform_loop_stmt (loop_vinfo, pat_stmt, &si,
|
|
&seen_store, &slp_scheduled);
|
|
}
|
|
vect_transform_loop_stmt (loop_vinfo, stmt, &si,
|
|
&seen_store, &slp_scheduled);
|
|
}
|
|
if (seen_store)
|
|
{
|
|
if (STMT_VINFO_GROUPED_ACCESS (seen_store))
|
|
{
|
|
/* Interleaving. If IS_STORE is TRUE, the
|
|
vectorization of the interleaving chain was
|
|
completed - free all the stores in the chain. */
|
|
gsi_next (&si);
|
|
vect_remove_stores (DR_GROUP_FIRST_ELEMENT (seen_store));
|
|
}
|
|
else
|
|
{
|
|
/* Free the attached stmt_vec_info and remove the
|
|
stmt. */
|
|
free_stmt_vec_info (stmt);
|
|
unlink_stmt_vdef (stmt);
|
|
gsi_remove (&si, true);
|
|
release_defs (stmt);
|
|
}
|
|
}
|
|
else
|
|
gsi_next (&si);
|
|
}
|
|
}
|
|
|
|
/* Stub out scalar statements that must not survive vectorization.
|
|
Doing this here helps with grouped statements, or statements that
|
|
are involved in patterns. */
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
|
|
!gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gcall *call = dyn_cast <gcall *> (gsi_stmt (gsi));
|
|
if (call && gimple_call_internal_p (call, IFN_MASK_LOAD))
|
|
{
|
|
tree lhs = gimple_get_lhs (call);
|
|
if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
|
|
{
|
|
tree zero = build_zero_cst (TREE_TYPE (lhs));
|
|
gimple *new_stmt = gimple_build_assign (lhs, zero);
|
|
gsi_replace (&gsi, new_stmt, true);
|
|
}
|
|
}
|
|
}
|
|
} /* BBs in loop */
|
|
|
|
/* The vectorization factor is always > 1, so if we use an IV increment of 1.
|
|
a zero NITERS becomes a nonzero NITERS_VECTOR. */
|
|
if (integer_onep (step_vector))
|
|
niters_no_overflow = true;
|
|
vect_set_loop_condition (loop, loop_vinfo, niters_vector, step_vector,
|
|
niters_vector_mult_vf, !niters_no_overflow);
|
|
|
|
unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
|
|
scale_profile_for_vect_loop (loop, assumed_vf);
|
|
|
|
/* True if the final iteration might not handle a full vector's
|
|
worth of scalar iterations. */
|
|
bool final_iter_may_be_partial = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
|
|
/* The minimum number of iterations performed by the epilogue. This
|
|
is 1 when peeling for gaps because we always need a final scalar
|
|
iteration. */
|
|
int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
|
|
/* +1 to convert latch counts to loop iteration counts,
|
|
-min_epilogue_iters to remove iterations that cannot be performed
|
|
by the vector code. */
|
|
int bias_for_lowest = 1 - min_epilogue_iters;
|
|
int bias_for_assumed = bias_for_lowest;
|
|
int alignment_npeels = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
|
if (alignment_npeels && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
{
|
|
/* When the amount of peeling is known at compile time, the first
|
|
iteration will have exactly alignment_npeels active elements.
|
|
In the worst case it will have at least one. */
|
|
int min_first_active = (alignment_npeels > 0 ? alignment_npeels : 1);
|
|
bias_for_lowest += lowest_vf - min_first_active;
|
|
bias_for_assumed += assumed_vf - min_first_active;
|
|
}
|
|
/* In these calculations the "- 1" converts loop iteration counts
|
|
back to latch counts. */
|
|
if (loop->any_upper_bound)
|
|
loop->nb_iterations_upper_bound
|
|
= (final_iter_may_be_partial
|
|
? wi::udiv_ceil (loop->nb_iterations_upper_bound + bias_for_lowest,
|
|
lowest_vf) - 1
|
|
: wi::udiv_floor (loop->nb_iterations_upper_bound + bias_for_lowest,
|
|
lowest_vf) - 1);
|
|
if (loop->any_likely_upper_bound)
|
|
loop->nb_iterations_likely_upper_bound
|
|
= (final_iter_may_be_partial
|
|
? wi::udiv_ceil (loop->nb_iterations_likely_upper_bound
|
|
+ bias_for_lowest, lowest_vf) - 1
|
|
: wi::udiv_floor (loop->nb_iterations_likely_upper_bound
|
|
+ bias_for_lowest, lowest_vf) - 1);
|
|
if (loop->any_estimate)
|
|
loop->nb_iterations_estimate
|
|
= (final_iter_may_be_partial
|
|
? wi::udiv_ceil (loop->nb_iterations_estimate + bias_for_assumed,
|
|
assumed_vf) - 1
|
|
: wi::udiv_floor (loop->nb_iterations_estimate + bias_for_assumed,
|
|
assumed_vf) - 1);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"LOOP VECTORIZED\n");
|
|
if (loop->inner)
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"OUTER LOOP VECTORIZED\n");
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
else
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"LOOP EPILOGUE VECTORIZED (VS=");
|
|
dump_dec (MSG_NOTE, current_vector_size);
|
|
dump_printf (MSG_NOTE, ")\n");
|
|
}
|
|
}
|
|
|
|
/* Free SLP instances here because otherwise stmt reference counting
|
|
won't work. */
|
|
slp_instance instance;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
|
|
vect_free_slp_instance (instance);
|
|
LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
|
|
/* Clear-up safelen field since its value is invalid after vectorization
|
|
since vectorized loop can have loop-carried dependencies. */
|
|
loop->safelen = 0;
|
|
|
|
/* Don't vectorize epilogue for epilogue. */
|
|
if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
|
|
epilogue = NULL;
|
|
|
|
if (!PARAM_VALUE (PARAM_VECT_EPILOGUES_NOMASK))
|
|
epilogue = NULL;
|
|
|
|
if (epilogue)
|
|
{
|
|
auto_vector_sizes vector_sizes;
|
|
targetm.vectorize.autovectorize_vector_sizes (&vector_sizes);
|
|
unsigned int next_size = 0;
|
|
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
&& LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0
|
|
&& known_eq (vf, lowest_vf))
|
|
{
|
|
unsigned int eiters
|
|
= (LOOP_VINFO_INT_NITERS (loop_vinfo)
|
|
- LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
|
|
eiters = eiters % lowest_vf;
|
|
epilogue->nb_iterations_upper_bound = eiters - 1;
|
|
|
|
unsigned int ratio;
|
|
while (next_size < vector_sizes.length ()
|
|
&& !(constant_multiple_p (current_vector_size,
|
|
vector_sizes[next_size], &ratio)
|
|
&& eiters >= lowest_vf / ratio))
|
|
next_size += 1;
|
|
}
|
|
else
|
|
while (next_size < vector_sizes.length ()
|
|
&& maybe_lt (current_vector_size, vector_sizes[next_size]))
|
|
next_size += 1;
|
|
|
|
if (next_size == vector_sizes.length ())
|
|
epilogue = NULL;
|
|
}
|
|
|
|
if (epilogue)
|
|
{
|
|
epilogue->force_vectorize = loop->force_vectorize;
|
|
epilogue->safelen = loop->safelen;
|
|
epilogue->dont_vectorize = false;
|
|
|
|
/* We may need to if-convert epilogue to vectorize it. */
|
|
if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
|
|
tree_if_conversion (epilogue);
|
|
}
|
|
|
|
return epilogue;
|
|
}
|
|
|
|
/* The code below is trying to perform simple optimization - revert
|
|
if-conversion for masked stores, i.e. if the mask of a store is zero
|
|
do not perform it and all stored value producers also if possible.
|
|
For example,
|
|
for (i=0; i<n; i++)
|
|
if (c[i])
|
|
{
|
|
p1[i] += 1;
|
|
p2[i] = p3[i] +2;
|
|
}
|
|
this transformation will produce the following semi-hammock:
|
|
|
|
if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
|
|
{
|
|
vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
|
|
vect__12.22_172 = vect__11.19_170 + vect_cst__171;
|
|
MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
|
|
vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
|
|
vect__19.28_184 = vect__18.25_182 + vect_cst__183;
|
|
MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
|
|
}
|
|
*/
|
|
|
|
void
|
|
optimize_mask_stores (struct loop *loop)
|
|
{
|
|
basic_block *bbs = get_loop_body (loop);
|
|
unsigned nbbs = loop->num_nodes;
|
|
unsigned i;
|
|
basic_block bb;
|
|
struct loop *bb_loop;
|
|
gimple_stmt_iterator gsi;
|
|
gimple *stmt;
|
|
auto_vec<gimple *> worklist;
|
|
|
|
vect_location = find_loop_location (loop);
|
|
/* Pick up all masked stores in loop if any. */
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
bb = bbs[i];
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
|
|
worklist.safe_push (stmt);
|
|
}
|
|
}
|
|
|
|
free (bbs);
|
|
if (worklist.is_empty ())
|
|
return;
|
|
|
|
/* Loop has masked stores. */
|
|
while (!worklist.is_empty ())
|
|
{
|
|
gimple *last, *last_store;
|
|
edge e, efalse;
|
|
tree mask;
|
|
basic_block store_bb, join_bb;
|
|
gimple_stmt_iterator gsi_to;
|
|
tree vdef, new_vdef;
|
|
gphi *phi;
|
|
tree vectype;
|
|
tree zero;
|
|
|
|
last = worklist.pop ();
|
|
mask = gimple_call_arg (last, 2);
|
|
bb = gimple_bb (last);
|
|
/* Create then_bb and if-then structure in CFG, then_bb belongs to
|
|
the same loop as if_bb. It could be different to LOOP when two
|
|
level loop-nest is vectorized and mask_store belongs to the inner
|
|
one. */
|
|
e = split_block (bb, last);
|
|
bb_loop = bb->loop_father;
|
|
gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
|
|
join_bb = e->dest;
|
|
store_bb = create_empty_bb (bb);
|
|
add_bb_to_loop (store_bb, bb_loop);
|
|
e->flags = EDGE_TRUE_VALUE;
|
|
efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
|
|
/* Put STORE_BB to likely part. */
|
|
efalse->probability = profile_probability::unlikely ();
|
|
store_bb->count = efalse->count ();
|
|
make_single_succ_edge (store_bb, join_bb, EDGE_FALLTHRU);
|
|
if (dom_info_available_p (CDI_DOMINATORS))
|
|
set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Create new block %d to sink mask stores.",
|
|
store_bb->index);
|
|
/* Create vector comparison with boolean result. */
|
|
vectype = TREE_TYPE (mask);
|
|
zero = build_zero_cst (vectype);
|
|
stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
|
|
gsi = gsi_last_bb (bb);
|
|
gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
|
|
/* Create new PHI node for vdef of the last masked store:
|
|
.MEM_2 = VDEF <.MEM_1>
|
|
will be converted to
|
|
.MEM.3 = VDEF <.MEM_1>
|
|
and new PHI node will be created in join bb
|
|
.MEM_2 = PHI <.MEM_1, .MEM_3>
|
|
*/
|
|
vdef = gimple_vdef (last);
|
|
new_vdef = make_ssa_name (gimple_vop (cfun), last);
|
|
gimple_set_vdef (last, new_vdef);
|
|
phi = create_phi_node (vdef, join_bb);
|
|
add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
|
|
|
|
/* Put all masked stores with the same mask to STORE_BB if possible. */
|
|
while (true)
|
|
{
|
|
gimple_stmt_iterator gsi_from;
|
|
gimple *stmt1 = NULL;
|
|
|
|
/* Move masked store to STORE_BB. */
|
|
last_store = last;
|
|
gsi = gsi_for_stmt (last);
|
|
gsi_from = gsi;
|
|
/* Shift GSI to the previous stmt for further traversal. */
|
|
gsi_prev (&gsi);
|
|
gsi_to = gsi_start_bb (store_bb);
|
|
gsi_move_before (&gsi_from, &gsi_to);
|
|
/* Setup GSI_TO to the non-empty block start. */
|
|
gsi_to = gsi_start_bb (store_bb);
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Move stmt to created bb\n");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, last, 0);
|
|
}
|
|
/* Move all stored value producers if possible. */
|
|
while (!gsi_end_p (gsi))
|
|
{
|
|
tree lhs;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
bool res;
|
|
|
|
/* Skip debug statements. */
|
|
if (is_gimple_debug (gsi_stmt (gsi)))
|
|
{
|
|
gsi_prev (&gsi);
|
|
continue;
|
|
}
|
|
stmt1 = gsi_stmt (gsi);
|
|
/* Do not consider statements writing to memory or having
|
|
volatile operand. */
|
|
if (gimple_vdef (stmt1)
|
|
|| gimple_has_volatile_ops (stmt1))
|
|
break;
|
|
gsi_from = gsi;
|
|
gsi_prev (&gsi);
|
|
lhs = gimple_get_lhs (stmt1);
|
|
if (!lhs)
|
|
break;
|
|
|
|
/* LHS of vectorized stmt must be SSA_NAME. */
|
|
if (TREE_CODE (lhs) != SSA_NAME)
|
|
break;
|
|
|
|
if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
|
|
{
|
|
/* Remove dead scalar statement. */
|
|
if (has_zero_uses (lhs))
|
|
{
|
|
gsi_remove (&gsi_from, true);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Check that LHS does not have uses outside of STORE_BB. */
|
|
res = true;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
|
|
{
|
|
gimple *use_stmt;
|
|
use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
if (gimple_bb (use_stmt) != store_bb)
|
|
{
|
|
res = false;
|
|
break;
|
|
}
|
|
}
|
|
if (!res)
|
|
break;
|
|
|
|
if (gimple_vuse (stmt1)
|
|
&& gimple_vuse (stmt1) != gimple_vuse (last_store))
|
|
break;
|
|
|
|
/* Can move STMT1 to STORE_BB. */
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Move stmt to created bb\n");
|
|
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt1, 0);
|
|
}
|
|
gsi_move_before (&gsi_from, &gsi_to);
|
|
/* Shift GSI_TO for further insertion. */
|
|
gsi_prev (&gsi_to);
|
|
}
|
|
/* Put other masked stores with the same mask to STORE_BB. */
|
|
if (worklist.is_empty ()
|
|
|| gimple_call_arg (worklist.last (), 2) != mask
|
|
|| worklist.last () != stmt1)
|
|
break;
|
|
last = worklist.pop ();
|
|
}
|
|
add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);
|
|
}
|
|
}
|