656297e1fe
Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/194698 From-SVN: r275691
712 lines
15 KiB
Go
712 lines
15 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Export guts for testing.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/atomic"
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
//var Fadd64 = fadd64
|
|
//var Fsub64 = fsub64
|
|
//var Fmul64 = fmul64
|
|
//var Fdiv64 = fdiv64
|
|
//var F64to32 = f64to32
|
|
//var F32to64 = f32to64
|
|
//var Fcmp64 = fcmp64
|
|
//var Fintto64 = fintto64
|
|
//var F64toint = f64toint
|
|
|
|
var Entersyscall = entersyscall
|
|
var Exitsyscall = exitsyscall
|
|
var LockedOSThread = lockedOSThread
|
|
var Xadduintptr = atomic.Xadduintptr
|
|
|
|
var FuncPC = funcPC
|
|
|
|
var Fastlog2 = fastlog2
|
|
|
|
var Atoi = atoi
|
|
var Atoi32 = atoi32
|
|
|
|
var Nanotime = nanotime
|
|
|
|
var PhysHugePageSize = physHugePageSize
|
|
|
|
type LFNode struct {
|
|
Next uint64
|
|
Pushcnt uintptr
|
|
}
|
|
|
|
func LFStackPush(head *uint64, node *LFNode) {
|
|
(*lfstack)(head).push((*lfnode)(unsafe.Pointer(node)))
|
|
}
|
|
|
|
func LFStackPop(head *uint64) *LFNode {
|
|
return (*LFNode)(unsafe.Pointer((*lfstack)(head).pop()))
|
|
}
|
|
|
|
func GCMask(x interface{}) (ret []byte) {
|
|
return nil
|
|
}
|
|
|
|
func RunSchedLocalQueueTest() {
|
|
_p_ := new(p)
|
|
gs := make([]g, len(_p_.runq))
|
|
for i := 0; i < len(_p_.runq); i++ {
|
|
if g, _ := runqget(_p_); g != nil {
|
|
throw("runq is not empty initially")
|
|
}
|
|
for j := 0; j < i; j++ {
|
|
runqput(_p_, &gs[i], false)
|
|
}
|
|
for j := 0; j < i; j++ {
|
|
if g, _ := runqget(_p_); g != &gs[i] {
|
|
print("bad element at iter ", i, "/", j, "\n")
|
|
throw("bad element")
|
|
}
|
|
}
|
|
if g, _ := runqget(_p_); g != nil {
|
|
throw("runq is not empty afterwards")
|
|
}
|
|
}
|
|
}
|
|
|
|
func RunSchedLocalQueueStealTest() {
|
|
p1 := new(p)
|
|
p2 := new(p)
|
|
gs := make([]g, len(p1.runq))
|
|
for i := 0; i < len(p1.runq); i++ {
|
|
for j := 0; j < i; j++ {
|
|
gs[j].sig = 0
|
|
runqput(p1, &gs[j], false)
|
|
}
|
|
gp := runqsteal(p2, p1, true)
|
|
s := 0
|
|
if gp != nil {
|
|
s++
|
|
gp.sig++
|
|
}
|
|
for {
|
|
gp, _ = runqget(p2)
|
|
if gp == nil {
|
|
break
|
|
}
|
|
s++
|
|
gp.sig++
|
|
}
|
|
for {
|
|
gp, _ = runqget(p1)
|
|
if gp == nil {
|
|
break
|
|
}
|
|
gp.sig++
|
|
}
|
|
for j := 0; j < i; j++ {
|
|
if gs[j].sig != 1 {
|
|
print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
|
|
throw("bad element")
|
|
}
|
|
}
|
|
if s != i/2 && s != i/2+1 {
|
|
print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
|
|
throw("bad steal")
|
|
}
|
|
}
|
|
}
|
|
|
|
func RunSchedLocalQueueEmptyTest(iters int) {
|
|
// Test that runq is not spuriously reported as empty.
|
|
// Runq emptiness affects scheduling decisions and spurious emptiness
|
|
// can lead to underutilization (both runnable Gs and idle Ps coexist
|
|
// for arbitrary long time).
|
|
done := make(chan bool, 1)
|
|
_p_ := new(p)
|
|
gs := make([]g, 2)
|
|
ready := new(uint32)
|
|
for i := 0; i < iters; i++ {
|
|
*ready = 0
|
|
next0 := (i & 1) == 0
|
|
next1 := (i & 2) == 0
|
|
runqput(_p_, &gs[0], next0)
|
|
go func(done chan bool, p *p, ready *uint32, next0, next1 bool) {
|
|
for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
|
|
}
|
|
if runqempty(p) {
|
|
println("next:", next0, next1)
|
|
throw("queue is empty")
|
|
}
|
|
done <- true
|
|
}(done, _p_, ready, next0, next1)
|
|
for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
|
|
}
|
|
runqput(_p_, &gs[1], next1)
|
|
runqget(_p_)
|
|
<-done
|
|
runqget(_p_)
|
|
}
|
|
}
|
|
|
|
var (
|
|
StringHash = stringHash
|
|
BytesHash = bytesHash
|
|
Int32Hash = int32Hash
|
|
Int64Hash = int64Hash
|
|
MemHash = memhash
|
|
MemHash32 = memhash32
|
|
MemHash64 = memhash64
|
|
EfaceHash = efaceHash
|
|
IfaceHash = ifaceHash
|
|
)
|
|
|
|
var UseAeshash = &useAeshash
|
|
|
|
func MemclrBytes(b []byte) {
|
|
s := (*slice)(unsafe.Pointer(&b))
|
|
memclrNoHeapPointers(s.array, uintptr(s.len))
|
|
}
|
|
|
|
var HashLoad = &hashLoad
|
|
|
|
// entry point for testing
|
|
//func GostringW(w []uint16) (s string) {
|
|
// s = gostringw(&w[0])
|
|
// return
|
|
//}
|
|
|
|
type Uintreg sys.Uintreg
|
|
|
|
var Open = open
|
|
var Close = closefd
|
|
var Read = read
|
|
var Write = write
|
|
|
|
func Envs() []string { return envs }
|
|
func SetEnvs(e []string) { envs = e }
|
|
|
|
//var BigEndian = sys.BigEndian
|
|
|
|
// For benchmarking.
|
|
|
|
func BenchSetType(n int, x interface{}) {
|
|
e := *efaceOf(&x)
|
|
t := e._type
|
|
var size uintptr
|
|
var p unsafe.Pointer
|
|
switch t.kind & kindMask {
|
|
case kindPtr:
|
|
t = (*ptrtype)(unsafe.Pointer(t)).elem
|
|
size = t.size
|
|
p = e.data
|
|
case kindSlice:
|
|
slice := *(*struct {
|
|
ptr unsafe.Pointer
|
|
len, cap uintptr
|
|
})(e.data)
|
|
t = (*slicetype)(unsafe.Pointer(t)).elem
|
|
size = t.size * slice.len
|
|
p = slice.ptr
|
|
}
|
|
allocSize := roundupsize(size)
|
|
systemstack(func() {
|
|
for i := 0; i < n; i++ {
|
|
heapBitsSetType(uintptr(p), allocSize, size, t)
|
|
}
|
|
})
|
|
}
|
|
|
|
const PtrSize = sys.PtrSize
|
|
|
|
var ForceGCPeriod = &forcegcperiod
|
|
|
|
// SetTracebackEnv is like runtime/debug.SetTraceback, but it raises
|
|
// the "environment" traceback level, so later calls to
|
|
// debug.SetTraceback (e.g., from testing timeouts) can't lower it.
|
|
func SetTracebackEnv(level string) {
|
|
setTraceback(level)
|
|
traceback_env = traceback_cache
|
|
}
|
|
|
|
var ReadUnaligned32 = readUnaligned32
|
|
var ReadUnaligned64 = readUnaligned64
|
|
|
|
func CountPagesInUse() (pagesInUse, counted uintptr) {
|
|
stopTheWorld("CountPagesInUse")
|
|
|
|
pagesInUse = uintptr(mheap_.pagesInUse)
|
|
|
|
for _, s := range mheap_.allspans {
|
|
if s.state == mSpanInUse {
|
|
counted += s.npages
|
|
}
|
|
}
|
|
|
|
startTheWorld()
|
|
|
|
return
|
|
}
|
|
|
|
func Fastrand() uint32 { return fastrand() }
|
|
func Fastrandn(n uint32) uint32 { return fastrandn(n) }
|
|
|
|
type ProfBuf profBuf
|
|
|
|
func NewProfBuf(hdrsize, bufwords, tags int) *ProfBuf {
|
|
return (*ProfBuf)(newProfBuf(hdrsize, bufwords, tags))
|
|
}
|
|
|
|
func (p *ProfBuf) Write(tag *unsafe.Pointer, now int64, hdr []uint64, stk []uintptr) {
|
|
(*profBuf)(p).write(tag, now, hdr, stk)
|
|
}
|
|
|
|
const (
|
|
ProfBufBlocking = profBufBlocking
|
|
ProfBufNonBlocking = profBufNonBlocking
|
|
)
|
|
|
|
func (p *ProfBuf) Read(mode profBufReadMode) ([]uint64, []unsafe.Pointer, bool) {
|
|
return (*profBuf)(p).read(profBufReadMode(mode))
|
|
}
|
|
|
|
func (p *ProfBuf) Close() {
|
|
(*profBuf)(p).close()
|
|
}
|
|
|
|
// ReadMemStatsSlow returns both the runtime-computed MemStats and
|
|
// MemStats accumulated by scanning the heap.
|
|
func ReadMemStatsSlow() (base, slow MemStats) {
|
|
stopTheWorld("ReadMemStatsSlow")
|
|
|
|
// Run on the system stack to avoid stack growth allocation.
|
|
systemstack(func() {
|
|
// Make sure stats don't change.
|
|
getg().m.mallocing++
|
|
|
|
readmemstats_m(&base)
|
|
|
|
// Initialize slow from base and zero the fields we're
|
|
// recomputing.
|
|
slow = base
|
|
slow.Alloc = 0
|
|
slow.TotalAlloc = 0
|
|
slow.Mallocs = 0
|
|
slow.Frees = 0
|
|
slow.HeapReleased = 0
|
|
var bySize [_NumSizeClasses]struct {
|
|
Mallocs, Frees uint64
|
|
}
|
|
|
|
// Add up current allocations in spans.
|
|
for _, s := range mheap_.allspans {
|
|
if s.state != mSpanInUse {
|
|
continue
|
|
}
|
|
if sizeclass := s.spanclass.sizeclass(); sizeclass == 0 {
|
|
slow.Mallocs++
|
|
slow.Alloc += uint64(s.elemsize)
|
|
} else {
|
|
slow.Mallocs += uint64(s.allocCount)
|
|
slow.Alloc += uint64(s.allocCount) * uint64(s.elemsize)
|
|
bySize[sizeclass].Mallocs += uint64(s.allocCount)
|
|
}
|
|
}
|
|
|
|
// Add in frees. readmemstats_m flushed the cached stats, so
|
|
// these are up-to-date.
|
|
var smallFree uint64
|
|
slow.Frees = mheap_.nlargefree
|
|
for i := range mheap_.nsmallfree {
|
|
slow.Frees += mheap_.nsmallfree[i]
|
|
bySize[i].Frees = mheap_.nsmallfree[i]
|
|
bySize[i].Mallocs += mheap_.nsmallfree[i]
|
|
smallFree += mheap_.nsmallfree[i] * uint64(class_to_size[i])
|
|
}
|
|
slow.Frees += memstats.tinyallocs
|
|
slow.Mallocs += slow.Frees
|
|
|
|
slow.TotalAlloc = slow.Alloc + mheap_.largefree + smallFree
|
|
|
|
for i := range slow.BySize {
|
|
slow.BySize[i].Mallocs = bySize[i].Mallocs
|
|
slow.BySize[i].Frees = bySize[i].Frees
|
|
}
|
|
|
|
for i := mheap_.free.start(0, 0); i.valid(); i = i.next() {
|
|
slow.HeapReleased += uint64(i.span().released())
|
|
}
|
|
|
|
getg().m.mallocing--
|
|
})
|
|
|
|
startTheWorld()
|
|
return
|
|
}
|
|
|
|
// BlockOnSystemStack switches to the system stack, prints "x\n" to
|
|
// stderr, and blocks in a stack containing
|
|
// "runtime.blockOnSystemStackInternal".
|
|
func BlockOnSystemStack() {
|
|
systemstack(blockOnSystemStackInternal)
|
|
}
|
|
|
|
func blockOnSystemStackInternal() {
|
|
print("x\n")
|
|
lock(&deadlock)
|
|
lock(&deadlock)
|
|
}
|
|
|
|
type RWMutex struct {
|
|
rw rwmutex
|
|
}
|
|
|
|
func (rw *RWMutex) RLock() {
|
|
rw.rw.rlock()
|
|
}
|
|
|
|
func (rw *RWMutex) RUnlock() {
|
|
rw.rw.runlock()
|
|
}
|
|
|
|
func (rw *RWMutex) Lock() {
|
|
rw.rw.lock()
|
|
}
|
|
|
|
func (rw *RWMutex) Unlock() {
|
|
rw.rw.unlock()
|
|
}
|
|
|
|
const RuntimeHmapSize = unsafe.Sizeof(hmap{})
|
|
|
|
func MapBucketsCount(m map[int]int) int {
|
|
h := *(**hmap)(unsafe.Pointer(&m))
|
|
return 1 << h.B
|
|
}
|
|
|
|
func MapBucketsPointerIsNil(m map[int]int) bool {
|
|
h := *(**hmap)(unsafe.Pointer(&m))
|
|
return h.buckets == nil
|
|
}
|
|
|
|
func LockOSCounts() (external, internal uint32) {
|
|
g := getg()
|
|
if g.m.lockedExt+g.m.lockedInt == 0 {
|
|
if g.lockedm != 0 {
|
|
panic("lockedm on non-locked goroutine")
|
|
}
|
|
} else {
|
|
if g.lockedm == 0 {
|
|
panic("nil lockedm on locked goroutine")
|
|
}
|
|
}
|
|
return g.m.lockedExt, g.m.lockedInt
|
|
}
|
|
|
|
//go:noinline
|
|
func TracebackSystemstack(stk []uintptr, i int) int {
|
|
if i == 0 {
|
|
return callersRaw(stk)
|
|
}
|
|
n := 0
|
|
systemstack(func() {
|
|
n = TracebackSystemstack(stk, i-1)
|
|
})
|
|
return n
|
|
}
|
|
|
|
func KeepNArenaHints(n int) {
|
|
hint := mheap_.arenaHints
|
|
for i := 1; i < n; i++ {
|
|
hint = hint.next
|
|
if hint == nil {
|
|
return
|
|
}
|
|
}
|
|
hint.next = nil
|
|
}
|
|
|
|
// MapNextArenaHint reserves a page at the next arena growth hint,
|
|
// preventing the arena from growing there, and returns the range of
|
|
// addresses that are no longer viable.
|
|
func MapNextArenaHint() (start, end uintptr) {
|
|
hint := mheap_.arenaHints
|
|
addr := hint.addr
|
|
if hint.down {
|
|
start, end = addr-heapArenaBytes, addr
|
|
addr -= physPageSize
|
|
} else {
|
|
start, end = addr, addr+heapArenaBytes
|
|
}
|
|
sysReserve(unsafe.Pointer(addr), physPageSize)
|
|
return
|
|
}
|
|
|
|
func GetNextArenaHint() uintptr {
|
|
return mheap_.arenaHints.addr
|
|
}
|
|
|
|
type G = g
|
|
|
|
func Getg() *G {
|
|
return getg()
|
|
}
|
|
|
|
//go:noinline
|
|
func PanicForTesting(b []byte, i int) byte {
|
|
return unexportedPanicForTesting(b, i)
|
|
}
|
|
|
|
//go:noinline
|
|
func unexportedPanicForTesting(b []byte, i int) byte {
|
|
return b[i]
|
|
}
|
|
|
|
func G0StackOverflow() {
|
|
systemstack(func() {
|
|
stackOverflow(nil)
|
|
})
|
|
}
|
|
|
|
func stackOverflow(x *byte) {
|
|
var buf [256]byte
|
|
stackOverflow(&buf[0])
|
|
}
|
|
|
|
func MapTombstoneCheck(m map[int]int) {
|
|
// Make sure emptyOne and emptyRest are distributed correctly.
|
|
// We should have a series of filled and emptyOne cells, followed by
|
|
// a series of emptyRest cells.
|
|
h := *(**hmap)(unsafe.Pointer(&m))
|
|
i := interface{}(m)
|
|
t := *(**maptype)(unsafe.Pointer(&i))
|
|
|
|
for x := 0; x < 1<<h.B; x++ {
|
|
b0 := (*bmap)(add(h.buckets, uintptr(x)*uintptr(t.bucketsize)))
|
|
n := 0
|
|
for b := b0; b != nil; b = b.overflow(t) {
|
|
for i := 0; i < bucketCnt; i++ {
|
|
if b.tophash[i] != emptyRest {
|
|
n++
|
|
}
|
|
}
|
|
}
|
|
k := 0
|
|
for b := b0; b != nil; b = b.overflow(t) {
|
|
for i := 0; i < bucketCnt; i++ {
|
|
if k < n && b.tophash[i] == emptyRest {
|
|
panic("early emptyRest")
|
|
}
|
|
if k >= n && b.tophash[i] != emptyRest {
|
|
panic("late non-emptyRest")
|
|
}
|
|
if k == n-1 && b.tophash[i] == emptyOne {
|
|
panic("last non-emptyRest entry is emptyOne")
|
|
}
|
|
k++
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// UnscavHugePagesSlow returns the value of mheap_.freeHugePages
|
|
// and the number of unscavenged huge pages calculated by
|
|
// scanning the heap.
|
|
func UnscavHugePagesSlow() (uintptr, uintptr) {
|
|
var base, slow uintptr
|
|
// Run on the system stack to avoid deadlock from stack growth
|
|
// trying to acquire the heap lock.
|
|
systemstack(func() {
|
|
lock(&mheap_.lock)
|
|
base = mheap_.free.unscavHugePages
|
|
for _, s := range mheap_.allspans {
|
|
if s.state == mSpanFree && !s.scavenged {
|
|
slow += s.hugePages()
|
|
}
|
|
}
|
|
unlock(&mheap_.lock)
|
|
})
|
|
return base, slow
|
|
}
|
|
|
|
// Span is a safe wrapper around an mspan, whose memory
|
|
// is managed manually.
|
|
type Span struct {
|
|
*mspan
|
|
}
|
|
|
|
func AllocSpan(base, npages uintptr, scavenged bool) Span {
|
|
var s *mspan
|
|
systemstack(func() {
|
|
lock(&mheap_.lock)
|
|
s = (*mspan)(mheap_.spanalloc.alloc())
|
|
unlock(&mheap_.lock)
|
|
})
|
|
s.init(base, npages)
|
|
s.scavenged = scavenged
|
|
return Span{s}
|
|
}
|
|
|
|
func (s *Span) Free() {
|
|
systemstack(func() {
|
|
lock(&mheap_.lock)
|
|
mheap_.spanalloc.free(unsafe.Pointer(s.mspan))
|
|
unlock(&mheap_.lock)
|
|
})
|
|
s.mspan = nil
|
|
}
|
|
|
|
func (s Span) Base() uintptr {
|
|
return s.mspan.base()
|
|
}
|
|
|
|
func (s Span) Pages() uintptr {
|
|
return s.mspan.npages
|
|
}
|
|
|
|
type TreapIterType treapIterType
|
|
|
|
const (
|
|
TreapIterScav TreapIterType = TreapIterType(treapIterScav)
|
|
TreapIterHuge = TreapIterType(treapIterHuge)
|
|
TreapIterBits = treapIterBits
|
|
)
|
|
|
|
type TreapIterFilter treapIterFilter
|
|
|
|
func TreapFilter(mask, match TreapIterType) TreapIterFilter {
|
|
return TreapIterFilter(treapFilter(treapIterType(mask), treapIterType(match)))
|
|
}
|
|
|
|
func (s Span) MatchesIter(mask, match TreapIterType) bool {
|
|
return treapFilter(treapIterType(mask), treapIterType(match)).matches(s.treapFilter())
|
|
}
|
|
|
|
type TreapIter struct {
|
|
treapIter
|
|
}
|
|
|
|
func (t TreapIter) Span() Span {
|
|
return Span{t.span()}
|
|
}
|
|
|
|
func (t TreapIter) Valid() bool {
|
|
return t.valid()
|
|
}
|
|
|
|
func (t TreapIter) Next() TreapIter {
|
|
return TreapIter{t.next()}
|
|
}
|
|
|
|
func (t TreapIter) Prev() TreapIter {
|
|
return TreapIter{t.prev()}
|
|
}
|
|
|
|
// Treap is a safe wrapper around mTreap for testing.
|
|
//
|
|
// It must never be heap-allocated because mTreap is
|
|
// notinheap.
|
|
//
|
|
//go:notinheap
|
|
type Treap struct {
|
|
mTreap
|
|
}
|
|
|
|
func (t *Treap) Start(mask, match TreapIterType) TreapIter {
|
|
return TreapIter{t.start(treapIterType(mask), treapIterType(match))}
|
|
}
|
|
|
|
func (t *Treap) End(mask, match TreapIterType) TreapIter {
|
|
return TreapIter{t.end(treapIterType(mask), treapIterType(match))}
|
|
}
|
|
|
|
func (t *Treap) Insert(s Span) {
|
|
// mTreap uses a fixalloc in mheap_ for treapNode
|
|
// allocation which requires the mheap_ lock to manipulate.
|
|
// Locking here is safe because the treap itself never allocs
|
|
// or otherwise ends up grabbing this lock.
|
|
systemstack(func() {
|
|
lock(&mheap_.lock)
|
|
t.insert(s.mspan)
|
|
unlock(&mheap_.lock)
|
|
})
|
|
t.CheckInvariants()
|
|
}
|
|
|
|
func (t *Treap) Find(npages uintptr) TreapIter {
|
|
return TreapIter{t.find(npages)}
|
|
}
|
|
|
|
func (t *Treap) Erase(i TreapIter) {
|
|
// mTreap uses a fixalloc in mheap_ for treapNode
|
|
// freeing which requires the mheap_ lock to manipulate.
|
|
// Locking here is safe because the treap itself never allocs
|
|
// or otherwise ends up grabbing this lock.
|
|
systemstack(func() {
|
|
lock(&mheap_.lock)
|
|
t.erase(i.treapIter)
|
|
unlock(&mheap_.lock)
|
|
})
|
|
t.CheckInvariants()
|
|
}
|
|
|
|
func (t *Treap) RemoveSpan(s Span) {
|
|
// See Erase about locking.
|
|
systemstack(func() {
|
|
lock(&mheap_.lock)
|
|
t.removeSpan(s.mspan)
|
|
unlock(&mheap_.lock)
|
|
})
|
|
t.CheckInvariants()
|
|
}
|
|
|
|
func (t *Treap) Size() int {
|
|
i := 0
|
|
t.mTreap.treap.walkTreap(func(t *treapNode) {
|
|
i++
|
|
})
|
|
return i
|
|
}
|
|
|
|
func (t *Treap) CheckInvariants() {
|
|
t.mTreap.treap.walkTreap(checkTreapNode)
|
|
t.mTreap.treap.validateInvariants()
|
|
}
|
|
|
|
func RunGetgThreadSwitchTest() {
|
|
// Test that getg works correctly with thread switch.
|
|
// With gccgo, if we generate getg inlined, the backend
|
|
// may cache the address of the TLS variable, which
|
|
// will become invalid after a thread switch. This test
|
|
// checks that the bad caching doesn't happen.
|
|
|
|
ch := make(chan int)
|
|
go func(ch chan int) {
|
|
ch <- 5
|
|
LockOSThread()
|
|
}(ch)
|
|
|
|
g1 := getg()
|
|
|
|
// Block on a receive. This is likely to get us a thread
|
|
// switch. If we yield to the sender goroutine, it will
|
|
// lock the thread, forcing us to resume on a different
|
|
// thread.
|
|
<-ch
|
|
|
|
g2 := getg()
|
|
if g1 != g2 {
|
|
panic("g1 != g2")
|
|
}
|
|
|
|
// Also test getg after some control flow, as the
|
|
// backend is sensitive to control flow.
|
|
g3 := getg()
|
|
if g1 != g3 {
|
|
panic("g1 != g3")
|
|
}
|
|
}
|