cfcbb4227f
This does not yet include support for the //go:embed directive added in this release. * Makefile.am (check-runtime): Don't create check-runtime-dir. (mostlyclean-local): Don't remove check-runtime-dir. (check-go-tool, check-vet): Copy in go.mod and modules.txt. (check-cgo-test, check-carchive-test): Add go.mod file. * Makefile.in: Regenerate. Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/280172
310 lines
7.2 KiB
Go
310 lines
7.2 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package dsa implements the Digital Signature Algorithm, as defined in FIPS 186-3.
|
|
//
|
|
// The DSA operations in this package are not implemented using constant-time algorithms.
|
|
//
|
|
// Deprecated: DSA is a legacy algorithm, and modern alternatives such as
|
|
// Ed25519 (implemented by package crypto/ed25519) should be used instead. Keys
|
|
// with 1024-bit moduli (L1024N160 parameters) are cryptographically weak, while
|
|
// bigger keys are not widely supported. Note that FIPS 186-5 no longer approves
|
|
// DSA for signature generation.
|
|
package dsa
|
|
|
|
import (
|
|
"errors"
|
|
"io"
|
|
"math/big"
|
|
|
|
"crypto/internal/randutil"
|
|
)
|
|
|
|
// Parameters represents the domain parameters for a key. These parameters can
|
|
// be shared across many keys. The bit length of Q must be a multiple of 8.
|
|
type Parameters struct {
|
|
P, Q, G *big.Int
|
|
}
|
|
|
|
// PublicKey represents a DSA public key.
|
|
type PublicKey struct {
|
|
Parameters
|
|
Y *big.Int
|
|
}
|
|
|
|
// PrivateKey represents a DSA private key.
|
|
type PrivateKey struct {
|
|
PublicKey
|
|
X *big.Int
|
|
}
|
|
|
|
// ErrInvalidPublicKey results when a public key is not usable by this code.
|
|
// FIPS is quite strict about the format of DSA keys, but other code may be
|
|
// less so. Thus, when using keys which may have been generated by other code,
|
|
// this error must be handled.
|
|
var ErrInvalidPublicKey = errors.New("crypto/dsa: invalid public key")
|
|
|
|
// ParameterSizes is an enumeration of the acceptable bit lengths of the primes
|
|
// in a set of DSA parameters. See FIPS 186-3, section 4.2.
|
|
type ParameterSizes int
|
|
|
|
const (
|
|
L1024N160 ParameterSizes = iota
|
|
L2048N224
|
|
L2048N256
|
|
L3072N256
|
|
)
|
|
|
|
// numMRTests is the number of Miller-Rabin primality tests that we perform. We
|
|
// pick the largest recommended number from table C.1 of FIPS 186-3.
|
|
const numMRTests = 64
|
|
|
|
// GenerateParameters puts a random, valid set of DSA parameters into params.
|
|
// This function can take many seconds, even on fast machines.
|
|
func GenerateParameters(params *Parameters, rand io.Reader, sizes ParameterSizes) error {
|
|
// This function doesn't follow FIPS 186-3 exactly in that it doesn't
|
|
// use a verification seed to generate the primes. The verification
|
|
// seed doesn't appear to be exported or used by other code and
|
|
// omitting it makes the code cleaner.
|
|
|
|
var L, N int
|
|
switch sizes {
|
|
case L1024N160:
|
|
L = 1024
|
|
N = 160
|
|
case L2048N224:
|
|
L = 2048
|
|
N = 224
|
|
case L2048N256:
|
|
L = 2048
|
|
N = 256
|
|
case L3072N256:
|
|
L = 3072
|
|
N = 256
|
|
default:
|
|
return errors.New("crypto/dsa: invalid ParameterSizes")
|
|
}
|
|
|
|
qBytes := make([]byte, N/8)
|
|
pBytes := make([]byte, L/8)
|
|
|
|
q := new(big.Int)
|
|
p := new(big.Int)
|
|
rem := new(big.Int)
|
|
one := new(big.Int)
|
|
one.SetInt64(1)
|
|
|
|
GeneratePrimes:
|
|
for {
|
|
if _, err := io.ReadFull(rand, qBytes); err != nil {
|
|
return err
|
|
}
|
|
|
|
qBytes[len(qBytes)-1] |= 1
|
|
qBytes[0] |= 0x80
|
|
q.SetBytes(qBytes)
|
|
|
|
if !q.ProbablyPrime(numMRTests) {
|
|
continue
|
|
}
|
|
|
|
for i := 0; i < 4*L; i++ {
|
|
if _, err := io.ReadFull(rand, pBytes); err != nil {
|
|
return err
|
|
}
|
|
|
|
pBytes[len(pBytes)-1] |= 1
|
|
pBytes[0] |= 0x80
|
|
|
|
p.SetBytes(pBytes)
|
|
rem.Mod(p, q)
|
|
rem.Sub(rem, one)
|
|
p.Sub(p, rem)
|
|
if p.BitLen() < L {
|
|
continue
|
|
}
|
|
|
|
if !p.ProbablyPrime(numMRTests) {
|
|
continue
|
|
}
|
|
|
|
params.P = p
|
|
params.Q = q
|
|
break GeneratePrimes
|
|
}
|
|
}
|
|
|
|
h := new(big.Int)
|
|
h.SetInt64(2)
|
|
g := new(big.Int)
|
|
|
|
pm1 := new(big.Int).Sub(p, one)
|
|
e := new(big.Int).Div(pm1, q)
|
|
|
|
for {
|
|
g.Exp(h, e, p)
|
|
if g.Cmp(one) == 0 {
|
|
h.Add(h, one)
|
|
continue
|
|
}
|
|
|
|
params.G = g
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// GenerateKey generates a public&private key pair. The Parameters of the
|
|
// PrivateKey must already be valid (see GenerateParameters).
|
|
func GenerateKey(priv *PrivateKey, rand io.Reader) error {
|
|
if priv.P == nil || priv.Q == nil || priv.G == nil {
|
|
return errors.New("crypto/dsa: parameters not set up before generating key")
|
|
}
|
|
|
|
x := new(big.Int)
|
|
xBytes := make([]byte, priv.Q.BitLen()/8)
|
|
|
|
for {
|
|
_, err := io.ReadFull(rand, xBytes)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
x.SetBytes(xBytes)
|
|
if x.Sign() != 0 && x.Cmp(priv.Q) < 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
priv.X = x
|
|
priv.Y = new(big.Int)
|
|
priv.Y.Exp(priv.G, x, priv.P)
|
|
return nil
|
|
}
|
|
|
|
// fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
|
|
// This has better constant-time properties than Euclid's method (implemented
|
|
// in math/big.Int.ModInverse) although math/big itself isn't strictly
|
|
// constant-time so it's not perfect.
|
|
func fermatInverse(k, P *big.Int) *big.Int {
|
|
two := big.NewInt(2)
|
|
pMinus2 := new(big.Int).Sub(P, two)
|
|
return new(big.Int).Exp(k, pMinus2, P)
|
|
}
|
|
|
|
// Sign signs an arbitrary length hash (which should be the result of hashing a
|
|
// larger message) using the private key, priv. It returns the signature as a
|
|
// pair of integers. The security of the private key depends on the entropy of
|
|
// rand.
|
|
//
|
|
// Note that FIPS 186-3 section 4.6 specifies that the hash should be truncated
|
|
// to the byte-length of the subgroup. This function does not perform that
|
|
// truncation itself.
|
|
//
|
|
// Be aware that calling Sign with an attacker-controlled PrivateKey may
|
|
// require an arbitrary amount of CPU.
|
|
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
|
|
randutil.MaybeReadByte(rand)
|
|
|
|
// FIPS 186-3, section 4.6
|
|
|
|
n := priv.Q.BitLen()
|
|
if priv.Q.Sign() <= 0 || priv.P.Sign() <= 0 || priv.G.Sign() <= 0 || priv.X.Sign() <= 0 || n%8 != 0 {
|
|
err = ErrInvalidPublicKey
|
|
return
|
|
}
|
|
n >>= 3
|
|
|
|
var attempts int
|
|
for attempts = 10; attempts > 0; attempts-- {
|
|
k := new(big.Int)
|
|
buf := make([]byte, n)
|
|
for {
|
|
_, err = io.ReadFull(rand, buf)
|
|
if err != nil {
|
|
return
|
|
}
|
|
k.SetBytes(buf)
|
|
// priv.Q must be >= 128 because the test above
|
|
// requires it to be > 0 and that
|
|
// ceil(log_2(Q)) mod 8 = 0
|
|
// Thus this loop will quickly terminate.
|
|
if k.Sign() > 0 && k.Cmp(priv.Q) < 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
kInv := fermatInverse(k, priv.Q)
|
|
|
|
r = new(big.Int).Exp(priv.G, k, priv.P)
|
|
r.Mod(r, priv.Q)
|
|
|
|
if r.Sign() == 0 {
|
|
continue
|
|
}
|
|
|
|
z := k.SetBytes(hash)
|
|
|
|
s = new(big.Int).Mul(priv.X, r)
|
|
s.Add(s, z)
|
|
s.Mod(s, priv.Q)
|
|
s.Mul(s, kInv)
|
|
s.Mod(s, priv.Q)
|
|
|
|
if s.Sign() != 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
// Only degenerate private keys will require more than a handful of
|
|
// attempts.
|
|
if attempts == 0 {
|
|
return nil, nil, ErrInvalidPublicKey
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// Verify verifies the signature in r, s of hash using the public key, pub. It
|
|
// reports whether the signature is valid.
|
|
//
|
|
// Note that FIPS 186-3 section 4.6 specifies that the hash should be truncated
|
|
// to the byte-length of the subgroup. This function does not perform that
|
|
// truncation itself.
|
|
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
|
|
// FIPS 186-3, section 4.7
|
|
|
|
if pub.P.Sign() == 0 {
|
|
return false
|
|
}
|
|
|
|
if r.Sign() < 1 || r.Cmp(pub.Q) >= 0 {
|
|
return false
|
|
}
|
|
if s.Sign() < 1 || s.Cmp(pub.Q) >= 0 {
|
|
return false
|
|
}
|
|
|
|
w := new(big.Int).ModInverse(s, pub.Q)
|
|
if w == nil {
|
|
return false
|
|
}
|
|
|
|
n := pub.Q.BitLen()
|
|
if n%8 != 0 {
|
|
return false
|
|
}
|
|
z := new(big.Int).SetBytes(hash)
|
|
|
|
u1 := new(big.Int).Mul(z, w)
|
|
u1.Mod(u1, pub.Q)
|
|
u2 := w.Mul(r, w)
|
|
u2.Mod(u2, pub.Q)
|
|
v := u1.Exp(pub.G, u1, pub.P)
|
|
u2.Exp(pub.Y, u2, pub.P)
|
|
v.Mul(v, u2)
|
|
v.Mod(v, pub.P)
|
|
v.Mod(v, pub.Q)
|
|
|
|
return v.Cmp(r) == 0
|
|
}
|