gcc/libgfortran/caf/single.c
Andre Vehreschild 0f0565b143 re PR libfortran/77663 (libgfortran/caf/single.c: three minor problems and a lost token)
gcc/testsuite/ChangeLog:

2016-10-01  Andre Vehreschild  <vehre@gcc.gnu.org>

	PR fortran/77663
	* gfortran.dg/coarray_send_by_ref_1.f08: New test.

libgfortran/ChangeLog:

2016-10-01  Andre Vehreschild  <vehre@gcc.gnu.org>

	PR fortran/77663
	* caf/single.c (caf_internal_error): Fix not terminating va-list.
	(_gfortran_caf_register): Free memory also when other allocs failed.
	(_gfortran_caf_get_by_ref): Fixed style.
	(send_by_ref): Token is now stored at the correct position preventing
	inaccessible tokens, memory loss and possibly crashes.

From-SVN: r240695
2016-10-01 16:00:57 +02:00

2885 lines
84 KiB
C

/* Single-image implementation of GNU Fortran Coarray Library
Copyright (C) 2011-2016 Free Software Foundation, Inc.
Contributed by Tobias Burnus <burnus@net-b.de>
This file is part of the GNU Fortran Coarray Runtime Library (libcaf).
Libcaf is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Libcaf is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libcaf.h"
#include <stdio.h> /* For fputs and fprintf. */
#include <stdlib.h> /* For exit and malloc. */
#include <string.h> /* For memcpy and memset. */
#include <stdarg.h> /* For variadic arguments. */
#include <assert.h>
/* Define GFC_CAF_CHECK to enable run-time checking. */
/* #define GFC_CAF_CHECK 1 */
struct caf_single_token
{
/* The pointer to the memory registered. For arrays this is the data member
in the descriptor. For components it's the pure data pointer. */
void *memptr;
/* The descriptor when this token is associated to an allocatable array. */
gfc_descriptor_t *desc;
/* Set when the caf lib has allocated the memory in memptr and is responsible
for freeing it on deregister. */
bool owning_memory;
};
typedef struct caf_single_token *caf_single_token_t;
#define TOKEN(X) ((caf_single_token_t) (X))
#define MEMTOK(X) ((caf_single_token_t) (X))->memptr
/* Single-image implementation of the CAF library.
Note: For performance reasons -fcoarry=single should be used
rather than this library. */
/* Global variables. */
caf_static_t *caf_static_list = NULL;
/* Keep in sync with mpi.c. */
static void
caf_runtime_error (const char *message, ...)
{
va_list ap;
fprintf (stderr, "Fortran runtime error: ");
va_start (ap, message);
vfprintf (stderr, message, ap);
va_end (ap);
fprintf (stderr, "\n");
/* FIXME: Shutdown the Fortran RTL to flush the buffer. PR 43849. */
exit (EXIT_FAILURE);
}
/* Error handling is similar everytime. */
static void
caf_internal_error (const char *msg, int *stat, char *errmsg,
int errmsg_len, ...)
{
va_list args;
va_start (args, errmsg_len);
if (stat)
{
*stat = 1;
if (errmsg_len > 0)
{
size_t len = snprintf (errmsg, errmsg_len, msg, args);
if ((size_t)errmsg_len > len)
memset (&errmsg[len], ' ', errmsg_len - len);
}
va_end (args);
return;
}
else
caf_runtime_error (msg, args);
va_end (args);
}
void
_gfortran_caf_init (int *argc __attribute__ ((unused)),
char ***argv __attribute__ ((unused)))
{
}
void
_gfortran_caf_finalize (void)
{
while (caf_static_list != NULL)
{
caf_static_t *tmp = caf_static_list->prev;
free (caf_static_list->token);
free (caf_static_list);
caf_static_list = tmp;
}
}
int
_gfortran_caf_this_image (int distance __attribute__ ((unused)))
{
return 1;
}
int
_gfortran_caf_num_images (int distance __attribute__ ((unused)),
int failed __attribute__ ((unused)))
{
return 1;
}
void
_gfortran_caf_register (size_t size, caf_register_t type, caf_token_t *token,
gfc_descriptor_t *data, int *stat, char *errmsg,
int errmsg_len)
{
const char alloc_fail_msg[] = "Failed to allocate coarray";
void *local;
caf_single_token_t single_token;
if (type == CAF_REGTYPE_LOCK_STATIC || type == CAF_REGTYPE_LOCK_ALLOC
|| type == CAF_REGTYPE_CRITICAL || type == CAF_REGTYPE_EVENT_STATIC
|| type == CAF_REGTYPE_EVENT_ALLOC)
local = calloc (size, sizeof (bool));
else
local = malloc (size);
*token = malloc (sizeof (struct caf_single_token));
if (unlikely (local == NULL || *token == NULL))
{
/* Freeing the memory conditionally seems pointless, but
caf_internal_error () may return, when a stat is given and then the
memory may be lost. */
if (local)
free (local);
if (*token)
free (*token);
caf_internal_error (alloc_fail_msg, stat, errmsg, errmsg_len);
return;
}
single_token = TOKEN (*token);
single_token->memptr = local;
single_token->owning_memory = true;
single_token->desc = GFC_DESCRIPTOR_RANK (data) > 0 ? data : NULL;
if (stat)
*stat = 0;
if (type == CAF_REGTYPE_COARRAY_STATIC || type == CAF_REGTYPE_LOCK_STATIC
|| type == CAF_REGTYPE_CRITICAL || type == CAF_REGTYPE_EVENT_STATIC
|| type == CAF_REGTYPE_EVENT_ALLOC)
{
caf_static_t *tmp = malloc (sizeof (caf_static_t));
tmp->prev = caf_static_list;
tmp->token = *token;
caf_static_list = tmp;
}
GFC_DESCRIPTOR_DATA (data) = local;
}
void
_gfortran_caf_deregister (caf_token_t *token, int *stat,
char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
caf_single_token_t single_token = TOKEN (*token);
if (single_token->owning_memory && single_token->memptr)
free (single_token->memptr);
free (TOKEN (*token));
if (stat)
*stat = 0;
}
void
_gfortran_caf_sync_all (int *stat,
char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
__asm__ __volatile__ ("":::"memory");
if (stat)
*stat = 0;
}
void
_gfortran_caf_sync_memory (int *stat,
char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
__asm__ __volatile__ ("":::"memory");
if (stat)
*stat = 0;
}
void
_gfortran_caf_sync_images (int count __attribute__ ((unused)),
int images[] __attribute__ ((unused)),
int *stat,
char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
#ifdef GFC_CAF_CHECK
int i;
for (i = 0; i < count; i++)
if (images[i] != 1)
{
fprintf (stderr, "COARRAY ERROR: Invalid image index %d to SYNC "
"IMAGES", images[i]);
exit (EXIT_FAILURE);
}
#endif
__asm__ __volatile__ ("":::"memory");
if (stat)
*stat = 0;
}
void
_gfortran_caf_stop_numeric(int32_t stop_code)
{
fprintf (stderr, "STOP %d\n", stop_code);
exit (0);
}
void
_gfortran_caf_stop_str(const char *string, int32_t len)
{
fputs ("STOP ", stderr);
while (len--)
fputc (*(string++), stderr);
fputs ("\n", stderr);
exit (0);
}
void
_gfortran_caf_error_stop_str (const char *string, int32_t len)
{
fputs ("ERROR STOP ", stderr);
while (len--)
fputc (*(string++), stderr);
fputs ("\n", stderr);
exit (1);
}
void
_gfortran_caf_error_stop (int32_t error)
{
fprintf (stderr, "ERROR STOP %d\n", error);
exit (error);
}
void
_gfortran_caf_co_broadcast (gfc_descriptor_t *a __attribute__ ((unused)),
int source_image __attribute__ ((unused)),
int *stat, char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
if (stat)
*stat = 0;
}
void
_gfortran_caf_co_sum (gfc_descriptor_t *a __attribute__ ((unused)),
int result_image __attribute__ ((unused)),
int *stat, char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
if (stat)
*stat = 0;
}
void
_gfortran_caf_co_min (gfc_descriptor_t *a __attribute__ ((unused)),
int result_image __attribute__ ((unused)),
int *stat, char *errmsg __attribute__ ((unused)),
int a_len __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
if (stat)
*stat = 0;
}
void
_gfortran_caf_co_max (gfc_descriptor_t *a __attribute__ ((unused)),
int result_image __attribute__ ((unused)),
int *stat, char *errmsg __attribute__ ((unused)),
int a_len __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
if (stat)
*stat = 0;
}
void
_gfortran_caf_co_reduce (gfc_descriptor_t *a __attribute__ ((unused)),
void * (*opr) (void *, void *)
__attribute__ ((unused)),
int opr_flags __attribute__ ((unused)),
int result_image __attribute__ ((unused)),
int *stat, char *errmsg __attribute__ ((unused)),
int a_len __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
if (stat)
*stat = 0;
}
static void
assign_char4_from_char1 (size_t dst_size, size_t src_size, uint32_t *dst,
unsigned char *src)
{
size_t i, n;
n = dst_size/4 > src_size ? src_size : dst_size/4;
for (i = 0; i < n; ++i)
dst[i] = (int32_t) src[i];
for (; i < dst_size/4; ++i)
dst[i] = (int32_t) ' ';
}
static void
assign_char1_from_char4 (size_t dst_size, size_t src_size, unsigned char *dst,
uint32_t *src)
{
size_t i, n;
n = dst_size > src_size/4 ? src_size/4 : dst_size;
for (i = 0; i < n; ++i)
dst[i] = src[i] > UINT8_MAX ? (unsigned char) '?' : (unsigned char) src[i];
if (dst_size > n)
memset (&dst[n], ' ', dst_size - n);
}
static void
convert_type (void *dst, int dst_type, int dst_kind, void *src, int src_type,
int src_kind, int *stat)
{
#ifdef HAVE_GFC_INTEGER_16
typedef __int128 int128t;
#else
typedef int64_t int128t;
#endif
#if defined(GFC_REAL_16_IS_LONG_DOUBLE)
typedef long double real128t;
typedef _Complex long double complex128t;
#elif defined(HAVE_GFC_REAL_16)
typedef _Complex float __attribute__((mode(TC))) __complex128;
typedef __float128 real128t;
typedef __complex128 complex128t;
#elif defined(HAVE_GFC_REAL_10)
typedef long double real128t;
typedef long double complex128t;
#else
typedef double real128t;
typedef _Complex double complex128t;
#endif
int128t int_val = 0;
real128t real_val = 0;
complex128t cmpx_val = 0;
switch (src_type)
{
case BT_INTEGER:
if (src_kind == 1)
int_val = *(int8_t*) src;
else if (src_kind == 2)
int_val = *(int16_t*) src;
else if (src_kind == 4)
int_val = *(int32_t*) src;
else if (src_kind == 8)
int_val = *(int64_t*) src;
#ifdef HAVE_GFC_INTEGER_16
else if (src_kind == 16)
int_val = *(int128t*) src;
#endif
else
goto error;
break;
case BT_REAL:
if (src_kind == 4)
real_val = *(float*) src;
else if (src_kind == 8)
real_val = *(double*) src;
#ifdef HAVE_GFC_REAL_10
else if (src_kind == 10)
real_val = *(long double*) src;
#endif
#ifdef HAVE_GFC_REAL_16
else if (src_kind == 16)
real_val = *(real128t*) src;
#endif
else
goto error;
break;
case BT_COMPLEX:
if (src_kind == 4)
cmpx_val = *(_Complex float*) src;
else if (src_kind == 8)
cmpx_val = *(_Complex double*) src;
#ifdef HAVE_GFC_REAL_10
else if (src_kind == 10)
cmpx_val = *(_Complex long double*) src;
#endif
#ifdef HAVE_GFC_REAL_16
else if (src_kind == 16)
cmpx_val = *(complex128t*) src;
#endif
else
goto error;
break;
default:
goto error;
}
switch (dst_type)
{
case BT_INTEGER:
if (src_type == BT_INTEGER)
{
if (dst_kind == 1)
*(int8_t*) dst = (int8_t) int_val;
else if (dst_kind == 2)
*(int16_t*) dst = (int16_t) int_val;
else if (dst_kind == 4)
*(int32_t*) dst = (int32_t) int_val;
else if (dst_kind == 8)
*(int64_t*) dst = (int64_t) int_val;
#ifdef HAVE_GFC_INTEGER_16
else if (dst_kind == 16)
*(int128t*) dst = (int128t) int_val;
#endif
else
goto error;
}
else if (src_type == BT_REAL)
{
if (dst_kind == 1)
*(int8_t*) dst = (int8_t) real_val;
else if (dst_kind == 2)
*(int16_t*) dst = (int16_t) real_val;
else if (dst_kind == 4)
*(int32_t*) dst = (int32_t) real_val;
else if (dst_kind == 8)
*(int64_t*) dst = (int64_t) real_val;
#ifdef HAVE_GFC_INTEGER_16
else if (dst_kind == 16)
*(int128t*) dst = (int128t) real_val;
#endif
else
goto error;
}
else if (src_type == BT_COMPLEX)
{
if (dst_kind == 1)
*(int8_t*) dst = (int8_t) cmpx_val;
else if (dst_kind == 2)
*(int16_t*) dst = (int16_t) cmpx_val;
else if (dst_kind == 4)
*(int32_t*) dst = (int32_t) cmpx_val;
else if (dst_kind == 8)
*(int64_t*) dst = (int64_t) cmpx_val;
#ifdef HAVE_GFC_INTEGER_16
else if (dst_kind == 16)
*(int128t*) dst = (int128t) cmpx_val;
#endif
else
goto error;
}
else
goto error;
return;
case BT_REAL:
if (src_type == BT_INTEGER)
{
if (dst_kind == 4)
*(float*) dst = (float) int_val;
else if (dst_kind == 8)
*(double*) dst = (double) int_val;
#ifdef HAVE_GFC_REAL_10
else if (dst_kind == 10)
*(long double*) dst = (long double) int_val;
#endif
#ifdef HAVE_GFC_REAL_16
else if (dst_kind == 16)
*(real128t*) dst = (real128t) int_val;
#endif
else
goto error;
}
else if (src_type == BT_REAL)
{
if (dst_kind == 4)
*(float*) dst = (float) real_val;
else if (dst_kind == 8)
*(double*) dst = (double) real_val;
#ifdef HAVE_GFC_REAL_10
else if (dst_kind == 10)
*(long double*) dst = (long double) real_val;
#endif
#ifdef HAVE_GFC_REAL_16
else if (dst_kind == 16)
*(real128t*) dst = (real128t) real_val;
#endif
else
goto error;
}
else if (src_type == BT_COMPLEX)
{
if (dst_kind == 4)
*(float*) dst = (float) cmpx_val;
else if (dst_kind == 8)
*(double*) dst = (double) cmpx_val;
#ifdef HAVE_GFC_REAL_10
else if (dst_kind == 10)
*(long double*) dst = (long double) cmpx_val;
#endif
#ifdef HAVE_GFC_REAL_16
else if (dst_kind == 16)
*(real128t*) dst = (real128t) cmpx_val;
#endif
else
goto error;
}
return;
case BT_COMPLEX:
if (src_type == BT_INTEGER)
{
if (dst_kind == 4)
*(_Complex float*) dst = (_Complex float) int_val;
else if (dst_kind == 8)
*(_Complex double*) dst = (_Complex double) int_val;
#ifdef HAVE_GFC_REAL_10
else if (dst_kind == 10)
*(_Complex long double*) dst = (_Complex long double) int_val;
#endif
#ifdef HAVE_GFC_REAL_16
else if (dst_kind == 16)
*(complex128t*) dst = (complex128t) int_val;
#endif
else
goto error;
}
else if (src_type == BT_REAL)
{
if (dst_kind == 4)
*(_Complex float*) dst = (_Complex float) real_val;
else if (dst_kind == 8)
*(_Complex double*) dst = (_Complex double) real_val;
#ifdef HAVE_GFC_REAL_10
else if (dst_kind == 10)
*(_Complex long double*) dst = (_Complex long double) real_val;
#endif
#ifdef HAVE_GFC_REAL_16
else if (dst_kind == 16)
*(complex128t*) dst = (complex128t) real_val;
#endif
else
goto error;
}
else if (src_type == BT_COMPLEX)
{
if (dst_kind == 4)
*(_Complex float*) dst = (_Complex float) cmpx_val;
else if (dst_kind == 8)
*(_Complex double*) dst = (_Complex double) cmpx_val;
#ifdef HAVE_GFC_REAL_10
else if (dst_kind == 10)
*(_Complex long double*) dst = (_Complex long double) cmpx_val;
#endif
#ifdef HAVE_GFC_REAL_16
else if (dst_kind == 16)
*(complex128t*) dst = (complex128t) cmpx_val;
#endif
else
goto error;
}
else
goto error;
return;
default:
goto error;
}
error:
fprintf (stderr, "libcaf_single RUNTIME ERROR: Cannot convert type %d kind "
"%d to type %d kind %d\n", src_type, src_kind, dst_type, dst_kind);
if (stat)
*stat = 1;
else
abort ();
}
void
_gfortran_caf_get (caf_token_t token, size_t offset,
int image_index __attribute__ ((unused)),
gfc_descriptor_t *src,
caf_vector_t *src_vector __attribute__ ((unused)),
gfc_descriptor_t *dest, int src_kind, int dst_kind,
bool may_require_tmp, int *stat)
{
/* FIXME: Handle vector subscripts. */
size_t i, k, size;
int j;
int rank = GFC_DESCRIPTOR_RANK (dest);
size_t src_size = GFC_DESCRIPTOR_SIZE (src);
size_t dst_size = GFC_DESCRIPTOR_SIZE (dest);
if (stat)
*stat = 0;
if (rank == 0)
{
void *sr = (void *) ((char *) MEMTOK (token) + offset);
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
&& dst_kind == src_kind)
{
memmove (GFC_DESCRIPTOR_DATA (dest), sr,
dst_size > src_size ? src_size : dst_size);
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) GFC_DESCRIPTOR_DATA (dest) + src_size,
' ', dst_size - src_size);
else /* dst_kind == 4. */
for (i = src_size/4; i < dst_size/4; i++)
((int32_t*) GFC_DESCRIPTOR_DATA (dest))[i] = (int32_t) ' ';
}
}
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, GFC_DESCRIPTOR_DATA (dest),
sr);
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, GFC_DESCRIPTOR_DATA (dest),
sr);
else
convert_type (GFC_DESCRIPTOR_DATA (dest), GFC_DESCRIPTOR_TYPE (dest),
dst_kind, sr, GFC_DESCRIPTOR_TYPE (src), src_kind, stat);
return;
}
size = 1;
for (j = 0; j < rank; j++)
{
ptrdiff_t dimextent = dest->dim[j]._ubound - dest->dim[j].lower_bound + 1;
if (dimextent < 0)
dimextent = 0;
size *= dimextent;
}
if (size == 0)
return;
if (may_require_tmp)
{
ptrdiff_t array_offset_sr, array_offset_dst;
void *tmp = malloc (size*src_size);
array_offset_dst = 0;
for (i = 0; i < size; i++)
{
ptrdiff_t array_offset_sr = 0;
ptrdiff_t stride = 1;
ptrdiff_t extent = 1;
for (j = 0; j < GFC_DESCRIPTOR_RANK (src)-1; j++)
{
array_offset_sr += ((i / (extent*stride))
% (src->dim[j]._ubound
- src->dim[j].lower_bound + 1))
* src->dim[j]._stride;
extent = (src->dim[j]._ubound - src->dim[j].lower_bound + 1);
stride = src->dim[j]._stride;
}
array_offset_sr += (i / extent) * src->dim[rank-1]._stride;
void *sr = (void *)((char *) MEMTOK (token) + offset
+ array_offset_sr*GFC_DESCRIPTOR_SIZE (src));
memcpy ((void *) ((char *) tmp + array_offset_dst), sr, src_size);
array_offset_dst += src_size;
}
array_offset_sr = 0;
for (i = 0; i < size; i++)
{
ptrdiff_t array_offset_dst = 0;
ptrdiff_t stride = 1;
ptrdiff_t extent = 1;
for (j = 0; j < rank-1; j++)
{
array_offset_dst += ((i / (extent*stride))
% (dest->dim[j]._ubound
- dest->dim[j].lower_bound + 1))
* dest->dim[j]._stride;
extent = (dest->dim[j]._ubound - dest->dim[j].lower_bound + 1);
stride = dest->dim[j]._stride;
}
array_offset_dst += (i / extent) * dest->dim[rank-1]._stride;
void *dst = dest->base_addr
+ array_offset_dst*GFC_DESCRIPTOR_SIZE (dest);
void *sr = tmp + array_offset_sr;
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
&& dst_kind == src_kind)
{
memmove (dst, sr, dst_size > src_size ? src_size : dst_size);
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER
&& dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) dst + src_size, ' ',
dst_size-src_size);
else /* dst_kind == 4. */
for (k = src_size/4; k < dst_size/4; k++)
((int32_t*) dst)[k] = (int32_t) ' ';
}
}
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, dst, sr);
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, dst, sr);
else
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
sr, GFC_DESCRIPTOR_TYPE (src), src_kind, stat);
array_offset_sr += src_size;
}
free (tmp);
return;
}
for (i = 0; i < size; i++)
{
ptrdiff_t array_offset_dst = 0;
ptrdiff_t stride = 1;
ptrdiff_t extent = 1;
for (j = 0; j < rank-1; j++)
{
array_offset_dst += ((i / (extent*stride))
% (dest->dim[j]._ubound
- dest->dim[j].lower_bound + 1))
* dest->dim[j]._stride;
extent = (dest->dim[j]._ubound - dest->dim[j].lower_bound + 1);
stride = dest->dim[j]._stride;
}
array_offset_dst += (i / extent) * dest->dim[rank-1]._stride;
void *dst = dest->base_addr + array_offset_dst*GFC_DESCRIPTOR_SIZE (dest);
ptrdiff_t array_offset_sr = 0;
stride = 1;
extent = 1;
for (j = 0; j < GFC_DESCRIPTOR_RANK (src)-1; j++)
{
array_offset_sr += ((i / (extent*stride))
% (src->dim[j]._ubound
- src->dim[j].lower_bound + 1))
* src->dim[j]._stride;
extent = (src->dim[j]._ubound - src->dim[j].lower_bound + 1);
stride = src->dim[j]._stride;
}
array_offset_sr += (i / extent) * src->dim[rank-1]._stride;
void *sr = (void *)((char *) MEMTOK (token) + offset
+ array_offset_sr*GFC_DESCRIPTOR_SIZE (src));
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
&& dst_kind == src_kind)
{
memmove (dst, sr, dst_size > src_size ? src_size : dst_size);
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) dst + src_size, ' ', dst_size-src_size);
else /* dst_kind == 4. */
for (k = src_size/4; k < dst_size/4; k++)
((int32_t*) dst)[k] = (int32_t) ' ';
}
}
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, dst, sr);
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, dst, sr);
else
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
sr, GFC_DESCRIPTOR_TYPE (src), src_kind, stat);
}
}
void
_gfortran_caf_send (caf_token_t token, size_t offset,
int image_index __attribute__ ((unused)),
gfc_descriptor_t *dest,
caf_vector_t *dst_vector __attribute__ ((unused)),
gfc_descriptor_t *src, int dst_kind, int src_kind,
bool may_require_tmp, int *stat)
{
/* FIXME: Handle vector subscripts. */
size_t i, k, size;
int j;
int rank = GFC_DESCRIPTOR_RANK (dest);
size_t src_size = GFC_DESCRIPTOR_SIZE (src);
size_t dst_size = GFC_DESCRIPTOR_SIZE (dest);
if (stat)
*stat = 0;
if (rank == 0)
{
void *dst = (void *) ((char *) MEMTOK (token) + offset);
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
&& dst_kind == src_kind)
{
memmove (dst, GFC_DESCRIPTOR_DATA (src),
dst_size > src_size ? src_size : dst_size);
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) dst + src_size, ' ', dst_size-src_size);
else /* dst_kind == 4. */
for (i = src_size/4; i < dst_size/4; i++)
((int32_t*) dst)[i] = (int32_t) ' ';
}
}
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, dst,
GFC_DESCRIPTOR_DATA (src));
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, dst,
GFC_DESCRIPTOR_DATA (src));
else
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
GFC_DESCRIPTOR_DATA (src), GFC_DESCRIPTOR_TYPE (src),
src_kind, stat);
return;
}
size = 1;
for (j = 0; j < rank; j++)
{
ptrdiff_t dimextent = dest->dim[j]._ubound - dest->dim[j].lower_bound + 1;
if (dimextent < 0)
dimextent = 0;
size *= dimextent;
}
if (size == 0)
return;
if (may_require_tmp)
{
ptrdiff_t array_offset_sr, array_offset_dst;
void *tmp;
if (GFC_DESCRIPTOR_RANK (src) == 0)
{
tmp = malloc (src_size);
memcpy (tmp, GFC_DESCRIPTOR_DATA (src), src_size);
}
else
{
tmp = malloc (size*src_size);
array_offset_dst = 0;
for (i = 0; i < size; i++)
{
ptrdiff_t array_offset_sr = 0;
ptrdiff_t stride = 1;
ptrdiff_t extent = 1;
for (j = 0; j < GFC_DESCRIPTOR_RANK (src)-1; j++)
{
array_offset_sr += ((i / (extent*stride))
% (src->dim[j]._ubound
- src->dim[j].lower_bound + 1))
* src->dim[j]._stride;
extent = (src->dim[j]._ubound - src->dim[j].lower_bound + 1);
stride = src->dim[j]._stride;
}
array_offset_sr += (i / extent) * src->dim[rank-1]._stride;
void *sr = (void *) ((char *) src->base_addr
+ array_offset_sr*GFC_DESCRIPTOR_SIZE (src));
memcpy ((void *) ((char *) tmp + array_offset_dst), sr, src_size);
array_offset_dst += src_size;
}
}
array_offset_sr = 0;
for (i = 0; i < size; i++)
{
ptrdiff_t array_offset_dst = 0;
ptrdiff_t stride = 1;
ptrdiff_t extent = 1;
for (j = 0; j < rank-1; j++)
{
array_offset_dst += ((i / (extent*stride))
% (dest->dim[j]._ubound
- dest->dim[j].lower_bound + 1))
* dest->dim[j]._stride;
extent = (dest->dim[j]._ubound - dest->dim[j].lower_bound + 1);
stride = dest->dim[j]._stride;
}
array_offset_dst += (i / extent) * dest->dim[rank-1]._stride;
void *dst = (void *)((char *) MEMTOK (token) + offset
+ array_offset_dst*GFC_DESCRIPTOR_SIZE (dest));
void *sr = tmp + array_offset_sr;
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
&& dst_kind == src_kind)
{
memmove (dst, sr,
dst_size > src_size ? src_size : dst_size);
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER
&& dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) dst + src_size, ' ',
dst_size-src_size);
else /* dst_kind == 4. */
for (k = src_size/4; k < dst_size/4; k++)
((int32_t*) dst)[k] = (int32_t) ' ';
}
}
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, dst, sr);
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, dst, sr);
else
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
sr, GFC_DESCRIPTOR_TYPE (src), src_kind, stat);
if (GFC_DESCRIPTOR_RANK (src))
array_offset_sr += src_size;
}
free (tmp);
return;
}
for (i = 0; i < size; i++)
{
ptrdiff_t array_offset_dst = 0;
ptrdiff_t stride = 1;
ptrdiff_t extent = 1;
for (j = 0; j < rank-1; j++)
{
array_offset_dst += ((i / (extent*stride))
% (dest->dim[j]._ubound
- dest->dim[j].lower_bound + 1))
* dest->dim[j]._stride;
extent = (dest->dim[j]._ubound - dest->dim[j].lower_bound + 1);
stride = dest->dim[j]._stride;
}
array_offset_dst += (i / extent) * dest->dim[rank-1]._stride;
void *dst = (void *)((char *) MEMTOK (token) + offset
+ array_offset_dst*GFC_DESCRIPTOR_SIZE (dest));
void *sr;
if (GFC_DESCRIPTOR_RANK (src) != 0)
{
ptrdiff_t array_offset_sr = 0;
stride = 1;
extent = 1;
for (j = 0; j < GFC_DESCRIPTOR_RANK (src)-1; j++)
{
array_offset_sr += ((i / (extent*stride))
% (src->dim[j]._ubound
- src->dim[j].lower_bound + 1))
* src->dim[j]._stride;
extent = (src->dim[j]._ubound - src->dim[j].lower_bound + 1);
stride = src->dim[j]._stride;
}
array_offset_sr += (i / extent) * src->dim[rank-1]._stride;
sr = (void *)((char *) src->base_addr
+ array_offset_sr*GFC_DESCRIPTOR_SIZE (src));
}
else
sr = src->base_addr;
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
&& dst_kind == src_kind)
{
memmove (dst, sr,
dst_size > src_size ? src_size : dst_size);
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) dst + src_size, ' ', dst_size-src_size);
else /* dst_kind == 4. */
for (k = src_size/4; k < dst_size/4; k++)
((int32_t*) dst)[k] = (int32_t) ' ';
}
}
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, dst, sr);
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, dst, sr);
else
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
sr, GFC_DESCRIPTOR_TYPE (src), src_kind, stat);
}
}
void
_gfortran_caf_sendget (caf_token_t dst_token, size_t dst_offset,
int dst_image_index, gfc_descriptor_t *dest,
caf_vector_t *dst_vector, caf_token_t src_token,
size_t src_offset,
int src_image_index __attribute__ ((unused)),
gfc_descriptor_t *src,
caf_vector_t *src_vector __attribute__ ((unused)),
int dst_kind, int src_kind, bool may_require_tmp)
{
/* FIXME: Handle vector subscript of 'src_vector'. */
/* For a single image, src->base_addr should be the same as src_token + offset
but to play save, we do it properly. */
void *src_base = GFC_DESCRIPTOR_DATA (src);
GFC_DESCRIPTOR_DATA (src) = (void *) ((char *) MEMTOK (src_token)
+ src_offset);
_gfortran_caf_send (dst_token, dst_offset, dst_image_index, dest, dst_vector,
src, dst_kind, src_kind, may_require_tmp, NULL);
GFC_DESCRIPTOR_DATA (src) = src_base;
}
/* Emitted when a theorectically unreachable part is reached. */
const char unreachable[] = "Fatal error: unreachable alternative found.\n";
static void
copy_data (void *ds, void *sr, int dst_type, int src_type,
int dst_kind, int src_kind, size_t dst_size, size_t src_size,
size_t num, int *stat)
{
size_t k;
if (dst_type == src_type && dst_kind == src_kind)
{
memmove (ds, sr, (dst_size > src_size ? src_size : dst_size) * num);
if ((dst_type == BT_CHARACTER || src_type == BT_CHARACTER)
&& dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) ds + src_size, ' ', dst_size-src_size);
else /* dst_kind == 4. */
for (k = src_size/4; k < dst_size/4; k++)
((int32_t*) ds)[k] = (int32_t) ' ';
}
}
else if (dst_type == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, ds, sr);
else if (dst_type == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, ds, sr);
else
for (k = 0; k < num; ++k)
{
convert_type (ds, dst_type, dst_kind, sr, src_type, src_kind, stat);
ds += dst_size;
sr += src_size;
}
}
#define COMPUTE_NUM_ITEMS(num, stride, lb, ub) \
do { \
index_type abs_stride = (stride) > 0 ? (stride) : -(stride); \
num = (stride) > 0 ? (ub) + 1 - (lb) : (lb) + 1 - (ub); \
if (num <= 0 || abs_stride < 1) return; \
num = (abs_stride > 1) ? (1 + (num - 1) / abs_stride) : num; \
} while (0)
static void
get_for_ref (caf_reference_t *ref, size_t *i, size_t *dst_index,
caf_single_token_t single_token, gfc_descriptor_t *dst,
gfc_descriptor_t *src, void *ds, void *sr,
int dst_kind, int src_kind, size_t dst_dim, size_t src_dim,
size_t num, int *stat)
{
ptrdiff_t extent_src = 1, array_offset_src = 0, stride_src;
size_t next_dst_dim;
if (unlikely (ref == NULL))
/* May be we should issue an error here, because this case should not
occur. */
return;
if (ref->next == NULL)
{
size_t dst_size = GFC_DESCRIPTOR_SIZE (dst);
ptrdiff_t array_offset_dst = 0;;
size_t dst_rank = GFC_DESCRIPTOR_RANK (dst);
int src_type = -1;
switch (ref->type)
{
case CAF_REF_COMPONENT:
/* Because the token is always registered after the component, its
offset is always greater zeor. */
if (ref->u.c.caf_token_offset > 0)
copy_data (ds, *(void **)(sr + ref->u.c.offset),
GFC_DESCRIPTOR_TYPE (dst), GFC_DESCRIPTOR_TYPE (dst),
dst_kind, src_kind, dst_size, ref->item_size, 1, stat);
else
copy_data (ds, sr + ref->u.c.offset,
GFC_DESCRIPTOR_TYPE (dst), GFC_DESCRIPTOR_TYPE (src),
dst_kind, src_kind, dst_size, ref->item_size, 1, stat);
++(*i);
return;
case CAF_REF_STATIC_ARRAY:
src_type = ref->u.a.static_array_type;
/* Intentionally fall through. */
case CAF_REF_ARRAY:
if (ref->u.a.mode[src_dim] == CAF_ARR_REF_NONE)
{
for (size_t d = 0; d < dst_rank; ++d)
array_offset_dst += dst_index[d];
copy_data (ds + array_offset_dst * dst_size, sr,
GFC_DESCRIPTOR_TYPE (dst),
src_type == -1 ? GFC_DESCRIPTOR_TYPE (src) : src_type,
dst_kind, src_kind, dst_size, ref->item_size, num,
stat);
*i += num;
return;
}
break;
default:
caf_runtime_error (unreachable);
}
}
switch (ref->type)
{
case CAF_REF_COMPONENT:
if (ref->u.c.caf_token_offset > 0)
get_for_ref (ref->next, i, dst_index,
*(caf_single_token_t*)(sr + ref->u.c.caf_token_offset), dst,
(*(caf_single_token_t*)(sr + ref->u.c.caf_token_offset))->desc,
ds, sr + ref->u.c.offset, dst_kind, src_kind, dst_dim, 0,
1, stat);
else
get_for_ref (ref->next, i, dst_index, single_token, dst,
(gfc_descriptor_t *)(sr + ref->u.c.offset), ds,
sr + ref->u.c.offset, dst_kind, src_kind, dst_dim, 0, 1,
stat);
return;
case CAF_REF_ARRAY:
if (ref->u.a.mode[src_dim] == CAF_ARR_REF_NONE)
{
get_for_ref (ref->next, i, dst_index, single_token, dst,
src, ds, sr, dst_kind, src_kind,
dst_dim, 0, 1, stat);
return;
}
/* Only when on the left most index switch the data pointer to
the array's data pointer. */
if (src_dim == 0)
sr = GFC_DESCRIPTOR_DATA (src);
switch (ref->u.a.mode[src_dim])
{
case CAF_ARR_REF_VECTOR:
extent_src = GFC_DIMENSION_EXTENT (src->dim[src_dim]);
array_offset_src = 0;
dst_index[dst_dim] = 0;
for (size_t idx = 0; idx < ref->u.a.dim[src_dim].v.nvec;
++idx)
{
#define KINDCASE(kind, type) case kind: \
array_offset_src = (((index_type) \
((type *)ref->u.a.dim[src_dim].v.vector)[idx]) \
- GFC_DIMENSION_LBOUND (src->dim[src_dim])) \
* GFC_DIMENSION_STRIDE (src->dim[src_dim]); \
break
switch (ref->u.a.dim[src_dim].v.kind)
{
KINDCASE (1, GFC_INTEGER_1);
KINDCASE (2, GFC_INTEGER_2);
KINDCASE (4, GFC_INTEGER_4);
#ifdef HAVE_GFC_INTEGER_8
KINDCASE (8, GFC_INTEGER_8);
#endif
#ifdef HAVE_GFC_INTEGER_16
KINDCASE (16, GFC_INTEGER_16);
#endif
default:
caf_runtime_error (unreachable);
return;
}
#undef KINDCASE
get_for_ref (ref, i, dst_index, single_token, dst, src,
ds, sr + array_offset_src * ref->item_size,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, stat);
dst_index[dst_dim]
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
}
return;
case CAF_ARR_REF_FULL:
COMPUTE_NUM_ITEMS (extent_src,
ref->u.a.dim[src_dim].s.stride,
GFC_DIMENSION_LBOUND (src->dim[src_dim]),
GFC_DIMENSION_UBOUND (src->dim[src_dim]));
stride_src = src->dim[src_dim]._stride
* ref->u.a.dim[src_dim].s.stride;
array_offset_src = 0;
dst_index[dst_dim] = 0;
for (index_type idx = 0; idx < extent_src;
++idx, array_offset_src += stride_src)
{
get_for_ref (ref, i, dst_index, single_token, dst, src,
ds, sr + array_offset_src * ref->item_size,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, stat);
dst_index[dst_dim]
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
}
return;
case CAF_ARR_REF_RANGE:
COMPUTE_NUM_ITEMS (extent_src,
ref->u.a.dim[src_dim].s.stride,
ref->u.a.dim[src_dim].s.start,
ref->u.a.dim[src_dim].s.end);
array_offset_src = (ref->u.a.dim[src_dim].s.start
- GFC_DIMENSION_LBOUND (src->dim[src_dim]))
* GFC_DIMENSION_STRIDE (src->dim[src_dim]);
stride_src = GFC_DIMENSION_STRIDE (src->dim[src_dim])
* ref->u.a.dim[src_dim].s.stride;
dst_index[dst_dim] = 0;
/* Increase the dst_dim only, when the src_extent is greater one
or src and dst extent are both one. Don't increase when the scalar
source is not present in the dst. */
next_dst_dim = extent_src > 1
|| (GFC_DIMENSION_EXTENT (dst->dim[dst_dim]) == 1
&& extent_src == 1) ? (dst_dim + 1) : dst_dim;
for (index_type idx = 0; idx < extent_src; ++idx)
{
get_for_ref (ref, i, dst_index, single_token, dst, src,
ds, sr + array_offset_src * ref->item_size,
dst_kind, src_kind, next_dst_dim, src_dim + 1,
1, stat);
dst_index[dst_dim]
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
array_offset_src += stride_src;
}
return;
case CAF_ARR_REF_SINGLE:
array_offset_src = (ref->u.a.dim[src_dim].s.start
- src->dim[src_dim].lower_bound)
* GFC_DIMENSION_STRIDE (src->dim[src_dim]);
dst_index[dst_dim] = 0;
get_for_ref (ref, i, dst_index, single_token, dst, src, ds,
sr + array_offset_src * ref->item_size,
dst_kind, src_kind, dst_dim, src_dim + 1, 1,
stat);
return;
case CAF_ARR_REF_OPEN_END:
COMPUTE_NUM_ITEMS (extent_src,
ref->u.a.dim[src_dim].s.stride,
ref->u.a.dim[src_dim].s.start,
GFC_DIMENSION_UBOUND (src->dim[src_dim]));
stride_src = GFC_DIMENSION_STRIDE (src->dim[src_dim])
* ref->u.a.dim[src_dim].s.stride;
array_offset_src = (ref->u.a.dim[src_dim].s.start
- GFC_DIMENSION_LBOUND (src->dim[src_dim]))
* GFC_DIMENSION_STRIDE (src->dim[src_dim]);
dst_index[dst_dim] = 0;
for (index_type idx = 0; idx < extent_src; ++idx)
{
get_for_ref (ref, i, dst_index, single_token, dst, src,
ds, sr + array_offset_src * ref->item_size,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, stat);
dst_index[dst_dim]
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
array_offset_src += stride_src;
}
return;
case CAF_ARR_REF_OPEN_START:
COMPUTE_NUM_ITEMS (extent_src,
ref->u.a.dim[src_dim].s.stride,
GFC_DIMENSION_LBOUND (src->dim[src_dim]),
ref->u.a.dim[src_dim].s.end);
stride_src = GFC_DIMENSION_STRIDE (src->dim[src_dim])
* ref->u.a.dim[src_dim].s.stride;
array_offset_src = 0;
dst_index[dst_dim] = 0;
for (index_type idx = 0; idx < extent_src; ++idx)
{
get_for_ref (ref, i, dst_index, single_token, dst, src,
ds, sr + array_offset_src * ref->item_size,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, stat);
dst_index[dst_dim]
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
array_offset_src += stride_src;
}
return;
default:
caf_runtime_error (unreachable);
}
return;
case CAF_REF_STATIC_ARRAY:
if (ref->u.a.mode[src_dim] == CAF_ARR_REF_NONE)
{
get_for_ref (ref->next, i, dst_index, single_token, dst,
NULL, ds, sr, dst_kind, src_kind,
dst_dim, 0, 1, stat);
return;
}
switch (ref->u.a.mode[src_dim])
{
case CAF_ARR_REF_VECTOR:
array_offset_src = 0;
dst_index[dst_dim] = 0;
for (size_t idx = 0; idx < ref->u.a.dim[src_dim].v.nvec;
++idx)
{
#define KINDCASE(kind, type) case kind: \
array_offset_src = ((type *)ref->u.a.dim[src_dim].v.vector)[idx]; \
break
switch (ref->u.a.dim[src_dim].v.kind)
{
KINDCASE (1, GFC_INTEGER_1);
KINDCASE (2, GFC_INTEGER_2);
KINDCASE (4, GFC_INTEGER_4);
#ifdef HAVE_GFC_INTEGER_8
KINDCASE (8, GFC_INTEGER_8);
#endif
#ifdef HAVE_GFC_INTEGER_16
KINDCASE (16, GFC_INTEGER_16);
#endif
default:
caf_runtime_error (unreachable);
return;
}
#undef KINDCASE
get_for_ref (ref, i, dst_index, single_token, dst, NULL,
ds, sr + array_offset_src * ref->item_size,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, stat);
dst_index[dst_dim]
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
}
return;
case CAF_ARR_REF_FULL:
dst_index[dst_dim] = 0;
for (array_offset_src = 0 ;
array_offset_src <= ref->u.a.dim[src_dim].s.end;
array_offset_src += ref->u.a.dim[src_dim].s.stride)
{
get_for_ref (ref, i, dst_index, single_token, dst, NULL,
ds, sr + array_offset_src * ref->item_size,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, stat);
dst_index[dst_dim]
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
}
return;
case CAF_ARR_REF_RANGE:
COMPUTE_NUM_ITEMS (extent_src,
ref->u.a.dim[src_dim].s.stride,
ref->u.a.dim[src_dim].s.start,
ref->u.a.dim[src_dim].s.end);
array_offset_src = ref->u.a.dim[src_dim].s.start;
dst_index[dst_dim] = 0;
for (index_type idx = 0; idx < extent_src; ++idx)
{
get_for_ref (ref, i, dst_index, single_token, dst, NULL,
ds, sr + array_offset_src * ref->item_size,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, stat);
dst_index[dst_dim]
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
array_offset_src += ref->u.a.dim[src_dim].s.stride;
}
return;
case CAF_ARR_REF_SINGLE:
array_offset_src = ref->u.a.dim[src_dim].s.start;
get_for_ref (ref, i, dst_index, single_token, dst, NULL, ds,
sr + array_offset_src * ref->item_size,
dst_kind, src_kind, dst_dim, src_dim + 1, 1,
stat);
return;
/* The OPEN_* are mapped to a RANGE and therefore can not occur. */
case CAF_ARR_REF_OPEN_END:
case CAF_ARR_REF_OPEN_START:
default:
caf_runtime_error (unreachable);
}
return;
default:
caf_runtime_error (unreachable);
}
}
void
_gfortran_caf_get_by_ref (caf_token_t token,
int image_index __attribute__ ((unused)),
gfc_descriptor_t *dst, caf_reference_t *refs,
int dst_kind, int src_kind,
bool may_require_tmp __attribute__ ((unused)),
bool dst_reallocatable, int *stat)
{
const char vecrefunknownkind[] = "libcaf_single::caf_get_by_ref(): "
"unknown kind in vector-ref.\n";
const char unknownreftype[] = "libcaf_single::caf_get_by_ref(): "
"unknown reference type.\n";
const char unknownarrreftype[] = "libcaf_single::caf_get_by_ref(): "
"unknown array reference type.\n";
const char rankoutofrange[] = "libcaf_single::caf_get_by_ref(): "
"rank out of range.\n";
const char extentoutofrange[] = "libcaf_single::caf_get_by_ref(): "
"extent out of range.\n";
const char cannotallocdst[] = "libcaf_single::caf_get_by_ref(): "
"can not allocate memory.\n";
const char nonallocextentmismatch[] = "libcaf_single::caf_get_by_ref(): "
"extent of non-allocatable arrays mismatch (%lu != %lu).\n";
const char doublearrayref[] = "libcaf_single::caf_get_by_ref(): "
"two or more array part references are not supported.\n";
size_t size, i;
size_t dst_index[GFC_MAX_DIMENSIONS];
int dst_rank = GFC_DESCRIPTOR_RANK (dst);
int dst_cur_dim = 0;
size_t src_size;
caf_single_token_t single_token = TOKEN (token);
void *memptr = single_token->memptr;
gfc_descriptor_t *src = single_token->desc;
caf_reference_t *riter = refs;
long delta;
/* Reallocation of dst.data is needed (e.g., array to small). */
bool realloc_needed;
/* Reallocation of dst.data is required, because data is not alloced at
all. */
bool realloc_required;
bool extent_mismatch = false;
/* Set when the first non-scalar array reference is encountered. */
bool in_array_ref = false;
bool array_extent_fixed = false;
realloc_needed = realloc_required = GFC_DESCRIPTOR_DATA (dst) == NULL;
assert (!realloc_needed || dst_reallocatable);
if (stat)
*stat = 0;
/* Compute the size of the result. In the beginning size just counts the
number of elements. */
size = 1;
while (riter)
{
switch (riter->type)
{
case CAF_REF_COMPONENT:
if (riter->u.c.caf_token_offset)
{
single_token = *(caf_single_token_t*)
(memptr + riter->u.c.caf_token_offset);
memptr = single_token->memptr;
src = single_token->desc;
}
else
{
memptr += riter->u.c.offset;
src = (gfc_descriptor_t *)memptr;
}
break;
case CAF_REF_ARRAY:
for (i = 0; riter->u.a.mode[i] != CAF_ARR_REF_NONE; ++i)
{
switch (riter->u.a.mode[i])
{
case CAF_ARR_REF_VECTOR:
delta = riter->u.a.dim[i].v.nvec;
#define KINDCASE(kind, type) case kind: \
memptr += (((index_type) \
((type *)riter->u.a.dim[i].v.vector)[0]) \
- GFC_DIMENSION_LBOUND (src->dim[i])) \
* GFC_DIMENSION_STRIDE (src->dim[i]) \
* riter->item_size; \
break
switch (riter->u.a.dim[i].v.kind)
{
KINDCASE (1, GFC_INTEGER_1);
KINDCASE (2, GFC_INTEGER_2);
KINDCASE (4, GFC_INTEGER_4);
#ifdef HAVE_GFC_INTEGER_8
KINDCASE (8, GFC_INTEGER_8);
#endif
#ifdef HAVE_GFC_INTEGER_16
KINDCASE (16, GFC_INTEGER_16);
#endif
default:
caf_internal_error (vecrefunknownkind, stat, NULL, 0);
return;
}
#undef KINDCASE
break;
case CAF_ARR_REF_FULL:
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
GFC_DIMENSION_LBOUND (src->dim[i]),
GFC_DIMENSION_UBOUND (src->dim[i]));
/* The memptr stays unchanged when ref'ing the first element
in a dimension. */
break;
case CAF_ARR_REF_RANGE:
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
riter->u.a.dim[i].s.start,
riter->u.a.dim[i].s.end);
memptr += (riter->u.a.dim[i].s.start
- GFC_DIMENSION_LBOUND (src->dim[i]))
* GFC_DIMENSION_STRIDE (src->dim[i])
* riter->item_size;
break;
case CAF_ARR_REF_SINGLE:
delta = 1;
memptr += (riter->u.a.dim[i].s.start
- GFC_DIMENSION_LBOUND (src->dim[i]))
* GFC_DIMENSION_STRIDE (src->dim[i])
* riter->item_size;
break;
case CAF_ARR_REF_OPEN_END:
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
riter->u.a.dim[i].s.start,
GFC_DIMENSION_UBOUND (src->dim[i]));
memptr += (riter->u.a.dim[i].s.start
- GFC_DIMENSION_LBOUND (src->dim[i]))
* GFC_DIMENSION_STRIDE (src->dim[i])
* riter->item_size;
break;
case CAF_ARR_REF_OPEN_START:
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
GFC_DIMENSION_LBOUND (src->dim[i]),
riter->u.a.dim[i].s.end);
/* The memptr stays unchanged when ref'ing the first element
in a dimension. */
break;
default:
caf_internal_error (unknownarrreftype, stat, NULL, 0);
return;
}
if (delta <= 0)
return;
/* Check the various properties of the destination array.
Is an array expected and present? */
if (delta > 1 && dst_rank == 0)
{
/* No, an array is required, but not provided. */
caf_internal_error (extentoutofrange, stat, NULL, 0);
return;
}
/* When dst is an array. */
if (dst_rank > 0)
{
/* Check that dst_cur_dim is valid for dst. Can be
superceeded only by scalar data. */
if (dst_cur_dim >= dst_rank && delta != 1)
{
caf_internal_error (rankoutofrange, stat, NULL, 0);
return;
}
/* Do further checks, when the source is not scalar. */
else if (delta != 1)
{
/* Check that the extent is not scalar and we are not in
an array ref for the dst side. */
if (!in_array_ref)
{
/* Check that this is the non-scalar extent. */
if (!array_extent_fixed)
{
/* In an array extent now. */
in_array_ref = true;
/* Check that we haven't skipped any scalar
dimensions yet and that the dst is
compatible. */
if (i > 0
&& dst_rank == GFC_DESCRIPTOR_RANK (src))
{
if (dst_reallocatable)
{
/* Dst is reallocatable, which means that
the bounds are not set. Set them. */
for (dst_cur_dim= 0; dst_cur_dim < (int)i;
++dst_cur_dim)
GFC_DIMENSION_SET (dst->dim[dst_cur_dim],
1, 1, 1);
}
else
dst_cur_dim = i;
}
/* Else press thumbs, that there are enough
dimensional refs to come. Checked below. */
}
else
{
caf_internal_error (doublearrayref, stat, NULL,
0);
return;
}
}
/* When the realloc is required, then no extent may have
been set. */
extent_mismatch = realloc_required
|| GFC_DESCRIPTOR_EXTENT (dst, dst_cur_dim) != delta;
/* When it already known, that a realloc is needed or
the extent does not match the needed one. */
if (realloc_required || realloc_needed
|| extent_mismatch)
{
/* Check whether dst is reallocatable. */
if (unlikely (!dst_reallocatable))
{
caf_internal_error (nonallocextentmismatch, stat,
NULL, 0, delta,
GFC_DESCRIPTOR_EXTENT (dst,
dst_cur_dim));
return;
}
/* Only report an error, when the extent needs to be
modified, which is not allowed. */
else if (!dst_reallocatable && extent_mismatch)
{
caf_internal_error (extentoutofrange, stat, NULL,
0);
return;
}
realloc_needed = true;
}
/* Only change the extent when it does not match. This is
to prevent resetting given array bounds. */
if (extent_mismatch)
GFC_DIMENSION_SET (dst->dim[dst_cur_dim], 1, delta,
size);
}
/* Only increase the dim counter, when in an array ref. */
if (in_array_ref && dst_cur_dim < dst_rank)
++dst_cur_dim;
}
size *= (index_type)delta;
}
if (in_array_ref)
{
array_extent_fixed = true;
in_array_ref = false;
/* Check, if we got less dimensional refs than the rank of dst
expects. */
assert (dst_cur_dim == GFC_DESCRIPTOR_RANK (dst));
}
break;
case CAF_REF_STATIC_ARRAY:
for (i = 0; riter->u.a.mode[i] != CAF_ARR_REF_NONE; ++i)
{
switch (riter->u.a.mode[i])
{
case CAF_ARR_REF_VECTOR:
delta = riter->u.a.dim[i].v.nvec;
#define KINDCASE(kind, type) case kind: \
memptr += ((type *)riter->u.a.dim[i].v.vector)[0] \
* riter->item_size; \
break
switch (riter->u.a.dim[i].v.kind)
{
KINDCASE (1, GFC_INTEGER_1);
KINDCASE (2, GFC_INTEGER_2);
KINDCASE (4, GFC_INTEGER_4);
#ifdef HAVE_GFC_INTEGER_8
KINDCASE (8, GFC_INTEGER_8);
#endif
#ifdef HAVE_GFC_INTEGER_16
KINDCASE (16, GFC_INTEGER_16);
#endif
default:
caf_internal_error (vecrefunknownkind, stat, NULL, 0);
return;
}
#undef KINDCASE
break;
case CAF_ARR_REF_FULL:
delta = riter->u.a.dim[i].s.end / riter->u.a.dim[i].s.stride
+ 1;
/* The memptr stays unchanged when ref'ing the first element
in a dimension. */
break;
case CAF_ARR_REF_RANGE:
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
riter->u.a.dim[i].s.start,
riter->u.a.dim[i].s.end);
memptr += riter->u.a.dim[i].s.start
* riter->u.a.dim[i].s.stride
* riter->item_size;
break;
case CAF_ARR_REF_SINGLE:
delta = 1;
memptr += riter->u.a.dim[i].s.start
* riter->u.a.dim[i].s.stride
* riter->item_size;
break;
case CAF_ARR_REF_OPEN_END:
/* This and OPEN_START are mapped to a RANGE and therefore
can not occur here. */
case CAF_ARR_REF_OPEN_START:
default:
caf_internal_error (unknownarrreftype, stat, NULL, 0);
return;
}
if (delta <= 0)
return;
/* Check the various properties of the destination array.
Is an array expected and present? */
if (delta > 1 && dst_rank == 0)
{
/* No, an array is required, but not provided. */
caf_internal_error (extentoutofrange, stat, NULL, 0);
return;
}
/* When dst is an array. */
if (dst_rank > 0)
{
/* Check that dst_cur_dim is valid for dst. Can be
superceeded only by scalar data. */
if (dst_cur_dim >= dst_rank && delta != 1)
{
caf_internal_error (rankoutofrange, stat, NULL, 0);
return;
}
/* Do further checks, when the source is not scalar. */
else if (delta != 1)
{
/* Check that the extent is not scalar and we are not in
an array ref for the dst side. */
if (!in_array_ref)
{
/* Check that this is the non-scalar extent. */
if (!array_extent_fixed)
{
/* In an array extent now. */
in_array_ref = true;
/* The dst is not reallocatable, so nothing more
to do, then correct the dim counter. */
dst_cur_dim = i;
}
else
{
caf_internal_error (doublearrayref, stat, NULL,
0);
return;
}
}
/* When the realloc is required, then no extent may have
been set. */
extent_mismatch = realloc_required
|| GFC_DESCRIPTOR_EXTENT (dst, dst_cur_dim) != delta;
/* When it is already known, that a realloc is needed or
the extent does not match the needed one. */
if (realloc_required || realloc_needed
|| extent_mismatch)
{
/* Check whether dst is reallocatable. */
if (unlikely (!dst_reallocatable))
{
caf_internal_error (nonallocextentmismatch, stat,
NULL, 0, delta,
GFC_DESCRIPTOR_EXTENT (dst,
dst_cur_dim));
return;
}
/* Only report an error, when the extent needs to be
modified, which is not allowed. */
else if (!dst_reallocatable && extent_mismatch)
{
caf_internal_error (extentoutofrange, stat, NULL,
0);
return;
}
realloc_needed = true;
}
/* Only change the extent when it does not match. This is
to prevent resetting given array bounds. */
if (extent_mismatch)
GFC_DIMENSION_SET (dst->dim[dst_cur_dim], 1, delta,
size);
}
/* Only increase the dim counter, when in an array ref. */
if (in_array_ref && dst_cur_dim < dst_rank)
++dst_cur_dim;
}
size *= (index_type)delta;
}
if (in_array_ref)
{
array_extent_fixed = true;
in_array_ref = false;
/* Check, if we got less dimensional refs than the rank of dst
expects. */
assert (dst_cur_dim == GFC_DESCRIPTOR_RANK (dst));
}
break;
default:
caf_internal_error (unknownreftype, stat, NULL, 0);
return;
}
src_size = riter->item_size;
riter = riter->next;
}
if (size == 0 || src_size == 0)
return;
/* Postcondition:
- size contains the number of elements to store in the destination array,
- src_size gives the size in bytes of each item in the destination array.
*/
if (realloc_needed)
{
if (!array_extent_fixed)
{
assert (size == 1);
/* This can happen only, when the result is scalar. */
for (dst_cur_dim = 0; dst_cur_dim < dst_rank; ++dst_cur_dim)
GFC_DIMENSION_SET (dst->dim[dst_cur_dim], 1, 1, 1);
}
GFC_DESCRIPTOR_DATA (dst) = malloc (size * GFC_DESCRIPTOR_SIZE (dst));
if (unlikely (GFC_DESCRIPTOR_DATA (dst) == NULL))
{
caf_internal_error (cannotallocdst, stat, NULL, 0);
return;
}
}
/* Reset the token. */
single_token = TOKEN (token);
memptr = single_token->memptr;
src = single_token->desc;
memset(dst_index, 0, sizeof (dst_index));
i = 0;
get_for_ref (refs, &i, dst_index, single_token, dst, src,
GFC_DESCRIPTOR_DATA (dst), memptr, dst_kind, src_kind, 0, 0,
1, stat);
}
static void
send_by_ref (caf_reference_t *ref, size_t *i, size_t *src_index,
caf_single_token_t single_token, gfc_descriptor_t *dst,
gfc_descriptor_t *src, void *ds, void *sr,
int dst_kind, int src_kind, size_t dst_dim, size_t src_dim,
size_t num, size_t size, int *stat)
{
const char vecrefunknownkind[] = "libcaf_single::caf_send_by_ref(): "
"unknown kind in vector-ref.\n";
ptrdiff_t extent_dst = 1, array_offset_dst = 0, stride_dst;
const size_t src_rank = GFC_DESCRIPTOR_RANK (src);
if (unlikely (ref == NULL))
/* May be we should issue an error here, because this case should not
occur. */
return;
if (ref->next == NULL)
{
size_t src_size = GFC_DESCRIPTOR_SIZE (src);
ptrdiff_t array_offset_src = 0;;
int dst_type = -1;
switch (ref->type)
{
case CAF_REF_COMPONENT:
if (ref->u.c.caf_token_offset > 0)
{
if (*(void**)(ds + ref->u.c.offset) == NULL)
{
/* Create a scalar temporary array descriptor. */
gfc_descriptor_t static_dst;
GFC_DESCRIPTOR_DATA (&static_dst) = NULL;
GFC_DESCRIPTOR_DTYPE (&static_dst)
= GFC_DESCRIPTOR_DTYPE (src);
/* The component can be allocated now, because it is a
scalar. */
_gfortran_caf_register (ref->item_size,
CAF_REGTYPE_COARRAY_ALLOC,
ds + ref->u.c.caf_token_offset,
&static_dst, stat, NULL, 0);
single_token = *(caf_single_token_t *)
(ds + ref->u.c.caf_token_offset);
/* In case of an error in allocation return. When stat is
NULL, then register_component() terminates on error. */
if (stat != NULL && *stat)
return;
/* Publish the allocated memory. */
*((void **)(ds + ref->u.c.offset))
= GFC_DESCRIPTOR_DATA (&static_dst);
ds = GFC_DESCRIPTOR_DATA (&static_dst);
/* Set the type from the src. */
dst_type = GFC_DESCRIPTOR_TYPE (src);
}
else
{
ds = GFC_DESCRIPTOR_DATA (dst);
dst_type = GFC_DESCRIPTOR_TYPE (dst);
}
copy_data (ds, sr, dst_type, GFC_DESCRIPTOR_TYPE (src),
dst_kind, src_kind, ref->item_size, src_size, 1, stat);
}
else
copy_data (ds + ref->u.c.offset, sr,
dst != NULL ? GFC_DESCRIPTOR_TYPE (dst)
: GFC_DESCRIPTOR_TYPE (src),
GFC_DESCRIPTOR_TYPE (src),
dst_kind, src_kind, ref->item_size, src_size, 1, stat);
++(*i);
return;
case CAF_REF_STATIC_ARRAY:
dst_type = ref->u.a.static_array_type;
/* Intentionally fall through. */
case CAF_REF_ARRAY:
if (ref->u.a.mode[dst_dim] == CAF_ARR_REF_NONE)
{
if (src_rank > 0)
{
for (size_t d = 0; d < src_rank; ++d)
array_offset_src += src_index[d];
copy_data (ds, sr + array_offset_src * ref->item_size,
dst_type == -1 ? GFC_DESCRIPTOR_TYPE (dst)
: dst_type,
GFC_DESCRIPTOR_TYPE (src), dst_kind, src_kind,
ref->item_size, src_size, num, stat);
}
else
copy_data (ds, sr,
dst_type == -1 ? GFC_DESCRIPTOR_TYPE (dst)
: dst_type,
GFC_DESCRIPTOR_TYPE (src), dst_kind, src_kind,
ref->item_size, src_size, num, stat);
*i += num;
return;
}
break;
default:
caf_runtime_error (unreachable);
}
}
switch (ref->type)
{
case CAF_REF_COMPONENT:
if (ref->u.c.caf_token_offset > 0)
{
if (*(void**)(ds + ref->u.c.offset) == NULL)
{
/* This component refs an unallocated array. Non-arrays are
caught in the if (!ref->next) above. */
dst = (gfc_descriptor_t *)(ds + ref->u.c.offset);
/* Assume that the rank and the dimensions fit for copying src
to dst. */
GFC_DESCRIPTOR_DTYPE (dst) = GFC_DESCRIPTOR_DTYPE (src);
dst->offset = 0;
stride_dst = 1;
for (size_t d = 0; d < src_rank; ++d)
{
extent_dst = GFC_DIMENSION_EXTENT (src->dim[d]);
GFC_DIMENSION_LBOUND (dst->dim[d]) = 0;
GFC_DIMENSION_UBOUND (dst->dim[d]) = extent_dst - 1;
GFC_DIMENSION_STRIDE (dst->dim[d]) = stride_dst;
stride_dst *= extent_dst;
}
/* Null the data-pointer to make register_component allocate
its own memory. */
GFC_DESCRIPTOR_DATA (dst) = NULL;
/* The size of the array is given by size. */
_gfortran_caf_register (size * ref->item_size,
CAF_REGTYPE_COARRAY_ALLOC,
ds + ref->u.c.caf_token_offset,
dst, stat, NULL, 0);
/* In case of an error in allocation return. When stat is
NULL, then register_component() terminates on error. */
if (stat != NULL && *stat)
return;
}
single_token = *(caf_single_token_t*)(ds + ref->u.c.caf_token_offset);
send_by_ref (ref->next, i, src_index, single_token,
single_token->desc, src, ds + ref->u.c.offset, sr,
dst_kind, src_kind, 0, src_dim, 1, size, stat);
}
else
send_by_ref (ref->next, i, src_index, single_token,
(gfc_descriptor_t *)(ds + ref->u.c.offset), src,
ds + ref->u.c.offset, sr, dst_kind, src_kind, 0, src_dim,
1, size, stat);
return;
case CAF_REF_ARRAY:
if (ref->u.a.mode[dst_dim] == CAF_ARR_REF_NONE)
{
send_by_ref (ref->next, i, src_index, single_token,
(gfc_descriptor_t *)ds, src, ds, sr, dst_kind, src_kind,
0, src_dim, 1, size, stat);
return;
}
/* Only when on the left most index switch the data pointer to
the array's data pointer. And only for non-static arrays. */
if (dst_dim == 0 && ref->type != CAF_REF_STATIC_ARRAY)
ds = GFC_DESCRIPTOR_DATA (dst);
switch (ref->u.a.mode[dst_dim])
{
case CAF_ARR_REF_VECTOR:
array_offset_dst = 0;
src_index[src_dim] = 0;
for (size_t idx = 0; idx < ref->u.a.dim[dst_dim].v.nvec;
++idx)
{
#define KINDCASE(kind, type) case kind: \
array_offset_dst = (((index_type) \
((type *)ref->u.a.dim[dst_dim].v.vector)[idx]) \
- GFC_DIMENSION_LBOUND (dst->dim[dst_dim])) \
* GFC_DIMENSION_STRIDE (dst->dim[dst_dim]); \
break
switch (ref->u.a.dim[dst_dim].v.kind)
{
KINDCASE (1, GFC_INTEGER_1);
KINDCASE (2, GFC_INTEGER_2);
KINDCASE (4, GFC_INTEGER_4);
#ifdef HAVE_GFC_INTEGER_8
KINDCASE (8, GFC_INTEGER_8);
#endif
#ifdef HAVE_GFC_INTEGER_16
KINDCASE (16, GFC_INTEGER_16);
#endif
default:
caf_internal_error (vecrefunknownkind, stat, NULL, 0);
return;
}
#undef KINDCASE
send_by_ref (ref, i, src_index, single_token, dst, src,
ds + array_offset_dst * ref->item_size, sr,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, size, stat);
if (src_rank > 0)
src_index[src_dim]
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
}
return;
case CAF_ARR_REF_FULL:
COMPUTE_NUM_ITEMS (extent_dst,
ref->u.a.dim[dst_dim].s.stride,
GFC_DIMENSION_LBOUND (dst->dim[dst_dim]),
GFC_DIMENSION_UBOUND (dst->dim[dst_dim]));
array_offset_dst = 0;
stride_dst = GFC_DIMENSION_STRIDE (dst->dim[dst_dim])
* ref->u.a.dim[dst_dim].s.stride;
src_index[src_dim] = 0;
for (index_type idx = 0; idx < extent_dst;
++idx, array_offset_dst += stride_dst)
{
send_by_ref (ref, i, src_index, single_token, dst, src,
ds + array_offset_dst * ref->item_size, sr,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, size, stat);
if (src_rank > 0)
src_index[src_dim]
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
}
return;
case CAF_ARR_REF_RANGE:
COMPUTE_NUM_ITEMS (extent_dst,
ref->u.a.dim[dst_dim].s.stride,
ref->u.a.dim[dst_dim].s.start,
ref->u.a.dim[dst_dim].s.end);
array_offset_dst = ref->u.a.dim[dst_dim].s.start
- GFC_DIMENSION_LBOUND (dst->dim[dst_dim]);
stride_dst = GFC_DIMENSION_STRIDE (dst->dim[dst_dim])
* ref->u.a.dim[dst_dim].s.stride;
src_index[src_dim] = 0;
for (index_type idx = 0; idx < extent_dst; ++idx)
{
send_by_ref (ref, i, src_index, single_token, dst, src,
ds + array_offset_dst * ref->item_size, sr,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, size, stat);
if (src_rank > 0)
src_index[src_dim]
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
array_offset_dst += stride_dst;
}
return;
case CAF_ARR_REF_SINGLE:
array_offset_dst = (ref->u.a.dim[dst_dim].s.start
- GFC_DIMENSION_LBOUND (dst->dim[dst_dim]))
* GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
send_by_ref (ref, i, src_index, single_token, dst, src, ds
+ array_offset_dst * ref->item_size, sr,
dst_kind, src_kind, dst_dim + 1, src_dim, 1,
size, stat);
return;
case CAF_ARR_REF_OPEN_END:
COMPUTE_NUM_ITEMS (extent_dst,
ref->u.a.dim[dst_dim].s.stride,
ref->u.a.dim[dst_dim].s.start,
GFC_DIMENSION_UBOUND (dst->dim[dst_dim]));
array_offset_dst = ref->u.a.dim[dst_dim].s.start
- GFC_DIMENSION_LBOUND (dst->dim[dst_dim]);
stride_dst = GFC_DIMENSION_STRIDE (dst->dim[dst_dim])
* ref->u.a.dim[dst_dim].s.stride;
src_index[src_dim] = 0;
for (index_type idx = 0; idx < extent_dst; ++idx)
{
send_by_ref (ref, i, src_index, single_token, dst, src,
ds + array_offset_dst * ref->item_size, sr,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, size, stat);
if (src_rank > 0)
src_index[src_dim]
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
array_offset_dst += stride_dst;
}
return;
case CAF_ARR_REF_OPEN_START:
COMPUTE_NUM_ITEMS (extent_dst,
ref->u.a.dim[dst_dim].s.stride,
GFC_DIMENSION_LBOUND (dst->dim[dst_dim]),
ref->u.a.dim[dst_dim].s.end);
array_offset_dst = 0;
stride_dst = GFC_DIMENSION_STRIDE (dst->dim[dst_dim])
* ref->u.a.dim[dst_dim].s.stride;
src_index[src_dim] = 0;
for (index_type idx = 0; idx < extent_dst; ++idx)
{
send_by_ref (ref, i, src_index, single_token, dst, src,
ds + array_offset_dst * ref->item_size, sr,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, size, stat);
if (src_rank > 0)
src_index[src_dim]
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
array_offset_dst += stride_dst;
}
return;
default:
caf_runtime_error (unreachable);
}
return;
case CAF_REF_STATIC_ARRAY:
if (ref->u.a.mode[dst_dim] == CAF_ARR_REF_NONE)
{
send_by_ref (ref->next, i, src_index, single_token, NULL,
src, ds, sr, dst_kind, src_kind,
0, src_dim, 1, size, stat);
return;
}
switch (ref->u.a.mode[dst_dim])
{
case CAF_ARR_REF_VECTOR:
array_offset_dst = 0;
src_index[src_dim] = 0;
for (size_t idx = 0; idx < ref->u.a.dim[dst_dim].v.nvec;
++idx)
{
#define KINDCASE(kind, type) case kind: \
array_offset_dst = ((type *)ref->u.a.dim[dst_dim].v.vector)[idx]; \
break
switch (ref->u.a.dim[dst_dim].v.kind)
{
KINDCASE (1, GFC_INTEGER_1);
KINDCASE (2, GFC_INTEGER_2);
KINDCASE (4, GFC_INTEGER_4);
#ifdef HAVE_GFC_INTEGER_8
KINDCASE (8, GFC_INTEGER_8);
#endif
#ifdef HAVE_GFC_INTEGER_16
KINDCASE (16, GFC_INTEGER_16);
#endif
default:
caf_runtime_error (unreachable);
return;
}
#undef KINDCASE
send_by_ref (ref, i, src_index, single_token, NULL, src,
ds + array_offset_dst * ref->item_size, sr,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, size, stat);
src_index[src_dim]
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
}
return;
case CAF_ARR_REF_FULL:
src_index[src_dim] = 0;
for (array_offset_dst = 0 ;
array_offset_dst <= ref->u.a.dim[dst_dim].s.end;
array_offset_dst += ref->u.a.dim[dst_dim].s.stride)
{
send_by_ref (ref, i, src_index, single_token, NULL, src,
ds + array_offset_dst * ref->item_size, sr,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, size, stat);
if (src_rank > 0)
src_index[src_dim]
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
}
return;
case CAF_ARR_REF_RANGE:
COMPUTE_NUM_ITEMS (extent_dst,
ref->u.a.dim[dst_dim].s.stride,
ref->u.a.dim[dst_dim].s.start,
ref->u.a.dim[dst_dim].s.end);
array_offset_dst = ref->u.a.dim[dst_dim].s.start;
src_index[src_dim] = 0;
for (index_type idx = 0; idx < extent_dst; ++idx)
{
send_by_ref (ref, i, src_index, single_token, NULL, src,
ds + array_offset_dst * ref->item_size, sr,
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
1, size, stat);
if (src_rank > 0)
src_index[src_dim]
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
array_offset_dst += ref->u.a.dim[dst_dim].s.stride;
}
return;
case CAF_ARR_REF_SINGLE:
array_offset_dst = ref->u.a.dim[dst_dim].s.start;
send_by_ref (ref, i, src_index, single_token, NULL, src,
ds + array_offset_dst * ref->item_size, sr,
dst_kind, src_kind, dst_dim + 1, src_dim, 1,
size, stat);
return;
/* The OPEN_* are mapped to a RANGE and therefore can not occur. */
case CAF_ARR_REF_OPEN_END:
case CAF_ARR_REF_OPEN_START:
default:
caf_runtime_error (unreachable);
}
return;
default:
caf_runtime_error (unreachable);
}
}
void
_gfortran_caf_send_by_ref (caf_token_t token,
int image_index __attribute__ ((unused)),
gfc_descriptor_t *src, caf_reference_t *refs,
int dst_kind, int src_kind,
bool may_require_tmp __attribute__ ((unused)),
bool dst_reallocatable, int *stat)
{
const char vecrefunknownkind[] = "libcaf_single::caf_get_by_ref(): "
"unknown kind in vector-ref.\n";
const char unknownreftype[] = "libcaf_single::caf_send_by_ref(): "
"unknown reference type.\n";
const char unknownarrreftype[] = "libcaf_single::caf_send_by_ref(): "
"unknown array reference type.\n";
const char rankoutofrange[] = "libcaf_single::caf_send_by_ref(): "
"rank out of range.\n";
const char realloconinnerref[] = "libcaf_single::caf_send_by_ref(): "
"reallocation of array followed by component ref not allowed.\n";
const char cannotallocdst[] = "libcaf_single::caf_send_by_ref(): "
"can not allocate memory.\n";
const char nonallocextentmismatch[] = "libcaf_single::caf_send_by_ref(): "
"extent of non-allocatable array mismatch.\n";
const char innercompref[] = "libcaf_single::caf_send_by_ref(): "
"inner unallocated component detected.\n";
size_t size, i;
size_t dst_index[GFC_MAX_DIMENSIONS];
int src_rank = GFC_DESCRIPTOR_RANK (src);
int src_cur_dim = 0;
size_t src_size;
caf_single_token_t single_token = TOKEN (token);
void *memptr = single_token->memptr;
gfc_descriptor_t *dst = single_token->desc;
caf_reference_t *riter = refs;
long delta;
bool extent_mismatch;
/* Note that the component is not allocated yet. */
index_type new_component_idx = -1;
if (stat)
*stat = 0;
/* Compute the size of the result. In the beginning size just counts the
number of elements. */
size = 1;
while (riter)
{
switch (riter->type)
{
case CAF_REF_COMPONENT:
if (unlikely (new_component_idx != -1))
{
/* Allocating a component in the middle of a component ref is not
support. We don't know the type to allocate. */
caf_internal_error (innercompref, stat, NULL, 0);
return;
}
if (riter->u.c.caf_token_offset > 0)
{
/* Check whether the allocatable component is zero, then no
token is present, too. The token's pointer is not cleared
when the structure is initialized. */
if (*(void**)(memptr + riter->u.c.offset) == NULL)
{
/* This component is not yet allocated. Check that it is
allocatable here. */
if (!dst_reallocatable)
{
caf_internal_error (cannotallocdst, stat, NULL, 0);
return;
}
single_token = NULL;
memptr = NULL;
dst = NULL;
break;
}
single_token = *(caf_single_token_t*)
(memptr + riter->u.c.caf_token_offset);
memptr += riter->u.c.offset;
dst = single_token->desc;
}
else
{
/* Regular component. */
memptr += riter->u.c.offset;
dst = (gfc_descriptor_t *)memptr;
}
break;
case CAF_REF_ARRAY:
if (dst != NULL)
memptr = GFC_DESCRIPTOR_DATA (dst);
else
dst = src;
/* When the dst array needs to be allocated, then look at the
extent of the source array in the dimension dst_cur_dim. */
for (i = 0; riter->u.a.mode[i] != CAF_ARR_REF_NONE; ++i)
{
switch (riter->u.a.mode[i])
{
case CAF_ARR_REF_VECTOR:
delta = riter->u.a.dim[i].v.nvec;
#define KINDCASE(kind, type) case kind: \
memptr += (((index_type) \
((type *)riter->u.a.dim[i].v.vector)[0]) \
- GFC_DIMENSION_LBOUND (dst->dim[i])) \
* GFC_DIMENSION_STRIDE (dst->dim[i]) \
* riter->item_size; \
break
switch (riter->u.a.dim[i].v.kind)
{
KINDCASE (1, GFC_INTEGER_1);
KINDCASE (2, GFC_INTEGER_2);
KINDCASE (4, GFC_INTEGER_4);
#ifdef HAVE_GFC_INTEGER_8
KINDCASE (8, GFC_INTEGER_8);
#endif
#ifdef HAVE_GFC_INTEGER_16
KINDCASE (16, GFC_INTEGER_16);
#endif
default:
caf_internal_error (vecrefunknownkind, stat, NULL, 0);
return;
}
#undef KINDCASE
break;
case CAF_ARR_REF_FULL:
if (dst)
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
GFC_DIMENSION_LBOUND (dst->dim[i]),
GFC_DIMENSION_UBOUND (dst->dim[i]));
else
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
GFC_DIMENSION_LBOUND (src->dim[src_cur_dim]),
GFC_DIMENSION_UBOUND (src->dim[src_cur_dim]));
break;
case CAF_ARR_REF_RANGE:
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
riter->u.a.dim[i].s.start,
riter->u.a.dim[i].s.end);
memptr += (riter->u.a.dim[i].s.start
- dst->dim[i].lower_bound)
* GFC_DIMENSION_STRIDE (dst->dim[i])
* riter->item_size;
break;
case CAF_ARR_REF_SINGLE:
delta = 1;
memptr += (riter->u.a.dim[i].s.start
- dst->dim[i].lower_bound)
* GFC_DIMENSION_STRIDE (dst->dim[i])
* riter->item_size;
break;
case CAF_ARR_REF_OPEN_END:
if (dst)
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
riter->u.a.dim[i].s.start,
GFC_DIMENSION_UBOUND (dst->dim[i]));
else
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
riter->u.a.dim[i].s.start,
GFC_DIMENSION_UBOUND (src->dim[src_cur_dim]));
memptr += (riter->u.a.dim[i].s.start
- dst->dim[i].lower_bound)
* GFC_DIMENSION_STRIDE (dst->dim[i])
* riter->item_size;
break;
case CAF_ARR_REF_OPEN_START:
if (dst)
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
GFC_DIMENSION_LBOUND (dst->dim[i]),
riter->u.a.dim[i].s.end);
else
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
GFC_DIMENSION_LBOUND (src->dim[src_cur_dim]),
riter->u.a.dim[i].s.end);
/* The memptr stays unchanged when ref'ing the first element
in a dimension. */
break;
default:
caf_internal_error (unknownarrreftype, stat, NULL, 0);
return;
}
if (delta <= 0)
return;
/* Check the various properties of the source array.
When src is an array. */
if (delta > 1 && src_rank > 0)
{
/* Check that src_cur_dim is valid for src. Can be
superceeded only by scalar data. */
if (src_cur_dim >= src_rank)
{
caf_internal_error (rankoutofrange, stat, NULL, 0);
return;
}
/* Do further checks, when the source is not scalar. */
else
{
/* When the realloc is required, then no extent may have
been set. */
extent_mismatch = memptr == NULL
|| (dst
&& GFC_DESCRIPTOR_EXTENT (dst, src_cur_dim)
!= delta);
/* When it already known, that a realloc is needed or
the extent does not match the needed one. */
if (extent_mismatch)
{
/* Check whether dst is reallocatable. */
if (unlikely (!dst_reallocatable))
{
caf_internal_error (nonallocextentmismatch, stat,
NULL, 0, delta,
GFC_DESCRIPTOR_EXTENT (dst,
src_cur_dim));
return;
}
/* Report error on allocatable but missing inner
ref. */
else if (riter->next != NULL)
{
caf_internal_error (realloconinnerref, stat, NULL,
0);
return;
}
}
/* Only change the extent when it does not match. This is
to prevent resetting given array bounds. */
if (extent_mismatch)
GFC_DIMENSION_SET (dst->dim[src_cur_dim], 1, delta,
size);
}
/* Increase the dim-counter of the src only when the extent
matches. */
if (src_cur_dim < src_rank
&& GFC_DESCRIPTOR_EXTENT (src, src_cur_dim) == delta)
++src_cur_dim;
}
size *= (index_type)delta;
}
break;
case CAF_REF_STATIC_ARRAY:
for (i = 0; riter->u.a.mode[i] != CAF_ARR_REF_NONE; ++i)
{
switch (riter->u.a.mode[i])
{
case CAF_ARR_REF_VECTOR:
delta = riter->u.a.dim[i].v.nvec;
#define KINDCASE(kind, type) case kind: \
memptr += ((type *)riter->u.a.dim[i].v.vector)[0] \
* riter->item_size; \
break
switch (riter->u.a.dim[i].v.kind)
{
KINDCASE (1, GFC_INTEGER_1);
KINDCASE (2, GFC_INTEGER_2);
KINDCASE (4, GFC_INTEGER_4);
#ifdef HAVE_GFC_INTEGER_8
KINDCASE (8, GFC_INTEGER_8);
#endif
#ifdef HAVE_GFC_INTEGER_16
KINDCASE (16, GFC_INTEGER_16);
#endif
default:
caf_internal_error (vecrefunknownkind, stat, NULL, 0);
return;
}
#undef KINDCASE
break;
case CAF_ARR_REF_FULL:
delta = riter->u.a.dim[i].s.end / riter->u.a.dim[i].s.stride
+ 1;
/* The memptr stays unchanged when ref'ing the first element
in a dimension. */
break;
case CAF_ARR_REF_RANGE:
COMPUTE_NUM_ITEMS (delta,
riter->u.a.dim[i].s.stride,
riter->u.a.dim[i].s.start,
riter->u.a.dim[i].s.end);
memptr += riter->u.a.dim[i].s.start
* riter->u.a.dim[i].s.stride
* riter->item_size;
break;
case CAF_ARR_REF_SINGLE:
delta = 1;
memptr += riter->u.a.dim[i].s.start
* riter->u.a.dim[i].s.stride
* riter->item_size;
break;
case CAF_ARR_REF_OPEN_END:
/* This and OPEN_START are mapped to a RANGE and therefore
can not occur here. */
case CAF_ARR_REF_OPEN_START:
default:
caf_internal_error (unknownarrreftype, stat, NULL, 0);
return;
}
if (delta <= 0)
return;
/* Check the various properties of the source array.
Only when the source array is not scalar examine its
properties. */
if (delta > 1 && src_rank > 0)
{
/* Check that src_cur_dim is valid for src. Can be
superceeded only by scalar data. */
if (src_cur_dim >= src_rank)
{
caf_internal_error (rankoutofrange, stat, NULL, 0);
return;
}
else
{
/* We will not be able to realloc the dst, because that's
a fixed size array. */
extent_mismatch = GFC_DESCRIPTOR_EXTENT (src, src_cur_dim)
!= delta;
/* When the extent does not match the needed one we can
only stop here. */
if (extent_mismatch)
{
caf_internal_error (nonallocextentmismatch, stat,
NULL, 0, delta,
GFC_DESCRIPTOR_EXTENT (src,
src_cur_dim));
return;
}
}
++src_cur_dim;
}
size *= (index_type)delta;
}
break;
default:
caf_internal_error (unknownreftype, stat, NULL, 0);
return;
}
src_size = riter->item_size;
riter = riter->next;
}
if (size == 0 || src_size == 0)
return;
/* Postcondition:
- size contains the number of elements to store in the destination array,
- src_size gives the size in bytes of each item in the destination array.
*/
/* Reset the token. */
single_token = TOKEN (token);
memptr = single_token->memptr;
dst = single_token->desc;
memset (dst_index, 0, sizeof (dst_index));
i = 0;
send_by_ref (refs, &i, dst_index, single_token, dst, src,
memptr, GFC_DESCRIPTOR_DATA (src), dst_kind, src_kind, 0, 0,
1, size, stat);
assert (i == size);
}
void
_gfortran_caf_sendget_by_ref (caf_token_t dst_token, int dst_image_index,
caf_reference_t *dst_refs, caf_token_t src_token,
int src_image_index,
caf_reference_t *src_refs, int dst_kind,
int src_kind, bool may_require_tmp, int *dst_stat,
int *src_stat)
{
gfc_array_void temp;
_gfortran_caf_get_by_ref (src_token, src_image_index, &temp, src_refs,
dst_kind, src_kind, may_require_tmp, true,
src_stat);
if (src_stat && *src_stat != 0)
return;
_gfortran_caf_send_by_ref (dst_token, dst_image_index, &temp, dst_refs,
dst_kind, src_kind, may_require_tmp, true,
dst_stat);
if (GFC_DESCRIPTOR_DATA (&temp))
free (GFC_DESCRIPTOR_DATA (&temp));
}
void
_gfortran_caf_atomic_define (caf_token_t token, size_t offset,
int image_index __attribute__ ((unused)),
void *value, int *stat,
int type __attribute__ ((unused)), int kind)
{
assert(kind == 4);
uint32_t *atom = (uint32_t *) ((char *) MEMTOK (token) + offset);
__atomic_store (atom, (uint32_t *) value, __ATOMIC_RELAXED);
if (stat)
*stat = 0;
}
void
_gfortran_caf_atomic_ref (caf_token_t token, size_t offset,
int image_index __attribute__ ((unused)),
void *value, int *stat,
int type __attribute__ ((unused)), int kind)
{
assert(kind == 4);
uint32_t *atom = (uint32_t *) ((char *) MEMTOK (token) + offset);
__atomic_load (atom, (uint32_t *) value, __ATOMIC_RELAXED);
if (stat)
*stat = 0;
}
void
_gfortran_caf_atomic_cas (caf_token_t token, size_t offset,
int image_index __attribute__ ((unused)),
void *old, void *compare, void *new_val, int *stat,
int type __attribute__ ((unused)), int kind)
{
assert(kind == 4);
uint32_t *atom = (uint32_t *) ((char *) MEMTOK (token) + offset);
*(uint32_t *) old = *(uint32_t *) compare;
(void) __atomic_compare_exchange_n (atom, (uint32_t *) old,
*(uint32_t *) new_val, false,
__ATOMIC_RELAXED, __ATOMIC_RELAXED);
if (stat)
*stat = 0;
}
void
_gfortran_caf_atomic_op (int op, caf_token_t token, size_t offset,
int image_index __attribute__ ((unused)),
void *value, void *old, int *stat,
int type __attribute__ ((unused)), int kind)
{
assert(kind == 4);
uint32_t res;
uint32_t *atom = (uint32_t *) ((char *) MEMTOK (token) + offset);
switch (op)
{
case GFC_CAF_ATOMIC_ADD:
res = __atomic_fetch_add (atom, *(uint32_t *) value, __ATOMIC_RELAXED);
break;
case GFC_CAF_ATOMIC_AND:
res = __atomic_fetch_and (atom, *(uint32_t *) value, __ATOMIC_RELAXED);
break;
case GFC_CAF_ATOMIC_OR:
res = __atomic_fetch_or (atom, *(uint32_t *) value, __ATOMIC_RELAXED);
break;
case GFC_CAF_ATOMIC_XOR:
res = __atomic_fetch_xor (atom, *(uint32_t *) value, __ATOMIC_RELAXED);
break;
default:
__builtin_unreachable();
}
if (old)
*(uint32_t *) old = res;
if (stat)
*stat = 0;
}
void
_gfortran_caf_event_post (caf_token_t token, size_t index,
int image_index __attribute__ ((unused)),
int *stat, char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
uint32_t value = 1;
uint32_t *event = (uint32_t *) ((char *) MEMTOK (token) + index
* sizeof (uint32_t));
__atomic_fetch_add (event, (uint32_t) value, __ATOMIC_RELAXED);
if(stat)
*stat = 0;
}
void
_gfortran_caf_event_wait (caf_token_t token, size_t index,
int until_count, int *stat,
char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
uint32_t *event = (uint32_t *) ((char *) MEMTOK (token) + index
* sizeof (uint32_t));
uint32_t value = (uint32_t)-until_count;
__atomic_fetch_add (event, (uint32_t) value, __ATOMIC_RELAXED);
if(stat)
*stat = 0;
}
void
_gfortran_caf_event_query (caf_token_t token, size_t index,
int image_index __attribute__ ((unused)),
int *count, int *stat)
{
uint32_t *event = (uint32_t *) ((char *) MEMTOK (token) + index
* sizeof (uint32_t));
__atomic_load (event, (uint32_t *) count, __ATOMIC_RELAXED);
if(stat)
*stat = 0;
}
void
_gfortran_caf_lock (caf_token_t token, size_t index,
int image_index __attribute__ ((unused)),
int *aquired_lock, int *stat, char *errmsg, int errmsg_len)
{
const char *msg = "Already locked";
bool *lock = &((bool *) MEMTOK (token))[index];
if (!*lock)
{
*lock = true;
if (aquired_lock)
*aquired_lock = (int) true;
if (stat)
*stat = 0;
return;
}
if (aquired_lock)
{
*aquired_lock = (int) false;
if (stat)
*stat = 0;
return;
}
if (stat)
{
*stat = 1;
if (errmsg_len > 0)
{
int len = ((int) sizeof (msg) > errmsg_len) ? errmsg_len
: (int) sizeof (msg);
memcpy (errmsg, msg, len);
if (errmsg_len > len)
memset (&errmsg[len], ' ', errmsg_len-len);
}
return;
}
_gfortran_caf_error_stop_str (msg, (int32_t) strlen (msg));
}
void
_gfortran_caf_unlock (caf_token_t token, size_t index,
int image_index __attribute__ ((unused)),
int *stat, char *errmsg, int errmsg_len)
{
const char *msg = "Variable is not locked";
bool *lock = &((bool *) MEMTOK (token))[index];
if (*lock)
{
*lock = false;
if (stat)
*stat = 0;
return;
}
if (stat)
{
*stat = 1;
if (errmsg_len > 0)
{
int len = ((int) sizeof (msg) > errmsg_len) ? errmsg_len
: (int) sizeof (msg);
memcpy (errmsg, msg, len);
if (errmsg_len > len)
memset (&errmsg[len], ' ', errmsg_len-len);
}
return;
}
_gfortran_caf_error_stop_str (msg, (int32_t) strlen (msg));
}