956d615d66
* ipa-fnsummary.c: Fix comment typos. * ipa-ref.h: Likewise. * ipa-predicate.h: Likewise. * ipa-split.c: Likewise. * ipa-inline-analysis.c: Likewise. * ipa-predicate.c: Likewise. * ipa-devirt.c: Likewise. * ipa-icf.h: Likewise. * profile-count.c: Likewise. * ipa-icf.c: Likewise. (sem_function::equals_wpa): Fix typos in dump messages. * ipa-icf-gimple.h: Fix comment typos. * ipa-inline-transform.c: Likewise. * ipa-polymorphic-call.c: Likewise. * ipa-fnsummary.h: Likewise. * ipa-inline.c: Likewise. (dump_inline_stats): Fix typo in debug dump message. * profile-count.h: Fix comment typos. From-SVN: r278643
699 lines
18 KiB
C
699 lines
18 KiB
C
/* IPA predicates.
|
|
Copyright (C) 2003-2019 Free Software Foundation, Inc.
|
|
Contributed by Jan Hubicka
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "tree.h"
|
|
#include "cgraph.h"
|
|
#include "tree-vrp.h"
|
|
#include "alloc-pool.h"
|
|
#include "symbol-summary.h"
|
|
#include "ipa-prop.h"
|
|
#include "ipa-fnsummary.h"
|
|
#include "real.h"
|
|
#include "fold-const.h"
|
|
#include "tree-pretty-print.h"
|
|
#include "gimple.h"
|
|
#include "gimplify.h"
|
|
#include "data-streamer.h"
|
|
|
|
|
|
/* Check whether two set of operations have same effects. */
|
|
static bool
|
|
expr_eval_ops_equal_p (expr_eval_ops ops1, expr_eval_ops ops2)
|
|
{
|
|
if (ops1)
|
|
{
|
|
if (!ops2 || ops1->length () != ops2->length ())
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < ops1->length (); i++)
|
|
{
|
|
expr_eval_op &op1 = (*ops1)[i];
|
|
expr_eval_op &op2 = (*ops2)[i];
|
|
|
|
if (op1.code != op2.code
|
|
|| op1.index != op2.index
|
|
|| !vrp_operand_equal_p (op1.val[0], op2.val[0])
|
|
|| !vrp_operand_equal_p (op1.val[1], op2.val[1])
|
|
|| !types_compatible_p (op1.type, op2.type))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return !ops2;
|
|
}
|
|
|
|
/* Add clause CLAUSE into the predicate P.
|
|
When CONDITIONS is NULL do not perform checking whether NEW_CLAUSE
|
|
is obviously true. This is useful only when NEW_CLAUSE is known to be
|
|
sane. */
|
|
|
|
void
|
|
predicate::add_clause (conditions conditions, clause_t new_clause)
|
|
{
|
|
int i;
|
|
int i2;
|
|
int insert_here = -1;
|
|
int c1, c2;
|
|
|
|
/* True clause. */
|
|
if (!new_clause)
|
|
return;
|
|
|
|
/* False clause makes the whole predicate false. Kill the other variants. */
|
|
if (new_clause == (1 << predicate::false_condition))
|
|
{
|
|
*this = false;
|
|
return;
|
|
}
|
|
if (*this == false)
|
|
return;
|
|
|
|
/* No one should be silly enough to add false into nontrivial clauses. */
|
|
gcc_checking_assert (!(new_clause & (1 << predicate::false_condition)));
|
|
|
|
/* Look where to insert the new_clause. At the same time prune out
|
|
new_clauses of P that are implied by the new new_clause and thus
|
|
redundant. */
|
|
for (i = 0, i2 = 0; i <= max_clauses; i++)
|
|
{
|
|
m_clause[i2] = m_clause[i];
|
|
|
|
if (!m_clause[i])
|
|
break;
|
|
|
|
/* If m_clause[i] implies new_clause, there is nothing to add. */
|
|
if ((m_clause[i] & new_clause) == m_clause[i])
|
|
{
|
|
/* We had nothing to add, none of clauses should've become
|
|
redundant. */
|
|
gcc_checking_assert (i == i2);
|
|
return;
|
|
}
|
|
|
|
if (m_clause[i] < new_clause && insert_here < 0)
|
|
insert_here = i2;
|
|
|
|
/* If new_clause implies clause[i], then clause[i] becomes redundant.
|
|
Otherwise the clause[i] has to stay. */
|
|
if ((m_clause[i] & new_clause) != new_clause)
|
|
i2++;
|
|
}
|
|
|
|
/* Look for clauses that are obviously true. I.e.
|
|
op0 == 5 || op0 != 5. */
|
|
if (conditions)
|
|
for (c1 = predicate::first_dynamic_condition;
|
|
c1 < num_conditions; c1++)
|
|
{
|
|
condition *cc1;
|
|
if (!(new_clause & (1 << c1)))
|
|
continue;
|
|
cc1 = &(*conditions)[c1 - predicate::first_dynamic_condition];
|
|
/* We have no way to represent !changed and !is_not_constant
|
|
and thus there is no point for looking for them. */
|
|
if (cc1->code == changed || cc1->code == is_not_constant)
|
|
continue;
|
|
for (c2 = c1 + 1; c2 < num_conditions; c2++)
|
|
if (new_clause & (1 << c2))
|
|
{
|
|
condition *cc2 =
|
|
&(*conditions)[c2 - predicate::first_dynamic_condition];
|
|
if (cc1->operand_num == cc2->operand_num
|
|
&& vrp_operand_equal_p (cc1->val, cc2->val)
|
|
&& cc2->code != is_not_constant
|
|
&& cc2->code != changed
|
|
&& expr_eval_ops_equal_p (cc1->param_ops, cc2->param_ops)
|
|
&& cc2->agg_contents == cc1->agg_contents
|
|
&& cc2->by_ref == cc1->by_ref
|
|
&& types_compatible_p (cc2->type, cc1->type)
|
|
&& cc1->code == invert_tree_comparison (cc2->code,
|
|
HONOR_NANS (cc1->val)))
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
/* We run out of variants. Be conservative in positive direction. */
|
|
if (i2 == max_clauses)
|
|
return;
|
|
/* Keep clauses in decreasing order. This makes equivalence testing easy. */
|
|
m_clause[i2 + 1] = 0;
|
|
if (insert_here >= 0)
|
|
for (; i2 > insert_here; i2--)
|
|
m_clause[i2] = m_clause[i2 - 1];
|
|
else
|
|
insert_here = i2;
|
|
m_clause[insert_here] = new_clause;
|
|
}
|
|
|
|
|
|
/* Do THIS &= P. */
|
|
|
|
predicate &
|
|
predicate::operator &= (const predicate &p)
|
|
{
|
|
/* Avoid busy work. */
|
|
if (p == false || *this == true)
|
|
{
|
|
*this = p;
|
|
return *this;
|
|
}
|
|
if (*this == false || p == true || this == &p)
|
|
return *this;
|
|
|
|
int i;
|
|
|
|
/* See how far predicates match. */
|
|
for (i = 0; m_clause[i] && m_clause[i] == p.m_clause[i]; i++)
|
|
{
|
|
gcc_checking_assert (i < max_clauses);
|
|
}
|
|
|
|
/* Combine the predicates rest. */
|
|
for (; p.m_clause[i]; i++)
|
|
{
|
|
gcc_checking_assert (i < max_clauses);
|
|
add_clause (NULL, p.m_clause[i]);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
/* Return THIS | P2. */
|
|
|
|
predicate
|
|
predicate::or_with (conditions conditions,
|
|
const predicate &p) const
|
|
{
|
|
/* Avoid busy work. */
|
|
if (p == false || *this == true || *this == p)
|
|
return *this;
|
|
if (*this == false || p == true)
|
|
return p;
|
|
|
|
/* OK, combine the predicates. */
|
|
predicate out = true;
|
|
|
|
for (int i = 0; m_clause[i]; i++)
|
|
for (int j = 0; p.m_clause[j]; j++)
|
|
{
|
|
gcc_checking_assert (i < max_clauses && j < max_clauses);
|
|
out.add_clause (conditions, m_clause[i] | p.m_clause[j]);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
/* Having partial truth assignment in POSSIBLE_TRUTHS, return false
|
|
if predicate P is known to be false. */
|
|
|
|
bool
|
|
predicate::evaluate (clause_t possible_truths) const
|
|
{
|
|
int i;
|
|
|
|
/* True remains true. */
|
|
if (*this == true)
|
|
return true;
|
|
|
|
gcc_assert (!(possible_truths & (1 << predicate::false_condition)));
|
|
|
|
/* See if we can find clause we can disprove. */
|
|
for (i = 0; m_clause[i]; i++)
|
|
{
|
|
gcc_checking_assert (i < max_clauses);
|
|
if (!(m_clause[i] & possible_truths))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
|
|
instruction will be recomputed per invocation of the inlined call. */
|
|
|
|
int
|
|
predicate::probability (conditions conds,
|
|
clause_t possible_truths,
|
|
vec<inline_param_summary> inline_param_summary) const
|
|
{
|
|
int i;
|
|
int combined_prob = REG_BR_PROB_BASE;
|
|
|
|
/* True remains true. */
|
|
if (*this == true)
|
|
return REG_BR_PROB_BASE;
|
|
|
|
if (*this == false)
|
|
return 0;
|
|
|
|
gcc_assert (!(possible_truths & (1 << predicate::false_condition)));
|
|
|
|
/* See if we can find clause we can disprove. */
|
|
for (i = 0; m_clause[i]; i++)
|
|
{
|
|
gcc_checking_assert (i < max_clauses);
|
|
if (!(m_clause[i] & possible_truths))
|
|
return 0;
|
|
else
|
|
{
|
|
int this_prob = 0;
|
|
int i2;
|
|
if (!inline_param_summary.exists ())
|
|
return REG_BR_PROB_BASE;
|
|
for (i2 = 0; i2 < num_conditions; i2++)
|
|
if ((m_clause[i] & possible_truths) & (1 << i2))
|
|
{
|
|
if (i2 >= predicate::first_dynamic_condition)
|
|
{
|
|
condition *c =
|
|
&(*conds)[i2 - predicate::first_dynamic_condition];
|
|
if (c->code == predicate::changed
|
|
&& (c->operand_num <
|
|
(int) inline_param_summary.length ()))
|
|
{
|
|
int iprob =
|
|
inline_param_summary[c->operand_num].change_prob;
|
|
this_prob = MAX (this_prob, iprob);
|
|
}
|
|
else
|
|
this_prob = REG_BR_PROB_BASE;
|
|
}
|
|
else
|
|
this_prob = REG_BR_PROB_BASE;
|
|
}
|
|
combined_prob = MIN (this_prob, combined_prob);
|
|
if (!combined_prob)
|
|
return 0;
|
|
}
|
|
}
|
|
return combined_prob;
|
|
}
|
|
|
|
|
|
/* Dump conditional COND. */
|
|
|
|
void
|
|
dump_condition (FILE *f, conditions conditions, int cond)
|
|
{
|
|
condition *c;
|
|
if (cond == predicate::false_condition)
|
|
fprintf (f, "false");
|
|
else if (cond == predicate::not_inlined_condition)
|
|
fprintf (f, "not inlined");
|
|
else
|
|
{
|
|
c = &(*conditions)[cond - predicate::first_dynamic_condition];
|
|
fprintf (f, "op%i", c->operand_num);
|
|
if (c->agg_contents)
|
|
fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
|
|
c->by_ref ? "ref " : "", c->offset);
|
|
|
|
for (unsigned i = 0; i < vec_safe_length (c->param_ops); i++)
|
|
{
|
|
expr_eval_op &op = (*(c->param_ops))[i];
|
|
const char *op_name = op_symbol_code (op.code);
|
|
|
|
if (op_name == op_symbol_code (ERROR_MARK))
|
|
op_name = get_tree_code_name (op.code);
|
|
|
|
fprintf (f, ",(");
|
|
|
|
if (!op.val[0])
|
|
{
|
|
switch (op.code)
|
|
{
|
|
case FLOAT_EXPR:
|
|
case FIX_TRUNC_EXPR:
|
|
case FIXED_CONVERT_EXPR:
|
|
case VIEW_CONVERT_EXPR:
|
|
CASE_CONVERT:
|
|
if (op.code == VIEW_CONVERT_EXPR)
|
|
fprintf (f, "VCE");
|
|
fprintf (f, "(");
|
|
print_generic_expr (f, op.type);
|
|
fprintf (f, ")" );
|
|
break;
|
|
|
|
default:
|
|
fprintf (f, "%s", op_name);
|
|
}
|
|
fprintf (f, " #");
|
|
}
|
|
else if (!op.val[1])
|
|
{
|
|
if (op.index)
|
|
{
|
|
print_generic_expr (f, op.val[0]);
|
|
fprintf (f, " %s #", op_name);
|
|
}
|
|
else
|
|
{
|
|
fprintf (f, "# %s ", op_name);
|
|
print_generic_expr (f, op.val[0]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
fprintf (f, "%s ", op_name);
|
|
switch (op.index)
|
|
{
|
|
case 0:
|
|
fprintf (f, "#, ");
|
|
print_generic_expr (f, op.val[0]);
|
|
fprintf (f, ", ");
|
|
print_generic_expr (f, op.val[1]);
|
|
break;
|
|
|
|
case 1:
|
|
print_generic_expr (f, op.val[0]);
|
|
fprintf (f, ", #, ");
|
|
print_generic_expr (f, op.val[1]);
|
|
break;
|
|
|
|
case 2:
|
|
print_generic_expr (f, op.val[0]);
|
|
fprintf (f, ", ");
|
|
print_generic_expr (f, op.val[1]);
|
|
fprintf (f, ", #");
|
|
break;
|
|
|
|
default:
|
|
fprintf (f, "*, *, *");
|
|
}
|
|
}
|
|
fprintf (f, ")");
|
|
}
|
|
|
|
if (c->code == predicate::is_not_constant)
|
|
{
|
|
fprintf (f, " not constant");
|
|
return;
|
|
}
|
|
if (c->code == predicate::changed)
|
|
{
|
|
fprintf (f, " changed");
|
|
return;
|
|
}
|
|
fprintf (f, " %s ", op_symbol_code (c->code));
|
|
print_generic_expr (f, c->val);
|
|
}
|
|
}
|
|
|
|
|
|
/* Dump clause CLAUSE. */
|
|
|
|
static void
|
|
dump_clause (FILE *f, conditions conds, clause_t clause)
|
|
{
|
|
int i;
|
|
bool found = false;
|
|
fprintf (f, "(");
|
|
if (!clause)
|
|
fprintf (f, "true");
|
|
for (i = 0; i < predicate::num_conditions; i++)
|
|
if (clause & (1 << i))
|
|
{
|
|
if (found)
|
|
fprintf (f, " || ");
|
|
found = true;
|
|
dump_condition (f, conds, i);
|
|
}
|
|
fprintf (f, ")");
|
|
}
|
|
|
|
|
|
/* Dump THIS to F. CONDS a vector of conditions used when evaluating
|
|
predicates. When NL is true new line is output at the end of dump. */
|
|
|
|
void
|
|
predicate::dump (FILE *f, conditions conds, bool nl) const
|
|
{
|
|
int i;
|
|
if (*this == true)
|
|
dump_clause (f, conds, 0);
|
|
else
|
|
for (i = 0; m_clause[i]; i++)
|
|
{
|
|
if (i)
|
|
fprintf (f, " && ");
|
|
dump_clause (f, conds, m_clause[i]);
|
|
}
|
|
if (nl)
|
|
fprintf (f, "\n");
|
|
}
|
|
|
|
|
|
void
|
|
predicate::debug (conditions conds) const
|
|
{
|
|
dump (stderr, conds);
|
|
}
|
|
|
|
|
|
/* Remap predicate THIS of former function to be predicate of duplicated function.
|
|
POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
|
|
INFO is inline summary of the duplicated node. */
|
|
|
|
predicate
|
|
predicate::remap_after_duplication (clause_t possible_truths)
|
|
{
|
|
int j;
|
|
predicate out = true;
|
|
for (j = 0; m_clause[j]; j++)
|
|
if (!(possible_truths & m_clause[j]))
|
|
return false;
|
|
else
|
|
out.add_clause (NULL, possible_truths & m_clause[j]);
|
|
return out;
|
|
}
|
|
|
|
|
|
/* Translate all conditions from callee representation into caller
|
|
representation and symbolically evaluate predicate THIS into new predicate.
|
|
|
|
INFO is ipa_fn_summary of function we are adding predicate into, CALLEE_INFO
|
|
is summary of function predicate P is from. OPERAND_MAP is array giving
|
|
callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clause of all
|
|
callee conditions that may be true in caller context. TOPLEV_PREDICATE is
|
|
predicate under which callee is executed. OFFSET_MAP is an array of of
|
|
offsets that need to be added to conditions, negative offset means that
|
|
conditions relying on values passed by reference have to be discarded
|
|
because they might not be preserved (and should be considered offset zero
|
|
for other purposes). */
|
|
|
|
predicate
|
|
predicate::remap_after_inlining (class ipa_fn_summary *info,
|
|
class ipa_node_params *params_summary,
|
|
class ipa_fn_summary *callee_info,
|
|
vec<int> operand_map,
|
|
vec<int> offset_map,
|
|
clause_t possible_truths,
|
|
const predicate &toplev_predicate)
|
|
{
|
|
int i;
|
|
predicate out = true;
|
|
|
|
/* True predicate is easy. */
|
|
if (*this == true)
|
|
return toplev_predicate;
|
|
for (i = 0; m_clause[i]; i++)
|
|
{
|
|
clause_t clause = m_clause[i];
|
|
int cond;
|
|
predicate clause_predicate = false;
|
|
|
|
gcc_assert (i < max_clauses);
|
|
|
|
for (cond = 0; cond < num_conditions; cond++)
|
|
/* Do we have condition we can't disprove? */
|
|
if (clause & possible_truths & (1 << cond))
|
|
{
|
|
predicate cond_predicate;
|
|
/* Work out if the condition can translate to predicate in the
|
|
inlined function. */
|
|
if (cond >= predicate::first_dynamic_condition)
|
|
{
|
|
struct condition *c;
|
|
|
|
c = &(*callee_info->conds)[cond
|
|
-
|
|
predicate::first_dynamic_condition];
|
|
/* See if we can remap condition operand to caller's operand.
|
|
Otherwise give up. */
|
|
if (!operand_map.exists ()
|
|
|| (int) operand_map.length () <= c->operand_num
|
|
|| operand_map[c->operand_num] == -1
|
|
/* TODO: For non-aggregate conditions, adding an offset is
|
|
basically an arithmetic jump function processing which
|
|
we should support in future. */
|
|
|| ((!c->agg_contents || !c->by_ref)
|
|
&& offset_map[c->operand_num] > 0)
|
|
|| (c->agg_contents && c->by_ref
|
|
&& offset_map[c->operand_num] < 0))
|
|
cond_predicate = true;
|
|
else
|
|
{
|
|
struct agg_position_info ap;
|
|
HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
|
|
if (offset_delta < 0)
|
|
{
|
|
gcc_checking_assert (!c->agg_contents || !c->by_ref);
|
|
offset_delta = 0;
|
|
}
|
|
gcc_assert (!c->agg_contents
|
|
|| c->by_ref || offset_delta == 0);
|
|
ap.offset = c->offset + offset_delta;
|
|
ap.agg_contents = c->agg_contents;
|
|
ap.by_ref = c->by_ref;
|
|
cond_predicate = add_condition (info, params_summary,
|
|
operand_map[c->operand_num],
|
|
c->type, &ap, c->code,
|
|
c->val, c->param_ops);
|
|
}
|
|
}
|
|
/* Fixed conditions remains same, construct single
|
|
condition predicate. */
|
|
else
|
|
cond_predicate = predicate::predicate_testing_cond (cond);
|
|
clause_predicate = clause_predicate.or_with (info->conds,
|
|
cond_predicate);
|
|
}
|
|
out &= clause_predicate;
|
|
}
|
|
out &= toplev_predicate;
|
|
return out;
|
|
}
|
|
|
|
|
|
/* Read predicate from IB. */
|
|
|
|
void
|
|
predicate::stream_in (class lto_input_block *ib)
|
|
{
|
|
clause_t clause;
|
|
int k = 0;
|
|
|
|
do
|
|
{
|
|
gcc_assert (k <= max_clauses);
|
|
clause = m_clause[k++] = streamer_read_uhwi (ib);
|
|
}
|
|
while (clause);
|
|
|
|
/* Zero-initialize the remaining clauses in OUT. */
|
|
while (k <= max_clauses)
|
|
m_clause[k++] = 0;
|
|
}
|
|
|
|
|
|
/* Write predicate P to OB. */
|
|
|
|
void
|
|
predicate::stream_out (struct output_block *ob)
|
|
{
|
|
int j;
|
|
for (j = 0; m_clause[j]; j++)
|
|
{
|
|
gcc_assert (j < max_clauses);
|
|
streamer_write_uhwi (ob, m_clause[j]);
|
|
}
|
|
streamer_write_uhwi (ob, 0);
|
|
}
|
|
|
|
|
|
/* Add condition to condition list SUMMARY. OPERAND_NUM, TYPE, CODE, VAL and
|
|
PARAM_OPS correspond to fields of condition structure. AGGPOS describes
|
|
whether the used operand is loaded from an aggregate and where in the
|
|
aggregate it is. It can be NULL, which means this not a load from an
|
|
aggregate. */
|
|
|
|
predicate
|
|
add_condition (class ipa_fn_summary *summary,
|
|
class ipa_node_params *params_summary,
|
|
int operand_num,
|
|
tree type, struct agg_position_info *aggpos,
|
|
enum tree_code code, tree val, expr_eval_ops param_ops)
|
|
{
|
|
int i, j;
|
|
struct condition *c;
|
|
struct condition new_cond;
|
|
HOST_WIDE_INT offset;
|
|
bool agg_contents, by_ref;
|
|
expr_eval_op *op;
|
|
|
|
if (params_summary)
|
|
ipa_set_param_used_by_ipa_predicates (params_summary, operand_num, true);
|
|
|
|
if (aggpos)
|
|
{
|
|
offset = aggpos->offset;
|
|
agg_contents = aggpos->agg_contents;
|
|
by_ref = aggpos->by_ref;
|
|
}
|
|
else
|
|
{
|
|
offset = 0;
|
|
agg_contents = false;
|
|
by_ref = false;
|
|
}
|
|
|
|
gcc_checking_assert (operand_num >= 0);
|
|
for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
|
|
{
|
|
if (c->operand_num == operand_num
|
|
&& c->code == code
|
|
&& types_compatible_p (c->type, type)
|
|
&& vrp_operand_equal_p (c->val, val)
|
|
&& c->agg_contents == agg_contents
|
|
&& expr_eval_ops_equal_p (c->param_ops, param_ops)
|
|
&& (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
|
|
return predicate::predicate_testing_cond (i);
|
|
}
|
|
/* Too many conditions. Give up and return constant true. */
|
|
if (i == predicate::num_conditions - predicate::first_dynamic_condition)
|
|
return true;
|
|
|
|
new_cond.operand_num = operand_num;
|
|
new_cond.code = code;
|
|
new_cond.type = unshare_expr_without_location (type);
|
|
new_cond.val = val ? unshare_expr_without_location (val) : val;
|
|
new_cond.agg_contents = agg_contents;
|
|
new_cond.by_ref = by_ref;
|
|
new_cond.offset = offset;
|
|
new_cond.param_ops = vec_safe_copy (param_ops);
|
|
|
|
for (j = 0; vec_safe_iterate (new_cond.param_ops, j, &op); j++)
|
|
{
|
|
if (op->val[0])
|
|
op->val[0] = unshare_expr_without_location (op->val[0]);
|
|
if (op->val[1])
|
|
op->val[1] = unshare_expr_without_location (op->val[1]);
|
|
}
|
|
|
|
vec_safe_push (summary->conds, new_cond);
|
|
|
|
return predicate::predicate_testing_cond (i);
|
|
}
|