4a669ac359
* tree-vrp.c (vrp_int_const_binop): Change overflow type to overflow_type. (combine_bound): Use wide-int overflow calculation instead of rolling our own. * calls.c (maybe_warn_alloc_args_overflow): Change overflow type to overflow_type. * fold-const.c (int_const_binop_2): Same. (extract_muldiv_1): Same. (fold_div_compare): Same. (fold_abs_const): Same. * match.pd: Same. * poly-int.h (add): Same. (sub): Same. (neg): Same. (mul): Same. * predict.c (predict_iv_comparison): Same. * profile-count.c (slow_safe_scale_64bit): Same. * simplify-rtx.c (simplify_const_binary_operation): Same. * tree-chrec.c (tree_fold_binomial): Same. * tree-data-ref.c (split_constant_offset_1): Same. * tree-if-conv.c (idx_within_array_bound): Same. * tree-scalar-evolution.c (iv_can_overflow_p): Same. * tree-ssa-phiopt.c (minmax_replacement): Same. * tree-vect-loop.c (is_nonwrapping_integer_induction): Same. * tree-vect-stmts.c (vect_truncate_gather_scatter_offset): Same. * vr-values.c (vr_values::adjust_range_with_scev): Same. * wide-int.cc (wi::add_large): Same. (wi::mul_internal): Same. (wi::sub_large): Same. (wi::divmod_internal): Same. * wide-int.h: Change overflow type to overflow_type for neg, add, mul, smul, umul, div_trunc, div_floor, div_ceil, div_round, mod_trunc, mod_ceil, mod_round, add_large, sub_large, mul_internal, divmod_internal. (overflow_type): New enum. (accumulate_overflow): New. cp/ * decl.c (build_enumerator): Change overflow type to overflow_type. * init.c (build_new_1): Same. From-SVN: r262494
5536 lines
162 KiB
C
5536 lines
162 KiB
C
/* Data references and dependences detectors.
|
||
Copyright (C) 2003-2018 Free Software Foundation, Inc.
|
||
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This pass walks a given loop structure searching for array
|
||
references. The information about the array accesses is recorded
|
||
in DATA_REFERENCE structures.
|
||
|
||
The basic test for determining the dependences is:
|
||
given two access functions chrec1 and chrec2 to a same array, and
|
||
x and y two vectors from the iteration domain, the same element of
|
||
the array is accessed twice at iterations x and y if and only if:
|
||
| chrec1 (x) == chrec2 (y).
|
||
|
||
The goals of this analysis are:
|
||
|
||
- to determine the independence: the relation between two
|
||
independent accesses is qualified with the chrec_known (this
|
||
information allows a loop parallelization),
|
||
|
||
- when two data references access the same data, to qualify the
|
||
dependence relation with classic dependence representations:
|
||
|
||
- distance vectors
|
||
- direction vectors
|
||
- loop carried level dependence
|
||
- polyhedron dependence
|
||
or with the chains of recurrences based representation,
|
||
|
||
- to define a knowledge base for storing the data dependence
|
||
information,
|
||
|
||
- to define an interface to access this data.
|
||
|
||
|
||
Definitions:
|
||
|
||
- subscript: given two array accesses a subscript is the tuple
|
||
composed of the access functions for a given dimension. Example:
|
||
Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
|
||
(f1, g1), (f2, g2), (f3, g3).
|
||
|
||
- Diophantine equation: an equation whose coefficients and
|
||
solutions are integer constants, for example the equation
|
||
| 3*x + 2*y = 1
|
||
has an integer solution x = 1 and y = -1.
|
||
|
||
References:
|
||
|
||
- "Advanced Compilation for High Performance Computing" by Randy
|
||
Allen and Ken Kennedy.
|
||
http://citeseer.ist.psu.edu/goff91practical.html
|
||
|
||
- "Loop Transformations for Restructuring Compilers - The Foundations"
|
||
by Utpal Banerjee.
|
||
|
||
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "gimple.h"
|
||
#include "gimple-pretty-print.h"
|
||
#include "alias.h"
|
||
#include "fold-const.h"
|
||
#include "expr.h"
|
||
#include "gimple-iterator.h"
|
||
#include "tree-ssa-loop-niter.h"
|
||
#include "tree-ssa-loop.h"
|
||
#include "tree-ssa.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-data-ref.h"
|
||
#include "tree-scalar-evolution.h"
|
||
#include "dumpfile.h"
|
||
#include "tree-affine.h"
|
||
#include "params.h"
|
||
#include "builtins.h"
|
||
#include "stringpool.h"
|
||
#include "tree-vrp.h"
|
||
#include "tree-ssanames.h"
|
||
#include "tree-eh.h"
|
||
|
||
static struct datadep_stats
|
||
{
|
||
int num_dependence_tests;
|
||
int num_dependence_dependent;
|
||
int num_dependence_independent;
|
||
int num_dependence_undetermined;
|
||
|
||
int num_subscript_tests;
|
||
int num_subscript_undetermined;
|
||
int num_same_subscript_function;
|
||
|
||
int num_ziv;
|
||
int num_ziv_independent;
|
||
int num_ziv_dependent;
|
||
int num_ziv_unimplemented;
|
||
|
||
int num_siv;
|
||
int num_siv_independent;
|
||
int num_siv_dependent;
|
||
int num_siv_unimplemented;
|
||
|
||
int num_miv;
|
||
int num_miv_independent;
|
||
int num_miv_dependent;
|
||
int num_miv_unimplemented;
|
||
} dependence_stats;
|
||
|
||
static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
|
||
unsigned int, unsigned int,
|
||
struct loop *);
|
||
/* Returns true iff A divides B. */
|
||
|
||
static inline bool
|
||
tree_fold_divides_p (const_tree a, const_tree b)
|
||
{
|
||
gcc_assert (TREE_CODE (a) == INTEGER_CST);
|
||
gcc_assert (TREE_CODE (b) == INTEGER_CST);
|
||
return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
|
||
}
|
||
|
||
/* Returns true iff A divides B. */
|
||
|
||
static inline bool
|
||
int_divides_p (int a, int b)
|
||
{
|
||
return ((b % a) == 0);
|
||
}
|
||
|
||
/* Return true if reference REF contains a union access. */
|
||
|
||
static bool
|
||
ref_contains_union_access_p (tree ref)
|
||
{
|
||
while (handled_component_p (ref))
|
||
{
|
||
ref = TREE_OPERAND (ref, 0);
|
||
if (TREE_CODE (TREE_TYPE (ref)) == UNION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (ref)) == QUAL_UNION_TYPE)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
|
||
/* Dump into FILE all the data references from DATAREFS. */
|
||
|
||
static void
|
||
dump_data_references (FILE *file, vec<data_reference_p> datarefs)
|
||
{
|
||
unsigned int i;
|
||
struct data_reference *dr;
|
||
|
||
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
||
dump_data_reference (file, dr);
|
||
}
|
||
|
||
/* Unified dump into FILE all the data references from DATAREFS. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (vec<data_reference_p> &ref)
|
||
{
|
||
dump_data_references (stderr, ref);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (vec<data_reference_p> *ptr)
|
||
{
|
||
if (ptr)
|
||
debug (*ptr);
|
||
else
|
||
fprintf (stderr, "<nil>\n");
|
||
}
|
||
|
||
|
||
/* Dump into STDERR all the data references from DATAREFS. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_data_references (vec<data_reference_p> datarefs)
|
||
{
|
||
dump_data_references (stderr, datarefs);
|
||
}
|
||
|
||
/* Print to STDERR the data_reference DR. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_data_reference (struct data_reference *dr)
|
||
{
|
||
dump_data_reference (stderr, dr);
|
||
}
|
||
|
||
/* Dump function for a DATA_REFERENCE structure. */
|
||
|
||
void
|
||
dump_data_reference (FILE *outf,
|
||
struct data_reference *dr)
|
||
{
|
||
unsigned int i;
|
||
|
||
fprintf (outf, "#(Data Ref: \n");
|
||
fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
|
||
fprintf (outf, "# stmt: ");
|
||
print_gimple_stmt (outf, DR_STMT (dr), 0);
|
||
fprintf (outf, "# ref: ");
|
||
print_generic_stmt (outf, DR_REF (dr));
|
||
fprintf (outf, "# base_object: ");
|
||
print_generic_stmt (outf, DR_BASE_OBJECT (dr));
|
||
|
||
for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
|
||
{
|
||
fprintf (outf, "# Access function %d: ", i);
|
||
print_generic_stmt (outf, DR_ACCESS_FN (dr, i));
|
||
}
|
||
fprintf (outf, "#)\n");
|
||
}
|
||
|
||
/* Unified dump function for a DATA_REFERENCE structure. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (data_reference &ref)
|
||
{
|
||
dump_data_reference (stderr, &ref);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (data_reference *ptr)
|
||
{
|
||
if (ptr)
|
||
debug (*ptr);
|
||
else
|
||
fprintf (stderr, "<nil>\n");
|
||
}
|
||
|
||
|
||
/* Dumps the affine function described by FN to the file OUTF. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_affine_function (FILE *outf, affine_fn fn)
|
||
{
|
||
unsigned i;
|
||
tree coef;
|
||
|
||
print_generic_expr (outf, fn[0], TDF_SLIM);
|
||
for (i = 1; fn.iterate (i, &coef); i++)
|
||
{
|
||
fprintf (outf, " + ");
|
||
print_generic_expr (outf, coef, TDF_SLIM);
|
||
fprintf (outf, " * x_%u", i);
|
||
}
|
||
}
|
||
|
||
/* Dumps the conflict function CF to the file OUTF. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_conflict_function (FILE *outf, conflict_function *cf)
|
||
{
|
||
unsigned i;
|
||
|
||
if (cf->n == NO_DEPENDENCE)
|
||
fprintf (outf, "no dependence");
|
||
else if (cf->n == NOT_KNOWN)
|
||
fprintf (outf, "not known");
|
||
else
|
||
{
|
||
for (i = 0; i < cf->n; i++)
|
||
{
|
||
if (i != 0)
|
||
fprintf (outf, " ");
|
||
fprintf (outf, "[");
|
||
dump_affine_function (outf, cf->fns[i]);
|
||
fprintf (outf, "]");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Dump function for a SUBSCRIPT structure. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_subscript (FILE *outf, struct subscript *subscript)
|
||
{
|
||
conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
|
||
|
||
fprintf (outf, "\n (subscript \n");
|
||
fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
|
||
dump_conflict_function (outf, cf);
|
||
if (CF_NONTRIVIAL_P (cf))
|
||
{
|
||
tree last_iteration = SUB_LAST_CONFLICT (subscript);
|
||
fprintf (outf, "\n last_conflict: ");
|
||
print_generic_expr (outf, last_iteration);
|
||
}
|
||
|
||
cf = SUB_CONFLICTS_IN_B (subscript);
|
||
fprintf (outf, "\n iterations_that_access_an_element_twice_in_B: ");
|
||
dump_conflict_function (outf, cf);
|
||
if (CF_NONTRIVIAL_P (cf))
|
||
{
|
||
tree last_iteration = SUB_LAST_CONFLICT (subscript);
|
||
fprintf (outf, "\n last_conflict: ");
|
||
print_generic_expr (outf, last_iteration);
|
||
}
|
||
|
||
fprintf (outf, "\n (Subscript distance: ");
|
||
print_generic_expr (outf, SUB_DISTANCE (subscript));
|
||
fprintf (outf, " ))\n");
|
||
}
|
||
|
||
/* Print the classic direction vector DIRV to OUTF. */
|
||
|
||
DEBUG_FUNCTION void
|
||
print_direction_vector (FILE *outf,
|
||
lambda_vector dirv,
|
||
int length)
|
||
{
|
||
int eq;
|
||
|
||
for (eq = 0; eq < length; eq++)
|
||
{
|
||
enum data_dependence_direction dir = ((enum data_dependence_direction)
|
||
dirv[eq]);
|
||
|
||
switch (dir)
|
||
{
|
||
case dir_positive:
|
||
fprintf (outf, " +");
|
||
break;
|
||
case dir_negative:
|
||
fprintf (outf, " -");
|
||
break;
|
||
case dir_equal:
|
||
fprintf (outf, " =");
|
||
break;
|
||
case dir_positive_or_equal:
|
||
fprintf (outf, " +=");
|
||
break;
|
||
case dir_positive_or_negative:
|
||
fprintf (outf, " +-");
|
||
break;
|
||
case dir_negative_or_equal:
|
||
fprintf (outf, " -=");
|
||
break;
|
||
case dir_star:
|
||
fprintf (outf, " *");
|
||
break;
|
||
default:
|
||
fprintf (outf, "indep");
|
||
break;
|
||
}
|
||
}
|
||
fprintf (outf, "\n");
|
||
}
|
||
|
||
/* Print a vector of direction vectors. */
|
||
|
||
DEBUG_FUNCTION void
|
||
print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects,
|
||
int length)
|
||
{
|
||
unsigned j;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (dir_vects, j, v)
|
||
print_direction_vector (outf, v, length);
|
||
}
|
||
|
||
/* Print out a vector VEC of length N to OUTFILE. */
|
||
|
||
DEBUG_FUNCTION void
|
||
print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < n; i++)
|
||
fprintf (outfile, "%3d ", vector[i]);
|
||
fprintf (outfile, "\n");
|
||
}
|
||
|
||
/* Print a vector of distance vectors. */
|
||
|
||
DEBUG_FUNCTION void
|
||
print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects,
|
||
int length)
|
||
{
|
||
unsigned j;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (dist_vects, j, v)
|
||
print_lambda_vector (outf, v, length);
|
||
}
|
||
|
||
/* Dump function for a DATA_DEPENDENCE_RELATION structure. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_data_dependence_relation (FILE *outf,
|
||
struct data_dependence_relation *ddr)
|
||
{
|
||
struct data_reference *dra, *drb;
|
||
|
||
fprintf (outf, "(Data Dep: \n");
|
||
|
||
if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
||
{
|
||
if (ddr)
|
||
{
|
||
dra = DDR_A (ddr);
|
||
drb = DDR_B (ddr);
|
||
if (dra)
|
||
dump_data_reference (outf, dra);
|
||
else
|
||
fprintf (outf, " (nil)\n");
|
||
if (drb)
|
||
dump_data_reference (outf, drb);
|
||
else
|
||
fprintf (outf, " (nil)\n");
|
||
}
|
||
fprintf (outf, " (don't know)\n)\n");
|
||
return;
|
||
}
|
||
|
||
dra = DDR_A (ddr);
|
||
drb = DDR_B (ddr);
|
||
dump_data_reference (outf, dra);
|
||
dump_data_reference (outf, drb);
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
||
fprintf (outf, " (no dependence)\n");
|
||
|
||
else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
unsigned int i;
|
||
struct loop *loopi;
|
||
|
||
subscript *sub;
|
||
FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
|
||
{
|
||
fprintf (outf, " access_fn_A: ");
|
||
print_generic_stmt (outf, SUB_ACCESS_FN (sub, 0));
|
||
fprintf (outf, " access_fn_B: ");
|
||
print_generic_stmt (outf, SUB_ACCESS_FN (sub, 1));
|
||
dump_subscript (outf, sub);
|
||
}
|
||
|
||
fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
|
||
fprintf (outf, " loop nest: (");
|
||
FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi)
|
||
fprintf (outf, "%d ", loopi->num);
|
||
fprintf (outf, ")\n");
|
||
|
||
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
|
||
{
|
||
fprintf (outf, " distance_vector: ");
|
||
print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
|
||
DDR_NB_LOOPS (ddr));
|
||
}
|
||
|
||
for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
|
||
{
|
||
fprintf (outf, " direction_vector: ");
|
||
print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
|
||
DDR_NB_LOOPS (ddr));
|
||
}
|
||
}
|
||
|
||
fprintf (outf, ")\n");
|
||
}
|
||
|
||
/* Debug version. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_data_dependence_relation (struct data_dependence_relation *ddr)
|
||
{
|
||
dump_data_dependence_relation (stderr, ddr);
|
||
}
|
||
|
||
/* Dump into FILE all the dependence relations from DDRS. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_data_dependence_relations (FILE *file,
|
||
vec<ddr_p> ddrs)
|
||
{
|
||
unsigned int i;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
FOR_EACH_VEC_ELT (ddrs, i, ddr)
|
||
dump_data_dependence_relation (file, ddr);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (vec<ddr_p> &ref)
|
||
{
|
||
dump_data_dependence_relations (stderr, ref);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (vec<ddr_p> *ptr)
|
||
{
|
||
if (ptr)
|
||
debug (*ptr);
|
||
else
|
||
fprintf (stderr, "<nil>\n");
|
||
}
|
||
|
||
|
||
/* Dump to STDERR all the dependence relations from DDRS. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_data_dependence_relations (vec<ddr_p> ddrs)
|
||
{
|
||
dump_data_dependence_relations (stderr, ddrs);
|
||
}
|
||
|
||
/* Dumps the distance and direction vectors in FILE. DDRS contains
|
||
the dependence relations, and VECT_SIZE is the size of the
|
||
dependence vectors, or in other words the number of loops in the
|
||
considered nest. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs)
|
||
{
|
||
unsigned int i, j;
|
||
struct data_dependence_relation *ddr;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (ddrs, i, ddr)
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
|
||
{
|
||
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), j, v)
|
||
{
|
||
fprintf (file, "DISTANCE_V (");
|
||
print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
|
||
fprintf (file, ")\n");
|
||
}
|
||
|
||
FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), j, v)
|
||
{
|
||
fprintf (file, "DIRECTION_V (");
|
||
print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
|
||
fprintf (file, ")\n");
|
||
}
|
||
}
|
||
|
||
fprintf (file, "\n\n");
|
||
}
|
||
|
||
/* Dumps the data dependence relations DDRS in FILE. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_ddrs (FILE *file, vec<ddr_p> ddrs)
|
||
{
|
||
unsigned int i;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
FOR_EACH_VEC_ELT (ddrs, i, ddr)
|
||
dump_data_dependence_relation (file, ddr);
|
||
|
||
fprintf (file, "\n\n");
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_ddrs (vec<ddr_p> ddrs)
|
||
{
|
||
dump_ddrs (stderr, ddrs);
|
||
}
|
||
|
||
/* Helper function for split_constant_offset. Expresses OP0 CODE OP1
|
||
(the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
|
||
constant of type ssizetype, and returns true. If we cannot do this
|
||
with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
|
||
is returned. */
|
||
|
||
static bool
|
||
split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
|
||
tree *var, tree *off)
|
||
{
|
||
tree var0, var1;
|
||
tree off0, off1;
|
||
enum tree_code ocode = code;
|
||
|
||
*var = NULL_TREE;
|
||
*off = NULL_TREE;
|
||
|
||
switch (code)
|
||
{
|
||
case INTEGER_CST:
|
||
*var = build_int_cst (type, 0);
|
||
*off = fold_convert (ssizetype, op0);
|
||
return true;
|
||
|
||
case POINTER_PLUS_EXPR:
|
||
ocode = PLUS_EXPR;
|
||
/* FALLTHROUGH */
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
split_constant_offset (op0, &var0, &off0);
|
||
split_constant_offset (op1, &var1, &off1);
|
||
*var = fold_build2 (code, type, var0, var1);
|
||
*off = size_binop (ocode, off0, off1);
|
||
return true;
|
||
|
||
case MULT_EXPR:
|
||
if (TREE_CODE (op1) != INTEGER_CST)
|
||
return false;
|
||
|
||
split_constant_offset (op0, &var0, &off0);
|
||
*var = fold_build2 (MULT_EXPR, type, var0, op1);
|
||
*off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
|
||
return true;
|
||
|
||
case ADDR_EXPR:
|
||
{
|
||
tree base, poffset;
|
||
poly_int64 pbitsize, pbitpos, pbytepos;
|
||
machine_mode pmode;
|
||
int punsignedp, preversep, pvolatilep;
|
||
|
||
op0 = TREE_OPERAND (op0, 0);
|
||
base
|
||
= get_inner_reference (op0, &pbitsize, &pbitpos, &poffset, &pmode,
|
||
&punsignedp, &preversep, &pvolatilep);
|
||
|
||
if (!multiple_p (pbitpos, BITS_PER_UNIT, &pbytepos))
|
||
return false;
|
||
base = build_fold_addr_expr (base);
|
||
off0 = ssize_int (pbytepos);
|
||
|
||
if (poffset)
|
||
{
|
||
split_constant_offset (poffset, &poffset, &off1);
|
||
off0 = size_binop (PLUS_EXPR, off0, off1);
|
||
if (POINTER_TYPE_P (TREE_TYPE (base)))
|
||
base = fold_build_pointer_plus (base, poffset);
|
||
else
|
||
base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
|
||
fold_convert (TREE_TYPE (base), poffset));
|
||
}
|
||
|
||
var0 = fold_convert (type, base);
|
||
|
||
/* If variable length types are involved, punt, otherwise casts
|
||
might be converted into ARRAY_REFs in gimplify_conversion.
|
||
To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
|
||
possibly no longer appears in current GIMPLE, might resurface.
|
||
This perhaps could run
|
||
if (CONVERT_EXPR_P (var0))
|
||
{
|
||
gimplify_conversion (&var0);
|
||
// Attempt to fill in any within var0 found ARRAY_REF's
|
||
// element size from corresponding op embedded ARRAY_REF,
|
||
// if unsuccessful, just punt.
|
||
} */
|
||
while (POINTER_TYPE_P (type))
|
||
type = TREE_TYPE (type);
|
||
if (int_size_in_bytes (type) < 0)
|
||
return false;
|
||
|
||
*var = var0;
|
||
*off = off0;
|
||
return true;
|
||
}
|
||
|
||
case SSA_NAME:
|
||
{
|
||
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
|
||
return false;
|
||
|
||
gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
|
||
enum tree_code subcode;
|
||
|
||
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
|
||
return false;
|
||
|
||
var0 = gimple_assign_rhs1 (def_stmt);
|
||
subcode = gimple_assign_rhs_code (def_stmt);
|
||
var1 = gimple_assign_rhs2 (def_stmt);
|
||
|
||
return split_constant_offset_1 (type, var0, subcode, var1, var, off);
|
||
}
|
||
CASE_CONVERT:
|
||
{
|
||
/* We must not introduce undefined overflow, and we must not change the value.
|
||
Hence we're okay if the inner type doesn't overflow to start with
|
||
(pointer or signed), the outer type also is an integer or pointer
|
||
and the outer precision is at least as large as the inner. */
|
||
tree itype = TREE_TYPE (op0);
|
||
if ((POINTER_TYPE_P (itype)
|
||
|| (INTEGRAL_TYPE_P (itype) && !TYPE_OVERFLOW_TRAPS (itype)))
|
||
&& TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
|
||
&& (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
|
||
{
|
||
if (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_WRAPS (itype))
|
||
{
|
||
/* Split the unconverted operand and try to prove that
|
||
wrapping isn't a problem. */
|
||
tree tmp_var, tmp_off;
|
||
split_constant_offset (op0, &tmp_var, &tmp_off);
|
||
|
||
/* See whether we have an SSA_NAME whose range is known
|
||
to be [A, B]. */
|
||
if (TREE_CODE (tmp_var) != SSA_NAME)
|
||
return false;
|
||
wide_int var_min, var_max;
|
||
value_range_type vr_type = get_range_info (tmp_var, &var_min,
|
||
&var_max);
|
||
wide_int var_nonzero = get_nonzero_bits (tmp_var);
|
||
signop sgn = TYPE_SIGN (itype);
|
||
if (intersect_range_with_nonzero_bits (vr_type, &var_min,
|
||
&var_max, var_nonzero,
|
||
sgn) != VR_RANGE)
|
||
return false;
|
||
|
||
/* See whether the range of OP0 (i.e. TMP_VAR + TMP_OFF)
|
||
is known to be [A + TMP_OFF, B + TMP_OFF], with all
|
||
operations done in ITYPE. The addition must overflow
|
||
at both ends of the range or at neither. */
|
||
wi::overflow_type overflow[2];
|
||
unsigned int prec = TYPE_PRECISION (itype);
|
||
wide_int woff = wi::to_wide (tmp_off, prec);
|
||
wide_int op0_min = wi::add (var_min, woff, sgn, &overflow[0]);
|
||
wi::add (var_max, woff, sgn, &overflow[1]);
|
||
if ((overflow[0] != wi::OVF_NONE) != (overflow[1] != wi::OVF_NONE))
|
||
return false;
|
||
|
||
/* Calculate (ssizetype) OP0 - (ssizetype) TMP_VAR. */
|
||
widest_int diff = (widest_int::from (op0_min, sgn)
|
||
- widest_int::from (var_min, sgn));
|
||
var0 = tmp_var;
|
||
*off = wide_int_to_tree (ssizetype, diff);
|
||
}
|
||
else
|
||
split_constant_offset (op0, &var0, off);
|
||
*var = fold_convert (type, var0);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
|
||
will be ssizetype. */
|
||
|
||
void
|
||
split_constant_offset (tree exp, tree *var, tree *off)
|
||
{
|
||
tree type = TREE_TYPE (exp), op0, op1, e, o;
|
||
enum tree_code code;
|
||
|
||
*var = exp;
|
||
*off = ssize_int (0);
|
||
|
||
if (tree_is_chrec (exp)
|
||
|| get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS)
|
||
return;
|
||
|
||
code = TREE_CODE (exp);
|
||
extract_ops_from_tree (exp, &code, &op0, &op1);
|
||
if (split_constant_offset_1 (type, op0, code, op1, &e, &o))
|
||
{
|
||
*var = e;
|
||
*off = o;
|
||
}
|
||
}
|
||
|
||
/* Returns the address ADDR of an object in a canonical shape (without nop
|
||
casts, and with type of pointer to the object). */
|
||
|
||
static tree
|
||
canonicalize_base_object_address (tree addr)
|
||
{
|
||
tree orig = addr;
|
||
|
||
STRIP_NOPS (addr);
|
||
|
||
/* The base address may be obtained by casting from integer, in that case
|
||
keep the cast. */
|
||
if (!POINTER_TYPE_P (TREE_TYPE (addr)))
|
||
return orig;
|
||
|
||
if (TREE_CODE (addr) != ADDR_EXPR)
|
||
return addr;
|
||
|
||
return build_fold_addr_expr (TREE_OPERAND (addr, 0));
|
||
}
|
||
|
||
/* Analyze the behavior of memory reference REF. There are two modes:
|
||
|
||
- BB analysis. In this case we simply split the address into base,
|
||
init and offset components, without reference to any containing loop.
|
||
The resulting base and offset are general expressions and they can
|
||
vary arbitrarily from one iteration of the containing loop to the next.
|
||
The step is always zero.
|
||
|
||
- loop analysis. In this case we analyze the reference both wrt LOOP
|
||
and on the basis that the reference occurs (is "used") in LOOP;
|
||
see the comment above analyze_scalar_evolution_in_loop for more
|
||
information about this distinction. The base, init, offset and
|
||
step fields are all invariant in LOOP.
|
||
|
||
Perform BB analysis if LOOP is null, or if LOOP is the function's
|
||
dummy outermost loop. In other cases perform loop analysis.
|
||
|
||
Return true if the analysis succeeded and store the results in DRB if so.
|
||
BB analysis can only fail for bitfield or reversed-storage accesses. */
|
||
|
||
bool
|
||
dr_analyze_innermost (innermost_loop_behavior *drb, tree ref,
|
||
struct loop *loop)
|
||
{
|
||
poly_int64 pbitsize, pbitpos;
|
||
tree base, poffset;
|
||
machine_mode pmode;
|
||
int punsignedp, preversep, pvolatilep;
|
||
affine_iv base_iv, offset_iv;
|
||
tree init, dinit, step;
|
||
bool in_loop = (loop && loop->num);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "analyze_innermost: ");
|
||
|
||
base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset, &pmode,
|
||
&punsignedp, &preversep, &pvolatilep);
|
||
gcc_assert (base != NULL_TREE);
|
||
|
||
poly_int64 pbytepos;
|
||
if (!multiple_p (pbitpos, BITS_PER_UNIT, &pbytepos))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "failed: bit offset alignment.\n");
|
||
return false;
|
||
}
|
||
|
||
if (preversep)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "failed: reverse storage order.\n");
|
||
return false;
|
||
}
|
||
|
||
/* Calculate the alignment and misalignment for the inner reference. */
|
||
unsigned int HOST_WIDE_INT bit_base_misalignment;
|
||
unsigned int bit_base_alignment;
|
||
get_object_alignment_1 (base, &bit_base_alignment, &bit_base_misalignment);
|
||
|
||
/* There are no bitfield references remaining in BASE, so the values
|
||
we got back must be whole bytes. */
|
||
gcc_assert (bit_base_alignment % BITS_PER_UNIT == 0
|
||
&& bit_base_misalignment % BITS_PER_UNIT == 0);
|
||
unsigned int base_alignment = bit_base_alignment / BITS_PER_UNIT;
|
||
poly_int64 base_misalignment = bit_base_misalignment / BITS_PER_UNIT;
|
||
|
||
if (TREE_CODE (base) == MEM_REF)
|
||
{
|
||
if (!integer_zerop (TREE_OPERAND (base, 1)))
|
||
{
|
||
/* Subtract MOFF from the base and add it to POFFSET instead.
|
||
Adjust the misalignment to reflect the amount we subtracted. */
|
||
poly_offset_int moff = mem_ref_offset (base);
|
||
base_misalignment -= moff.force_shwi ();
|
||
tree mofft = wide_int_to_tree (sizetype, moff);
|
||
if (!poffset)
|
||
poffset = mofft;
|
||
else
|
||
poffset = size_binop (PLUS_EXPR, poffset, mofft);
|
||
}
|
||
base = TREE_OPERAND (base, 0);
|
||
}
|
||
else
|
||
base = build_fold_addr_expr (base);
|
||
|
||
if (in_loop)
|
||
{
|
||
if (!simple_iv (loop, loop, base, &base_iv, true))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "failed: evolution of base is not affine.\n");
|
||
return false;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
base_iv.base = base;
|
||
base_iv.step = ssize_int (0);
|
||
base_iv.no_overflow = true;
|
||
}
|
||
|
||
if (!poffset)
|
||
{
|
||
offset_iv.base = ssize_int (0);
|
||
offset_iv.step = ssize_int (0);
|
||
}
|
||
else
|
||
{
|
||
if (!in_loop)
|
||
{
|
||
offset_iv.base = poffset;
|
||
offset_iv.step = ssize_int (0);
|
||
}
|
||
else if (!simple_iv (loop, loop, poffset, &offset_iv, true))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "failed: evolution of offset is not affine.\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
init = ssize_int (pbytepos);
|
||
|
||
/* Subtract any constant component from the base and add it to INIT instead.
|
||
Adjust the misalignment to reflect the amount we subtracted. */
|
||
split_constant_offset (base_iv.base, &base_iv.base, &dinit);
|
||
init = size_binop (PLUS_EXPR, init, dinit);
|
||
base_misalignment -= TREE_INT_CST_LOW (dinit);
|
||
|
||
split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
|
||
init = size_binop (PLUS_EXPR, init, dinit);
|
||
|
||
step = size_binop (PLUS_EXPR,
|
||
fold_convert (ssizetype, base_iv.step),
|
||
fold_convert (ssizetype, offset_iv.step));
|
||
|
||
base = canonicalize_base_object_address (base_iv.base);
|
||
|
||
/* See if get_pointer_alignment can guarantee a higher alignment than
|
||
the one we calculated above. */
|
||
unsigned int HOST_WIDE_INT alt_misalignment;
|
||
unsigned int alt_alignment;
|
||
get_pointer_alignment_1 (base, &alt_alignment, &alt_misalignment);
|
||
|
||
/* As above, these values must be whole bytes. */
|
||
gcc_assert (alt_alignment % BITS_PER_UNIT == 0
|
||
&& alt_misalignment % BITS_PER_UNIT == 0);
|
||
alt_alignment /= BITS_PER_UNIT;
|
||
alt_misalignment /= BITS_PER_UNIT;
|
||
|
||
if (base_alignment < alt_alignment)
|
||
{
|
||
base_alignment = alt_alignment;
|
||
base_misalignment = alt_misalignment;
|
||
}
|
||
|
||
drb->base_address = base;
|
||
drb->offset = fold_convert (ssizetype, offset_iv.base);
|
||
drb->init = init;
|
||
drb->step = step;
|
||
if (known_misalignment (base_misalignment, base_alignment,
|
||
&drb->base_misalignment))
|
||
drb->base_alignment = base_alignment;
|
||
else
|
||
{
|
||
drb->base_alignment = known_alignment (base_misalignment);
|
||
drb->base_misalignment = 0;
|
||
}
|
||
drb->offset_alignment = highest_pow2_factor (offset_iv.base);
|
||
drb->step_alignment = highest_pow2_factor (step);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "success.\n");
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true if OP is a valid component reference for a DR access
|
||
function. This accepts a subset of what handled_component_p accepts. */
|
||
|
||
static bool
|
||
access_fn_component_p (tree op)
|
||
{
|
||
switch (TREE_CODE (op))
|
||
{
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
case ARRAY_REF:
|
||
return true;
|
||
|
||
case COMPONENT_REF:
|
||
return TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == RECORD_TYPE;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Determines the base object and the list of indices of memory reference
|
||
DR, analyzed in LOOP and instantiated before NEST. */
|
||
|
||
static void
|
||
dr_analyze_indices (struct data_reference *dr, edge nest, loop_p loop)
|
||
{
|
||
vec<tree> access_fns = vNULL;
|
||
tree ref, op;
|
||
tree base, off, access_fn;
|
||
|
||
/* If analyzing a basic-block there are no indices to analyze
|
||
and thus no access functions. */
|
||
if (!nest)
|
||
{
|
||
DR_BASE_OBJECT (dr) = DR_REF (dr);
|
||
DR_ACCESS_FNS (dr).create (0);
|
||
return;
|
||
}
|
||
|
||
ref = DR_REF (dr);
|
||
|
||
/* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
|
||
into a two element array with a constant index. The base is
|
||
then just the immediate underlying object. */
|
||
if (TREE_CODE (ref) == REALPART_EXPR)
|
||
{
|
||
ref = TREE_OPERAND (ref, 0);
|
||
access_fns.safe_push (integer_zero_node);
|
||
}
|
||
else if (TREE_CODE (ref) == IMAGPART_EXPR)
|
||
{
|
||
ref = TREE_OPERAND (ref, 0);
|
||
access_fns.safe_push (integer_one_node);
|
||
}
|
||
|
||
/* Analyze access functions of dimensions we know to be independent.
|
||
The list of component references handled here should be kept in
|
||
sync with access_fn_component_p. */
|
||
while (handled_component_p (ref))
|
||
{
|
||
if (TREE_CODE (ref) == ARRAY_REF)
|
||
{
|
||
op = TREE_OPERAND (ref, 1);
|
||
access_fn = analyze_scalar_evolution (loop, op);
|
||
access_fn = instantiate_scev (nest, loop, access_fn);
|
||
access_fns.safe_push (access_fn);
|
||
}
|
||
else if (TREE_CODE (ref) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
|
||
{
|
||
/* For COMPONENT_REFs of records (but not unions!) use the
|
||
FIELD_DECL offset as constant access function so we can
|
||
disambiguate a[i].f1 and a[i].f2. */
|
||
tree off = component_ref_field_offset (ref);
|
||
off = size_binop (PLUS_EXPR,
|
||
size_binop (MULT_EXPR,
|
||
fold_convert (bitsizetype, off),
|
||
bitsize_int (BITS_PER_UNIT)),
|
||
DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
|
||
access_fns.safe_push (off);
|
||
}
|
||
else
|
||
/* If we have an unhandled component we could not translate
|
||
to an access function stop analyzing. We have determined
|
||
our base object in this case. */
|
||
break;
|
||
|
||
ref = TREE_OPERAND (ref, 0);
|
||
}
|
||
|
||
/* If the address operand of a MEM_REF base has an evolution in the
|
||
analyzed nest, add it as an additional independent access-function. */
|
||
if (TREE_CODE (ref) == MEM_REF)
|
||
{
|
||
op = TREE_OPERAND (ref, 0);
|
||
access_fn = analyze_scalar_evolution (loop, op);
|
||
access_fn = instantiate_scev (nest, loop, access_fn);
|
||
if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
|
||
{
|
||
tree orig_type;
|
||
tree memoff = TREE_OPERAND (ref, 1);
|
||
base = initial_condition (access_fn);
|
||
orig_type = TREE_TYPE (base);
|
||
STRIP_USELESS_TYPE_CONVERSION (base);
|
||
split_constant_offset (base, &base, &off);
|
||
STRIP_USELESS_TYPE_CONVERSION (base);
|
||
/* Fold the MEM_REF offset into the evolutions initial
|
||
value to make more bases comparable. */
|
||
if (!integer_zerop (memoff))
|
||
{
|
||
off = size_binop (PLUS_EXPR, off,
|
||
fold_convert (ssizetype, memoff));
|
||
memoff = build_int_cst (TREE_TYPE (memoff), 0);
|
||
}
|
||
/* Adjust the offset so it is a multiple of the access type
|
||
size and thus we separate bases that can possibly be used
|
||
to produce partial overlaps (which the access_fn machinery
|
||
cannot handle). */
|
||
wide_int rem;
|
||
if (TYPE_SIZE_UNIT (TREE_TYPE (ref))
|
||
&& TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref))) == INTEGER_CST
|
||
&& !integer_zerop (TYPE_SIZE_UNIT (TREE_TYPE (ref))))
|
||
rem = wi::mod_trunc
|
||
(wi::to_wide (off),
|
||
wi::to_wide (TYPE_SIZE_UNIT (TREE_TYPE (ref))),
|
||
SIGNED);
|
||
else
|
||
/* If we can't compute the remainder simply force the initial
|
||
condition to zero. */
|
||
rem = wi::to_wide (off);
|
||
off = wide_int_to_tree (ssizetype, wi::to_wide (off) - rem);
|
||
memoff = wide_int_to_tree (TREE_TYPE (memoff), rem);
|
||
/* And finally replace the initial condition. */
|
||
access_fn = chrec_replace_initial_condition
|
||
(access_fn, fold_convert (orig_type, off));
|
||
/* ??? This is still not a suitable base object for
|
||
dr_may_alias_p - the base object needs to be an
|
||
access that covers the object as whole. With
|
||
an evolution in the pointer this cannot be
|
||
guaranteed.
|
||
As a band-aid, mark the access so we can special-case
|
||
it in dr_may_alias_p. */
|
||
tree old = ref;
|
||
ref = fold_build2_loc (EXPR_LOCATION (ref),
|
||
MEM_REF, TREE_TYPE (ref),
|
||
base, memoff);
|
||
MR_DEPENDENCE_CLIQUE (ref) = MR_DEPENDENCE_CLIQUE (old);
|
||
MR_DEPENDENCE_BASE (ref) = MR_DEPENDENCE_BASE (old);
|
||
DR_UNCONSTRAINED_BASE (dr) = true;
|
||
access_fns.safe_push (access_fn);
|
||
}
|
||
}
|
||
else if (DECL_P (ref))
|
||
{
|
||
/* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
|
||
ref = build2 (MEM_REF, TREE_TYPE (ref),
|
||
build_fold_addr_expr (ref),
|
||
build_int_cst (reference_alias_ptr_type (ref), 0));
|
||
}
|
||
|
||
DR_BASE_OBJECT (dr) = ref;
|
||
DR_ACCESS_FNS (dr) = access_fns;
|
||
}
|
||
|
||
/* Extracts the alias analysis information from the memory reference DR. */
|
||
|
||
static void
|
||
dr_analyze_alias (struct data_reference *dr)
|
||
{
|
||
tree ref = DR_REF (dr);
|
||
tree base = get_base_address (ref), addr;
|
||
|
||
if (INDIRECT_REF_P (base)
|
||
|| TREE_CODE (base) == MEM_REF)
|
||
{
|
||
addr = TREE_OPERAND (base, 0);
|
||
if (TREE_CODE (addr) == SSA_NAME)
|
||
DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
|
||
}
|
||
}
|
||
|
||
/* Frees data reference DR. */
|
||
|
||
void
|
||
free_data_ref (data_reference_p dr)
|
||
{
|
||
DR_ACCESS_FNS (dr).release ();
|
||
free (dr);
|
||
}
|
||
|
||
/* Analyze memory reference MEMREF, which is accessed in STMT.
|
||
The reference is a read if IS_READ is true, otherwise it is a write.
|
||
IS_CONDITIONAL_IN_STMT indicates that the reference is conditional
|
||
within STMT, i.e. that it might not occur even if STMT is executed
|
||
and runs to completion.
|
||
|
||
Return the data_reference description of MEMREF. NEST is the outermost
|
||
loop in which the reference should be instantiated, LOOP is the loop
|
||
in which the data reference should be analyzed. */
|
||
|
||
struct data_reference *
|
||
create_data_ref (edge nest, loop_p loop, tree memref, gimple *stmt,
|
||
bool is_read, bool is_conditional_in_stmt)
|
||
{
|
||
struct data_reference *dr;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Creating dr for ");
|
||
print_generic_expr (dump_file, memref, TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
dr = XCNEW (struct data_reference);
|
||
DR_STMT (dr) = stmt;
|
||
DR_REF (dr) = memref;
|
||
DR_IS_READ (dr) = is_read;
|
||
DR_IS_CONDITIONAL_IN_STMT (dr) = is_conditional_in_stmt;
|
||
|
||
dr_analyze_innermost (&DR_INNERMOST (dr), memref,
|
||
nest != NULL ? loop : NULL);
|
||
dr_analyze_indices (dr, nest, loop);
|
||
dr_analyze_alias (dr);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
unsigned i;
|
||
fprintf (dump_file, "\tbase_address: ");
|
||
print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\toffset from base address: ");
|
||
print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\tconstant offset from base address: ");
|
||
print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\tstep: ");
|
||
print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\tbase alignment: %d", DR_BASE_ALIGNMENT (dr));
|
||
fprintf (dump_file, "\n\tbase misalignment: %d",
|
||
DR_BASE_MISALIGNMENT (dr));
|
||
fprintf (dump_file, "\n\toffset alignment: %d",
|
||
DR_OFFSET_ALIGNMENT (dr));
|
||
fprintf (dump_file, "\n\tstep alignment: %d", DR_STEP_ALIGNMENT (dr));
|
||
fprintf (dump_file, "\n\tbase_object: ");
|
||
print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
|
||
{
|
||
fprintf (dump_file, "\tAccess function %d: ", i);
|
||
print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
|
||
}
|
||
}
|
||
|
||
return dr;
|
||
}
|
||
|
||
/* A helper function computes order between two tree epxressions T1 and T2.
|
||
This is used in comparator functions sorting objects based on the order
|
||
of tree expressions. The function returns -1, 0, or 1. */
|
||
|
||
int
|
||
data_ref_compare_tree (tree t1, tree t2)
|
||
{
|
||
int i, cmp;
|
||
enum tree_code code;
|
||
char tclass;
|
||
|
||
if (t1 == t2)
|
||
return 0;
|
||
if (t1 == NULL)
|
||
return -1;
|
||
if (t2 == NULL)
|
||
return 1;
|
||
|
||
STRIP_USELESS_TYPE_CONVERSION (t1);
|
||
STRIP_USELESS_TYPE_CONVERSION (t2);
|
||
if (t1 == t2)
|
||
return 0;
|
||
|
||
if (TREE_CODE (t1) != TREE_CODE (t2)
|
||
&& ! (CONVERT_EXPR_P (t1) && CONVERT_EXPR_P (t2)))
|
||
return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
|
||
|
||
code = TREE_CODE (t1);
|
||
switch (code)
|
||
{
|
||
case INTEGER_CST:
|
||
return tree_int_cst_compare (t1, t2);
|
||
|
||
case STRING_CST:
|
||
if (TREE_STRING_LENGTH (t1) != TREE_STRING_LENGTH (t2))
|
||
return TREE_STRING_LENGTH (t1) < TREE_STRING_LENGTH (t2) ? -1 : 1;
|
||
return memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
|
||
TREE_STRING_LENGTH (t1));
|
||
|
||
case SSA_NAME:
|
||
if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
|
||
return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
|
||
break;
|
||
|
||
default:
|
||
if (POLY_INT_CST_P (t1))
|
||
return compare_sizes_for_sort (wi::to_poly_widest (t1),
|
||
wi::to_poly_widest (t2));
|
||
|
||
tclass = TREE_CODE_CLASS (code);
|
||
|
||
/* For decls, compare their UIDs. */
|
||
if (tclass == tcc_declaration)
|
||
{
|
||
if (DECL_UID (t1) != DECL_UID (t2))
|
||
return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
|
||
break;
|
||
}
|
||
/* For expressions, compare their operands recursively. */
|
||
else if (IS_EXPR_CODE_CLASS (tclass))
|
||
{
|
||
for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
|
||
{
|
||
cmp = data_ref_compare_tree (TREE_OPERAND (t1, i),
|
||
TREE_OPERAND (t2, i));
|
||
if (cmp != 0)
|
||
return cmp;
|
||
}
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return TRUE it's possible to resolve data dependence DDR by runtime alias
|
||
check. */
|
||
|
||
bool
|
||
runtime_alias_check_p (ddr_p ddr, struct loop *loop, bool speed_p)
|
||
{
|
||
if (dump_enabled_p ())
|
||
{
|
||
dump_printf (MSG_NOTE, "consider run-time aliasing test between ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
|
||
dump_printf (MSG_NOTE, " and ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
|
||
dump_printf (MSG_NOTE, "\n");
|
||
}
|
||
|
||
if (!speed_p)
|
||
{
|
||
if (dump_enabled_p ())
|
||
dump_printf (MSG_MISSED_OPTIMIZATION,
|
||
"runtime alias check not supported when optimizing "
|
||
"for size.\n");
|
||
return false;
|
||
}
|
||
|
||
/* FORNOW: We don't support versioning with outer-loop in either
|
||
vectorization or loop distribution. */
|
||
if (loop != NULL && loop->inner != NULL)
|
||
{
|
||
if (dump_enabled_p ())
|
||
dump_printf (MSG_MISSED_OPTIMIZATION,
|
||
"runtime alias check not supported for outer loop.\n");
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Operator == between two dr_with_seg_len objects.
|
||
|
||
This equality operator is used to make sure two data refs
|
||
are the same one so that we will consider to combine the
|
||
aliasing checks of those two pairs of data dependent data
|
||
refs. */
|
||
|
||
static bool
|
||
operator == (const dr_with_seg_len& d1,
|
||
const dr_with_seg_len& d2)
|
||
{
|
||
return (operand_equal_p (DR_BASE_ADDRESS (d1.dr),
|
||
DR_BASE_ADDRESS (d2.dr), 0)
|
||
&& data_ref_compare_tree (DR_OFFSET (d1.dr), DR_OFFSET (d2.dr)) == 0
|
||
&& data_ref_compare_tree (DR_INIT (d1.dr), DR_INIT (d2.dr)) == 0
|
||
&& data_ref_compare_tree (d1.seg_len, d2.seg_len) == 0
|
||
&& known_eq (d1.access_size, d2.access_size)
|
||
&& d1.align == d2.align);
|
||
}
|
||
|
||
/* Comparison function for sorting objects of dr_with_seg_len_pair_t
|
||
so that we can combine aliasing checks in one scan. */
|
||
|
||
static int
|
||
comp_dr_with_seg_len_pair (const void *pa_, const void *pb_)
|
||
{
|
||
const dr_with_seg_len_pair_t* pa = (const dr_with_seg_len_pair_t *) pa_;
|
||
const dr_with_seg_len_pair_t* pb = (const dr_with_seg_len_pair_t *) pb_;
|
||
const dr_with_seg_len &a1 = pa->first, &a2 = pa->second;
|
||
const dr_with_seg_len &b1 = pb->first, &b2 = pb->second;
|
||
|
||
/* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
|
||
if a and c have the same basic address snd step, and b and d have the same
|
||
address and step. Therefore, if any a&c or b&d don't have the same address
|
||
and step, we don't care the order of those two pairs after sorting. */
|
||
int comp_res;
|
||
|
||
if ((comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (a1.dr),
|
||
DR_BASE_ADDRESS (b1.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (a2.dr),
|
||
DR_BASE_ADDRESS (b2.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_STEP (a1.dr),
|
||
DR_STEP (b1.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_STEP (a2.dr),
|
||
DR_STEP (b2.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_OFFSET (a1.dr),
|
||
DR_OFFSET (b1.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_INIT (a1.dr),
|
||
DR_INIT (b1.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_OFFSET (a2.dr),
|
||
DR_OFFSET (b2.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_INIT (a2.dr),
|
||
DR_INIT (b2.dr))) != 0)
|
||
return comp_res;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Merge alias checks recorded in ALIAS_PAIRS and remove redundant ones.
|
||
FACTOR is number of iterations that each data reference is accessed.
|
||
|
||
Basically, for each pair of dependent data refs store_ptr_0 & load_ptr_0,
|
||
we create an expression:
|
||
|
||
((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
|
||
|| (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
|
||
|
||
for aliasing checks. However, in some cases we can decrease the number
|
||
of checks by combining two checks into one. For example, suppose we have
|
||
another pair of data refs store_ptr_0 & load_ptr_1, and if the following
|
||
condition is satisfied:
|
||
|
||
load_ptr_0 < load_ptr_1 &&
|
||
load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
|
||
|
||
(this condition means, in each iteration of vectorized loop, the accessed
|
||
memory of store_ptr_0 cannot be between the memory of load_ptr_0 and
|
||
load_ptr_1.)
|
||
|
||
we then can use only the following expression to finish the alising checks
|
||
between store_ptr_0 & load_ptr_0 and store_ptr_0 & load_ptr_1:
|
||
|
||
((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
|
||
|| (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
|
||
|
||
Note that we only consider that load_ptr_0 and load_ptr_1 have the same
|
||
basic address. */
|
||
|
||
void
|
||
prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *alias_pairs,
|
||
poly_uint64)
|
||
{
|
||
/* Sort the collected data ref pairs so that we can scan them once to
|
||
combine all possible aliasing checks. */
|
||
alias_pairs->qsort (comp_dr_with_seg_len_pair);
|
||
|
||
/* Scan the sorted dr pairs and check if we can combine alias checks
|
||
of two neighboring dr pairs. */
|
||
for (size_t i = 1; i < alias_pairs->length (); ++i)
|
||
{
|
||
/* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
|
||
dr_with_seg_len *dr_a1 = &(*alias_pairs)[i-1].first,
|
||
*dr_b1 = &(*alias_pairs)[i-1].second,
|
||
*dr_a2 = &(*alias_pairs)[i].first,
|
||
*dr_b2 = &(*alias_pairs)[i].second;
|
||
|
||
/* Remove duplicate data ref pairs. */
|
||
if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
|
||
{
|
||
if (dump_enabled_p ())
|
||
{
|
||
dump_printf (MSG_NOTE, "found equal ranges ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a1->dr));
|
||
dump_printf (MSG_NOTE, ", ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b1->dr));
|
||
dump_printf (MSG_NOTE, " and ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a2->dr));
|
||
dump_printf (MSG_NOTE, ", ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b2->dr));
|
||
dump_printf (MSG_NOTE, "\n");
|
||
}
|
||
alias_pairs->ordered_remove (i--);
|
||
continue;
|
||
}
|
||
|
||
if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
|
||
{
|
||
/* We consider the case that DR_B1 and DR_B2 are same memrefs,
|
||
and DR_A1 and DR_A2 are two consecutive memrefs. */
|
||
if (*dr_a1 == *dr_a2)
|
||
{
|
||
std::swap (dr_a1, dr_b1);
|
||
std::swap (dr_a2, dr_b2);
|
||
}
|
||
|
||
poly_int64 init_a1, init_a2;
|
||
/* Only consider cases in which the distance between the initial
|
||
DR_A1 and the initial DR_A2 is known at compile time. */
|
||
if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
|
||
DR_BASE_ADDRESS (dr_a2->dr), 0)
|
||
|| !operand_equal_p (DR_OFFSET (dr_a1->dr),
|
||
DR_OFFSET (dr_a2->dr), 0)
|
||
|| !poly_int_tree_p (DR_INIT (dr_a1->dr), &init_a1)
|
||
|| !poly_int_tree_p (DR_INIT (dr_a2->dr), &init_a2))
|
||
continue;
|
||
|
||
/* Don't combine if we can't tell which one comes first. */
|
||
if (!ordered_p (init_a1, init_a2))
|
||
continue;
|
||
|
||
/* Make sure dr_a1 starts left of dr_a2. */
|
||
if (maybe_gt (init_a1, init_a2))
|
||
{
|
||
std::swap (*dr_a1, *dr_a2);
|
||
std::swap (init_a1, init_a2);
|
||
}
|
||
|
||
/* Work out what the segment length would be if we did combine
|
||
DR_A1 and DR_A2:
|
||
|
||
- If DR_A1 and DR_A2 have equal lengths, that length is
|
||
also the combined length.
|
||
|
||
- If DR_A1 and DR_A2 both have negative "lengths", the combined
|
||
length is the lower bound on those lengths.
|
||
|
||
- If DR_A1 and DR_A2 both have positive lengths, the combined
|
||
length is the upper bound on those lengths.
|
||
|
||
Other cases are unlikely to give a useful combination.
|
||
|
||
The lengths both have sizetype, so the sign is taken from
|
||
the step instead. */
|
||
if (!operand_equal_p (dr_a1->seg_len, dr_a2->seg_len, 0))
|
||
{
|
||
poly_uint64 seg_len_a1, seg_len_a2;
|
||
if (!poly_int_tree_p (dr_a1->seg_len, &seg_len_a1)
|
||
|| !poly_int_tree_p (dr_a2->seg_len, &seg_len_a2))
|
||
continue;
|
||
|
||
tree indicator_a = dr_direction_indicator (dr_a1->dr);
|
||
if (TREE_CODE (indicator_a) != INTEGER_CST)
|
||
continue;
|
||
|
||
tree indicator_b = dr_direction_indicator (dr_a2->dr);
|
||
if (TREE_CODE (indicator_b) != INTEGER_CST)
|
||
continue;
|
||
|
||
int sign_a = tree_int_cst_sgn (indicator_a);
|
||
int sign_b = tree_int_cst_sgn (indicator_b);
|
||
|
||
poly_uint64 new_seg_len;
|
||
if (sign_a <= 0 && sign_b <= 0)
|
||
new_seg_len = lower_bound (seg_len_a1, seg_len_a2);
|
||
else if (sign_a >= 0 && sign_b >= 0)
|
||
new_seg_len = upper_bound (seg_len_a1, seg_len_a2);
|
||
else
|
||
continue;
|
||
|
||
dr_a1->seg_len = build_int_cst (TREE_TYPE (dr_a1->seg_len),
|
||
new_seg_len);
|
||
dr_a1->align = MIN (dr_a1->align, known_alignment (new_seg_len));
|
||
}
|
||
|
||
/* This is always positive due to the swap above. */
|
||
poly_uint64 diff = init_a2 - init_a1;
|
||
|
||
/* The new check will start at DR_A1. Make sure that its access
|
||
size encompasses the initial DR_A2. */
|
||
if (maybe_lt (dr_a1->access_size, diff + dr_a2->access_size))
|
||
{
|
||
dr_a1->access_size = upper_bound (dr_a1->access_size,
|
||
diff + dr_a2->access_size);
|
||
unsigned int new_align = known_alignment (dr_a1->access_size);
|
||
dr_a1->align = MIN (dr_a1->align, new_align);
|
||
}
|
||
if (dump_enabled_p ())
|
||
{
|
||
dump_printf (MSG_NOTE, "merging ranges for ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a1->dr));
|
||
dump_printf (MSG_NOTE, ", ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b1->dr));
|
||
dump_printf (MSG_NOTE, " and ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a2->dr));
|
||
dump_printf (MSG_NOTE, ", ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b2->dr));
|
||
dump_printf (MSG_NOTE, "\n");
|
||
}
|
||
alias_pairs->ordered_remove (i);
|
||
i--;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Given LOOP's two data references and segment lengths described by DR_A
|
||
and DR_B, create expression checking if the two addresses ranges intersect
|
||
with each other based on index of the two addresses. This can only be
|
||
done if DR_A and DR_B referring to the same (array) object and the index
|
||
is the only difference. For example:
|
||
|
||
DR_A DR_B
|
||
data-ref arr[i] arr[j]
|
||
base_object arr arr
|
||
index {i_0, +, 1}_loop {j_0, +, 1}_loop
|
||
|
||
The addresses and their index are like:
|
||
|
||
|<- ADDR_A ->| |<- ADDR_B ->|
|
||
------------------------------------------------------->
|
||
| | | | | | | | | |
|
||
------------------------------------------------------->
|
||
i_0 ... i_0+4 j_0 ... j_0+4
|
||
|
||
We can create expression based on index rather than address:
|
||
|
||
(i_0 + 4 < j_0 || j_0 + 4 < i_0)
|
||
|
||
Note evolution step of index needs to be considered in comparison. */
|
||
|
||
static bool
|
||
create_intersect_range_checks_index (struct loop *loop, tree *cond_expr,
|
||
const dr_with_seg_len& dr_a,
|
||
const dr_with_seg_len& dr_b)
|
||
{
|
||
if (integer_zerop (DR_STEP (dr_a.dr))
|
||
|| integer_zerop (DR_STEP (dr_b.dr))
|
||
|| DR_NUM_DIMENSIONS (dr_a.dr) != DR_NUM_DIMENSIONS (dr_b.dr))
|
||
return false;
|
||
|
||
poly_uint64 seg_len1, seg_len2;
|
||
if (!poly_int_tree_p (dr_a.seg_len, &seg_len1)
|
||
|| !poly_int_tree_p (dr_b.seg_len, &seg_len2))
|
||
return false;
|
||
|
||
if (!tree_fits_shwi_p (DR_STEP (dr_a.dr)))
|
||
return false;
|
||
|
||
if (!operand_equal_p (DR_BASE_OBJECT (dr_a.dr), DR_BASE_OBJECT (dr_b.dr), 0))
|
||
return false;
|
||
|
||
if (!operand_equal_p (DR_STEP (dr_a.dr), DR_STEP (dr_b.dr), 0))
|
||
return false;
|
||
|
||
gcc_assert (TREE_CODE (DR_STEP (dr_a.dr)) == INTEGER_CST);
|
||
|
||
bool neg_step = tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0;
|
||
unsigned HOST_WIDE_INT abs_step = tree_to_shwi (DR_STEP (dr_a.dr));
|
||
if (neg_step)
|
||
{
|
||
abs_step = -abs_step;
|
||
seg_len1 = -seg_len1;
|
||
seg_len2 = -seg_len2;
|
||
}
|
||
else
|
||
{
|
||
/* Include the access size in the length, so that we only have one
|
||
tree addition below. */
|
||
seg_len1 += dr_a.access_size;
|
||
seg_len2 += dr_b.access_size;
|
||
}
|
||
|
||
/* Infer the number of iterations with which the memory segment is accessed
|
||
by DR. In other words, alias is checked if memory segment accessed by
|
||
DR_A in some iterations intersect with memory segment accessed by DR_B
|
||
in the same amount iterations.
|
||
Note segnment length is a linear function of number of iterations with
|
||
DR_STEP as the coefficient. */
|
||
poly_uint64 niter_len1, niter_len2;
|
||
if (!can_div_trunc_p (seg_len1 + abs_step - 1, abs_step, &niter_len1)
|
||
|| !can_div_trunc_p (seg_len2 + abs_step - 1, abs_step, &niter_len2))
|
||
return false;
|
||
|
||
poly_uint64 niter_access1 = 0, niter_access2 = 0;
|
||
if (neg_step)
|
||
{
|
||
/* Divide each access size by the byte step, rounding up. */
|
||
if (!can_div_trunc_p (dr_a.access_size - abs_step - 1,
|
||
abs_step, &niter_access1)
|
||
|| !can_div_trunc_p (dr_b.access_size + abs_step - 1,
|
||
abs_step, &niter_access2))
|
||
return false;
|
||
}
|
||
|
||
unsigned int i;
|
||
for (i = 0; i < DR_NUM_DIMENSIONS (dr_a.dr); i++)
|
||
{
|
||
tree access1 = DR_ACCESS_FN (dr_a.dr, i);
|
||
tree access2 = DR_ACCESS_FN (dr_b.dr, i);
|
||
/* Two indices must be the same if they are not scev, or not scev wrto
|
||
current loop being vecorized. */
|
||
if (TREE_CODE (access1) != POLYNOMIAL_CHREC
|
||
|| TREE_CODE (access2) != POLYNOMIAL_CHREC
|
||
|| CHREC_VARIABLE (access1) != (unsigned)loop->num
|
||
|| CHREC_VARIABLE (access2) != (unsigned)loop->num)
|
||
{
|
||
if (operand_equal_p (access1, access2, 0))
|
||
continue;
|
||
|
||
return false;
|
||
}
|
||
/* The two indices must have the same step. */
|
||
if (!operand_equal_p (CHREC_RIGHT (access1), CHREC_RIGHT (access2), 0))
|
||
return false;
|
||
|
||
tree idx_step = CHREC_RIGHT (access1);
|
||
/* Index must have const step, otherwise DR_STEP won't be constant. */
|
||
gcc_assert (TREE_CODE (idx_step) == INTEGER_CST);
|
||
/* Index must evaluate in the same direction as DR. */
|
||
gcc_assert (!neg_step || tree_int_cst_sign_bit (idx_step) == 1);
|
||
|
||
tree min1 = CHREC_LEFT (access1);
|
||
tree min2 = CHREC_LEFT (access2);
|
||
if (!types_compatible_p (TREE_TYPE (min1), TREE_TYPE (min2)))
|
||
return false;
|
||
|
||
/* Ideally, alias can be checked against loop's control IV, but we
|
||
need to prove linear mapping between control IV and reference
|
||
index. Although that should be true, we check against (array)
|
||
index of data reference. Like segment length, index length is
|
||
linear function of the number of iterations with index_step as
|
||
the coefficient, i.e, niter_len * idx_step. */
|
||
tree idx_len1 = fold_build2 (MULT_EXPR, TREE_TYPE (min1), idx_step,
|
||
build_int_cst (TREE_TYPE (min1),
|
||
niter_len1));
|
||
tree idx_len2 = fold_build2 (MULT_EXPR, TREE_TYPE (min2), idx_step,
|
||
build_int_cst (TREE_TYPE (min2),
|
||
niter_len2));
|
||
tree max1 = fold_build2 (PLUS_EXPR, TREE_TYPE (min1), min1, idx_len1);
|
||
tree max2 = fold_build2 (PLUS_EXPR, TREE_TYPE (min2), min2, idx_len2);
|
||
/* Adjust ranges for negative step. */
|
||
if (neg_step)
|
||
{
|
||
/* IDX_LEN1 and IDX_LEN2 are negative in this case. */
|
||
std::swap (min1, max1);
|
||
std::swap (min2, max2);
|
||
|
||
/* As with the lengths just calculated, we've measured the access
|
||
sizes in iterations, so multiply them by the index step. */
|
||
tree idx_access1
|
||
= fold_build2 (MULT_EXPR, TREE_TYPE (min1), idx_step,
|
||
build_int_cst (TREE_TYPE (min1), niter_access1));
|
||
tree idx_access2
|
||
= fold_build2 (MULT_EXPR, TREE_TYPE (min2), idx_step,
|
||
build_int_cst (TREE_TYPE (min2), niter_access2));
|
||
|
||
/* MINUS_EXPR because the above values are negative. */
|
||
max1 = fold_build2 (MINUS_EXPR, TREE_TYPE (max1), max1, idx_access1);
|
||
max2 = fold_build2 (MINUS_EXPR, TREE_TYPE (max2), max2, idx_access2);
|
||
}
|
||
tree part_cond_expr
|
||
= fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
||
fold_build2 (LE_EXPR, boolean_type_node, max1, min2),
|
||
fold_build2 (LE_EXPR, boolean_type_node, max2, min1));
|
||
if (*cond_expr)
|
||
*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
||
*cond_expr, part_cond_expr);
|
||
else
|
||
*cond_expr = part_cond_expr;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* If ALIGN is nonzero, set up *SEQ_MIN_OUT and *SEQ_MAX_OUT so that for
|
||
every address ADDR accessed by D:
|
||
|
||
*SEQ_MIN_OUT <= ADDR (== ADDR & -ALIGN) <= *SEQ_MAX_OUT
|
||
|
||
In this case, every element accessed by D is aligned to at least
|
||
ALIGN bytes.
|
||
|
||
If ALIGN is zero then instead set *SEG_MAX_OUT so that:
|
||
|
||
*SEQ_MIN_OUT <= ADDR < *SEQ_MAX_OUT. */
|
||
|
||
static void
|
||
get_segment_min_max (const dr_with_seg_len &d, tree *seg_min_out,
|
||
tree *seg_max_out, HOST_WIDE_INT align)
|
||
{
|
||
/* Each access has the following pattern:
|
||
|
||
<- |seg_len| ->
|
||
<--- A: -ve step --->
|
||
+-----+-------+-----+-------+-----+
|
||
| n-1 | ,.... | 0 | ..... | n-1 |
|
||
+-----+-------+-----+-------+-----+
|
||
<--- B: +ve step --->
|
||
<- |seg_len| ->
|
||
|
|
||
base address
|
||
|
||
where "n" is the number of scalar iterations covered by the segment.
|
||
(This should be VF for a particular pair if we know that both steps
|
||
are the same, otherwise it will be the full number of scalar loop
|
||
iterations.)
|
||
|
||
A is the range of bytes accessed when the step is negative,
|
||
B is the range when the step is positive.
|
||
|
||
If the access size is "access_size" bytes, the lowest addressed byte is:
|
||
|
||
base + (step < 0 ? seg_len : 0) [LB]
|
||
|
||
and the highest addressed byte is always below:
|
||
|
||
base + (step < 0 ? 0 : seg_len) + access_size [UB]
|
||
|
||
Thus:
|
||
|
||
LB <= ADDR < UB
|
||
|
||
If ALIGN is nonzero, all three values are aligned to at least ALIGN
|
||
bytes, so:
|
||
|
||
LB <= ADDR <= UB - ALIGN
|
||
|
||
where "- ALIGN" folds naturally with the "+ access_size" and often
|
||
cancels it out.
|
||
|
||
We don't try to simplify LB and UB beyond this (e.g. by using
|
||
MIN and MAX based on whether seg_len rather than the stride is
|
||
negative) because it is possible for the absolute size of the
|
||
segment to overflow the range of a ssize_t.
|
||
|
||
Keeping the pointer_plus outside of the cond_expr should allow
|
||
the cond_exprs to be shared with other alias checks. */
|
||
tree indicator = dr_direction_indicator (d.dr);
|
||
tree neg_step = fold_build2 (LT_EXPR, boolean_type_node,
|
||
fold_convert (ssizetype, indicator),
|
||
ssize_int (0));
|
||
tree addr_base = fold_build_pointer_plus (DR_BASE_ADDRESS (d.dr),
|
||
DR_OFFSET (d.dr));
|
||
addr_base = fold_build_pointer_plus (addr_base, DR_INIT (d.dr));
|
||
tree seg_len
|
||
= fold_convert (sizetype, rewrite_to_non_trapping_overflow (d.seg_len));
|
||
|
||
tree min_reach = fold_build3 (COND_EXPR, sizetype, neg_step,
|
||
seg_len, size_zero_node);
|
||
tree max_reach = fold_build3 (COND_EXPR, sizetype, neg_step,
|
||
size_zero_node, seg_len);
|
||
max_reach = fold_build2 (PLUS_EXPR, sizetype, max_reach,
|
||
size_int (d.access_size - align));
|
||
|
||
*seg_min_out = fold_build_pointer_plus (addr_base, min_reach);
|
||
*seg_max_out = fold_build_pointer_plus (addr_base, max_reach);
|
||
}
|
||
|
||
/* Given two data references and segment lengths described by DR_A and DR_B,
|
||
create expression checking if the two addresses ranges intersect with
|
||
each other:
|
||
|
||
((DR_A_addr_0 + DR_A_segment_length_0) <= DR_B_addr_0)
|
||
|| (DR_B_addr_0 + DER_B_segment_length_0) <= DR_A_addr_0)) */
|
||
|
||
static void
|
||
create_intersect_range_checks (struct loop *loop, tree *cond_expr,
|
||
const dr_with_seg_len& dr_a,
|
||
const dr_with_seg_len& dr_b)
|
||
{
|
||
*cond_expr = NULL_TREE;
|
||
if (create_intersect_range_checks_index (loop, cond_expr, dr_a, dr_b))
|
||
return;
|
||
|
||
unsigned HOST_WIDE_INT min_align;
|
||
tree_code cmp_code;
|
||
if (TREE_CODE (DR_STEP (dr_a.dr)) == INTEGER_CST
|
||
&& TREE_CODE (DR_STEP (dr_b.dr)) == INTEGER_CST)
|
||
{
|
||
/* In this case adding access_size to seg_len is likely to give
|
||
a simple X * step, where X is either the number of scalar
|
||
iterations or the vectorization factor. We're better off
|
||
keeping that, rather than subtracting an alignment from it.
|
||
|
||
In this case the maximum values are exclusive and so there is
|
||
no alias if the maximum of one segment equals the minimum
|
||
of another. */
|
||
min_align = 0;
|
||
cmp_code = LE_EXPR;
|
||
}
|
||
else
|
||
{
|
||
/* Calculate the minimum alignment shared by all four pointers,
|
||
then arrange for this alignment to be subtracted from the
|
||
exclusive maximum values to get inclusive maximum values.
|
||
This "- min_align" is cumulative with a "+ access_size"
|
||
in the calculation of the maximum values. In the best
|
||
(and common) case, the two cancel each other out, leaving
|
||
us with an inclusive bound based only on seg_len. In the
|
||
worst case we're simply adding a smaller number than before.
|
||
|
||
Because the maximum values are inclusive, there is an alias
|
||
if the maximum value of one segment is equal to the minimum
|
||
value of the other. */
|
||
min_align = MIN (dr_a.align, dr_b.align);
|
||
cmp_code = LT_EXPR;
|
||
}
|
||
|
||
tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
|
||
get_segment_min_max (dr_a, &seg_a_min, &seg_a_max, min_align);
|
||
get_segment_min_max (dr_b, &seg_b_min, &seg_b_max, min_align);
|
||
|
||
*cond_expr
|
||
= fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
||
fold_build2 (cmp_code, boolean_type_node, seg_a_max, seg_b_min),
|
||
fold_build2 (cmp_code, boolean_type_node, seg_b_max, seg_a_min));
|
||
}
|
||
|
||
/* Create a conditional expression that represents the run-time checks for
|
||
overlapping of address ranges represented by a list of data references
|
||
pairs passed in ALIAS_PAIRS. Data references are in LOOP. The returned
|
||
COND_EXPR is the conditional expression to be used in the if statement
|
||
that controls which version of the loop gets executed at runtime. */
|
||
|
||
void
|
||
create_runtime_alias_checks (struct loop *loop,
|
||
vec<dr_with_seg_len_pair_t> *alias_pairs,
|
||
tree * cond_expr)
|
||
{
|
||
tree part_cond_expr;
|
||
|
||
fold_defer_overflow_warnings ();
|
||
for (size_t i = 0, s = alias_pairs->length (); i < s; ++i)
|
||
{
|
||
const dr_with_seg_len& dr_a = (*alias_pairs)[i].first;
|
||
const dr_with_seg_len& dr_b = (*alias_pairs)[i].second;
|
||
|
||
if (dump_enabled_p ())
|
||
{
|
||
dump_printf (MSG_NOTE, "create runtime check for data references ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a.dr));
|
||
dump_printf (MSG_NOTE, " and ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b.dr));
|
||
dump_printf (MSG_NOTE, "\n");
|
||
}
|
||
|
||
/* Create condition expression for each pair data references. */
|
||
create_intersect_range_checks (loop, &part_cond_expr, dr_a, dr_b);
|
||
if (*cond_expr)
|
||
*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
||
*cond_expr, part_cond_expr);
|
||
else
|
||
*cond_expr = part_cond_expr;
|
||
}
|
||
fold_undefer_and_ignore_overflow_warnings ();
|
||
}
|
||
|
||
/* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
|
||
expressions. */
|
||
static bool
|
||
dr_equal_offsets_p1 (tree offset1, tree offset2)
|
||
{
|
||
bool res;
|
||
|
||
STRIP_NOPS (offset1);
|
||
STRIP_NOPS (offset2);
|
||
|
||
if (offset1 == offset2)
|
||
return true;
|
||
|
||
if (TREE_CODE (offset1) != TREE_CODE (offset2)
|
||
|| (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
|
||
return false;
|
||
|
||
res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
|
||
TREE_OPERAND (offset2, 0));
|
||
|
||
if (!res || !BINARY_CLASS_P (offset1))
|
||
return res;
|
||
|
||
res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
|
||
TREE_OPERAND (offset2, 1));
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Check if DRA and DRB have equal offsets. */
|
||
bool
|
||
dr_equal_offsets_p (struct data_reference *dra,
|
||
struct data_reference *drb)
|
||
{
|
||
tree offset1, offset2;
|
||
|
||
offset1 = DR_OFFSET (dra);
|
||
offset2 = DR_OFFSET (drb);
|
||
|
||
return dr_equal_offsets_p1 (offset1, offset2);
|
||
}
|
||
|
||
/* Returns true if FNA == FNB. */
|
||
|
||
static bool
|
||
affine_function_equal_p (affine_fn fna, affine_fn fnb)
|
||
{
|
||
unsigned i, n = fna.length ();
|
||
|
||
if (n != fnb.length ())
|
||
return false;
|
||
|
||
for (i = 0; i < n; i++)
|
||
if (!operand_equal_p (fna[i], fnb[i], 0))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* If all the functions in CF are the same, returns one of them,
|
||
otherwise returns NULL. */
|
||
|
||
static affine_fn
|
||
common_affine_function (conflict_function *cf)
|
||
{
|
||
unsigned i;
|
||
affine_fn comm;
|
||
|
||
if (!CF_NONTRIVIAL_P (cf))
|
||
return affine_fn ();
|
||
|
||
comm = cf->fns[0];
|
||
|
||
for (i = 1; i < cf->n; i++)
|
||
if (!affine_function_equal_p (comm, cf->fns[i]))
|
||
return affine_fn ();
|
||
|
||
return comm;
|
||
}
|
||
|
||
/* Returns the base of the affine function FN. */
|
||
|
||
static tree
|
||
affine_function_base (affine_fn fn)
|
||
{
|
||
return fn[0];
|
||
}
|
||
|
||
/* Returns true if FN is a constant. */
|
||
|
||
static bool
|
||
affine_function_constant_p (affine_fn fn)
|
||
{
|
||
unsigned i;
|
||
tree coef;
|
||
|
||
for (i = 1; fn.iterate (i, &coef); i++)
|
||
if (!integer_zerop (coef))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Returns true if FN is the zero constant function. */
|
||
|
||
static bool
|
||
affine_function_zero_p (affine_fn fn)
|
||
{
|
||
return (integer_zerop (affine_function_base (fn))
|
||
&& affine_function_constant_p (fn));
|
||
}
|
||
|
||
/* Returns a signed integer type with the largest precision from TA
|
||
and TB. */
|
||
|
||
static tree
|
||
signed_type_for_types (tree ta, tree tb)
|
||
{
|
||
if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
|
||
return signed_type_for (ta);
|
||
else
|
||
return signed_type_for (tb);
|
||
}
|
||
|
||
/* Applies operation OP on affine functions FNA and FNB, and returns the
|
||
result. */
|
||
|
||
static affine_fn
|
||
affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
|
||
{
|
||
unsigned i, n, m;
|
||
affine_fn ret;
|
||
tree coef;
|
||
|
||
if (fnb.length () > fna.length ())
|
||
{
|
||
n = fna.length ();
|
||
m = fnb.length ();
|
||
}
|
||
else
|
||
{
|
||
n = fnb.length ();
|
||
m = fna.length ();
|
||
}
|
||
|
||
ret.create (m);
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
tree type = signed_type_for_types (TREE_TYPE (fna[i]),
|
||
TREE_TYPE (fnb[i]));
|
||
ret.quick_push (fold_build2 (op, type, fna[i], fnb[i]));
|
||
}
|
||
|
||
for (; fna.iterate (i, &coef); i++)
|
||
ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
|
||
coef, integer_zero_node));
|
||
for (; fnb.iterate (i, &coef); i++)
|
||
ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
|
||
integer_zero_node, coef));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Returns the sum of affine functions FNA and FNB. */
|
||
|
||
static affine_fn
|
||
affine_fn_plus (affine_fn fna, affine_fn fnb)
|
||
{
|
||
return affine_fn_op (PLUS_EXPR, fna, fnb);
|
||
}
|
||
|
||
/* Returns the difference of affine functions FNA and FNB. */
|
||
|
||
static affine_fn
|
||
affine_fn_minus (affine_fn fna, affine_fn fnb)
|
||
{
|
||
return affine_fn_op (MINUS_EXPR, fna, fnb);
|
||
}
|
||
|
||
/* Frees affine function FN. */
|
||
|
||
static void
|
||
affine_fn_free (affine_fn fn)
|
||
{
|
||
fn.release ();
|
||
}
|
||
|
||
/* Determine for each subscript in the data dependence relation DDR
|
||
the distance. */
|
||
|
||
static void
|
||
compute_subscript_distance (struct data_dependence_relation *ddr)
|
||
{
|
||
conflict_function *cf_a, *cf_b;
|
||
affine_fn fn_a, fn_b, diff;
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
struct subscript *subscript;
|
||
|
||
subscript = DDR_SUBSCRIPT (ddr, i);
|
||
cf_a = SUB_CONFLICTS_IN_A (subscript);
|
||
cf_b = SUB_CONFLICTS_IN_B (subscript);
|
||
|
||
fn_a = common_affine_function (cf_a);
|
||
fn_b = common_affine_function (cf_b);
|
||
if (!fn_a.exists () || !fn_b.exists ())
|
||
{
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
return;
|
||
}
|
||
diff = affine_fn_minus (fn_a, fn_b);
|
||
|
||
if (affine_function_constant_p (diff))
|
||
SUB_DISTANCE (subscript) = affine_function_base (diff);
|
||
else
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
|
||
affine_fn_free (diff);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Returns the conflict function for "unknown". */
|
||
|
||
static conflict_function *
|
||
conflict_fn_not_known (void)
|
||
{
|
||
conflict_function *fn = XCNEW (conflict_function);
|
||
fn->n = NOT_KNOWN;
|
||
|
||
return fn;
|
||
}
|
||
|
||
/* Returns the conflict function for "independent". */
|
||
|
||
static conflict_function *
|
||
conflict_fn_no_dependence (void)
|
||
{
|
||
conflict_function *fn = XCNEW (conflict_function);
|
||
fn->n = NO_DEPENDENCE;
|
||
|
||
return fn;
|
||
}
|
||
|
||
/* Returns true if the address of OBJ is invariant in LOOP. */
|
||
|
||
static bool
|
||
object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
|
||
{
|
||
while (handled_component_p (obj))
|
||
{
|
||
if (TREE_CODE (obj) == ARRAY_REF)
|
||
{
|
||
for (int i = 1; i < 4; ++i)
|
||
if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, i),
|
||
loop->num))
|
||
return false;
|
||
}
|
||
else if (TREE_CODE (obj) == COMPONENT_REF)
|
||
{
|
||
if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
|
||
loop->num))
|
||
return false;
|
||
}
|
||
obj = TREE_OPERAND (obj, 0);
|
||
}
|
||
|
||
if (!INDIRECT_REF_P (obj)
|
||
&& TREE_CODE (obj) != MEM_REF)
|
||
return true;
|
||
|
||
return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
|
||
loop->num);
|
||
}
|
||
|
||
/* Returns false if we can prove that data references A and B do not alias,
|
||
true otherwise. If LOOP_NEST is false no cross-iteration aliases are
|
||
considered. */
|
||
|
||
bool
|
||
dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
|
||
bool loop_nest)
|
||
{
|
||
tree addr_a = DR_BASE_OBJECT (a);
|
||
tree addr_b = DR_BASE_OBJECT (b);
|
||
|
||
/* If we are not processing a loop nest but scalar code we
|
||
do not need to care about possible cross-iteration dependences
|
||
and thus can process the full original reference. Do so,
|
||
similar to how loop invariant motion applies extra offset-based
|
||
disambiguation. */
|
||
if (!loop_nest)
|
||
{
|
||
aff_tree off1, off2;
|
||
poly_widest_int size1, size2;
|
||
get_inner_reference_aff (DR_REF (a), &off1, &size1);
|
||
get_inner_reference_aff (DR_REF (b), &off2, &size2);
|
||
aff_combination_scale (&off1, -1);
|
||
aff_combination_add (&off2, &off1);
|
||
if (aff_comb_cannot_overlap_p (&off2, size1, size2))
|
||
return false;
|
||
}
|
||
|
||
if ((TREE_CODE (addr_a) == MEM_REF || TREE_CODE (addr_a) == TARGET_MEM_REF)
|
||
&& (TREE_CODE (addr_b) == MEM_REF || TREE_CODE (addr_b) == TARGET_MEM_REF)
|
||
&& MR_DEPENDENCE_CLIQUE (addr_a) == MR_DEPENDENCE_CLIQUE (addr_b)
|
||
&& MR_DEPENDENCE_BASE (addr_a) != MR_DEPENDENCE_BASE (addr_b))
|
||
return false;
|
||
|
||
/* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
|
||
do not know the size of the base-object. So we cannot do any
|
||
offset/overlap based analysis but have to rely on points-to
|
||
information only. */
|
||
if (TREE_CODE (addr_a) == MEM_REF
|
||
&& (DR_UNCONSTRAINED_BASE (a)
|
||
|| TREE_CODE (TREE_OPERAND (addr_a, 0)) == SSA_NAME))
|
||
{
|
||
/* For true dependences we can apply TBAA. */
|
||
if (flag_strict_aliasing
|
||
&& DR_IS_WRITE (a) && DR_IS_READ (b)
|
||
&& !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
|
||
get_alias_set (DR_REF (b))))
|
||
return false;
|
||
if (TREE_CODE (addr_b) == MEM_REF)
|
||
return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
|
||
TREE_OPERAND (addr_b, 0));
|
||
else
|
||
return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
|
||
build_fold_addr_expr (addr_b));
|
||
}
|
||
else if (TREE_CODE (addr_b) == MEM_REF
|
||
&& (DR_UNCONSTRAINED_BASE (b)
|
||
|| TREE_CODE (TREE_OPERAND (addr_b, 0)) == SSA_NAME))
|
||
{
|
||
/* For true dependences we can apply TBAA. */
|
||
if (flag_strict_aliasing
|
||
&& DR_IS_WRITE (a) && DR_IS_READ (b)
|
||
&& !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
|
||
get_alias_set (DR_REF (b))))
|
||
return false;
|
||
if (TREE_CODE (addr_a) == MEM_REF)
|
||
return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
|
||
TREE_OPERAND (addr_b, 0));
|
||
else
|
||
return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
|
||
TREE_OPERAND (addr_b, 0));
|
||
}
|
||
|
||
/* Otherwise DR_BASE_OBJECT is an access that covers the whole object
|
||
that is being subsetted in the loop nest. */
|
||
if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
|
||
return refs_output_dependent_p (addr_a, addr_b);
|
||
else if (DR_IS_READ (a) && DR_IS_WRITE (b))
|
||
return refs_anti_dependent_p (addr_a, addr_b);
|
||
return refs_may_alias_p (addr_a, addr_b);
|
||
}
|
||
|
||
/* REF_A and REF_B both satisfy access_fn_component_p. Return true
|
||
if it is meaningful to compare their associated access functions
|
||
when checking for dependencies. */
|
||
|
||
static bool
|
||
access_fn_components_comparable_p (tree ref_a, tree ref_b)
|
||
{
|
||
/* Allow pairs of component refs from the following sets:
|
||
|
||
{ REALPART_EXPR, IMAGPART_EXPR }
|
||
{ COMPONENT_REF }
|
||
{ ARRAY_REF }. */
|
||
tree_code code_a = TREE_CODE (ref_a);
|
||
tree_code code_b = TREE_CODE (ref_b);
|
||
if (code_a == IMAGPART_EXPR)
|
||
code_a = REALPART_EXPR;
|
||
if (code_b == IMAGPART_EXPR)
|
||
code_b = REALPART_EXPR;
|
||
if (code_a != code_b)
|
||
return false;
|
||
|
||
if (TREE_CODE (ref_a) == COMPONENT_REF)
|
||
/* ??? We cannot simply use the type of operand #0 of the refs here as
|
||
the Fortran compiler smuggles type punning into COMPONENT_REFs.
|
||
Use the DECL_CONTEXT of the FIELD_DECLs instead. */
|
||
return (DECL_CONTEXT (TREE_OPERAND (ref_a, 1))
|
||
== DECL_CONTEXT (TREE_OPERAND (ref_b, 1)));
|
||
|
||
return types_compatible_p (TREE_TYPE (TREE_OPERAND (ref_a, 0)),
|
||
TREE_TYPE (TREE_OPERAND (ref_b, 0)));
|
||
}
|
||
|
||
/* Initialize a data dependence relation between data accesses A and
|
||
B. NB_LOOPS is the number of loops surrounding the references: the
|
||
size of the classic distance/direction vectors. */
|
||
|
||
struct data_dependence_relation *
|
||
initialize_data_dependence_relation (struct data_reference *a,
|
||
struct data_reference *b,
|
||
vec<loop_p> loop_nest)
|
||
{
|
||
struct data_dependence_relation *res;
|
||
unsigned int i;
|
||
|
||
res = XCNEW (struct data_dependence_relation);
|
||
DDR_A (res) = a;
|
||
DDR_B (res) = b;
|
||
DDR_LOOP_NEST (res).create (0);
|
||
DDR_SUBSCRIPTS (res).create (0);
|
||
DDR_DIR_VECTS (res).create (0);
|
||
DDR_DIST_VECTS (res).create (0);
|
||
|
||
if (a == NULL || b == NULL)
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
return res;
|
||
}
|
||
|
||
/* If the data references do not alias, then they are independent. */
|
||
if (!dr_may_alias_p (a, b, loop_nest.exists ()))
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_known;
|
||
return res;
|
||
}
|
||
|
||
unsigned int num_dimensions_a = DR_NUM_DIMENSIONS (a);
|
||
unsigned int num_dimensions_b = DR_NUM_DIMENSIONS (b);
|
||
if (num_dimensions_a == 0 || num_dimensions_b == 0)
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
return res;
|
||
}
|
||
|
||
/* For unconstrained bases, the root (highest-indexed) subscript
|
||
describes a variation in the base of the original DR_REF rather
|
||
than a component access. We have no type that accurately describes
|
||
the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after*
|
||
applying this subscript) so limit the search to the last real
|
||
component access.
|
||
|
||
E.g. for:
|
||
|
||
void
|
||
f (int a[][8], int b[][8])
|
||
{
|
||
for (int i = 0; i < 8; ++i)
|
||
a[i * 2][0] = b[i][0];
|
||
}
|
||
|
||
the a and b accesses have a single ARRAY_REF component reference [0]
|
||
but have two subscripts. */
|
||
if (DR_UNCONSTRAINED_BASE (a))
|
||
num_dimensions_a -= 1;
|
||
if (DR_UNCONSTRAINED_BASE (b))
|
||
num_dimensions_b -= 1;
|
||
|
||
/* These structures describe sequences of component references in
|
||
DR_REF (A) and DR_REF (B). Each component reference is tied to a
|
||
specific access function. */
|
||
struct {
|
||
/* The sequence starts at DR_ACCESS_FN (A, START_A) of A and
|
||
DR_ACCESS_FN (B, START_B) of B (inclusive) and extends to higher
|
||
indices. In C notation, these are the indices of the rightmost
|
||
component references; e.g. for a sequence .b.c.d, the start
|
||
index is for .d. */
|
||
unsigned int start_a;
|
||
unsigned int start_b;
|
||
|
||
/* The sequence contains LENGTH consecutive access functions from
|
||
each DR. */
|
||
unsigned int length;
|
||
|
||
/* The enclosing objects for the A and B sequences respectively,
|
||
i.e. the objects to which DR_ACCESS_FN (A, START_A + LENGTH - 1)
|
||
and DR_ACCESS_FN (B, START_B + LENGTH - 1) are applied. */
|
||
tree object_a;
|
||
tree object_b;
|
||
} full_seq = {}, struct_seq = {};
|
||
|
||
/* Before each iteration of the loop:
|
||
|
||
- REF_A is what you get after applying DR_ACCESS_FN (A, INDEX_A) and
|
||
- REF_B is what you get after applying DR_ACCESS_FN (B, INDEX_B). */
|
||
unsigned int index_a = 0;
|
||
unsigned int index_b = 0;
|
||
tree ref_a = DR_REF (a);
|
||
tree ref_b = DR_REF (b);
|
||
|
||
/* Now walk the component references from the final DR_REFs back up to
|
||
the enclosing base objects. Each component reference corresponds
|
||
to one access function in the DR, with access function 0 being for
|
||
the final DR_REF and the highest-indexed access function being the
|
||
one that is applied to the base of the DR.
|
||
|
||
Look for a sequence of component references whose access functions
|
||
are comparable (see access_fn_components_comparable_p). If more
|
||
than one such sequence exists, pick the one nearest the base
|
||
(which is the leftmost sequence in C notation). Store this sequence
|
||
in FULL_SEQ.
|
||
|
||
For example, if we have:
|
||
|
||
struct foo { struct bar s; ... } (*a)[10], (*b)[10];
|
||
|
||
A: a[0][i].s.c.d
|
||
B: __real b[0][i].s.e[i].f
|
||
|
||
(where d is the same type as the real component of f) then the access
|
||
functions would be:
|
||
|
||
0 1 2 3
|
||
A: .d .c .s [i]
|
||
|
||
0 1 2 3 4 5
|
||
B: __real .f [i] .e .s [i]
|
||
|
||
The A0/B2 column isn't comparable, since .d is a COMPONENT_REF
|
||
and [i] is an ARRAY_REF. However, the A1/B3 column contains two
|
||
COMPONENT_REF accesses for struct bar, so is comparable. Likewise
|
||
the A2/B4 column contains two COMPONENT_REF accesses for struct foo,
|
||
so is comparable. The A3/B5 column contains two ARRAY_REFs that
|
||
index foo[10] arrays, so is again comparable. The sequence is
|
||
therefore:
|
||
|
||
A: [1, 3] (i.e. [i].s.c)
|
||
B: [3, 5] (i.e. [i].s.e)
|
||
|
||
Also look for sequences of component references whose access
|
||
functions are comparable and whose enclosing objects have the same
|
||
RECORD_TYPE. Store this sequence in STRUCT_SEQ. In the above
|
||
example, STRUCT_SEQ would be:
|
||
|
||
A: [1, 2] (i.e. s.c)
|
||
B: [3, 4] (i.e. s.e) */
|
||
while (index_a < num_dimensions_a && index_b < num_dimensions_b)
|
||
{
|
||
/* REF_A and REF_B must be one of the component access types
|
||
allowed by dr_analyze_indices. */
|
||
gcc_checking_assert (access_fn_component_p (ref_a));
|
||
gcc_checking_assert (access_fn_component_p (ref_b));
|
||
|
||
/* Get the immediately-enclosing objects for REF_A and REF_B,
|
||
i.e. the references *before* applying DR_ACCESS_FN (A, INDEX_A)
|
||
and DR_ACCESS_FN (B, INDEX_B). */
|
||
tree object_a = TREE_OPERAND (ref_a, 0);
|
||
tree object_b = TREE_OPERAND (ref_b, 0);
|
||
|
||
tree type_a = TREE_TYPE (object_a);
|
||
tree type_b = TREE_TYPE (object_b);
|
||
if (access_fn_components_comparable_p (ref_a, ref_b))
|
||
{
|
||
/* This pair of component accesses is comparable for dependence
|
||
analysis, so we can include DR_ACCESS_FN (A, INDEX_A) and
|
||
DR_ACCESS_FN (B, INDEX_B) in the sequence. */
|
||
if (full_seq.start_a + full_seq.length != index_a
|
||
|| full_seq.start_b + full_seq.length != index_b)
|
||
{
|
||
/* The accesses don't extend the current sequence,
|
||
so start a new one here. */
|
||
full_seq.start_a = index_a;
|
||
full_seq.start_b = index_b;
|
||
full_seq.length = 0;
|
||
}
|
||
|
||
/* Add this pair of references to the sequence. */
|
||
full_seq.length += 1;
|
||
full_seq.object_a = object_a;
|
||
full_seq.object_b = object_b;
|
||
|
||
/* If the enclosing objects are structures (and thus have the
|
||
same RECORD_TYPE), record the new sequence in STRUCT_SEQ. */
|
||
if (TREE_CODE (type_a) == RECORD_TYPE)
|
||
struct_seq = full_seq;
|
||
|
||
/* Move to the next containing reference for both A and B. */
|
||
ref_a = object_a;
|
||
ref_b = object_b;
|
||
index_a += 1;
|
||
index_b += 1;
|
||
continue;
|
||
}
|
||
|
||
/* Try to approach equal type sizes. */
|
||
if (!COMPLETE_TYPE_P (type_a)
|
||
|| !COMPLETE_TYPE_P (type_b)
|
||
|| !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a))
|
||
|| !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b)))
|
||
break;
|
||
|
||
unsigned HOST_WIDE_INT size_a = tree_to_uhwi (TYPE_SIZE_UNIT (type_a));
|
||
unsigned HOST_WIDE_INT size_b = tree_to_uhwi (TYPE_SIZE_UNIT (type_b));
|
||
if (size_a <= size_b)
|
||
{
|
||
index_a += 1;
|
||
ref_a = object_a;
|
||
}
|
||
if (size_b <= size_a)
|
||
{
|
||
index_b += 1;
|
||
ref_b = object_b;
|
||
}
|
||
}
|
||
|
||
/* See whether FULL_SEQ ends at the base and whether the two bases
|
||
are equal. We do not care about TBAA or alignment info so we can
|
||
use OEP_ADDRESS_OF to avoid false negatives. */
|
||
tree base_a = DR_BASE_OBJECT (a);
|
||
tree base_b = DR_BASE_OBJECT (b);
|
||
bool same_base_p = (full_seq.start_a + full_seq.length == num_dimensions_a
|
||
&& full_seq.start_b + full_seq.length == num_dimensions_b
|
||
&& DR_UNCONSTRAINED_BASE (a) == DR_UNCONSTRAINED_BASE (b)
|
||
&& operand_equal_p (base_a, base_b, OEP_ADDRESS_OF)
|
||
&& types_compatible_p (TREE_TYPE (base_a),
|
||
TREE_TYPE (base_b))
|
||
&& (!loop_nest.exists ()
|
||
|| (object_address_invariant_in_loop_p
|
||
(loop_nest[0], base_a))));
|
||
|
||
/* If the bases are the same, we can include the base variation too.
|
||
E.g. the b accesses in:
|
||
|
||
for (int i = 0; i < n; ++i)
|
||
b[i + 4][0] = b[i][0];
|
||
|
||
have a definite dependence distance of 4, while for:
|
||
|
||
for (int i = 0; i < n; ++i)
|
||
a[i + 4][0] = b[i][0];
|
||
|
||
the dependence distance depends on the gap between a and b.
|
||
|
||
If the bases are different then we can only rely on the sequence
|
||
rooted at a structure access, since arrays are allowed to overlap
|
||
arbitrarily and change shape arbitrarily. E.g. we treat this as
|
||
valid code:
|
||
|
||
int a[256];
|
||
...
|
||
((int (*)[4][3]) &a[1])[i][0] += ((int (*)[4][3]) &a[2])[i][0];
|
||
|
||
where two lvalues with the same int[4][3] type overlap, and where
|
||
both lvalues are distinct from the object's declared type. */
|
||
if (same_base_p)
|
||
{
|
||
if (DR_UNCONSTRAINED_BASE (a))
|
||
full_seq.length += 1;
|
||
}
|
||
else
|
||
full_seq = struct_seq;
|
||
|
||
/* Punt if we didn't find a suitable sequence. */
|
||
if (full_seq.length == 0)
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
return res;
|
||
}
|
||
|
||
if (!same_base_p)
|
||
{
|
||
/* Partial overlap is possible for different bases when strict aliasing
|
||
is not in effect. It's also possible if either base involves a union
|
||
access; e.g. for:
|
||
|
||
struct s1 { int a[2]; };
|
||
struct s2 { struct s1 b; int c; };
|
||
struct s3 { int d; struct s1 e; };
|
||
union u { struct s2 f; struct s3 g; } *p, *q;
|
||
|
||
the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at
|
||
"p->g.e" (base "p->g") and might partially overlap the s1 at
|
||
"q->g.e" (base "q->g"). */
|
||
if (!flag_strict_aliasing
|
||
|| ref_contains_union_access_p (full_seq.object_a)
|
||
|| ref_contains_union_access_p (full_seq.object_b))
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
return res;
|
||
}
|
||
|
||
DDR_COULD_BE_INDEPENDENT_P (res) = true;
|
||
if (!loop_nest.exists ()
|
||
|| (object_address_invariant_in_loop_p (loop_nest[0],
|
||
full_seq.object_a)
|
||
&& object_address_invariant_in_loop_p (loop_nest[0],
|
||
full_seq.object_b)))
|
||
{
|
||
DDR_OBJECT_A (res) = full_seq.object_a;
|
||
DDR_OBJECT_B (res) = full_seq.object_b;
|
||
}
|
||
}
|
||
|
||
DDR_AFFINE_P (res) = true;
|
||
DDR_ARE_DEPENDENT (res) = NULL_TREE;
|
||
DDR_SUBSCRIPTS (res).create (full_seq.length);
|
||
DDR_LOOP_NEST (res) = loop_nest;
|
||
DDR_INNER_LOOP (res) = 0;
|
||
DDR_SELF_REFERENCE (res) = false;
|
||
|
||
for (i = 0; i < full_seq.length; ++i)
|
||
{
|
||
struct subscript *subscript;
|
||
|
||
subscript = XNEW (struct subscript);
|
||
SUB_ACCESS_FN (subscript, 0) = DR_ACCESS_FN (a, full_seq.start_a + i);
|
||
SUB_ACCESS_FN (subscript, 1) = DR_ACCESS_FN (b, full_seq.start_b + i);
|
||
SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
|
||
SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
|
||
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
DDR_SUBSCRIPTS (res).safe_push (subscript);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Frees memory used by the conflict function F. */
|
||
|
||
static void
|
||
free_conflict_function (conflict_function *f)
|
||
{
|
||
unsigned i;
|
||
|
||
if (CF_NONTRIVIAL_P (f))
|
||
{
|
||
for (i = 0; i < f->n; i++)
|
||
affine_fn_free (f->fns[i]);
|
||
}
|
||
free (f);
|
||
}
|
||
|
||
/* Frees memory used by SUBSCRIPTS. */
|
||
|
||
static void
|
||
free_subscripts (vec<subscript_p> subscripts)
|
||
{
|
||
unsigned i;
|
||
subscript_p s;
|
||
|
||
FOR_EACH_VEC_ELT (subscripts, i, s)
|
||
{
|
||
free_conflict_function (s->conflicting_iterations_in_a);
|
||
free_conflict_function (s->conflicting_iterations_in_b);
|
||
free (s);
|
||
}
|
||
subscripts.release ();
|
||
}
|
||
|
||
/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
|
||
description. */
|
||
|
||
static inline void
|
||
finalize_ddr_dependent (struct data_dependence_relation *ddr,
|
||
tree chrec)
|
||
{
|
||
DDR_ARE_DEPENDENT (ddr) = chrec;
|
||
free_subscripts (DDR_SUBSCRIPTS (ddr));
|
||
DDR_SUBSCRIPTS (ddr).create (0);
|
||
}
|
||
|
||
/* The dependence relation DDR cannot be represented by a distance
|
||
vector. */
|
||
|
||
static inline void
|
||
non_affine_dependence_relation (struct data_dependence_relation *ddr)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
|
||
|
||
DDR_AFFINE_P (ddr) = false;
|
||
}
|
||
|
||
|
||
|
||
/* This section contains the classic Banerjee tests. */
|
||
|
||
/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
|
||
variables, i.e., if the ZIV (Zero Index Variable) test is true. */
|
||
|
||
static inline bool
|
||
ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
|
||
{
|
||
return (evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_constant_p (chrec_b));
|
||
}
|
||
|
||
/* Returns true iff CHREC_A and CHREC_B are dependent on an index
|
||
variable, i.e., if the SIV (Single Index Variable) test is true. */
|
||
|
||
static bool
|
||
siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
|
||
{
|
||
if ((evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_univariate_p (chrec_b))
|
||
|| (evolution_function_is_constant_p (chrec_b)
|
||
&& evolution_function_is_univariate_p (chrec_a)))
|
||
return true;
|
||
|
||
if (evolution_function_is_univariate_p (chrec_a)
|
||
&& evolution_function_is_univariate_p (chrec_b))
|
||
{
|
||
switch (TREE_CODE (chrec_a))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
switch (TREE_CODE (chrec_b))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
|
||
return false;
|
||
/* FALLTHRU */
|
||
|
||
default:
|
||
return true;
|
||
}
|
||
|
||
default:
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Creates a conflict function with N dimensions. The affine functions
|
||
in each dimension follow. */
|
||
|
||
static conflict_function *
|
||
conflict_fn (unsigned n, ...)
|
||
{
|
||
unsigned i;
|
||
conflict_function *ret = XCNEW (conflict_function);
|
||
va_list ap;
|
||
|
||
gcc_assert (n > 0 && n <= MAX_DIM);
|
||
va_start (ap, n);
|
||
|
||
ret->n = n;
|
||
for (i = 0; i < n; i++)
|
||
ret->fns[i] = va_arg (ap, affine_fn);
|
||
va_end (ap);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Returns constant affine function with value CST. */
|
||
|
||
static affine_fn
|
||
affine_fn_cst (tree cst)
|
||
{
|
||
affine_fn fn;
|
||
fn.create (1);
|
||
fn.quick_push (cst);
|
||
return fn;
|
||
}
|
||
|
||
/* Returns affine function with single variable, CST + COEF * x_DIM. */
|
||
|
||
static affine_fn
|
||
affine_fn_univar (tree cst, unsigned dim, tree coef)
|
||
{
|
||
affine_fn fn;
|
||
fn.create (dim + 1);
|
||
unsigned i;
|
||
|
||
gcc_assert (dim > 0);
|
||
fn.quick_push (cst);
|
||
for (i = 1; i < dim; i++)
|
||
fn.quick_push (integer_zero_node);
|
||
fn.quick_push (coef);
|
||
return fn;
|
||
}
|
||
|
||
/* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_ziv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
tree type, difference;
|
||
dependence_stats.num_ziv++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_ziv_subscript \n");
|
||
|
||
type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
|
||
chrec_a = chrec_convert (type, chrec_a, NULL);
|
||
chrec_b = chrec_convert (type, chrec_b, NULL);
|
||
difference = chrec_fold_minus (type, chrec_a, chrec_b);
|
||
|
||
switch (TREE_CODE (difference))
|
||
{
|
||
case INTEGER_CST:
|
||
if (integer_zerop (difference))
|
||
{
|
||
/* The difference is equal to zero: the accessed index
|
||
overlaps for each iteration in the loop. */
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_ziv_dependent++;
|
||
}
|
||
else
|
||
{
|
||
/* The accesses do not overlap. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_ziv_independent++;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* We're not sure whether the indexes overlap. For the moment,
|
||
conservatively answer "don't know". */
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_ziv_unimplemented++;
|
||
break;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Similar to max_stmt_executions_int, but returns the bound as a tree,
|
||
and only if it fits to the int type. If this is not the case, or the
|
||
bound on the number of iterations of LOOP could not be derived, returns
|
||
chrec_dont_know. */
|
||
|
||
static tree
|
||
max_stmt_executions_tree (struct loop *loop)
|
||
{
|
||
widest_int nit;
|
||
|
||
if (!max_stmt_executions (loop, &nit))
|
||
return chrec_dont_know;
|
||
|
||
if (!wi::fits_to_tree_p (nit, unsigned_type_node))
|
||
return chrec_dont_know;
|
||
|
||
return wide_int_to_tree (unsigned_type_node, nit);
|
||
}
|
||
|
||
/* Determine whether the CHREC is always positive/negative. If the expression
|
||
cannot be statically analyzed, return false, otherwise set the answer into
|
||
VALUE. */
|
||
|
||
static bool
|
||
chrec_is_positive (tree chrec, bool *value)
|
||
{
|
||
bool value0, value1, value2;
|
||
tree end_value, nb_iter;
|
||
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
|
||
|| !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
|
||
return false;
|
||
|
||
/* FIXME -- overflows. */
|
||
if (value0 == value1)
|
||
{
|
||
*value = value0;
|
||
return true;
|
||
}
|
||
|
||
/* Otherwise the chrec is under the form: "{-197, +, 2}_1",
|
||
and the proof consists in showing that the sign never
|
||
changes during the execution of the loop, from 0 to
|
||
loop->nb_iterations. */
|
||
if (!evolution_function_is_affine_p (chrec))
|
||
return false;
|
||
|
||
nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
|
||
if (chrec_contains_undetermined (nb_iter))
|
||
return false;
|
||
|
||
#if 0
|
||
/* TODO -- If the test is after the exit, we may decrease the number of
|
||
iterations by one. */
|
||
if (after_exit)
|
||
nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
|
||
#endif
|
||
|
||
end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
|
||
|
||
if (!chrec_is_positive (end_value, &value2))
|
||
return false;
|
||
|
||
*value = value0;
|
||
return value0 == value1;
|
||
|
||
case INTEGER_CST:
|
||
switch (tree_int_cst_sgn (chrec))
|
||
{
|
||
case -1:
|
||
*value = false;
|
||
break;
|
||
case 1:
|
||
*value = true;
|
||
break;
|
||
default:
|
||
return false;
|
||
}
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
|
||
/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
|
||
constant, and CHREC_B is an affine function. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_siv_subscript_cst_affine (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
bool value0, value1, value2;
|
||
tree type, difference, tmp;
|
||
|
||
type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
|
||
chrec_a = chrec_convert (type, chrec_a, NULL);
|
||
chrec_b = chrec_convert (type, chrec_b, NULL);
|
||
difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
|
||
|
||
/* Special case overlap in the first iteration. */
|
||
if (integer_zerop (difference))
|
||
{
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = integer_one_node;
|
||
return;
|
||
}
|
||
|
||
if (!chrec_is_positive (initial_condition (difference), &value0))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "siv test failed: chrec is not positive.\n");
|
||
|
||
dependence_stats.num_siv_unimplemented++;
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value0 == false)
|
||
{
|
||
if (TREE_CODE (chrec_b) != POLYNOMIAL_CHREC
|
||
|| !chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "siv test failed: chrec not positive.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_siv_unimplemented++;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value1 == true)
|
||
{
|
||
/* Example:
|
||
chrec_a = 12
|
||
chrec_b = {10, +, 1}
|
||
*/
|
||
|
||
if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
|
||
{
|
||
HOST_WIDE_INT numiter;
|
||
struct loop *loop = get_chrec_loop (chrec_b);
|
||
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
tmp = fold_build2 (EXACT_DIV_EXPR, type,
|
||
fold_build1 (ABS_EXPR, type, difference),
|
||
CHREC_RIGHT (chrec_b));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
|
||
*last_conflicts = integer_one_node;
|
||
|
||
|
||
/* Perform weak-zero siv test to see if overlap is
|
||
outside the loop bounds. */
|
||
numiter = max_stmt_executions_int (loop);
|
||
|
||
if (numiter >= 0
|
||
&& compare_tree_int (tmp, numiter) > 0)
|
||
{
|
||
free_conflict_function (*overlaps_a);
|
||
free_conflict_function (*overlaps_b);
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
dependence_stats.num_siv_dependent++;
|
||
return;
|
||
}
|
||
|
||
/* When the step does not divide the difference, there are
|
||
no overlaps. */
|
||
else
|
||
{
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
}
|
||
|
||
else
|
||
{
|
||
/* Example:
|
||
chrec_a = 12
|
||
chrec_b = {10, +, -1}
|
||
|
||
In this case, chrec_a will not overlap with chrec_b. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (TREE_CODE (chrec_b) != POLYNOMIAL_CHREC
|
||
|| !chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "siv test failed: chrec not positive.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_siv_unimplemented++;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value2 == false)
|
||
{
|
||
/* Example:
|
||
chrec_a = 3
|
||
chrec_b = {10, +, -1}
|
||
*/
|
||
if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
|
||
{
|
||
HOST_WIDE_INT numiter;
|
||
struct loop *loop = get_chrec_loop (chrec_b);
|
||
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
|
||
CHREC_RIGHT (chrec_b));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
|
||
*last_conflicts = integer_one_node;
|
||
|
||
/* Perform weak-zero siv test to see if overlap is
|
||
outside the loop bounds. */
|
||
numiter = max_stmt_executions_int (loop);
|
||
|
||
if (numiter >= 0
|
||
&& compare_tree_int (tmp, numiter) > 0)
|
||
{
|
||
free_conflict_function (*overlaps_a);
|
||
free_conflict_function (*overlaps_b);
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
dependence_stats.num_siv_dependent++;
|
||
return;
|
||
}
|
||
|
||
/* When the step does not divide the difference, there
|
||
are no overlaps. */
|
||
else
|
||
{
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Example:
|
||
chrec_a = 3
|
||
chrec_b = {4, +, 1}
|
||
|
||
In this case, chrec_a will not overlap with chrec_b. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Helper recursive function for initializing the matrix A. Returns
|
||
the initial value of CHREC. */
|
||
|
||
static tree
|
||
initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
|
||
{
|
||
gcc_assert (chrec);
|
||
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
|
||
return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
|
||
|
||
case PLUS_EXPR:
|
||
case MULT_EXPR:
|
||
case MINUS_EXPR:
|
||
{
|
||
tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
|
||
tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
|
||
|
||
return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
|
||
}
|
||
|
||
CASE_CONVERT:
|
||
{
|
||
tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
|
||
return chrec_convert (chrec_type (chrec), op, NULL);
|
||
}
|
||
|
||
case BIT_NOT_EXPR:
|
||
{
|
||
/* Handle ~X as -1 - X. */
|
||
tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
|
||
return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
|
||
build_int_cst (TREE_TYPE (chrec), -1), op);
|
||
}
|
||
|
||
case INTEGER_CST:
|
||
return chrec;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
#define FLOOR_DIV(x,y) ((x) / (y))
|
||
|
||
/* Solves the special case of the Diophantine equation:
|
||
| {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
|
||
|
||
Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
|
||
number of iterations that loops X and Y run. The overlaps will be
|
||
constructed as evolutions in dimension DIM. */
|
||
|
||
static void
|
||
compute_overlap_steps_for_affine_univar (HOST_WIDE_INT niter,
|
||
HOST_WIDE_INT step_a,
|
||
HOST_WIDE_INT step_b,
|
||
affine_fn *overlaps_a,
|
||
affine_fn *overlaps_b,
|
||
tree *last_conflicts, int dim)
|
||
{
|
||
if (((step_a > 0 && step_b > 0)
|
||
|| (step_a < 0 && step_b < 0)))
|
||
{
|
||
HOST_WIDE_INT step_overlaps_a, step_overlaps_b;
|
||
HOST_WIDE_INT gcd_steps_a_b, last_conflict, tau2;
|
||
|
||
gcd_steps_a_b = gcd (step_a, step_b);
|
||
step_overlaps_a = step_b / gcd_steps_a_b;
|
||
step_overlaps_b = step_a / gcd_steps_a_b;
|
||
|
||
if (niter > 0)
|
||
{
|
||
tau2 = FLOOR_DIV (niter, step_overlaps_a);
|
||
tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
|
||
last_conflict = tau2;
|
||
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
|
||
}
|
||
else
|
||
*last_conflicts = chrec_dont_know;
|
||
|
||
*overlaps_a = affine_fn_univar (integer_zero_node, dim,
|
||
build_int_cst (NULL_TREE,
|
||
step_overlaps_a));
|
||
*overlaps_b = affine_fn_univar (integer_zero_node, dim,
|
||
build_int_cst (NULL_TREE,
|
||
step_overlaps_b));
|
||
}
|
||
|
||
else
|
||
{
|
||
*overlaps_a = affine_fn_cst (integer_zero_node);
|
||
*overlaps_b = affine_fn_cst (integer_zero_node);
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
}
|
||
|
||
/* Solves the special case of a Diophantine equation where CHREC_A is
|
||
an affine bivariate function, and CHREC_B is an affine univariate
|
||
function. For example,
|
||
|
||
| {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
|
||
|
||
has the following overlapping functions:
|
||
|
||
| x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
|
||
| y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
|
||
| z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
|
||
|
||
FORNOW: This is a specialized implementation for a case occurring in
|
||
a common benchmark. Implement the general algorithm. */
|
||
|
||
static void
|
||
compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
bool xz_p, yz_p, xyz_p;
|
||
HOST_WIDE_INT step_x, step_y, step_z;
|
||
HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
|
||
affine_fn overlaps_a_xz, overlaps_b_xz;
|
||
affine_fn overlaps_a_yz, overlaps_b_yz;
|
||
affine_fn overlaps_a_xyz, overlaps_b_xyz;
|
||
affine_fn ova1, ova2, ovb;
|
||
tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
|
||
|
||
step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
|
||
step_y = int_cst_value (CHREC_RIGHT (chrec_a));
|
||
step_z = int_cst_value (CHREC_RIGHT (chrec_b));
|
||
|
||
niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)));
|
||
niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a));
|
||
niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b));
|
||
|
||
if (niter_x < 0 || niter_y < 0 || niter_z < 0)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
|
||
niter = MIN (niter_x, niter_z);
|
||
compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
|
||
&overlaps_a_xz,
|
||
&overlaps_b_xz,
|
||
&last_conflicts_xz, 1);
|
||
niter = MIN (niter_y, niter_z);
|
||
compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
|
||
&overlaps_a_yz,
|
||
&overlaps_b_yz,
|
||
&last_conflicts_yz, 2);
|
||
niter = MIN (niter_x, niter_z);
|
||
niter = MIN (niter_y, niter);
|
||
compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
|
||
&overlaps_a_xyz,
|
||
&overlaps_b_xyz,
|
||
&last_conflicts_xyz, 3);
|
||
|
||
xz_p = !integer_zerop (last_conflicts_xz);
|
||
yz_p = !integer_zerop (last_conflicts_yz);
|
||
xyz_p = !integer_zerop (last_conflicts_xyz);
|
||
|
||
if (xz_p || yz_p || xyz_p)
|
||
{
|
||
ova1 = affine_fn_cst (integer_zero_node);
|
||
ova2 = affine_fn_cst (integer_zero_node);
|
||
ovb = affine_fn_cst (integer_zero_node);
|
||
if (xz_p)
|
||
{
|
||
affine_fn t0 = ova1;
|
||
affine_fn t2 = ovb;
|
||
|
||
ova1 = affine_fn_plus (ova1, overlaps_a_xz);
|
||
ovb = affine_fn_plus (ovb, overlaps_b_xz);
|
||
affine_fn_free (t0);
|
||
affine_fn_free (t2);
|
||
*last_conflicts = last_conflicts_xz;
|
||
}
|
||
if (yz_p)
|
||
{
|
||
affine_fn t0 = ova2;
|
||
affine_fn t2 = ovb;
|
||
|
||
ova2 = affine_fn_plus (ova2, overlaps_a_yz);
|
||
ovb = affine_fn_plus (ovb, overlaps_b_yz);
|
||
affine_fn_free (t0);
|
||
affine_fn_free (t2);
|
||
*last_conflicts = last_conflicts_yz;
|
||
}
|
||
if (xyz_p)
|
||
{
|
||
affine_fn t0 = ova1;
|
||
affine_fn t2 = ova2;
|
||
affine_fn t4 = ovb;
|
||
|
||
ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
|
||
ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
|
||
ovb = affine_fn_plus (ovb, overlaps_b_xyz);
|
||
affine_fn_free (t0);
|
||
affine_fn_free (t2);
|
||
affine_fn_free (t4);
|
||
*last_conflicts = last_conflicts_xyz;
|
||
}
|
||
*overlaps_a = conflict_fn (2, ova1, ova2);
|
||
*overlaps_b = conflict_fn (1, ovb);
|
||
}
|
||
else
|
||
{
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
|
||
affine_fn_free (overlaps_a_xz);
|
||
affine_fn_free (overlaps_b_xz);
|
||
affine_fn_free (overlaps_a_yz);
|
||
affine_fn_free (overlaps_b_yz);
|
||
affine_fn_free (overlaps_a_xyz);
|
||
affine_fn_free (overlaps_b_xyz);
|
||
}
|
||
|
||
/* Copy the elements of vector VEC1 with length SIZE to VEC2. */
|
||
|
||
static void
|
||
lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
|
||
int size)
|
||
{
|
||
memcpy (vec2, vec1, size * sizeof (*vec1));
|
||
}
|
||
|
||
/* Copy the elements of M x N matrix MAT1 to MAT2. */
|
||
|
||
static void
|
||
lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
|
||
int m, int n)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < m; i++)
|
||
lambda_vector_copy (mat1[i], mat2[i], n);
|
||
}
|
||
|
||
/* Store the N x N identity matrix in MAT. */
|
||
|
||
static void
|
||
lambda_matrix_id (lambda_matrix mat, int size)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0; i < size; i++)
|
||
for (j = 0; j < size; j++)
|
||
mat[i][j] = (i == j) ? 1 : 0;
|
||
}
|
||
|
||
/* Return the first nonzero element of vector VEC1 between START and N.
|
||
We must have START <= N. Returns N if VEC1 is the zero vector. */
|
||
|
||
static int
|
||
lambda_vector_first_nz (lambda_vector vec1, int n, int start)
|
||
{
|
||
int j = start;
|
||
while (j < n && vec1[j] == 0)
|
||
j++;
|
||
return j;
|
||
}
|
||
|
||
/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
|
||
R2 = R2 + CONST1 * R1. */
|
||
|
||
static void
|
||
lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
|
||
{
|
||
int i;
|
||
|
||
if (const1 == 0)
|
||
return;
|
||
|
||
for (i = 0; i < n; i++)
|
||
mat[r2][i] += const1 * mat[r1][i];
|
||
}
|
||
|
||
/* Multiply vector VEC1 of length SIZE by a constant CONST1,
|
||
and store the result in VEC2. */
|
||
|
||
static void
|
||
lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
|
||
int size, int const1)
|
||
{
|
||
int i;
|
||
|
||
if (const1 == 0)
|
||
lambda_vector_clear (vec2, size);
|
||
else
|
||
for (i = 0; i < size; i++)
|
||
vec2[i] = const1 * vec1[i];
|
||
}
|
||
|
||
/* Negate vector VEC1 with length SIZE and store it in VEC2. */
|
||
|
||
static void
|
||
lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
|
||
int size)
|
||
{
|
||
lambda_vector_mult_const (vec1, vec2, size, -1);
|
||
}
|
||
|
||
/* Negate row R1 of matrix MAT which has N columns. */
|
||
|
||
static void
|
||
lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
|
||
{
|
||
lambda_vector_negate (mat[r1], mat[r1], n);
|
||
}
|
||
|
||
/* Return true if two vectors are equal. */
|
||
|
||
static bool
|
||
lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
|
||
{
|
||
int i;
|
||
for (i = 0; i < size; i++)
|
||
if (vec1[i] != vec2[i])
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* Given an M x N integer matrix A, this function determines an M x
|
||
M unimodular matrix U, and an M x N echelon matrix S such that
|
||
"U.A = S". This decomposition is also known as "right Hermite".
|
||
|
||
Ref: Algorithm 2.1 page 33 in "Loop Transformations for
|
||
Restructuring Compilers" Utpal Banerjee. */
|
||
|
||
static void
|
||
lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
|
||
lambda_matrix S, lambda_matrix U)
|
||
{
|
||
int i, j, i0 = 0;
|
||
|
||
lambda_matrix_copy (A, S, m, n);
|
||
lambda_matrix_id (U, m);
|
||
|
||
for (j = 0; j < n; j++)
|
||
{
|
||
if (lambda_vector_first_nz (S[j], m, i0) < m)
|
||
{
|
||
++i0;
|
||
for (i = m - 1; i >= i0; i--)
|
||
{
|
||
while (S[i][j] != 0)
|
||
{
|
||
int sigma, factor, a, b;
|
||
|
||
a = S[i-1][j];
|
||
b = S[i][j];
|
||
sigma = (a * b < 0) ? -1: 1;
|
||
a = abs (a);
|
||
b = abs (b);
|
||
factor = sigma * (a / b);
|
||
|
||
lambda_matrix_row_add (S, n, i, i-1, -factor);
|
||
std::swap (S[i], S[i-1]);
|
||
|
||
lambda_matrix_row_add (U, m, i, i-1, -factor);
|
||
std::swap (U[i], U[i-1]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Determines the overlapping elements due to accesses CHREC_A and
|
||
CHREC_B, that are affine functions. This function cannot handle
|
||
symbolic evolution functions, ie. when initial conditions are
|
||
parameters, because it uses lambda matrices of integers. */
|
||
|
||
static void
|
||
analyze_subscript_affine_affine (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
unsigned nb_vars_a, nb_vars_b, dim;
|
||
HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
|
||
lambda_matrix A, U, S;
|
||
struct obstack scratch_obstack;
|
||
|
||
if (eq_evolutions_p (chrec_a, chrec_b))
|
||
{
|
||
/* The accessed index overlaps for each iteration in the
|
||
loop. */
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_subscript_affine_affine \n");
|
||
|
||
/* For determining the initial intersection, we have to solve a
|
||
Diophantine equation. This is the most time consuming part.
|
||
|
||
For answering to the question: "Is there a dependence?" we have
|
||
to prove that there exists a solution to the Diophantine
|
||
equation, and that the solution is in the iteration domain,
|
||
i.e. the solution is positive or zero, and that the solution
|
||
happens before the upper bound loop.nb_iterations. Otherwise
|
||
there is no dependence. This function outputs a description of
|
||
the iterations that hold the intersections. */
|
||
|
||
nb_vars_a = nb_vars_in_chrec (chrec_a);
|
||
nb_vars_b = nb_vars_in_chrec (chrec_b);
|
||
|
||
gcc_obstack_init (&scratch_obstack);
|
||
|
||
dim = nb_vars_a + nb_vars_b;
|
||
U = lambda_matrix_new (dim, dim, &scratch_obstack);
|
||
A = lambda_matrix_new (dim, 1, &scratch_obstack);
|
||
S = lambda_matrix_new (dim, 1, &scratch_obstack);
|
||
|
||
init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
|
||
init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
|
||
gamma = init_b - init_a;
|
||
|
||
/* Don't do all the hard work of solving the Diophantine equation
|
||
when we already know the solution: for example,
|
||
| {3, +, 1}_1
|
||
| {3, +, 4}_2
|
||
| gamma = 3 - 3 = 0.
|
||
Then the first overlap occurs during the first iterations:
|
||
| {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
|
||
*/
|
||
if (gamma == 0)
|
||
{
|
||
if (nb_vars_a == 1 && nb_vars_b == 1)
|
||
{
|
||
HOST_WIDE_INT step_a, step_b;
|
||
HOST_WIDE_INT niter, niter_a, niter_b;
|
||
affine_fn ova, ovb;
|
||
|
||
niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a));
|
||
niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b));
|
||
niter = MIN (niter_a, niter_b);
|
||
step_a = int_cst_value (CHREC_RIGHT (chrec_a));
|
||
step_b = int_cst_value (CHREC_RIGHT (chrec_b));
|
||
|
||
compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
|
||
&ova, &ovb,
|
||
last_conflicts, 1);
|
||
*overlaps_a = conflict_fn (1, ova);
|
||
*overlaps_b = conflict_fn (1, ovb);
|
||
}
|
||
|
||
else if (nb_vars_a == 2 && nb_vars_b == 1)
|
||
compute_overlap_steps_for_affine_1_2
|
||
(chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
|
||
|
||
else if (nb_vars_a == 1 && nb_vars_b == 2)
|
||
compute_overlap_steps_for_affine_1_2
|
||
(chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
|
||
|
||
else
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "affine-affine test failed: too many variables.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
goto end_analyze_subs_aa;
|
||
}
|
||
|
||
/* U.A = S */
|
||
lambda_matrix_right_hermite (A, dim, 1, S, U);
|
||
|
||
if (S[0][0] < 0)
|
||
{
|
||
S[0][0] *= -1;
|
||
lambda_matrix_row_negate (U, dim, 0);
|
||
}
|
||
gcd_alpha_beta = S[0][0];
|
||
|
||
/* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
|
||
but that is a quite strange case. Instead of ICEing, answer
|
||
don't know. */
|
||
if (gcd_alpha_beta == 0)
|
||
{
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
goto end_analyze_subs_aa;
|
||
}
|
||
|
||
/* The classic "gcd-test". */
|
||
if (!int_divides_p (gcd_alpha_beta, gamma))
|
||
{
|
||
/* The "gcd-test" has determined that there is no integer
|
||
solution, i.e. there is no dependence. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
|
||
/* Both access functions are univariate. This includes SIV and MIV cases. */
|
||
else if (nb_vars_a == 1 && nb_vars_b == 1)
|
||
{
|
||
/* Both functions should have the same evolution sign. */
|
||
if (((A[0][0] > 0 && -A[1][0] > 0)
|
||
|| (A[0][0] < 0 && -A[1][0] < 0)))
|
||
{
|
||
/* The solutions are given by:
|
||
|
|
||
| [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
|
||
| [u21 u22] [y0]
|
||
|
||
For a given integer t. Using the following variables,
|
||
|
||
| i0 = u11 * gamma / gcd_alpha_beta
|
||
| j0 = u12 * gamma / gcd_alpha_beta
|
||
| i1 = u21
|
||
| j1 = u22
|
||
|
||
the solutions are:
|
||
|
||
| x0 = i0 + i1 * t,
|
||
| y0 = j0 + j1 * t. */
|
||
HOST_WIDE_INT i0, j0, i1, j1;
|
||
|
||
i0 = U[0][0] * gamma / gcd_alpha_beta;
|
||
j0 = U[0][1] * gamma / gcd_alpha_beta;
|
||
i1 = U[1][0];
|
||
j1 = U[1][1];
|
||
|
||
if ((i1 == 0 && i0 < 0)
|
||
|| (j1 == 0 && j0 < 0))
|
||
{
|
||
/* There is no solution.
|
||
FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
|
||
falls in here, but for the moment we don't look at the
|
||
upper bound of the iteration domain. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
goto end_analyze_subs_aa;
|
||
}
|
||
|
||
if (i1 > 0 && j1 > 0)
|
||
{
|
||
HOST_WIDE_INT niter_a
|
||
= max_stmt_executions_int (get_chrec_loop (chrec_a));
|
||
HOST_WIDE_INT niter_b
|
||
= max_stmt_executions_int (get_chrec_loop (chrec_b));
|
||
HOST_WIDE_INT niter = MIN (niter_a, niter_b);
|
||
|
||
/* (X0, Y0) is a solution of the Diophantine equation:
|
||
"chrec_a (X0) = chrec_b (Y0)". */
|
||
HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
|
||
CEIL (-j0, j1));
|
||
HOST_WIDE_INT x0 = i1 * tau1 + i0;
|
||
HOST_WIDE_INT y0 = j1 * tau1 + j0;
|
||
|
||
/* (X1, Y1) is the smallest positive solution of the eq
|
||
"chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
|
||
first conflict occurs. */
|
||
HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
|
||
HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
|
||
HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
|
||
|
||
if (niter > 0)
|
||
{
|
||
HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter_a - i0, i1),
|
||
FLOOR_DIV (niter_b - j0, j1));
|
||
HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
|
||
|
||
/* If the overlap occurs outside of the bounds of the
|
||
loop, there is no dependence. */
|
||
if (x1 >= niter_a || y1 >= niter_b)
|
||
{
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
goto end_analyze_subs_aa;
|
||
}
|
||
else
|
||
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
|
||
}
|
||
else
|
||
*last_conflicts = chrec_dont_know;
|
||
|
||
*overlaps_a
|
||
= conflict_fn (1,
|
||
affine_fn_univar (build_int_cst (NULL_TREE, x1),
|
||
1,
|
||
build_int_cst (NULL_TREE, i1)));
|
||
*overlaps_b
|
||
= conflict_fn (1,
|
||
affine_fn_univar (build_int_cst (NULL_TREE, y1),
|
||
1,
|
||
build_int_cst (NULL_TREE, j1)));
|
||
}
|
||
else
|
||
{
|
||
/* FIXME: For the moment, the upper bound of the
|
||
iteration domain for i and j is not checked. */
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
|
||
end_analyze_subs_aa:
|
||
obstack_free (&scratch_obstack, NULL);
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, " (overlaps_a = ");
|
||
dump_conflict_function (dump_file, *overlaps_a);
|
||
fprintf (dump_file, ")\n (overlaps_b = ");
|
||
dump_conflict_function (dump_file, *overlaps_b);
|
||
fprintf (dump_file, "))\n");
|
||
}
|
||
}
|
||
|
||
/* Returns true when analyze_subscript_affine_affine can be used for
|
||
determining the dependence relation between chrec_a and chrec_b,
|
||
that contain symbols. This function modifies chrec_a and chrec_b
|
||
such that the analysis result is the same, and such that they don't
|
||
contain symbols, and then can safely be passed to the analyzer.
|
||
|
||
Example: The analysis of the following tuples of evolutions produce
|
||
the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
|
||
vs. {0, +, 1}_1
|
||
|
||
{x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
|
||
{-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
|
||
*/
|
||
|
||
static bool
|
||
can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
|
||
{
|
||
tree diff, type, left_a, left_b, right_b;
|
||
|
||
if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
|
||
|| chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
|
||
/* FIXME: For the moment not handled. Might be refined later. */
|
||
return false;
|
||
|
||
type = chrec_type (*chrec_a);
|
||
left_a = CHREC_LEFT (*chrec_a);
|
||
left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
|
||
diff = chrec_fold_minus (type, left_a, left_b);
|
||
|
||
if (!evolution_function_is_constant_p (diff))
|
||
return false;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
|
||
|
||
*chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
|
||
diff, CHREC_RIGHT (*chrec_a));
|
||
right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
|
||
*chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
|
||
build_int_cst (type, 0),
|
||
right_b);
|
||
return true;
|
||
}
|
||
|
||
/* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_siv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts,
|
||
int loop_nest_num)
|
||
{
|
||
dependence_stats.num_siv++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_siv_subscript \n");
|
||
|
||
if (evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
|
||
analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b, last_conflicts);
|
||
|
||
else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
|
||
&& evolution_function_is_constant_p (chrec_b))
|
||
analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
|
||
overlaps_b, overlaps_a, last_conflicts);
|
||
|
||
else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
|
||
&& evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
|
||
{
|
||
if (!chrec_contains_symbols (chrec_a)
|
||
&& !chrec_contains_symbols (chrec_b))
|
||
{
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b,
|
||
last_conflicts);
|
||
|
||
if (CF_NOT_KNOWN_P (*overlaps_a)
|
||
|| CF_NOT_KNOWN_P (*overlaps_b))
|
||
dependence_stats.num_siv_unimplemented++;
|
||
else if (CF_NO_DEPENDENCE_P (*overlaps_a)
|
||
|| CF_NO_DEPENDENCE_P (*overlaps_b))
|
||
dependence_stats.num_siv_independent++;
|
||
else
|
||
dependence_stats.num_siv_dependent++;
|
||
}
|
||
else if (can_use_analyze_subscript_affine_affine (&chrec_a,
|
||
&chrec_b))
|
||
{
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b,
|
||
last_conflicts);
|
||
|
||
if (CF_NOT_KNOWN_P (*overlaps_a)
|
||
|| CF_NOT_KNOWN_P (*overlaps_b))
|
||
dependence_stats.num_siv_unimplemented++;
|
||
else if (CF_NO_DEPENDENCE_P (*overlaps_a)
|
||
|| CF_NO_DEPENDENCE_P (*overlaps_b))
|
||
dependence_stats.num_siv_independent++;
|
||
else
|
||
dependence_stats.num_siv_dependent++;
|
||
}
|
||
else
|
||
goto siv_subscript_dontknow;
|
||
}
|
||
|
||
else
|
||
{
|
||
siv_subscript_dontknow:;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, " siv test failed: unimplemented");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_siv_unimplemented++;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Returns false if we can prove that the greatest common divisor of the steps
|
||
of CHREC does not divide CST, false otherwise. */
|
||
|
||
static bool
|
||
gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
|
||
{
|
||
HOST_WIDE_INT cd = 0, val;
|
||
tree step;
|
||
|
||
if (!tree_fits_shwi_p (cst))
|
||
return true;
|
||
val = tree_to_shwi (cst);
|
||
|
||
while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
|
||
{
|
||
step = CHREC_RIGHT (chrec);
|
||
if (!tree_fits_shwi_p (step))
|
||
return true;
|
||
cd = gcd (cd, tree_to_shwi (step));
|
||
chrec = CHREC_LEFT (chrec);
|
||
}
|
||
|
||
return val % cd == 0;
|
||
}
|
||
|
||
/* Analyze a MIV (Multiple Index Variable) subscript with respect to
|
||
LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
|
||
functions that describe the relation between the elements accessed
|
||
twice by CHREC_A and CHREC_B. For k >= 0, the following property
|
||
is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_miv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts,
|
||
struct loop *loop_nest)
|
||
{
|
||
tree type, difference;
|
||
|
||
dependence_stats.num_miv++;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_miv_subscript \n");
|
||
|
||
type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
|
||
chrec_a = chrec_convert (type, chrec_a, NULL);
|
||
chrec_b = chrec_convert (type, chrec_b, NULL);
|
||
difference = chrec_fold_minus (type, chrec_a, chrec_b);
|
||
|
||
if (eq_evolutions_p (chrec_a, chrec_b))
|
||
{
|
||
/* Access functions are the same: all the elements are accessed
|
||
in the same order. */
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
|
||
dependence_stats.num_miv_dependent++;
|
||
}
|
||
|
||
else if (evolution_function_is_constant_p (difference)
|
||
&& evolution_function_is_affine_multivariate_p (chrec_a,
|
||
loop_nest->num)
|
||
&& !gcd_of_steps_may_divide_p (chrec_a, difference))
|
||
{
|
||
/* testsuite/.../ssa-chrec-33.c
|
||
{{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
|
||
|
||
The difference is 1, and all the evolution steps are multiples
|
||
of 2, consequently there are no overlapping elements. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_miv_independent++;
|
||
}
|
||
|
||
else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
|
||
&& !chrec_contains_symbols (chrec_a)
|
||
&& evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
|
||
&& !chrec_contains_symbols (chrec_b))
|
||
{
|
||
/* testsuite/.../ssa-chrec-35.c
|
||
{0, +, 1}_2 vs. {0, +, 1}_3
|
||
the overlapping elements are respectively located at iterations:
|
||
{0, +, 1}_x and {0, +, 1}_x,
|
||
in other words, we have the equality:
|
||
{0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
|
||
|
||
Other examples:
|
||
{{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
|
||
{0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
|
||
|
||
{{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
|
||
{{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
|
||
*/
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b, last_conflicts);
|
||
|
||
if (CF_NOT_KNOWN_P (*overlaps_a)
|
||
|| CF_NOT_KNOWN_P (*overlaps_b))
|
||
dependence_stats.num_miv_unimplemented++;
|
||
else if (CF_NO_DEPENDENCE_P (*overlaps_a)
|
||
|| CF_NO_DEPENDENCE_P (*overlaps_b))
|
||
dependence_stats.num_miv_independent++;
|
||
else
|
||
dependence_stats.num_miv_dependent++;
|
||
}
|
||
|
||
else
|
||
{
|
||
/* When the analysis is too difficult, answer "don't know". */
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_miv_unimplemented++;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Determines the iterations for which CHREC_A is equal to CHREC_B in
|
||
with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
|
||
OVERLAP_ITERATIONS_B are initialized with two functions that
|
||
describe the iterations that contain conflicting elements.
|
||
|
||
Remark: For an integer k >= 0, the following equality is true:
|
||
|
||
CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
|
||
*/
|
||
|
||
static void
|
||
analyze_overlapping_iterations (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlap_iterations_a,
|
||
conflict_function **overlap_iterations_b,
|
||
tree *last_conflicts, struct loop *loop_nest)
|
||
{
|
||
unsigned int lnn = loop_nest->num;
|
||
|
||
dependence_stats.num_subscript_tests++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(analyze_overlapping_iterations \n");
|
||
fprintf (dump_file, " (chrec_a = ");
|
||
print_generic_expr (dump_file, chrec_a);
|
||
fprintf (dump_file, ")\n (chrec_b = ");
|
||
print_generic_expr (dump_file, chrec_b);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
if (chrec_a == NULL_TREE
|
||
|| chrec_b == NULL_TREE
|
||
|| chrec_contains_undetermined (chrec_a)
|
||
|| chrec_contains_undetermined (chrec_b))
|
||
{
|
||
dependence_stats.num_subscript_undetermined++;
|
||
|
||
*overlap_iterations_a = conflict_fn_not_known ();
|
||
*overlap_iterations_b = conflict_fn_not_known ();
|
||
}
|
||
|
||
/* If they are the same chrec, and are affine, they overlap
|
||
on every iteration. */
|
||
else if (eq_evolutions_p (chrec_a, chrec_b)
|
||
&& (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
|
||
|| operand_equal_p (chrec_a, chrec_b, 0)))
|
||
{
|
||
dependence_stats.num_same_subscript_function++;
|
||
*overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
|
||
/* If they aren't the same, and aren't affine, we can't do anything
|
||
yet. */
|
||
else if ((chrec_contains_symbols (chrec_a)
|
||
|| chrec_contains_symbols (chrec_b))
|
||
&& (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
|
||
|| !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
|
||
{
|
||
dependence_stats.num_subscript_undetermined++;
|
||
*overlap_iterations_a = conflict_fn_not_known ();
|
||
*overlap_iterations_b = conflict_fn_not_known ();
|
||
}
|
||
|
||
else if (ziv_subscript_p (chrec_a, chrec_b))
|
||
analyze_ziv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b,
|
||
last_conflicts);
|
||
|
||
else if (siv_subscript_p (chrec_a, chrec_b))
|
||
analyze_siv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b,
|
||
last_conflicts, lnn);
|
||
|
||
else
|
||
analyze_miv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b,
|
||
last_conflicts, loop_nest);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, " (overlap_iterations_a = ");
|
||
dump_conflict_function (dump_file, *overlap_iterations_a);
|
||
fprintf (dump_file, ")\n (overlap_iterations_b = ");
|
||
dump_conflict_function (dump_file, *overlap_iterations_b);
|
||
fprintf (dump_file, "))\n");
|
||
}
|
||
}
|
||
|
||
/* Helper function for uniquely inserting distance vectors. */
|
||
|
||
static void
|
||
save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
|
||
{
|
||
unsigned i;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, v)
|
||
if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
|
||
return;
|
||
|
||
DDR_DIST_VECTS (ddr).safe_push (dist_v);
|
||
}
|
||
|
||
/* Helper function for uniquely inserting direction vectors. */
|
||
|
||
static void
|
||
save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
|
||
{
|
||
unsigned i;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), i, v)
|
||
if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
|
||
return;
|
||
|
||
DDR_DIR_VECTS (ddr).safe_push (dir_v);
|
||
}
|
||
|
||
/* Add a distance of 1 on all the loops outer than INDEX. If we
|
||
haven't yet determined a distance for this outer loop, push a new
|
||
distance vector composed of the previous distance, and a distance
|
||
of 1 for this outer loop. Example:
|
||
|
||
| loop_1
|
||
| loop_2
|
||
| A[10]
|
||
| endloop_2
|
||
| endloop_1
|
||
|
||
Saved vectors are of the form (dist_in_1, dist_in_2). First, we
|
||
save (0, 1), then we have to save (1, 0). */
|
||
|
||
static void
|
||
add_outer_distances (struct data_dependence_relation *ddr,
|
||
lambda_vector dist_v, int index)
|
||
{
|
||
/* For each outer loop where init_v is not set, the accesses are
|
||
in dependence of distance 1 in the loop. */
|
||
while (--index >= 0)
|
||
{
|
||
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
|
||
save_v[index] = 1;
|
||
save_dist_v (ddr, save_v);
|
||
}
|
||
}
|
||
|
||
/* Return false when fail to represent the data dependence as a
|
||
distance vector. A_INDEX is the index of the first reference
|
||
(0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the
|
||
second reference. INIT_B is set to true when a component has been
|
||
added to the distance vector DIST_V. INDEX_CARRY is then set to
|
||
the index in DIST_V that carries the dependence. */
|
||
|
||
static bool
|
||
build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
|
||
unsigned int a_index, unsigned int b_index,
|
||
lambda_vector dist_v, bool *init_b,
|
||
int *index_carry)
|
||
{
|
||
unsigned i;
|
||
lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
tree access_fn_a, access_fn_b;
|
||
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
||
|
||
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
||
{
|
||
non_affine_dependence_relation (ddr);
|
||
return false;
|
||
}
|
||
|
||
access_fn_a = SUB_ACCESS_FN (subscript, a_index);
|
||
access_fn_b = SUB_ACCESS_FN (subscript, b_index);
|
||
|
||
if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
|
||
&& TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
|
||
{
|
||
HOST_WIDE_INT dist;
|
||
int index;
|
||
int var_a = CHREC_VARIABLE (access_fn_a);
|
||
int var_b = CHREC_VARIABLE (access_fn_b);
|
||
|
||
if (var_a != var_b
|
||
|| chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
||
{
|
||
non_affine_dependence_relation (ddr);
|
||
return false;
|
||
}
|
||
|
||
dist = int_cst_value (SUB_DISTANCE (subscript));
|
||
index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
|
||
*index_carry = MIN (index, *index_carry);
|
||
|
||
/* This is the subscript coupling test. If we have already
|
||
recorded a distance for this loop (a distance coming from
|
||
another subscript), it should be the same. For example,
|
||
in the following code, there is no dependence:
|
||
|
||
| loop i = 0, N, 1
|
||
| T[i+1][i] = ...
|
||
| ... = T[i][i]
|
||
| endloop
|
||
*/
|
||
if (init_v[index] != 0 && dist_v[index] != dist)
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_known);
|
||
return false;
|
||
}
|
||
|
||
dist_v[index] = dist;
|
||
init_v[index] = 1;
|
||
*init_b = true;
|
||
}
|
||
else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
|
||
{
|
||
/* This can be for example an affine vs. constant dependence
|
||
(T[i] vs. T[3]) that is not an affine dependence and is
|
||
not representable as a distance vector. */
|
||
non_affine_dependence_relation (ddr);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true when the DDR contains only constant access functions. */
|
||
|
||
static bool
|
||
constant_access_functions (const struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned i;
|
||
subscript *sub;
|
||
|
||
FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
|
||
if (!evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 0))
|
||
|| !evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 1)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Helper function for the case where DDR_A and DDR_B are the same
|
||
multivariate access function with a constant step. For an example
|
||
see pr34635-1.c. */
|
||
|
||
static void
|
||
add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
|
||
{
|
||
int x_1, x_2;
|
||
tree c_1 = CHREC_LEFT (c_2);
|
||
tree c_0 = CHREC_LEFT (c_1);
|
||
lambda_vector dist_v;
|
||
HOST_WIDE_INT v1, v2, cd;
|
||
|
||
/* Polynomials with more than 2 variables are not handled yet. When
|
||
the evolution steps are parameters, it is not possible to
|
||
represent the dependence using classical distance vectors. */
|
||
if (TREE_CODE (c_0) != INTEGER_CST
|
||
|| TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
|
||
|| TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
|
||
{
|
||
DDR_AFFINE_P (ddr) = false;
|
||
return;
|
||
}
|
||
|
||
x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
|
||
x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
|
||
|
||
/* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
|
||
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
v1 = int_cst_value (CHREC_RIGHT (c_1));
|
||
v2 = int_cst_value (CHREC_RIGHT (c_2));
|
||
cd = gcd (v1, v2);
|
||
v1 /= cd;
|
||
v2 /= cd;
|
||
|
||
if (v2 < 0)
|
||
{
|
||
v2 = -v2;
|
||
v1 = -v1;
|
||
}
|
||
|
||
dist_v[x_1] = v2;
|
||
dist_v[x_2] = -v1;
|
||
save_dist_v (ddr, dist_v);
|
||
|
||
add_outer_distances (ddr, dist_v, x_1);
|
||
}
|
||
|
||
/* Helper function for the case where DDR_A and DDR_B are the same
|
||
access functions. */
|
||
|
||
static void
|
||
add_other_self_distances (struct data_dependence_relation *ddr)
|
||
{
|
||
lambda_vector dist_v;
|
||
unsigned i;
|
||
int index_carry = DDR_NB_LOOPS (ddr);
|
||
subscript *sub;
|
||
|
||
FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
|
||
{
|
||
tree access_fun = SUB_ACCESS_FN (sub, 0);
|
||
|
||
if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
|
||
{
|
||
if (!evolution_function_is_univariate_p (access_fun))
|
||
{
|
||
if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
|
||
{
|
||
DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
|
||
return;
|
||
}
|
||
|
||
access_fun = SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr, 0), 0);
|
||
|
||
if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
|
||
add_multivariate_self_dist (ddr, access_fun);
|
||
else
|
||
/* The evolution step is not constant: it varies in
|
||
the outer loop, so this cannot be represented by a
|
||
distance vector. For example in pr34635.c the
|
||
evolution is {0, +, {0, +, 4}_1}_2. */
|
||
DDR_AFFINE_P (ddr) = false;
|
||
|
||
return;
|
||
}
|
||
|
||
index_carry = MIN (index_carry,
|
||
index_in_loop_nest (CHREC_VARIABLE (access_fun),
|
||
DDR_LOOP_NEST (ddr)));
|
||
}
|
||
}
|
||
|
||
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
add_outer_distances (ddr, dist_v, index_carry);
|
||
}
|
||
|
||
static void
|
||
insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
|
||
{
|
||
lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
dist_v[DDR_INNER_LOOP (ddr)] = 1;
|
||
save_dist_v (ddr, dist_v);
|
||
}
|
||
|
||
/* Adds a unit distance vector to DDR when there is a 0 overlap. This
|
||
is the case for example when access functions are the same and
|
||
equal to a constant, as in:
|
||
|
||
| loop_1
|
||
| A[3] = ...
|
||
| ... = A[3]
|
||
| endloop_1
|
||
|
||
in which case the distance vectors are (0) and (1). */
|
||
|
||
static void
|
||
add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned i, j;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
subscript_p sub = DDR_SUBSCRIPT (ddr, i);
|
||
conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
|
||
conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
|
||
|
||
for (j = 0; j < ca->n; j++)
|
||
if (affine_function_zero_p (ca->fns[j]))
|
||
{
|
||
insert_innermost_unit_dist_vector (ddr);
|
||
return;
|
||
}
|
||
|
||
for (j = 0; j < cb->n; j++)
|
||
if (affine_function_zero_p (cb->fns[j]))
|
||
{
|
||
insert_innermost_unit_dist_vector (ddr);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return true when the DDR contains two data references that have the
|
||
same access functions. */
|
||
|
||
static inline bool
|
||
same_access_functions (const struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned i;
|
||
subscript *sub;
|
||
|
||
FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
|
||
if (!eq_evolutions_p (SUB_ACCESS_FN (sub, 0),
|
||
SUB_ACCESS_FN (sub, 1)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Compute the classic per loop distance vector. DDR is the data
|
||
dependence relation to build a vector from. Return false when fail
|
||
to represent the data dependence as a distance vector. */
|
||
|
||
static bool
|
||
build_classic_dist_vector (struct data_dependence_relation *ddr,
|
||
struct loop *loop_nest)
|
||
{
|
||
bool init_b = false;
|
||
int index_carry = DDR_NB_LOOPS (ddr);
|
||
lambda_vector dist_v;
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
|
||
return false;
|
||
|
||
if (same_access_functions (ddr))
|
||
{
|
||
/* Save the 0 vector. */
|
||
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
save_dist_v (ddr, dist_v);
|
||
|
||
if (constant_access_functions (ddr))
|
||
add_distance_for_zero_overlaps (ddr);
|
||
|
||
if (DDR_NB_LOOPS (ddr) > 1)
|
||
add_other_self_distances (ddr);
|
||
|
||
return true;
|
||
}
|
||
|
||
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
if (!build_classic_dist_vector_1 (ddr, 0, 1, dist_v, &init_b, &index_carry))
|
||
return false;
|
||
|
||
/* Save the distance vector if we initialized one. */
|
||
if (init_b)
|
||
{
|
||
/* Verify a basic constraint: classic distance vectors should
|
||
always be lexicographically positive.
|
||
|
||
Data references are collected in the order of execution of
|
||
the program, thus for the following loop
|
||
|
||
| for (i = 1; i < 100; i++)
|
||
| for (j = 1; j < 100; j++)
|
||
| {
|
||
| t = T[j+1][i-1]; // A
|
||
| T[j][i] = t + 2; // B
|
||
| }
|
||
|
||
references are collected following the direction of the wind:
|
||
A then B. The data dependence tests are performed also
|
||
following this order, such that we're looking at the distance
|
||
separating the elements accessed by A from the elements later
|
||
accessed by B. But in this example, the distance returned by
|
||
test_dep (A, B) is lexicographically negative (-1, 1), that
|
||
means that the access A occurs later than B with respect to
|
||
the outer loop, ie. we're actually looking upwind. In this
|
||
case we solve test_dep (B, A) looking downwind to the
|
||
lexicographically positive solution, that returns the
|
||
distance vector (1, -1). */
|
||
if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
|
||
{
|
||
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
|
||
return false;
|
||
compute_subscript_distance (ddr);
|
||
if (!build_classic_dist_vector_1 (ddr, 1, 0, save_v, &init_b,
|
||
&index_carry))
|
||
return false;
|
||
save_dist_v (ddr, save_v);
|
||
DDR_REVERSED_P (ddr) = true;
|
||
|
||
/* In this case there is a dependence forward for all the
|
||
outer loops:
|
||
|
||
| for (k = 1; k < 100; k++)
|
||
| for (i = 1; i < 100; i++)
|
||
| for (j = 1; j < 100; j++)
|
||
| {
|
||
| t = T[j+1][i-1]; // A
|
||
| T[j][i] = t + 2; // B
|
||
| }
|
||
|
||
the vectors are:
|
||
(0, 1, -1)
|
||
(1, 1, -1)
|
||
(1, -1, 1)
|
||
*/
|
||
if (DDR_NB_LOOPS (ddr) > 1)
|
||
{
|
||
add_outer_distances (ddr, save_v, index_carry);
|
||
add_outer_distances (ddr, dist_v, index_carry);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
|
||
|
||
if (DDR_NB_LOOPS (ddr) > 1)
|
||
{
|
||
lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
|
||
return false;
|
||
compute_subscript_distance (ddr);
|
||
if (!build_classic_dist_vector_1 (ddr, 1, 0, opposite_v, &init_b,
|
||
&index_carry))
|
||
return false;
|
||
|
||
save_dist_v (ddr, save_v);
|
||
add_outer_distances (ddr, dist_v, index_carry);
|
||
add_outer_distances (ddr, opposite_v, index_carry);
|
||
}
|
||
else
|
||
save_dist_v (ddr, save_v);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* There is a distance of 1 on all the outer loops: Example:
|
||
there is a dependence of distance 1 on loop_1 for the array A.
|
||
|
||
| loop_1
|
||
| A[5] = ...
|
||
| endloop
|
||
*/
|
||
add_outer_distances (ddr, dist_v,
|
||
lambda_vector_first_nz (dist_v,
|
||
DDR_NB_LOOPS (ddr), 0));
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
unsigned i;
|
||
|
||
fprintf (dump_file, "(build_classic_dist_vector\n");
|
||
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
|
||
{
|
||
fprintf (dump_file, " dist_vector = (");
|
||
print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
|
||
DDR_NB_LOOPS (ddr));
|
||
fprintf (dump_file, " )\n");
|
||
}
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return the direction for a given distance.
|
||
FIXME: Computing dir this way is suboptimal, since dir can catch
|
||
cases that dist is unable to represent. */
|
||
|
||
static inline enum data_dependence_direction
|
||
dir_from_dist (int dist)
|
||
{
|
||
if (dist > 0)
|
||
return dir_positive;
|
||
else if (dist < 0)
|
||
return dir_negative;
|
||
else
|
||
return dir_equal;
|
||
}
|
||
|
||
/* Compute the classic per loop direction vector. DDR is the data
|
||
dependence relation to build a vector from. */
|
||
|
||
static void
|
||
build_classic_dir_vector (struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned i, j;
|
||
lambda_vector dist_v;
|
||
|
||
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
|
||
{
|
||
lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
|
||
dir_v[j] = dir_from_dist (dist_v[j]);
|
||
|
||
save_dir_v (ddr, dir_v);
|
||
}
|
||
}
|
||
|
||
/* Helper function. Returns true when there is a dependence between the
|
||
data references. A_INDEX is the index of the first reference (0 for
|
||
DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference. */
|
||
|
||
static bool
|
||
subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
|
||
unsigned int a_index, unsigned int b_index,
|
||
struct loop *loop_nest)
|
||
{
|
||
unsigned int i;
|
||
tree last_conflicts;
|
||
struct subscript *subscript;
|
||
tree res = NULL_TREE;
|
||
|
||
for (i = 0; DDR_SUBSCRIPTS (ddr).iterate (i, &subscript); i++)
|
||
{
|
||
conflict_function *overlaps_a, *overlaps_b;
|
||
|
||
analyze_overlapping_iterations (SUB_ACCESS_FN (subscript, a_index),
|
||
SUB_ACCESS_FN (subscript, b_index),
|
||
&overlaps_a, &overlaps_b,
|
||
&last_conflicts, loop_nest);
|
||
|
||
if (SUB_CONFLICTS_IN_A (subscript))
|
||
free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
|
||
if (SUB_CONFLICTS_IN_B (subscript))
|
||
free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
|
||
|
||
SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
|
||
SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
|
||
SUB_LAST_CONFLICT (subscript) = last_conflicts;
|
||
|
||
/* If there is any undetermined conflict function we have to
|
||
give a conservative answer in case we cannot prove that
|
||
no dependence exists when analyzing another subscript. */
|
||
if (CF_NOT_KNOWN_P (overlaps_a)
|
||
|| CF_NOT_KNOWN_P (overlaps_b))
|
||
{
|
||
res = chrec_dont_know;
|
||
continue;
|
||
}
|
||
|
||
/* When there is a subscript with no dependence we can stop. */
|
||
else if (CF_NO_DEPENDENCE_P (overlaps_a)
|
||
|| CF_NO_DEPENDENCE_P (overlaps_b))
|
||
{
|
||
res = chrec_known;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (res == NULL_TREE)
|
||
return true;
|
||
|
||
if (res == chrec_known)
|
||
dependence_stats.num_dependence_independent++;
|
||
else
|
||
dependence_stats.num_dependence_undetermined++;
|
||
finalize_ddr_dependent (ddr, res);
|
||
return false;
|
||
}
|
||
|
||
/* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
|
||
|
||
static void
|
||
subscript_dependence_tester (struct data_dependence_relation *ddr,
|
||
struct loop *loop_nest)
|
||
{
|
||
if (subscript_dependence_tester_1 (ddr, 0, 1, loop_nest))
|
||
dependence_stats.num_dependence_dependent++;
|
||
|
||
compute_subscript_distance (ddr);
|
||
if (build_classic_dist_vector (ddr, loop_nest))
|
||
build_classic_dir_vector (ddr);
|
||
}
|
||
|
||
/* Returns true when all the access functions of A are affine or
|
||
constant with respect to LOOP_NEST. */
|
||
|
||
static bool
|
||
access_functions_are_affine_or_constant_p (const struct data_reference *a,
|
||
const struct loop *loop_nest)
|
||
{
|
||
unsigned int i;
|
||
vec<tree> fns = DR_ACCESS_FNS (a);
|
||
tree t;
|
||
|
||
FOR_EACH_VEC_ELT (fns, i, t)
|
||
if (!evolution_function_is_invariant_p (t, loop_nest->num)
|
||
&& !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* This computes the affine dependence relation between A and B with
|
||
respect to LOOP_NEST. CHREC_KNOWN is used for representing the
|
||
independence between two accesses, while CHREC_DONT_KNOW is used
|
||
for representing the unknown relation.
|
||
|
||
Note that it is possible to stop the computation of the dependence
|
||
relation the first time we detect a CHREC_KNOWN element for a given
|
||
subscript. */
|
||
|
||
void
|
||
compute_affine_dependence (struct data_dependence_relation *ddr,
|
||
struct loop *loop_nest)
|
||
{
|
||
struct data_reference *dra = DDR_A (ddr);
|
||
struct data_reference *drb = DDR_B (ddr);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(compute_affine_dependence\n");
|
||
fprintf (dump_file, " stmt_a: ");
|
||
print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
|
||
fprintf (dump_file, " stmt_b: ");
|
||
print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
|
||
}
|
||
|
||
/* Analyze only when the dependence relation is not yet known. */
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
dependence_stats.num_dependence_tests++;
|
||
|
||
if (access_functions_are_affine_or_constant_p (dra, loop_nest)
|
||
&& access_functions_are_affine_or_constant_p (drb, loop_nest))
|
||
subscript_dependence_tester (ddr, loop_nest);
|
||
|
||
/* As a last case, if the dependence cannot be determined, or if
|
||
the dependence is considered too difficult to determine, answer
|
||
"don't know". */
|
||
else
|
||
{
|
||
dependence_stats.num_dependence_undetermined++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Data ref a:\n");
|
||
dump_data_reference (dump_file, dra);
|
||
fprintf (dump_file, "Data ref b:\n");
|
||
dump_data_reference (dump_file, drb);
|
||
fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
|
||
}
|
||
finalize_ddr_dependent (ddr, chrec_dont_know);
|
||
}
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
||
fprintf (dump_file, ") -> no dependence\n");
|
||
else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
||
fprintf (dump_file, ") -> dependence analysis failed\n");
|
||
else
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
}
|
||
|
||
/* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
|
||
the data references in DATAREFS, in the LOOP_NEST. When
|
||
COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
|
||
relations. Return true when successful, i.e. data references number
|
||
is small enough to be handled. */
|
||
|
||
bool
|
||
compute_all_dependences (vec<data_reference_p> datarefs,
|
||
vec<ddr_p> *dependence_relations,
|
||
vec<loop_p> loop_nest,
|
||
bool compute_self_and_rr)
|
||
{
|
||
struct data_dependence_relation *ddr;
|
||
struct data_reference *a, *b;
|
||
unsigned int i, j;
|
||
|
||
if ((int) datarefs.length ()
|
||
> PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
|
||
{
|
||
struct data_dependence_relation *ddr;
|
||
|
||
/* Insert a single relation into dependence_relations:
|
||
chrec_dont_know. */
|
||
ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
|
||
dependence_relations->safe_push (ddr);
|
||
return false;
|
||
}
|
||
|
||
FOR_EACH_VEC_ELT (datarefs, i, a)
|
||
for (j = i + 1; datarefs.iterate (j, &b); j++)
|
||
if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
|
||
{
|
||
ddr = initialize_data_dependence_relation (a, b, loop_nest);
|
||
dependence_relations->safe_push (ddr);
|
||
if (loop_nest.exists ())
|
||
compute_affine_dependence (ddr, loop_nest[0]);
|
||
}
|
||
|
||
if (compute_self_and_rr)
|
||
FOR_EACH_VEC_ELT (datarefs, i, a)
|
||
{
|
||
ddr = initialize_data_dependence_relation (a, a, loop_nest);
|
||
dependence_relations->safe_push (ddr);
|
||
if (loop_nest.exists ())
|
||
compute_affine_dependence (ddr, loop_nest[0]);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Describes a location of a memory reference. */
|
||
|
||
struct data_ref_loc
|
||
{
|
||
/* The memory reference. */
|
||
tree ref;
|
||
|
||
/* True if the memory reference is read. */
|
||
bool is_read;
|
||
|
||
/* True if the data reference is conditional within the containing
|
||
statement, i.e. if it might not occur even when the statement
|
||
is executed and runs to completion. */
|
||
bool is_conditional_in_stmt;
|
||
};
|
||
|
||
|
||
/* Stores the locations of memory references in STMT to REFERENCES. Returns
|
||
true if STMT clobbers memory, false otherwise. */
|
||
|
||
static bool
|
||
get_references_in_stmt (gimple *stmt, vec<data_ref_loc, va_heap> *references)
|
||
{
|
||
bool clobbers_memory = false;
|
||
data_ref_loc ref;
|
||
tree op0, op1;
|
||
enum gimple_code stmt_code = gimple_code (stmt);
|
||
|
||
/* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
|
||
As we cannot model data-references to not spelled out
|
||
accesses give up if they may occur. */
|
||
if (stmt_code == GIMPLE_CALL
|
||
&& !(gimple_call_flags (stmt) & ECF_CONST))
|
||
{
|
||
/* Allow IFN_GOMP_SIMD_LANE in their own loops. */
|
||
if (gimple_call_internal_p (stmt))
|
||
switch (gimple_call_internal_fn (stmt))
|
||
{
|
||
case IFN_GOMP_SIMD_LANE:
|
||
{
|
||
struct loop *loop = gimple_bb (stmt)->loop_father;
|
||
tree uid = gimple_call_arg (stmt, 0);
|
||
gcc_assert (TREE_CODE (uid) == SSA_NAME);
|
||
if (loop == NULL
|
||
|| loop->simduid != SSA_NAME_VAR (uid))
|
||
clobbers_memory = true;
|
||
break;
|
||
}
|
||
case IFN_MASK_LOAD:
|
||
case IFN_MASK_STORE:
|
||
break;
|
||
default:
|
||
clobbers_memory = true;
|
||
break;
|
||
}
|
||
else
|
||
clobbers_memory = true;
|
||
}
|
||
else if (stmt_code == GIMPLE_ASM
|
||
&& (gimple_asm_volatile_p (as_a <gasm *> (stmt))
|
||
|| gimple_vuse (stmt)))
|
||
clobbers_memory = true;
|
||
|
||
if (!gimple_vuse (stmt))
|
||
return clobbers_memory;
|
||
|
||
if (stmt_code == GIMPLE_ASSIGN)
|
||
{
|
||
tree base;
|
||
op0 = gimple_assign_lhs (stmt);
|
||
op1 = gimple_assign_rhs1 (stmt);
|
||
|
||
if (DECL_P (op1)
|
||
|| (REFERENCE_CLASS_P (op1)
|
||
&& (base = get_base_address (op1))
|
||
&& TREE_CODE (base) != SSA_NAME
|
||
&& !is_gimple_min_invariant (base)))
|
||
{
|
||
ref.ref = op1;
|
||
ref.is_read = true;
|
||
ref.is_conditional_in_stmt = false;
|
||
references->safe_push (ref);
|
||
}
|
||
}
|
||
else if (stmt_code == GIMPLE_CALL)
|
||
{
|
||
unsigned i, n;
|
||
tree ptr, type;
|
||
unsigned int align;
|
||
|
||
ref.is_read = false;
|
||
if (gimple_call_internal_p (stmt))
|
||
switch (gimple_call_internal_fn (stmt))
|
||
{
|
||
case IFN_MASK_LOAD:
|
||
if (gimple_call_lhs (stmt) == NULL_TREE)
|
||
break;
|
||
ref.is_read = true;
|
||
/* FALLTHRU */
|
||
case IFN_MASK_STORE:
|
||
ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
|
||
align = tree_to_shwi (gimple_call_arg (stmt, 1));
|
||
if (ref.is_read)
|
||
type = TREE_TYPE (gimple_call_lhs (stmt));
|
||
else
|
||
type = TREE_TYPE (gimple_call_arg (stmt, 3));
|
||
if (TYPE_ALIGN (type) != align)
|
||
type = build_aligned_type (type, align);
|
||
ref.is_conditional_in_stmt = true;
|
||
ref.ref = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0),
|
||
ptr);
|
||
references->safe_push (ref);
|
||
return false;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
op0 = gimple_call_lhs (stmt);
|
||
n = gimple_call_num_args (stmt);
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
op1 = gimple_call_arg (stmt, i);
|
||
|
||
if (DECL_P (op1)
|
||
|| (REFERENCE_CLASS_P (op1) && get_base_address (op1)))
|
||
{
|
||
ref.ref = op1;
|
||
ref.is_read = true;
|
||
ref.is_conditional_in_stmt = false;
|
||
references->safe_push (ref);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
return clobbers_memory;
|
||
|
||
if (op0
|
||
&& (DECL_P (op0)
|
||
|| (REFERENCE_CLASS_P (op0) && get_base_address (op0))))
|
||
{
|
||
ref.ref = op0;
|
||
ref.is_read = false;
|
||
ref.is_conditional_in_stmt = false;
|
||
references->safe_push (ref);
|
||
}
|
||
return clobbers_memory;
|
||
}
|
||
|
||
|
||
/* Returns true if the loop-nest has any data reference. */
|
||
|
||
bool
|
||
loop_nest_has_data_refs (loop_p loop)
|
||
{
|
||
basic_block *bbs = get_loop_body (loop);
|
||
auto_vec<data_ref_loc, 3> references;
|
||
|
||
for (unsigned i = 0; i < loop->num_nodes; i++)
|
||
{
|
||
basic_block bb = bbs[i];
|
||
gimple_stmt_iterator bsi;
|
||
|
||
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
||
{
|
||
gimple *stmt = gsi_stmt (bsi);
|
||
get_references_in_stmt (stmt, &references);
|
||
if (references.length ())
|
||
{
|
||
free (bbs);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
free (bbs);
|
||
return false;
|
||
}
|
||
|
||
/* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
|
||
reference, returns false, otherwise returns true. NEST is the outermost
|
||
loop of the loop nest in which the references should be analyzed. */
|
||
|
||
bool
|
||
find_data_references_in_stmt (struct loop *nest, gimple *stmt,
|
||
vec<data_reference_p> *datarefs)
|
||
{
|
||
unsigned i;
|
||
auto_vec<data_ref_loc, 2> references;
|
||
data_ref_loc *ref;
|
||
bool ret = true;
|
||
data_reference_p dr;
|
||
|
||
if (get_references_in_stmt (stmt, &references))
|
||
return false;
|
||
|
||
FOR_EACH_VEC_ELT (references, i, ref)
|
||
{
|
||
dr = create_data_ref (nest ? loop_preheader_edge (nest) : NULL,
|
||
loop_containing_stmt (stmt), ref->ref,
|
||
stmt, ref->is_read, ref->is_conditional_in_stmt);
|
||
gcc_assert (dr != NULL);
|
||
datarefs->safe_push (dr);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Stores the data references in STMT to DATAREFS. If there is an
|
||
unanalyzable reference, returns false, otherwise returns true.
|
||
NEST is the outermost loop of the loop nest in which the references
|
||
should be instantiated, LOOP is the loop in which the references
|
||
should be analyzed. */
|
||
|
||
bool
|
||
graphite_find_data_references_in_stmt (edge nest, loop_p loop, gimple *stmt,
|
||
vec<data_reference_p> *datarefs)
|
||
{
|
||
unsigned i;
|
||
auto_vec<data_ref_loc, 2> references;
|
||
data_ref_loc *ref;
|
||
bool ret = true;
|
||
data_reference_p dr;
|
||
|
||
if (get_references_in_stmt (stmt, &references))
|
||
return false;
|
||
|
||
FOR_EACH_VEC_ELT (references, i, ref)
|
||
{
|
||
dr = create_data_ref (nest, loop, ref->ref, stmt, ref->is_read,
|
||
ref->is_conditional_in_stmt);
|
||
gcc_assert (dr != NULL);
|
||
datarefs->safe_push (dr);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Search the data references in LOOP, and record the information into
|
||
DATAREFS. Returns chrec_dont_know when failing to analyze a
|
||
difficult case, returns NULL_TREE otherwise. */
|
||
|
||
tree
|
||
find_data_references_in_bb (struct loop *loop, basic_block bb,
|
||
vec<data_reference_p> *datarefs)
|
||
{
|
||
gimple_stmt_iterator bsi;
|
||
|
||
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
||
{
|
||
gimple *stmt = gsi_stmt (bsi);
|
||
|
||
if (!find_data_references_in_stmt (loop, stmt, datarefs))
|
||
{
|
||
struct data_reference *res;
|
||
res = XCNEW (struct data_reference);
|
||
datarefs->safe_push (res);
|
||
|
||
return chrec_dont_know;
|
||
}
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Search the data references in LOOP, and record the information into
|
||
DATAREFS. Returns chrec_dont_know when failing to analyze a
|
||
difficult case, returns NULL_TREE otherwise.
|
||
|
||
TODO: This function should be made smarter so that it can handle address
|
||
arithmetic as if they were array accesses, etc. */
|
||
|
||
tree
|
||
find_data_references_in_loop (struct loop *loop,
|
||
vec<data_reference_p> *datarefs)
|
||
{
|
||
basic_block bb, *bbs;
|
||
unsigned int i;
|
||
|
||
bbs = get_loop_body_in_dom_order (loop);
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
{
|
||
bb = bbs[i];
|
||
|
||
if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
|
||
{
|
||
free (bbs);
|
||
return chrec_dont_know;
|
||
}
|
||
}
|
||
free (bbs);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return the alignment in bytes that DRB is guaranteed to have at all
|
||
times. */
|
||
|
||
unsigned int
|
||
dr_alignment (innermost_loop_behavior *drb)
|
||
{
|
||
/* Get the alignment of BASE_ADDRESS + INIT. */
|
||
unsigned int alignment = drb->base_alignment;
|
||
unsigned int misalignment = (drb->base_misalignment
|
||
+ TREE_INT_CST_LOW (drb->init));
|
||
if (misalignment != 0)
|
||
alignment = MIN (alignment, misalignment & -misalignment);
|
||
|
||
/* Cap it to the alignment of OFFSET. */
|
||
if (!integer_zerop (drb->offset))
|
||
alignment = MIN (alignment, drb->offset_alignment);
|
||
|
||
/* Cap it to the alignment of STEP. */
|
||
if (!integer_zerop (drb->step))
|
||
alignment = MIN (alignment, drb->step_alignment);
|
||
|
||
return alignment;
|
||
}
|
||
|
||
/* If BASE is a pointer-typed SSA name, try to find the object that it
|
||
is based on. Return this object X on success and store the alignment
|
||
in bytes of BASE - &X in *ALIGNMENT_OUT. */
|
||
|
||
static tree
|
||
get_base_for_alignment_1 (tree base, unsigned int *alignment_out)
|
||
{
|
||
if (TREE_CODE (base) != SSA_NAME || !POINTER_TYPE_P (TREE_TYPE (base)))
|
||
return NULL_TREE;
|
||
|
||
gimple *def = SSA_NAME_DEF_STMT (base);
|
||
base = analyze_scalar_evolution (loop_containing_stmt (def), base);
|
||
|
||
/* Peel chrecs and record the minimum alignment preserved by
|
||
all steps. */
|
||
unsigned int alignment = MAX_OFILE_ALIGNMENT / BITS_PER_UNIT;
|
||
while (TREE_CODE (base) == POLYNOMIAL_CHREC)
|
||
{
|
||
unsigned int step_alignment = highest_pow2_factor (CHREC_RIGHT (base));
|
||
alignment = MIN (alignment, step_alignment);
|
||
base = CHREC_LEFT (base);
|
||
}
|
||
|
||
/* Punt if the expression is too complicated to handle. */
|
||
if (tree_contains_chrecs (base, NULL) || !POINTER_TYPE_P (TREE_TYPE (base)))
|
||
return NULL_TREE;
|
||
|
||
/* The only useful cases are those for which a dereference folds to something
|
||
other than an INDIRECT_REF. */
|
||
tree ref_type = TREE_TYPE (TREE_TYPE (base));
|
||
tree ref = fold_indirect_ref_1 (UNKNOWN_LOCATION, ref_type, base);
|
||
if (!ref)
|
||
return NULL_TREE;
|
||
|
||
/* Analyze the base to which the steps we peeled were applied. */
|
||
poly_int64 bitsize, bitpos, bytepos;
|
||
machine_mode mode;
|
||
int unsignedp, reversep, volatilep;
|
||
tree offset;
|
||
base = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
|
||
&unsignedp, &reversep, &volatilep);
|
||
if (!base || !multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
|
||
return NULL_TREE;
|
||
|
||
/* Restrict the alignment to that guaranteed by the offsets. */
|
||
unsigned int bytepos_alignment = known_alignment (bytepos);
|
||
if (bytepos_alignment != 0)
|
||
alignment = MIN (alignment, bytepos_alignment);
|
||
if (offset)
|
||
{
|
||
unsigned int offset_alignment = highest_pow2_factor (offset);
|
||
alignment = MIN (alignment, offset_alignment);
|
||
}
|
||
|
||
*alignment_out = alignment;
|
||
return base;
|
||
}
|
||
|
||
/* Return the object whose alignment would need to be changed in order
|
||
to increase the alignment of ADDR. Store the maximum achievable
|
||
alignment in *MAX_ALIGNMENT. */
|
||
|
||
tree
|
||
get_base_for_alignment (tree addr, unsigned int *max_alignment)
|
||
{
|
||
tree base = get_base_for_alignment_1 (addr, max_alignment);
|
||
if (base)
|
||
return base;
|
||
|
||
if (TREE_CODE (addr) == ADDR_EXPR)
|
||
addr = TREE_OPERAND (addr, 0);
|
||
*max_alignment = MAX_OFILE_ALIGNMENT / BITS_PER_UNIT;
|
||
return addr;
|
||
}
|
||
|
||
/* Recursive helper function. */
|
||
|
||
static bool
|
||
find_loop_nest_1 (struct loop *loop, vec<loop_p> *loop_nest)
|
||
{
|
||
/* Inner loops of the nest should not contain siblings. Example:
|
||
when there are two consecutive loops,
|
||
|
||
| loop_0
|
||
| loop_1
|
||
| A[{0, +, 1}_1]
|
||
| endloop_1
|
||
| loop_2
|
||
| A[{0, +, 1}_2]
|
||
| endloop_2
|
||
| endloop_0
|
||
|
||
the dependence relation cannot be captured by the distance
|
||
abstraction. */
|
||
if (loop->next)
|
||
return false;
|
||
|
||
loop_nest->safe_push (loop);
|
||
if (loop->inner)
|
||
return find_loop_nest_1 (loop->inner, loop_nest);
|
||
return true;
|
||
}
|
||
|
||
/* Return false when the LOOP is not well nested. Otherwise return
|
||
true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
|
||
contain the loops from the outermost to the innermost, as they will
|
||
appear in the classic distance vector. */
|
||
|
||
bool
|
||
find_loop_nest (struct loop *loop, vec<loop_p> *loop_nest)
|
||
{
|
||
loop_nest->safe_push (loop);
|
||
if (loop->inner)
|
||
return find_loop_nest_1 (loop->inner, loop_nest);
|
||
return true;
|
||
}
|
||
|
||
/* Returns true when the data dependences have been computed, false otherwise.
|
||
Given a loop nest LOOP, the following vectors are returned:
|
||
DATAREFS is initialized to all the array elements contained in this loop,
|
||
DEPENDENCE_RELATIONS contains the relations between the data references.
|
||
Compute read-read and self relations if
|
||
COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
|
||
|
||
bool
|
||
compute_data_dependences_for_loop (struct loop *loop,
|
||
bool compute_self_and_read_read_dependences,
|
||
vec<loop_p> *loop_nest,
|
||
vec<data_reference_p> *datarefs,
|
||
vec<ddr_p> *dependence_relations)
|
||
{
|
||
bool res = true;
|
||
|
||
memset (&dependence_stats, 0, sizeof (dependence_stats));
|
||
|
||
/* If the loop nest is not well formed, or one of the data references
|
||
is not computable, give up without spending time to compute other
|
||
dependences. */
|
||
if (!loop
|
||
|| !find_loop_nest (loop, loop_nest)
|
||
|| find_data_references_in_loop (loop, datarefs) == chrec_dont_know
|
||
|| !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
|
||
compute_self_and_read_read_dependences))
|
||
res = false;
|
||
|
||
if (dump_file && (dump_flags & TDF_STATS))
|
||
{
|
||
fprintf (dump_file, "Dependence tester statistics:\n");
|
||
|
||
fprintf (dump_file, "Number of dependence tests: %d\n",
|
||
dependence_stats.num_dependence_tests);
|
||
fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
|
||
dependence_stats.num_dependence_dependent);
|
||
fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
|
||
dependence_stats.num_dependence_independent);
|
||
fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
|
||
dependence_stats.num_dependence_undetermined);
|
||
|
||
fprintf (dump_file, "Number of subscript tests: %d\n",
|
||
dependence_stats.num_subscript_tests);
|
||
fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
|
||
dependence_stats.num_subscript_undetermined);
|
||
fprintf (dump_file, "Number of same subscript function: %d\n",
|
||
dependence_stats.num_same_subscript_function);
|
||
|
||
fprintf (dump_file, "Number of ziv tests: %d\n",
|
||
dependence_stats.num_ziv);
|
||
fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
|
||
dependence_stats.num_ziv_dependent);
|
||
fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
|
||
dependence_stats.num_ziv_independent);
|
||
fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
|
||
dependence_stats.num_ziv_unimplemented);
|
||
|
||
fprintf (dump_file, "Number of siv tests: %d\n",
|
||
dependence_stats.num_siv);
|
||
fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
|
||
dependence_stats.num_siv_dependent);
|
||
fprintf (dump_file, "Number of siv tests returning independent: %d\n",
|
||
dependence_stats.num_siv_independent);
|
||
fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
|
||
dependence_stats.num_siv_unimplemented);
|
||
|
||
fprintf (dump_file, "Number of miv tests: %d\n",
|
||
dependence_stats.num_miv);
|
||
fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
|
||
dependence_stats.num_miv_dependent);
|
||
fprintf (dump_file, "Number of miv tests returning independent: %d\n",
|
||
dependence_stats.num_miv_independent);
|
||
fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
|
||
dependence_stats.num_miv_unimplemented);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Free the memory used by a data dependence relation DDR. */
|
||
|
||
void
|
||
free_dependence_relation (struct data_dependence_relation *ddr)
|
||
{
|
||
if (ddr == NULL)
|
||
return;
|
||
|
||
if (DDR_SUBSCRIPTS (ddr).exists ())
|
||
free_subscripts (DDR_SUBSCRIPTS (ddr));
|
||
DDR_DIST_VECTS (ddr).release ();
|
||
DDR_DIR_VECTS (ddr).release ();
|
||
|
||
free (ddr);
|
||
}
|
||
|
||
/* Free the memory used by the data dependence relations from
|
||
DEPENDENCE_RELATIONS. */
|
||
|
||
void
|
||
free_dependence_relations (vec<ddr_p> dependence_relations)
|
||
{
|
||
unsigned int i;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
|
||
if (ddr)
|
||
free_dependence_relation (ddr);
|
||
|
||
dependence_relations.release ();
|
||
}
|
||
|
||
/* Free the memory used by the data references from DATAREFS. */
|
||
|
||
void
|
||
free_data_refs (vec<data_reference_p> datarefs)
|
||
{
|
||
unsigned int i;
|
||
struct data_reference *dr;
|
||
|
||
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
||
free_data_ref (dr);
|
||
datarefs.release ();
|
||
}
|
||
|
||
/* Common routine implementing both dr_direction_indicator and
|
||
dr_zero_step_indicator. Return USEFUL_MIN if the indicator is known
|
||
to be >= USEFUL_MIN and -1 if the indicator is known to be negative.
|
||
Return the step as the indicator otherwise. */
|
||
|
||
static tree
|
||
dr_step_indicator (struct data_reference *dr, int useful_min)
|
||
{
|
||
tree step = DR_STEP (dr);
|
||
if (!step)
|
||
return NULL_TREE;
|
||
STRIP_NOPS (step);
|
||
/* Look for cases where the step is scaled by a positive constant
|
||
integer, which will often be the access size. If the multiplication
|
||
doesn't change the sign (due to overflow effects) then we can
|
||
test the unscaled value instead. */
|
||
if (TREE_CODE (step) == MULT_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (step, 1)) == INTEGER_CST
|
||
&& tree_int_cst_sgn (TREE_OPERAND (step, 1)) > 0)
|
||
{
|
||
tree factor = TREE_OPERAND (step, 1);
|
||
step = TREE_OPERAND (step, 0);
|
||
|
||
/* Strip widening and truncating conversions as well as nops. */
|
||
if (CONVERT_EXPR_P (step)
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (step, 0))))
|
||
step = TREE_OPERAND (step, 0);
|
||
tree type = TREE_TYPE (step);
|
||
|
||
/* Get the range of step values that would not cause overflow. */
|
||
widest_int minv = (wi::to_widest (TYPE_MIN_VALUE (ssizetype))
|
||
/ wi::to_widest (factor));
|
||
widest_int maxv = (wi::to_widest (TYPE_MAX_VALUE (ssizetype))
|
||
/ wi::to_widest (factor));
|
||
|
||
/* Get the range of values that the unconverted step actually has. */
|
||
wide_int step_min, step_max;
|
||
if (TREE_CODE (step) != SSA_NAME
|
||
|| get_range_info (step, &step_min, &step_max) != VR_RANGE)
|
||
{
|
||
step_min = wi::to_wide (TYPE_MIN_VALUE (type));
|
||
step_max = wi::to_wide (TYPE_MAX_VALUE (type));
|
||
}
|
||
|
||
/* Check whether the unconverted step has an acceptable range. */
|
||
signop sgn = TYPE_SIGN (type);
|
||
if (wi::les_p (minv, widest_int::from (step_min, sgn))
|
||
&& wi::ges_p (maxv, widest_int::from (step_max, sgn)))
|
||
{
|
||
if (wi::ge_p (step_min, useful_min, sgn))
|
||
return ssize_int (useful_min);
|
||
else if (wi::lt_p (step_max, 0, sgn))
|
||
return ssize_int (-1);
|
||
else
|
||
return fold_convert (ssizetype, step);
|
||
}
|
||
}
|
||
return DR_STEP (dr);
|
||
}
|
||
|
||
/* Return a value that is negative iff DR has a negative step. */
|
||
|
||
tree
|
||
dr_direction_indicator (struct data_reference *dr)
|
||
{
|
||
return dr_step_indicator (dr, 0);
|
||
}
|
||
|
||
/* Return a value that is zero iff DR has a zero step. */
|
||
|
||
tree
|
||
dr_zero_step_indicator (struct data_reference *dr)
|
||
{
|
||
return dr_step_indicator (dr, 1);
|
||
}
|
||
|
||
/* Return true if DR is known to have a nonnegative (but possibly zero)
|
||
step. */
|
||
|
||
bool
|
||
dr_known_forward_stride_p (struct data_reference *dr)
|
||
{
|
||
tree indicator = dr_direction_indicator (dr);
|
||
tree neg_step_val = fold_binary (LT_EXPR, boolean_type_node,
|
||
fold_convert (ssizetype, indicator),
|
||
ssize_int (0));
|
||
return neg_step_val && integer_zerop (neg_step_val);
|
||
}
|