c59ffc4195
* hwint.c: New. Extracted from toplev.c. * hwint.h (clz_hwi, ctz_hwi, ffs_hwi, exact_log2, floor_log2): Move from toplev.h. * toplev.c (clz_hwi, ctz_hwi, ffs_hwi, exact_log2, floor_log2): Move to hwint.c. * toplev.h (clz_hwi, ctz_hwi, ffs_hwi, exact_log2, floor_log2): Move to hwint.h. * builtins.c, combine.c, config/i386/winnt.c, double-int.c, explow.c, expmed.c, fold-const.c, ggc-page.c, ggc-zone.c, ifcvt.c, ipa-struct-reorg.c, ira-color.c, matrix-reorg.c, omp-low.c, real.c, recog.c, reload.c, rtlanal.c, simplify-rtx.c, stor-layout.c, tree-dfa.c, tree-ssa-alias.c, tree-ssa-loop-niter.c, tree-vect-data-refs.c, tree-vect-loop-manip.c, tree-vect-loop.c, tree-vect-stmts.c, tree-vrp.c: Don't include toplev.h. * genattrtab.c, genconditions.c, genemit.c, genextract.c, genoutput.c, genpeep.c, genpreds.c, genrecog.c: Don't include toplev.h in generated output. * Makefile.in (OBJS-common): Add hwint.o. Dependencies for above files changed to remove toplev.h. (hwint.o): New. (insn-attrtab.o, insn-emit.o, insn-extract.o, insn-output.o, insn-peep.o, insn-preds.o, insn-recog.o): Don't depend on toplev.h. * config/i386/t-cygming (winnt.o): Don't depend on toplev.h. * config/i386/t-interix (winnt.o): Don't depend on toplev.h. fortran: * trans-common.c: Don't include toplev.h. java: * boehm.c: Don't include toplev.h. * Make-lang.in (java/boehm.o): Don't depend on toplev.h. lto: * lto-object.c: Don't include toplev.h. * Make-lang.in (lto/lto-object.o): Don't depend on toplev.h. From-SVN: r167301
3276 lines
105 KiB
C
3276 lines
105 KiB
C
/* IRA allocation based on graph coloring.
|
||
Copyright (C) 2006, 2007, 2008, 2009, 2010
|
||
Free Software Foundation, Inc.
|
||
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "target.h"
|
||
#include "regs.h"
|
||
#include "flags.h"
|
||
#include "sbitmap.h"
|
||
#include "bitmap.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "expr.h"
|
||
#include "diagnostic-core.h"
|
||
#include "reload.h"
|
||
#include "params.h"
|
||
#include "df.h"
|
||
#include "splay-tree.h"
|
||
#include "ira-int.h"
|
||
|
||
/* This file contains code for regional graph coloring, spill/restore
|
||
code placement optimization, and code helping the reload pass to do
|
||
a better job. */
|
||
|
||
/* Bitmap of allocnos which should be colored. */
|
||
static bitmap coloring_allocno_bitmap;
|
||
|
||
/* Bitmap of allocnos which should be taken into account during
|
||
coloring. In general case it contains allocnos from
|
||
coloring_allocno_bitmap plus other already colored conflicting
|
||
allocnos. */
|
||
static bitmap consideration_allocno_bitmap;
|
||
|
||
/* All allocnos sorted according their priorities. */
|
||
static ira_allocno_t *sorted_allocnos;
|
||
|
||
/* Vec representing the stack of allocnos used during coloring. */
|
||
static VEC(ira_allocno_t,heap) *allocno_stack_vec;
|
||
|
||
/* Array used to choose an allocno for spilling. */
|
||
static ira_allocno_t *allocnos_for_spilling;
|
||
|
||
/* Pool for splay tree nodes. */
|
||
static alloc_pool splay_tree_node_pool;
|
||
|
||
/* When an allocno is removed from the splay tree, it is put in the
|
||
following vector for subsequent inserting it into the splay tree
|
||
after putting all colorable allocnos onto the stack. The allocno
|
||
could be removed from and inserted to the splay tree every time
|
||
when its spilling priority is changed but such solution would be
|
||
more costly although simpler. */
|
||
static VEC(ira_allocno_t,heap) *removed_splay_allocno_vec;
|
||
|
||
/* Helper for qsort comparison callbacks - return a positive integer if
|
||
X > Y, or a negative value otherwise. Use a conditional expression
|
||
instead of a difference computation to insulate from possible overflow
|
||
issues, e.g. X - Y < 0 for some X > 0 and Y < 0. */
|
||
#define SORTGT(x,y) (((x) > (y)) ? 1 : -1)
|
||
|
||
|
||
|
||
/* This page contains functions used to find conflicts using allocno
|
||
live ranges. */
|
||
|
||
/* Return TRUE if live ranges of allocnos A1 and A2 intersect. It is
|
||
used to find a conflict for new allocnos or allocnos with the
|
||
different cover classes. */
|
||
static bool
|
||
allocnos_have_intersected_live_ranges_p (ira_allocno_t a1, ira_allocno_t a2)
|
||
{
|
||
int i, j;
|
||
int n1 = ALLOCNO_NUM_OBJECTS (a1);
|
||
int n2 = ALLOCNO_NUM_OBJECTS (a2);
|
||
|
||
if (a1 == a2)
|
||
return false;
|
||
if (ALLOCNO_REG (a1) != NULL && ALLOCNO_REG (a2) != NULL
|
||
&& (ORIGINAL_REGNO (ALLOCNO_REG (a1))
|
||
== ORIGINAL_REGNO (ALLOCNO_REG (a2))))
|
||
return false;
|
||
|
||
for (i = 0; i < n1; i++)
|
||
{
|
||
ira_object_t c1 = ALLOCNO_OBJECT (a1, i);
|
||
for (j = 0; j < n2; j++)
|
||
{
|
||
ira_object_t c2 = ALLOCNO_OBJECT (a2, j);
|
||
if (ira_live_ranges_intersect_p (OBJECT_LIVE_RANGES (c1),
|
||
OBJECT_LIVE_RANGES (c2)))
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
#ifdef ENABLE_IRA_CHECKING
|
||
|
||
/* Return TRUE if live ranges of pseudo-registers REGNO1 and REGNO2
|
||
intersect. This should be used when there is only one region.
|
||
Currently this is used during reload. */
|
||
static bool
|
||
pseudos_have_intersected_live_ranges_p (int regno1, int regno2)
|
||
{
|
||
ira_allocno_t a1, a2;
|
||
|
||
ira_assert (regno1 >= FIRST_PSEUDO_REGISTER
|
||
&& regno2 >= FIRST_PSEUDO_REGISTER);
|
||
/* Reg info caclulated by dataflow infrastructure can be different
|
||
from one calculated by regclass. */
|
||
if ((a1 = ira_loop_tree_root->regno_allocno_map[regno1]) == NULL
|
||
|| (a2 = ira_loop_tree_root->regno_allocno_map[regno2]) == NULL)
|
||
return false;
|
||
return allocnos_have_intersected_live_ranges_p (a1, a2);
|
||
}
|
||
|
||
#endif
|
||
|
||
|
||
|
||
/* This page contains functions used to choose hard registers for
|
||
allocnos. */
|
||
|
||
/* Array whose element value is TRUE if the corresponding hard
|
||
register was already allocated for an allocno. */
|
||
static bool allocated_hardreg_p[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Describes one element in a queue of allocnos whose costs need to be
|
||
updated. Each allocno in the queue is known to have a cover class. */
|
||
struct update_cost_queue_elem
|
||
{
|
||
/* This element is in the queue iff CHECK == update_cost_check. */
|
||
int check;
|
||
|
||
/* COST_HOP_DIVISOR**N, where N is the length of the shortest path
|
||
connecting this allocno to the one being allocated. */
|
||
int divisor;
|
||
|
||
/* The next allocno in the queue, or null if this is the last element. */
|
||
ira_allocno_t next;
|
||
};
|
||
|
||
/* The first element in a queue of allocnos whose copy costs need to be
|
||
updated. Null if the queue is empty. */
|
||
static ira_allocno_t update_cost_queue;
|
||
|
||
/* The last element in the queue described by update_cost_queue.
|
||
Not valid if update_cost_queue is null. */
|
||
static struct update_cost_queue_elem *update_cost_queue_tail;
|
||
|
||
/* A pool of elements in the queue described by update_cost_queue.
|
||
Elements are indexed by ALLOCNO_NUM. */
|
||
static struct update_cost_queue_elem *update_cost_queue_elems;
|
||
|
||
/* The current value of update_copy_cost call count. */
|
||
static int update_cost_check;
|
||
|
||
/* Allocate and initialize data necessary for function
|
||
update_copy_costs. */
|
||
static void
|
||
initiate_cost_update (void)
|
||
{
|
||
size_t size;
|
||
|
||
size = ira_allocnos_num * sizeof (struct update_cost_queue_elem);
|
||
update_cost_queue_elems
|
||
= (struct update_cost_queue_elem *) ira_allocate (size);
|
||
memset (update_cost_queue_elems, 0, size);
|
||
update_cost_check = 0;
|
||
}
|
||
|
||
/* Deallocate data used by function update_copy_costs. */
|
||
static void
|
||
finish_cost_update (void)
|
||
{
|
||
ira_free (update_cost_queue_elems);
|
||
}
|
||
|
||
/* When we traverse allocnos to update hard register costs, the cost
|
||
divisor will be multiplied by the following macro value for each
|
||
hop from given allocno to directly connected allocnos. */
|
||
#define COST_HOP_DIVISOR 4
|
||
|
||
/* Start a new cost-updating pass. */
|
||
static void
|
||
start_update_cost (void)
|
||
{
|
||
update_cost_check++;
|
||
update_cost_queue = NULL;
|
||
}
|
||
|
||
/* Add (ALLOCNO, DIVISOR) to the end of update_cost_queue,
|
||
unless ALLOCNO is already in the queue, or has no cover class. */
|
||
static inline void
|
||
queue_update_cost (ira_allocno_t allocno, int divisor)
|
||
{
|
||
struct update_cost_queue_elem *elem;
|
||
|
||
elem = &update_cost_queue_elems[ALLOCNO_NUM (allocno)];
|
||
if (elem->check != update_cost_check
|
||
&& ALLOCNO_COVER_CLASS (allocno) != NO_REGS)
|
||
{
|
||
elem->check = update_cost_check;
|
||
elem->divisor = divisor;
|
||
elem->next = NULL;
|
||
if (update_cost_queue == NULL)
|
||
update_cost_queue = allocno;
|
||
else
|
||
update_cost_queue_tail->next = allocno;
|
||
update_cost_queue_tail = elem;
|
||
}
|
||
}
|
||
|
||
/* Try to remove the first element from update_cost_queue. Return false
|
||
if the queue was empty, otherwise make (*ALLOCNO, *DIVISOR) describe
|
||
the removed element. */
|
||
static inline bool
|
||
get_next_update_cost (ira_allocno_t *allocno, int *divisor)
|
||
{
|
||
struct update_cost_queue_elem *elem;
|
||
|
||
if (update_cost_queue == NULL)
|
||
return false;
|
||
|
||
*allocno = update_cost_queue;
|
||
elem = &update_cost_queue_elems[ALLOCNO_NUM (*allocno)];
|
||
*divisor = elem->divisor;
|
||
update_cost_queue = elem->next;
|
||
return true;
|
||
}
|
||
|
||
/* Update the cost of allocnos to increase chances to remove some
|
||
copies as the result of subsequent assignment. */
|
||
static void
|
||
update_copy_costs (ira_allocno_t allocno, bool decr_p)
|
||
{
|
||
int i, cost, update_cost, hard_regno, divisor;
|
||
enum machine_mode mode;
|
||
enum reg_class rclass, cover_class;
|
||
ira_allocno_t another_allocno;
|
||
ira_copy_t cp, next_cp;
|
||
|
||
hard_regno = ALLOCNO_HARD_REGNO (allocno);
|
||
ira_assert (hard_regno >= 0);
|
||
|
||
cover_class = ALLOCNO_COVER_CLASS (allocno);
|
||
if (cover_class == NO_REGS)
|
||
return;
|
||
i = ira_class_hard_reg_index[cover_class][hard_regno];
|
||
ira_assert (i >= 0);
|
||
rclass = REGNO_REG_CLASS (hard_regno);
|
||
|
||
start_update_cost ();
|
||
divisor = 1;
|
||
do
|
||
{
|
||
mode = ALLOCNO_MODE (allocno);
|
||
for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
|
||
{
|
||
if (cp->first == allocno)
|
||
{
|
||
next_cp = cp->next_first_allocno_copy;
|
||
another_allocno = cp->second;
|
||
}
|
||
else if (cp->second == allocno)
|
||
{
|
||
next_cp = cp->next_second_allocno_copy;
|
||
another_allocno = cp->first;
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
cover_class = ALLOCNO_COVER_CLASS (another_allocno);
|
||
if (! ira_reg_classes_intersect_p[rclass][cover_class]
|
||
|| ALLOCNO_ASSIGNED_P (another_allocno))
|
||
continue;
|
||
|
||
cost = (cp->second == allocno
|
||
? ira_get_register_move_cost (mode, rclass, cover_class)
|
||
: ira_get_register_move_cost (mode, cover_class, rclass));
|
||
if (decr_p)
|
||
cost = -cost;
|
||
|
||
update_cost = cp->freq * cost / divisor;
|
||
if (update_cost == 0)
|
||
continue;
|
||
|
||
ira_allocate_and_set_or_copy_costs
|
||
(&ALLOCNO_UPDATED_HARD_REG_COSTS (another_allocno), cover_class,
|
||
ALLOCNO_UPDATED_COVER_CLASS_COST (another_allocno),
|
||
ALLOCNO_HARD_REG_COSTS (another_allocno));
|
||
ira_allocate_and_set_or_copy_costs
|
||
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno),
|
||
cover_class, 0,
|
||
ALLOCNO_CONFLICT_HARD_REG_COSTS (another_allocno));
|
||
i = ira_class_hard_reg_index[cover_class][hard_regno];
|
||
ira_assert (i >= 0);
|
||
ALLOCNO_UPDATED_HARD_REG_COSTS (another_allocno)[i] += update_cost;
|
||
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno)[i]
|
||
+= update_cost;
|
||
|
||
queue_update_cost (another_allocno, divisor * COST_HOP_DIVISOR);
|
||
}
|
||
}
|
||
while (get_next_update_cost (&allocno, &divisor));
|
||
}
|
||
|
||
/* This function updates COSTS (decrease if DECR_P) for hard_registers
|
||
of COVER_CLASS by conflict costs of the unassigned allocnos
|
||
connected by copies with allocnos in update_cost_queue. This
|
||
update increases chances to remove some copies. */
|
||
static void
|
||
update_conflict_hard_regno_costs (int *costs, enum reg_class cover_class,
|
||
bool decr_p)
|
||
{
|
||
int i, cost, class_size, freq, mult, div, divisor;
|
||
int index, hard_regno;
|
||
int *conflict_costs;
|
||
bool cont_p;
|
||
enum reg_class another_cover_class;
|
||
ira_allocno_t allocno, another_allocno;
|
||
ira_copy_t cp, next_cp;
|
||
|
||
while (get_next_update_cost (&allocno, &divisor))
|
||
for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
|
||
{
|
||
if (cp->first == allocno)
|
||
{
|
||
next_cp = cp->next_first_allocno_copy;
|
||
another_allocno = cp->second;
|
||
}
|
||
else if (cp->second == allocno)
|
||
{
|
||
next_cp = cp->next_second_allocno_copy;
|
||
another_allocno = cp->first;
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
another_cover_class = ALLOCNO_COVER_CLASS (another_allocno);
|
||
if (! ira_reg_classes_intersect_p[cover_class][another_cover_class]
|
||
|| ALLOCNO_ASSIGNED_P (another_allocno)
|
||
|| ALLOCNO_MAY_BE_SPILLED_P (another_allocno))
|
||
continue;
|
||
class_size = ira_class_hard_regs_num[another_cover_class];
|
||
ira_allocate_and_copy_costs
|
||
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno),
|
||
another_cover_class,
|
||
ALLOCNO_CONFLICT_HARD_REG_COSTS (another_allocno));
|
||
conflict_costs
|
||
= ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno);
|
||
if (conflict_costs == NULL)
|
||
cont_p = true;
|
||
else
|
||
{
|
||
mult = cp->freq;
|
||
freq = ALLOCNO_FREQ (another_allocno);
|
||
if (freq == 0)
|
||
freq = 1;
|
||
div = freq * divisor;
|
||
cont_p = false;
|
||
for (i = class_size - 1; i >= 0; i--)
|
||
{
|
||
hard_regno = ira_class_hard_regs[another_cover_class][i];
|
||
ira_assert (hard_regno >= 0);
|
||
index = ira_class_hard_reg_index[cover_class][hard_regno];
|
||
if (index < 0)
|
||
continue;
|
||
cost = conflict_costs [i] * mult / div;
|
||
if (cost == 0)
|
||
continue;
|
||
cont_p = true;
|
||
if (decr_p)
|
||
cost = -cost;
|
||
costs[index] += cost;
|
||
}
|
||
}
|
||
/* Probably 5 hops will be enough. */
|
||
if (cont_p
|
||
&& divisor <= (COST_HOP_DIVISOR
|
||
* COST_HOP_DIVISOR
|
||
* COST_HOP_DIVISOR
|
||
* COST_HOP_DIVISOR))
|
||
queue_update_cost (another_allocno, divisor * COST_HOP_DIVISOR);
|
||
}
|
||
}
|
||
|
||
/* Choose a hard register for allocno A. If RETRY_P is TRUE, it means
|
||
that the function called from function
|
||
`ira_reassign_conflict_allocnos' and `allocno_reload_assign'. */
|
||
static bool
|
||
assign_hard_reg (ira_allocno_t a, bool retry_p)
|
||
{
|
||
HARD_REG_SET conflicting_regs[2];
|
||
int i, j, hard_regno, nregs, best_hard_regno, class_size;
|
||
int cost, mem_cost, min_cost, full_cost, min_full_cost, nwords, word;
|
||
int *a_costs;
|
||
enum reg_class cover_class;
|
||
enum machine_mode mode;
|
||
static int costs[FIRST_PSEUDO_REGISTER], full_costs[FIRST_PSEUDO_REGISTER];
|
||
#ifndef HONOR_REG_ALLOC_ORDER
|
||
enum reg_class rclass;
|
||
int add_cost;
|
||
#endif
|
||
#ifdef STACK_REGS
|
||
bool no_stack_reg_p;
|
||
#endif
|
||
|
||
nwords = ALLOCNO_NUM_OBJECTS (a);
|
||
ira_assert (! ALLOCNO_ASSIGNED_P (a));
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
class_size = ira_class_hard_regs_num[cover_class];
|
||
mode = ALLOCNO_MODE (a);
|
||
for (i = 0; i < nwords; i++)
|
||
CLEAR_HARD_REG_SET (conflicting_regs[i]);
|
||
best_hard_regno = -1;
|
||
memset (full_costs, 0, sizeof (int) * class_size);
|
||
mem_cost = 0;
|
||
memset (costs, 0, sizeof (int) * class_size);
|
||
memset (full_costs, 0, sizeof (int) * class_size);
|
||
#ifdef STACK_REGS
|
||
no_stack_reg_p = false;
|
||
#endif
|
||
start_update_cost ();
|
||
mem_cost += ALLOCNO_UPDATED_MEMORY_COST (a);
|
||
|
||
ira_allocate_and_copy_costs (&ALLOCNO_UPDATED_HARD_REG_COSTS (a),
|
||
cover_class, ALLOCNO_HARD_REG_COSTS (a));
|
||
a_costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a);
|
||
#ifdef STACK_REGS
|
||
no_stack_reg_p = no_stack_reg_p || ALLOCNO_TOTAL_NO_STACK_REG_P (a);
|
||
#endif
|
||
cost = ALLOCNO_UPDATED_COVER_CLASS_COST (a);
|
||
for (i = 0; i < class_size; i++)
|
||
if (a_costs != NULL)
|
||
{
|
||
costs[i] += a_costs[i];
|
||
full_costs[i] += a_costs[i];
|
||
}
|
||
else
|
||
{
|
||
costs[i] += cost;
|
||
full_costs[i] += cost;
|
||
}
|
||
for (word = 0; word < nwords; word++)
|
||
{
|
||
ira_object_t conflict_obj;
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, word);
|
||
ira_object_conflict_iterator oci;
|
||
|
||
IOR_HARD_REG_SET (conflicting_regs[word],
|
||
OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
|
||
/* Take preferences of conflicting allocnos into account. */
|
||
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
|
||
{
|
||
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
|
||
enum reg_class conflict_cover_class;
|
||
|
||
/* Reload can give another class so we need to check all
|
||
allocnos. */
|
||
if (!retry_p && !bitmap_bit_p (consideration_allocno_bitmap,
|
||
ALLOCNO_NUM (conflict_a)))
|
||
continue;
|
||
conflict_cover_class = ALLOCNO_COVER_CLASS (conflict_a);
|
||
ira_assert (ira_reg_classes_intersect_p
|
||
[cover_class][conflict_cover_class]);
|
||
if (ALLOCNO_ASSIGNED_P (conflict_a))
|
||
{
|
||
hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
|
||
if (hard_regno >= 0
|
||
&& ira_class_hard_reg_index[cover_class][hard_regno] >= 0)
|
||
{
|
||
enum machine_mode mode = ALLOCNO_MODE (conflict_a);
|
||
int conflict_nregs = hard_regno_nregs[hard_regno][mode];
|
||
int n_objects = ALLOCNO_NUM_OBJECTS (conflict_a);
|
||
|
||
if (conflict_nregs == n_objects && conflict_nregs > 1)
|
||
{
|
||
int num = OBJECT_SUBWORD (conflict_obj);
|
||
|
||
if (WORDS_BIG_ENDIAN)
|
||
SET_HARD_REG_BIT (conflicting_regs[word],
|
||
hard_regno + n_objects - num - 1);
|
||
else
|
||
SET_HARD_REG_BIT (conflicting_regs[word],
|
||
hard_regno + num);
|
||
}
|
||
else
|
||
IOR_HARD_REG_SET
|
||
(conflicting_regs[word],
|
||
ira_reg_mode_hard_regset[hard_regno][mode]);
|
||
if (hard_reg_set_subset_p (reg_class_contents[cover_class],
|
||
conflicting_regs[word]))
|
||
goto fail;
|
||
}
|
||
}
|
||
else if (! ALLOCNO_MAY_BE_SPILLED_P (conflict_a))
|
||
{
|
||
int k, *conflict_costs;
|
||
|
||
ira_allocate_and_copy_costs
|
||
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a),
|
||
conflict_cover_class,
|
||
ALLOCNO_CONFLICT_HARD_REG_COSTS (conflict_a));
|
||
conflict_costs
|
||
= ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a);
|
||
if (conflict_costs != NULL)
|
||
for (j = class_size - 1; j >= 0; j--)
|
||
{
|
||
hard_regno = ira_class_hard_regs[cover_class][j];
|
||
ira_assert (hard_regno >= 0);
|
||
k = (ira_class_hard_reg_index
|
||
[conflict_cover_class][hard_regno]);
|
||
if (k < 0)
|
||
continue;
|
||
full_costs[j] -= conflict_costs[k];
|
||
}
|
||
queue_update_cost (conflict_a, COST_HOP_DIVISOR);
|
||
}
|
||
}
|
||
}
|
||
/* Take into account preferences of allocnos connected by copies to
|
||
the conflict allocnos. */
|
||
update_conflict_hard_regno_costs (full_costs, cover_class, true);
|
||
|
||
/* Take preferences of allocnos connected by copies into
|
||
account. */
|
||
start_update_cost ();
|
||
queue_update_cost (a, COST_HOP_DIVISOR);
|
||
update_conflict_hard_regno_costs (full_costs, cover_class, false);
|
||
min_cost = min_full_cost = INT_MAX;
|
||
|
||
/* We don't care about giving callee saved registers to allocnos no
|
||
living through calls because call clobbered registers are
|
||
allocated first (it is usual practice to put them first in
|
||
REG_ALLOC_ORDER). */
|
||
for (i = 0; i < class_size; i++)
|
||
{
|
||
hard_regno = ira_class_hard_regs[cover_class][i];
|
||
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
|
||
#ifdef STACK_REGS
|
||
if (no_stack_reg_p
|
||
&& FIRST_STACK_REG <= hard_regno && hard_regno <= LAST_STACK_REG)
|
||
continue;
|
||
#endif
|
||
if (TEST_HARD_REG_BIT (prohibited_class_mode_regs[cover_class][mode],
|
||
hard_regno))
|
||
continue;
|
||
for (j = 0; j < nregs; j++)
|
||
{
|
||
int k;
|
||
int set_to_test_start = 0, set_to_test_end = nwords;
|
||
if (nregs == nwords)
|
||
{
|
||
if (WORDS_BIG_ENDIAN)
|
||
set_to_test_start = nwords - j - 1;
|
||
else
|
||
set_to_test_start = j;
|
||
set_to_test_end = set_to_test_start + 1;
|
||
}
|
||
for (k = set_to_test_start; k < set_to_test_end; k++)
|
||
if (TEST_HARD_REG_BIT (conflicting_regs[k], hard_regno + j))
|
||
break;
|
||
if (k != set_to_test_end)
|
||
break;
|
||
}
|
||
if (j != nregs)
|
||
continue;
|
||
cost = costs[i];
|
||
full_cost = full_costs[i];
|
||
#ifndef HONOR_REG_ALLOC_ORDER
|
||
if (! allocated_hardreg_p[hard_regno]
|
||
&& ira_hard_reg_not_in_set_p (hard_regno, mode, call_used_reg_set))
|
||
/* We need to save/restore the hard register in
|
||
epilogue/prologue. Therefore we increase the cost. */
|
||
{
|
||
/* ??? If only part is call clobbered. */
|
||
rclass = REGNO_REG_CLASS (hard_regno);
|
||
add_cost = (ira_memory_move_cost[mode][rclass][0]
|
||
+ ira_memory_move_cost[mode][rclass][1] - 1);
|
||
cost += add_cost;
|
||
full_cost += add_cost;
|
||
}
|
||
#endif
|
||
if (min_cost > cost)
|
||
min_cost = cost;
|
||
if (min_full_cost > full_cost)
|
||
{
|
||
min_full_cost = full_cost;
|
||
best_hard_regno = hard_regno;
|
||
ira_assert (hard_regno >= 0);
|
||
}
|
||
}
|
||
if (min_full_cost > mem_cost)
|
||
{
|
||
if (! retry_p && internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, "(memory is more profitable %d vs %d) ",
|
||
mem_cost, min_full_cost);
|
||
best_hard_regno = -1;
|
||
}
|
||
fail:
|
||
if (best_hard_regno >= 0)
|
||
allocated_hardreg_p[best_hard_regno] = true;
|
||
ALLOCNO_HARD_REGNO (a) = best_hard_regno;
|
||
ALLOCNO_ASSIGNED_P (a) = true;
|
||
if (best_hard_regno >= 0)
|
||
update_copy_costs (a, true);
|
||
/* We don't need updated costs anymore: */
|
||
ira_free_allocno_updated_costs (a);
|
||
return best_hard_regno >= 0;
|
||
}
|
||
|
||
|
||
|
||
/* This page contains the allocator based on the Chaitin-Briggs algorithm. */
|
||
|
||
/* Bucket of allocnos that can colored currently without spilling. */
|
||
static ira_allocno_t colorable_allocno_bucket;
|
||
|
||
/* Bucket of allocnos that might be not colored currently without
|
||
spilling. */
|
||
static ira_allocno_t uncolorable_allocno_bucket;
|
||
|
||
/* Each element of the array contains the current number of allocnos
|
||
of given *cover* class in the uncolorable_bucket. */
|
||
static int uncolorable_allocnos_num[N_REG_CLASSES];
|
||
|
||
/* Return the current spill priority of allocno A. The less the
|
||
number, the more preferable the allocno for spilling. */
|
||
static int
|
||
allocno_spill_priority (ira_allocno_t a)
|
||
{
|
||
return (ALLOCNO_TEMP (a)
|
||
/ (ALLOCNO_LEFT_CONFLICTS_SIZE (a)
|
||
* ira_reg_class_nregs[ALLOCNO_COVER_CLASS (a)][ALLOCNO_MODE (a)]
|
||
+ 1));
|
||
}
|
||
|
||
/* Add ALLOCNO to bucket *BUCKET_PTR. ALLOCNO should be not in a bucket
|
||
before the call. */
|
||
static void
|
||
add_allocno_to_bucket (ira_allocno_t allocno, ira_allocno_t *bucket_ptr)
|
||
{
|
||
ira_allocno_t first_allocno;
|
||
enum reg_class cover_class;
|
||
|
||
if (bucket_ptr == &uncolorable_allocno_bucket
|
||
&& (cover_class = ALLOCNO_COVER_CLASS (allocno)) != NO_REGS)
|
||
{
|
||
uncolorable_allocnos_num[cover_class]++;
|
||
ira_assert (uncolorable_allocnos_num[cover_class] > 0);
|
||
}
|
||
first_allocno = *bucket_ptr;
|
||
ALLOCNO_NEXT_BUCKET_ALLOCNO (allocno) = first_allocno;
|
||
ALLOCNO_PREV_BUCKET_ALLOCNO (allocno) = NULL;
|
||
if (first_allocno != NULL)
|
||
ALLOCNO_PREV_BUCKET_ALLOCNO (first_allocno) = allocno;
|
||
*bucket_ptr = allocno;
|
||
}
|
||
|
||
/* Compare two allocnos to define which allocno should be pushed first
|
||
into the coloring stack. If the return is a negative number, the
|
||
allocno given by the first parameter will be pushed first. In this
|
||
case such allocno has less priority than the second one and the
|
||
hard register will be assigned to it after assignment to the second
|
||
one. As the result of such assignment order, the second allocno
|
||
has a better chance to get the best hard register. */
|
||
static int
|
||
bucket_allocno_compare_func (const void *v1p, const void *v2p)
|
||
{
|
||
ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
|
||
ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
|
||
int diff, a1_freq, a2_freq, a1_num, a2_num;
|
||
|
||
if ((diff = (int) ALLOCNO_COVER_CLASS (a2) - ALLOCNO_COVER_CLASS (a1)) != 0)
|
||
return diff;
|
||
a1_freq = ALLOCNO_FREQ (a1);
|
||
a1_num = ALLOCNO_AVAILABLE_REGS_NUM (a1);
|
||
a2_freq = ALLOCNO_FREQ (a2);
|
||
a2_num = ALLOCNO_AVAILABLE_REGS_NUM (a2);
|
||
if ((diff = a2_num - a1_num) != 0)
|
||
return diff;
|
||
else if ((diff = a1_freq - a2_freq) != 0)
|
||
return diff;
|
||
return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
|
||
}
|
||
|
||
/* Sort bucket *BUCKET_PTR and return the result through
|
||
BUCKET_PTR. */
|
||
static void
|
||
sort_bucket (ira_allocno_t *bucket_ptr)
|
||
{
|
||
ira_allocno_t a, head;
|
||
int n;
|
||
|
||
for (n = 0, a = *bucket_ptr; a != NULL; a = ALLOCNO_NEXT_BUCKET_ALLOCNO (a))
|
||
sorted_allocnos[n++] = a;
|
||
if (n <= 1)
|
||
return;
|
||
qsort (sorted_allocnos, n, sizeof (ira_allocno_t),
|
||
bucket_allocno_compare_func);
|
||
head = NULL;
|
||
for (n--; n >= 0; n--)
|
||
{
|
||
a = sorted_allocnos[n];
|
||
ALLOCNO_NEXT_BUCKET_ALLOCNO (a) = head;
|
||
ALLOCNO_PREV_BUCKET_ALLOCNO (a) = NULL;
|
||
if (head != NULL)
|
||
ALLOCNO_PREV_BUCKET_ALLOCNO (head) = a;
|
||
head = a;
|
||
}
|
||
*bucket_ptr = head;
|
||
}
|
||
|
||
/* Add ALLOCNO to bucket *BUCKET_PTR maintaining the order according
|
||
their priority. ALLOCNO should be not in a bucket before the
|
||
call. */
|
||
static void
|
||
add_allocno_to_ordered_bucket (ira_allocno_t allocno,
|
||
ira_allocno_t *bucket_ptr)
|
||
{
|
||
ira_allocno_t before, after;
|
||
enum reg_class cover_class;
|
||
|
||
if (bucket_ptr == &uncolorable_allocno_bucket
|
||
&& (cover_class = ALLOCNO_COVER_CLASS (allocno)) != NO_REGS)
|
||
{
|
||
uncolorable_allocnos_num[cover_class]++;
|
||
ira_assert (uncolorable_allocnos_num[cover_class] > 0);
|
||
}
|
||
for (before = *bucket_ptr, after = NULL;
|
||
before != NULL;
|
||
after = before, before = ALLOCNO_NEXT_BUCKET_ALLOCNO (before))
|
||
if (bucket_allocno_compare_func (&allocno, &before) < 0)
|
||
break;
|
||
ALLOCNO_NEXT_BUCKET_ALLOCNO (allocno) = before;
|
||
ALLOCNO_PREV_BUCKET_ALLOCNO (allocno) = after;
|
||
if (after == NULL)
|
||
*bucket_ptr = allocno;
|
||
else
|
||
ALLOCNO_NEXT_BUCKET_ALLOCNO (after) = allocno;
|
||
if (before != NULL)
|
||
ALLOCNO_PREV_BUCKET_ALLOCNO (before) = allocno;
|
||
}
|
||
|
||
/* Delete ALLOCNO from bucket *BUCKET_PTR. It should be there before
|
||
the call. */
|
||
static void
|
||
delete_allocno_from_bucket (ira_allocno_t allocno, ira_allocno_t *bucket_ptr)
|
||
{
|
||
ira_allocno_t prev_allocno, next_allocno;
|
||
enum reg_class cover_class;
|
||
|
||
if (bucket_ptr == &uncolorable_allocno_bucket
|
||
&& (cover_class = ALLOCNO_COVER_CLASS (allocno)) != NO_REGS)
|
||
{
|
||
uncolorable_allocnos_num[cover_class]--;
|
||
ira_assert (uncolorable_allocnos_num[cover_class] >= 0);
|
||
}
|
||
prev_allocno = ALLOCNO_PREV_BUCKET_ALLOCNO (allocno);
|
||
next_allocno = ALLOCNO_NEXT_BUCKET_ALLOCNO (allocno);
|
||
if (prev_allocno != NULL)
|
||
ALLOCNO_NEXT_BUCKET_ALLOCNO (prev_allocno) = next_allocno;
|
||
else
|
||
{
|
||
ira_assert (*bucket_ptr == allocno);
|
||
*bucket_ptr = next_allocno;
|
||
}
|
||
if (next_allocno != NULL)
|
||
ALLOCNO_PREV_BUCKET_ALLOCNO (next_allocno) = prev_allocno;
|
||
}
|
||
|
||
/* Splay tree for each cover class. The trees are indexed by the
|
||
corresponding cover classes. Splay trees contain uncolorable
|
||
allocnos. */
|
||
static splay_tree uncolorable_allocnos_splay_tree[N_REG_CLASSES];
|
||
|
||
/* If the following macro is TRUE, splay tree is used to choose an
|
||
allocno of the corresponding cover class for spilling. When the
|
||
number uncolorable allocnos of given cover class decreases to some
|
||
threshold, linear array search is used to find the best allocno for
|
||
spilling. This threshold is actually pretty big because, although
|
||
splay trees asymptotically is much faster, each splay tree
|
||
operation is sufficiently costly especially taking cache locality
|
||
into account. */
|
||
#define USE_SPLAY_P(CLASS) (uncolorable_allocnos_num[CLASS] > 4000)
|
||
|
||
/* Put allocno A onto the coloring stack without removing it from its
|
||
bucket. Pushing allocno to the coloring stack can result in moving
|
||
conflicting allocnos from the uncolorable bucket to the colorable
|
||
one. */
|
||
static void
|
||
push_allocno_to_stack (ira_allocno_t a)
|
||
{
|
||
int size;
|
||
enum reg_class cover_class;
|
||
int i, n = ALLOCNO_NUM_OBJECTS (a);
|
||
|
||
ALLOCNO_IN_GRAPH_P (a) = false;
|
||
VEC_safe_push (ira_allocno_t, heap, allocno_stack_vec, a);
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
if (cover_class == NO_REGS)
|
||
return;
|
||
size = ira_reg_class_nregs[cover_class][ALLOCNO_MODE (a)];
|
||
if (ALLOCNO_NUM_OBJECTS (a) > 1)
|
||
{
|
||
/* We will deal with the subwords individually. */
|
||
gcc_assert (size == ALLOCNO_NUM_OBJECTS (a));
|
||
size = 1;
|
||
}
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
||
int conflict_size;
|
||
ira_object_t conflict_obj;
|
||
ira_object_conflict_iterator oci;
|
||
|
||
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
|
||
{
|
||
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
|
||
int left_conflicts_size;
|
||
|
||
conflict_a = conflict_a;
|
||
if (!bitmap_bit_p (coloring_allocno_bitmap,
|
||
ALLOCNO_NUM (conflict_a)))
|
||
continue;
|
||
|
||
ira_assert (cover_class
|
||
== ALLOCNO_COVER_CLASS (conflict_a));
|
||
if (!ALLOCNO_IN_GRAPH_P (conflict_a)
|
||
|| ALLOCNO_ASSIGNED_P (conflict_a))
|
||
continue;
|
||
|
||
left_conflicts_size = ALLOCNO_LEFT_CONFLICTS_SIZE (conflict_a);
|
||
conflict_size
|
||
= (ira_reg_class_nregs
|
||
[cover_class][ALLOCNO_MODE (conflict_a)]);
|
||
ira_assert (left_conflicts_size >= size);
|
||
if (left_conflicts_size + conflict_size
|
||
<= ALLOCNO_AVAILABLE_REGS_NUM (conflict_a))
|
||
{
|
||
ALLOCNO_LEFT_CONFLICTS_SIZE (conflict_a) -= size;
|
||
continue;
|
||
}
|
||
left_conflicts_size -= size;
|
||
if (uncolorable_allocnos_splay_tree[cover_class] != NULL
|
||
&& !ALLOCNO_SPLAY_REMOVED_P (conflict_a)
|
||
&& USE_SPLAY_P (cover_class))
|
||
{
|
||
ira_assert
|
||
(splay_tree_lookup
|
||
(uncolorable_allocnos_splay_tree[cover_class],
|
||
(splay_tree_key) conflict_a) != NULL);
|
||
splay_tree_remove
|
||
(uncolorable_allocnos_splay_tree[cover_class],
|
||
(splay_tree_key) conflict_a);
|
||
ALLOCNO_SPLAY_REMOVED_P (conflict_a) = true;
|
||
VEC_safe_push (ira_allocno_t, heap,
|
||
removed_splay_allocno_vec,
|
||
conflict_a);
|
||
}
|
||
ALLOCNO_LEFT_CONFLICTS_SIZE (conflict_a)
|
||
= left_conflicts_size;
|
||
if (left_conflicts_size + conflict_size
|
||
<= ALLOCNO_AVAILABLE_REGS_NUM (conflict_a))
|
||
{
|
||
delete_allocno_from_bucket
|
||
(conflict_a, &uncolorable_allocno_bucket);
|
||
add_allocno_to_ordered_bucket
|
||
(conflict_a, &colorable_allocno_bucket);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Put ALLOCNO onto the coloring stack and remove it from its bucket.
|
||
The allocno is in the colorable bucket if COLORABLE_P is TRUE. */
|
||
static void
|
||
remove_allocno_from_bucket_and_push (ira_allocno_t allocno, bool colorable_p)
|
||
{
|
||
enum reg_class cover_class;
|
||
|
||
if (colorable_p)
|
||
delete_allocno_from_bucket (allocno, &colorable_allocno_bucket);
|
||
else
|
||
delete_allocno_from_bucket (allocno, &uncolorable_allocno_bucket);
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
{
|
||
fprintf (ira_dump_file, " Pushing");
|
||
ira_print_expanded_allocno (allocno);
|
||
if (colorable_p)
|
||
fprintf (ira_dump_file, "\n");
|
||
else
|
||
fprintf (ira_dump_file, "(potential spill: %spri=%d, cost=%d)\n",
|
||
ALLOCNO_BAD_SPILL_P (allocno) ? "bad spill, " : "",
|
||
allocno_spill_priority (allocno), ALLOCNO_TEMP (allocno));
|
||
}
|
||
cover_class = ALLOCNO_COVER_CLASS (allocno);
|
||
ira_assert ((colorable_p
|
||
&& (ALLOCNO_LEFT_CONFLICTS_SIZE (allocno)
|
||
+ ira_reg_class_nregs[cover_class][ALLOCNO_MODE (allocno)]
|
||
<= ALLOCNO_AVAILABLE_REGS_NUM (allocno)))
|
||
|| (! colorable_p
|
||
&& (ALLOCNO_LEFT_CONFLICTS_SIZE (allocno)
|
||
+ ira_reg_class_nregs[cover_class][ALLOCNO_MODE
|
||
(allocno)]
|
||
> ALLOCNO_AVAILABLE_REGS_NUM (allocno))));
|
||
if (! colorable_p)
|
||
ALLOCNO_MAY_BE_SPILLED_P (allocno) = true;
|
||
push_allocno_to_stack (allocno);
|
||
}
|
||
|
||
/* Put all allocnos from colorable bucket onto the coloring stack. */
|
||
static void
|
||
push_only_colorable (void)
|
||
{
|
||
sort_bucket (&colorable_allocno_bucket);
|
||
for (;colorable_allocno_bucket != NULL;)
|
||
remove_allocno_from_bucket_and_push (colorable_allocno_bucket, true);
|
||
}
|
||
|
||
/* Puts ALLOCNO chosen for potential spilling onto the coloring
|
||
stack. */
|
||
static void
|
||
push_allocno_to_spill (ira_allocno_t allocno)
|
||
{
|
||
delete_allocno_from_bucket (allocno, &uncolorable_allocno_bucket);
|
||
ALLOCNO_MAY_BE_SPILLED_P (allocno) = true;
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, " Pushing p%d(%d) (spill for NO_REGS)\n",
|
||
ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno));
|
||
push_allocno_to_stack (allocno);
|
||
}
|
||
|
||
/* Return the frequency of exit edges (if EXIT_P) or entry from/to the
|
||
loop given by its LOOP_NODE. */
|
||
int
|
||
ira_loop_edge_freq (ira_loop_tree_node_t loop_node, int regno, bool exit_p)
|
||
{
|
||
int freq, i;
|
||
edge_iterator ei;
|
||
edge e;
|
||
VEC (edge, heap) *edges;
|
||
|
||
ira_assert (loop_node->loop != NULL
|
||
&& (regno < 0 || regno >= FIRST_PSEUDO_REGISTER));
|
||
freq = 0;
|
||
if (! exit_p)
|
||
{
|
||
FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
|
||
if (e->src != loop_node->loop->latch
|
||
&& (regno < 0
|
||
|| (bitmap_bit_p (DF_LR_OUT (e->src), regno)
|
||
&& bitmap_bit_p (DF_LR_IN (e->dest), regno))))
|
||
freq += EDGE_FREQUENCY (e);
|
||
}
|
||
else
|
||
{
|
||
edges = get_loop_exit_edges (loop_node->loop);
|
||
FOR_EACH_VEC_ELT (edge, edges, i, e)
|
||
if (regno < 0
|
||
|| (bitmap_bit_p (DF_LR_OUT (e->src), regno)
|
||
&& bitmap_bit_p (DF_LR_IN (e->dest), regno)))
|
||
freq += EDGE_FREQUENCY (e);
|
||
VEC_free (edge, heap, edges);
|
||
}
|
||
|
||
return REG_FREQ_FROM_EDGE_FREQ (freq);
|
||
}
|
||
|
||
/* Calculate and return the cost of putting allocno A into memory. */
|
||
static int
|
||
calculate_allocno_spill_cost (ira_allocno_t a)
|
||
{
|
||
int regno, cost;
|
||
enum machine_mode mode;
|
||
enum reg_class rclass;
|
||
ira_allocno_t parent_allocno;
|
||
ira_loop_tree_node_t parent_node, loop_node;
|
||
|
||
regno = ALLOCNO_REGNO (a);
|
||
cost = ALLOCNO_UPDATED_MEMORY_COST (a) - ALLOCNO_UPDATED_COVER_CLASS_COST (a);
|
||
if (ALLOCNO_CAP (a) != NULL)
|
||
return cost;
|
||
loop_node = ALLOCNO_LOOP_TREE_NODE (a);
|
||
if ((parent_node = loop_node->parent) == NULL)
|
||
return cost;
|
||
if ((parent_allocno = parent_node->regno_allocno_map[regno]) == NULL)
|
||
return cost;
|
||
mode = ALLOCNO_MODE (a);
|
||
rclass = ALLOCNO_COVER_CLASS (a);
|
||
if (ALLOCNO_HARD_REGNO (parent_allocno) < 0)
|
||
cost -= (ira_memory_move_cost[mode][rclass][0]
|
||
* ira_loop_edge_freq (loop_node, regno, true)
|
||
+ ira_memory_move_cost[mode][rclass][1]
|
||
* ira_loop_edge_freq (loop_node, regno, false));
|
||
else
|
||
cost += ((ira_memory_move_cost[mode][rclass][1]
|
||
* ira_loop_edge_freq (loop_node, regno, true)
|
||
+ ira_memory_move_cost[mode][rclass][0]
|
||
* ira_loop_edge_freq (loop_node, regno, false))
|
||
- (ira_get_register_move_cost (mode, rclass, rclass)
|
||
* (ira_loop_edge_freq (loop_node, regno, false)
|
||
+ ira_loop_edge_freq (loop_node, regno, true))));
|
||
return cost;
|
||
}
|
||
|
||
/* Compare keys in the splay tree used to choose best allocno for
|
||
spilling. The best allocno has the minimal key. */
|
||
static int
|
||
allocno_spill_priority_compare (splay_tree_key k1, splay_tree_key k2)
|
||
{
|
||
int pri1, pri2, diff;
|
||
ira_allocno_t a1 = (ira_allocno_t) k1, a2 = (ira_allocno_t) k2;
|
||
|
||
pri1 = (ALLOCNO_TEMP (a1)
|
||
/ (ALLOCNO_LEFT_CONFLICTS_SIZE (a1)
|
||
* ira_reg_class_nregs[ALLOCNO_COVER_CLASS (a1)][ALLOCNO_MODE (a1)]
|
||
+ 1));
|
||
pri2 = (ALLOCNO_TEMP (a2)
|
||
/ (ALLOCNO_LEFT_CONFLICTS_SIZE (a2)
|
||
* ira_reg_class_nregs[ALLOCNO_COVER_CLASS (a2)][ALLOCNO_MODE (a2)]
|
||
+ 1));
|
||
if ((diff = pri1 - pri2) != 0)
|
||
return diff;
|
||
if ((diff = ALLOCNO_TEMP (a1) - ALLOCNO_TEMP (a2)) != 0)
|
||
return diff;
|
||
return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
|
||
}
|
||
|
||
/* Allocate data of SIZE for the splay trees. We allocate only spay
|
||
tree roots or splay tree nodes. If you change this, please rewrite
|
||
the function. */
|
||
static void *
|
||
splay_tree_allocate (int size, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
if (size != sizeof (struct splay_tree_node_s))
|
||
return ira_allocate (size);
|
||
return pool_alloc (splay_tree_node_pool);
|
||
}
|
||
|
||
/* Free data NODE for the splay trees. We allocate and free only spay
|
||
tree roots or splay tree nodes. If you change this, please rewrite
|
||
the function. */
|
||
static void
|
||
splay_tree_free (void *node, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
int i;
|
||
enum reg_class cover_class;
|
||
|
||
for (i = 0; i < ira_reg_class_cover_size; i++)
|
||
{
|
||
cover_class = ira_reg_class_cover[i];
|
||
if (node == uncolorable_allocnos_splay_tree[cover_class])
|
||
{
|
||
ira_free (node);
|
||
return;
|
||
}
|
||
}
|
||
pool_free (splay_tree_node_pool, node);
|
||
}
|
||
|
||
/* Push allocnos to the coloring stack. The order of allocnos in the
|
||
stack defines the order for the subsequent coloring. */
|
||
static void
|
||
push_allocnos_to_stack (void)
|
||
{
|
||
ira_allocno_t allocno, i_allocno, *allocno_vec;
|
||
enum reg_class cover_class, rclass;
|
||
int allocno_pri, i_allocno_pri, allocno_cost, i_allocno_cost;
|
||
int i, j, num, cover_class_allocnos_num[N_REG_CLASSES];
|
||
ira_allocno_t *cover_class_allocnos[N_REG_CLASSES];
|
||
int cost;
|
||
|
||
/* Initialize. */
|
||
VEC_truncate(ira_allocno_t, removed_splay_allocno_vec, 0);
|
||
for (i = 0; i < ira_reg_class_cover_size; i++)
|
||
{
|
||
cover_class = ira_reg_class_cover[i];
|
||
cover_class_allocnos_num[cover_class] = 0;
|
||
cover_class_allocnos[cover_class] = NULL;
|
||
uncolorable_allocnos_splay_tree[cover_class] = NULL;
|
||
}
|
||
/* Calculate uncolorable allocno spill costs. */
|
||
for (allocno = uncolorable_allocno_bucket;
|
||
allocno != NULL;
|
||
allocno = ALLOCNO_NEXT_BUCKET_ALLOCNO (allocno))
|
||
if ((cover_class = ALLOCNO_COVER_CLASS (allocno)) != NO_REGS)
|
||
{
|
||
cover_class_allocnos_num[cover_class]++;
|
||
cost = calculate_allocno_spill_cost (allocno);
|
||
ALLOCNO_TEMP (allocno) = cost;
|
||
}
|
||
/* Define place where to put uncolorable allocnos of the same cover
|
||
class. */
|
||
for (num = i = 0; i < ira_reg_class_cover_size; i++)
|
||
{
|
||
cover_class = ira_reg_class_cover[i];
|
||
ira_assert (cover_class_allocnos_num[cover_class]
|
||
== uncolorable_allocnos_num[cover_class]);
|
||
if (cover_class_allocnos_num[cover_class] != 0)
|
||
{
|
||
cover_class_allocnos[cover_class] = allocnos_for_spilling + num;
|
||
num += cover_class_allocnos_num[cover_class];
|
||
cover_class_allocnos_num[cover_class] = 0;
|
||
}
|
||
if (USE_SPLAY_P (cover_class))
|
||
uncolorable_allocnos_splay_tree[cover_class]
|
||
= splay_tree_new_with_allocator (allocno_spill_priority_compare,
|
||
NULL, NULL, splay_tree_allocate,
|
||
splay_tree_free, NULL);
|
||
}
|
||
ira_assert (num <= ira_allocnos_num);
|
||
/* Collect uncolorable allocnos of each cover class. */
|
||
for (allocno = uncolorable_allocno_bucket;
|
||
allocno != NULL;
|
||
allocno = ALLOCNO_NEXT_BUCKET_ALLOCNO (allocno))
|
||
if ((cover_class = ALLOCNO_COVER_CLASS (allocno)) != NO_REGS)
|
||
{
|
||
cover_class_allocnos
|
||
[cover_class][cover_class_allocnos_num[cover_class]++] = allocno;
|
||
if (uncolorable_allocnos_splay_tree[cover_class] != NULL)
|
||
splay_tree_insert (uncolorable_allocnos_splay_tree[cover_class],
|
||
(splay_tree_key) allocno,
|
||
(splay_tree_value) allocno);
|
||
}
|
||
for (;;)
|
||
{
|
||
push_only_colorable ();
|
||
allocno = uncolorable_allocno_bucket;
|
||
if (allocno == NULL)
|
||
break;
|
||
cover_class = ALLOCNO_COVER_CLASS (allocno);
|
||
if (cover_class == NO_REGS)
|
||
{
|
||
push_allocno_to_spill (allocno);
|
||
continue;
|
||
}
|
||
/* Potential spilling. */
|
||
ira_assert
|
||
(ira_reg_class_nregs[cover_class][ALLOCNO_MODE (allocno)] > 0);
|
||
if (USE_SPLAY_P (cover_class))
|
||
{
|
||
for (;VEC_length (ira_allocno_t, removed_splay_allocno_vec) != 0;)
|
||
{
|
||
allocno = VEC_pop (ira_allocno_t, removed_splay_allocno_vec);
|
||
ALLOCNO_SPLAY_REMOVED_P (allocno) = false;
|
||
rclass = ALLOCNO_COVER_CLASS (allocno);
|
||
if (ALLOCNO_LEFT_CONFLICTS_SIZE (allocno)
|
||
+ ira_reg_class_nregs [rclass][ALLOCNO_MODE (allocno)]
|
||
> ALLOCNO_AVAILABLE_REGS_NUM (allocno))
|
||
splay_tree_insert
|
||
(uncolorable_allocnos_splay_tree[rclass],
|
||
(splay_tree_key) allocno, (splay_tree_value) allocno);
|
||
}
|
||
allocno = ((ira_allocno_t)
|
||
splay_tree_min
|
||
(uncolorable_allocnos_splay_tree[cover_class])->key);
|
||
splay_tree_remove (uncolorable_allocnos_splay_tree[cover_class],
|
||
(splay_tree_key) allocno);
|
||
}
|
||
else
|
||
{
|
||
num = cover_class_allocnos_num[cover_class];
|
||
ira_assert (num > 0);
|
||
allocno_vec = cover_class_allocnos[cover_class];
|
||
allocno = NULL;
|
||
allocno_pri = allocno_cost = 0;
|
||
/* Sort uncolorable allocno to find the one with the lowest
|
||
spill cost. */
|
||
for (i = 0, j = num - 1; i <= j;)
|
||
{
|
||
i_allocno = allocno_vec[i];
|
||
if (! ALLOCNO_IN_GRAPH_P (i_allocno)
|
||
&& ALLOCNO_IN_GRAPH_P (allocno_vec[j]))
|
||
{
|
||
i_allocno = allocno_vec[j];
|
||
allocno_vec[j] = allocno_vec[i];
|
||
allocno_vec[i] = i_allocno;
|
||
}
|
||
if (ALLOCNO_IN_GRAPH_P (i_allocno))
|
||
{
|
||
i++;
|
||
ira_assert (ALLOCNO_TEMP (i_allocno) != INT_MAX);
|
||
i_allocno_cost = ALLOCNO_TEMP (i_allocno);
|
||
i_allocno_pri = allocno_spill_priority (i_allocno);
|
||
if (allocno == NULL
|
||
|| (! ALLOCNO_BAD_SPILL_P (i_allocno)
|
||
&& ALLOCNO_BAD_SPILL_P (allocno))
|
||
|| (! (ALLOCNO_BAD_SPILL_P (i_allocno)
|
||
&& ! ALLOCNO_BAD_SPILL_P (allocno))
|
||
&& (allocno_pri > i_allocno_pri
|
||
|| (allocno_pri == i_allocno_pri
|
||
&& (allocno_cost > i_allocno_cost
|
||
|| (allocno_cost == i_allocno_cost
|
||
&& (ALLOCNO_NUM (allocno)
|
||
> ALLOCNO_NUM (i_allocno))))))))
|
||
{
|
||
allocno = i_allocno;
|
||
allocno_cost = i_allocno_cost;
|
||
allocno_pri = i_allocno_pri;
|
||
}
|
||
}
|
||
if (! ALLOCNO_IN_GRAPH_P (allocno_vec[j]))
|
||
j--;
|
||
}
|
||
ira_assert (allocno != NULL && j >= 0);
|
||
cover_class_allocnos_num[cover_class] = j + 1;
|
||
}
|
||
ira_assert (ALLOCNO_IN_GRAPH_P (allocno)
|
||
&& ALLOCNO_COVER_CLASS (allocno) == cover_class
|
||
&& (ALLOCNO_LEFT_CONFLICTS_SIZE (allocno)
|
||
+ ira_reg_class_nregs[cover_class][ALLOCNO_MODE
|
||
(allocno)]
|
||
> ALLOCNO_AVAILABLE_REGS_NUM (allocno)));
|
||
remove_allocno_from_bucket_and_push (allocno, false);
|
||
}
|
||
ira_assert (colorable_allocno_bucket == NULL
|
||
&& uncolorable_allocno_bucket == NULL);
|
||
for (i = 0; i < ira_reg_class_cover_size; i++)
|
||
{
|
||
cover_class = ira_reg_class_cover[i];
|
||
ira_assert (uncolorable_allocnos_num[cover_class] == 0);
|
||
if (uncolorable_allocnos_splay_tree[cover_class] != NULL)
|
||
splay_tree_delete (uncolorable_allocnos_splay_tree[cover_class]);
|
||
}
|
||
}
|
||
|
||
/* Pop the coloring stack and assign hard registers to the popped
|
||
allocnos. */
|
||
static void
|
||
pop_allocnos_from_stack (void)
|
||
{
|
||
ira_allocno_t allocno;
|
||
enum reg_class cover_class;
|
||
|
||
for (;VEC_length (ira_allocno_t, allocno_stack_vec) != 0;)
|
||
{
|
||
allocno = VEC_pop (ira_allocno_t, allocno_stack_vec);
|
||
cover_class = ALLOCNO_COVER_CLASS (allocno);
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
{
|
||
fprintf (ira_dump_file, " Popping");
|
||
ira_print_expanded_allocno (allocno);
|
||
fprintf (ira_dump_file, " -- ");
|
||
}
|
||
if (cover_class == NO_REGS)
|
||
{
|
||
ALLOCNO_HARD_REGNO (allocno) = -1;
|
||
ALLOCNO_ASSIGNED_P (allocno) = true;
|
||
ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (allocno) == NULL);
|
||
ira_assert
|
||
(ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno) == NULL);
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, "assign memory\n");
|
||
}
|
||
else if (assign_hard_reg (allocno, false))
|
||
{
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, "assign reg %d\n",
|
||
ALLOCNO_HARD_REGNO (allocno));
|
||
}
|
||
else if (ALLOCNO_ASSIGNED_P (allocno))
|
||
{
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, "spill\n");
|
||
}
|
||
ALLOCNO_IN_GRAPH_P (allocno) = true;
|
||
}
|
||
}
|
||
|
||
/* Loop over all subobjects of allocno A, collecting total hard
|
||
register conflicts in PSET (which the caller must initialize). */
|
||
static void
|
||
all_conflicting_hard_regs (ira_allocno_t a, HARD_REG_SET *pset)
|
||
{
|
||
int i;
|
||
int n = ALLOCNO_NUM_OBJECTS (a);
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
||
|
||
IOR_HARD_REG_SET (*pset, OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
|
||
}
|
||
}
|
||
|
||
/* Set up number of available hard registers for allocno A. */
|
||
static void
|
||
setup_allocno_available_regs_num (ira_allocno_t a)
|
||
{
|
||
int i, n, hard_regs_num, hard_regno;
|
||
enum machine_mode mode;
|
||
enum reg_class cover_class;
|
||
HARD_REG_SET temp_set;
|
||
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
ALLOCNO_AVAILABLE_REGS_NUM (a) = ira_available_class_regs[cover_class];
|
||
if (cover_class == NO_REGS)
|
||
return;
|
||
CLEAR_HARD_REG_SET (temp_set);
|
||
ira_assert (ALLOCNO_FIRST_COALESCED_ALLOCNO (a) == a);
|
||
hard_regs_num = ira_class_hard_regs_num[cover_class];
|
||
all_conflicting_hard_regs (a, &temp_set);
|
||
|
||
mode = ALLOCNO_MODE (a);
|
||
for (n = 0, i = hard_regs_num - 1; i >= 0; i--)
|
||
{
|
||
hard_regno = ira_class_hard_regs[cover_class][i];
|
||
if (TEST_HARD_REG_BIT (temp_set, hard_regno)
|
||
|| TEST_HARD_REG_BIT (prohibited_class_mode_regs[cover_class][mode],
|
||
hard_regno))
|
||
n++;
|
||
}
|
||
if (internal_flag_ira_verbose > 2 && n > 0 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, " Reg %d of %s has %d regs less\n",
|
||
ALLOCNO_REGNO (a), reg_class_names[cover_class], n);
|
||
ALLOCNO_AVAILABLE_REGS_NUM (a) -= n;
|
||
}
|
||
|
||
/* Set up ALLOCNO_LEFT_CONFLICTS_SIZE for allocno A. */
|
||
static void
|
||
setup_allocno_left_conflicts_size (ira_allocno_t a)
|
||
{
|
||
int i, hard_regs_num, hard_regno, conflict_allocnos_size;
|
||
enum reg_class cover_class;
|
||
HARD_REG_SET temp_set;
|
||
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
hard_regs_num = ira_class_hard_regs_num[cover_class];
|
||
CLEAR_HARD_REG_SET (temp_set);
|
||
ira_assert (ALLOCNO_FIRST_COALESCED_ALLOCNO (a) == a);
|
||
all_conflicting_hard_regs (a, &temp_set);
|
||
|
||
AND_HARD_REG_SET (temp_set, reg_class_contents[cover_class]);
|
||
AND_COMPL_HARD_REG_SET (temp_set, ira_no_alloc_regs);
|
||
|
||
conflict_allocnos_size = 0;
|
||
if (! hard_reg_set_empty_p (temp_set))
|
||
for (i = 0; i < (int) hard_regs_num; i++)
|
||
{
|
||
hard_regno = ira_class_hard_regs[cover_class][i];
|
||
if (TEST_HARD_REG_BIT (temp_set, hard_regno))
|
||
{
|
||
conflict_allocnos_size++;
|
||
CLEAR_HARD_REG_BIT (temp_set, hard_regno);
|
||
if (hard_reg_set_empty_p (temp_set))
|
||
break;
|
||
}
|
||
}
|
||
CLEAR_HARD_REG_SET (temp_set);
|
||
if (cover_class != NO_REGS)
|
||
{
|
||
int n = ALLOCNO_NUM_OBJECTS (a);
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
||
ira_object_t conflict_obj;
|
||
ira_object_conflict_iterator oci;
|
||
|
||
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
|
||
{
|
||
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
|
||
|
||
ira_assert (cover_class
|
||
== ALLOCNO_COVER_CLASS (conflict_a));
|
||
if (! ALLOCNO_ASSIGNED_P (conflict_a))
|
||
conflict_allocnos_size
|
||
+= (ira_reg_class_nregs
|
||
[cover_class][ALLOCNO_MODE (conflict_a)]);
|
||
else if ((hard_regno = ALLOCNO_HARD_REGNO (conflict_a))
|
||
>= 0)
|
||
{
|
||
int last = (hard_regno
|
||
+ hard_regno_nregs
|
||
[hard_regno][ALLOCNO_MODE (conflict_a)]);
|
||
|
||
while (hard_regno < last)
|
||
{
|
||
if (! TEST_HARD_REG_BIT (temp_set, hard_regno))
|
||
{
|
||
conflict_allocnos_size++;
|
||
SET_HARD_REG_BIT (temp_set, hard_regno);
|
||
}
|
||
hard_regno++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
ALLOCNO_LEFT_CONFLICTS_SIZE (a) = conflict_allocnos_size;
|
||
}
|
||
|
||
/* Put ALLOCNO in a bucket corresponding to its number and size of its
|
||
conflicting allocnos and hard registers. */
|
||
static void
|
||
put_allocno_into_bucket (ira_allocno_t allocno)
|
||
{
|
||
enum reg_class cover_class;
|
||
|
||
cover_class = ALLOCNO_COVER_CLASS (allocno);
|
||
ALLOCNO_IN_GRAPH_P (allocno) = true;
|
||
setup_allocno_left_conflicts_size (allocno);
|
||
setup_allocno_available_regs_num (allocno);
|
||
if (ALLOCNO_LEFT_CONFLICTS_SIZE (allocno)
|
||
+ ira_reg_class_nregs[cover_class][ALLOCNO_MODE (allocno)]
|
||
<= ALLOCNO_AVAILABLE_REGS_NUM (allocno))
|
||
add_allocno_to_bucket (allocno, &colorable_allocno_bucket);
|
||
else
|
||
add_allocno_to_bucket (allocno, &uncolorable_allocno_bucket);
|
||
}
|
||
|
||
/* Map: allocno number -> allocno priority. */
|
||
static int *allocno_priorities;
|
||
|
||
/* Set up priorities for N allocnos in array
|
||
CONSIDERATION_ALLOCNOS. */
|
||
static void
|
||
setup_allocno_priorities (ira_allocno_t *consideration_allocnos, int n)
|
||
{
|
||
int i, length, nrefs, priority, max_priority, mult;
|
||
ira_allocno_t a;
|
||
|
||
max_priority = 0;
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
a = consideration_allocnos[i];
|
||
nrefs = ALLOCNO_NREFS (a);
|
||
ira_assert (nrefs >= 0);
|
||
mult = floor_log2 (ALLOCNO_NREFS (a)) + 1;
|
||
ira_assert (mult >= 0);
|
||
allocno_priorities[ALLOCNO_NUM (a)]
|
||
= priority
|
||
= (mult
|
||
* (ALLOCNO_MEMORY_COST (a) - ALLOCNO_COVER_CLASS_COST (a))
|
||
* ira_reg_class_nregs[ALLOCNO_COVER_CLASS (a)][ALLOCNO_MODE (a)]);
|
||
if (priority < 0)
|
||
priority = -priority;
|
||
if (max_priority < priority)
|
||
max_priority = priority;
|
||
}
|
||
mult = max_priority == 0 ? 1 : INT_MAX / max_priority;
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
a = consideration_allocnos[i];
|
||
length = ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
|
||
if (ALLOCNO_NUM_OBJECTS (a) > 1)
|
||
length /= ALLOCNO_NUM_OBJECTS (a);
|
||
if (length <= 0)
|
||
length = 1;
|
||
allocno_priorities[ALLOCNO_NUM (a)]
|
||
= allocno_priorities[ALLOCNO_NUM (a)] * mult / length;
|
||
}
|
||
}
|
||
|
||
/* Sort allocnos according to their priorities which are calculated
|
||
analogous to ones in file `global.c'. */
|
||
static int
|
||
allocno_priority_compare_func (const void *v1p, const void *v2p)
|
||
{
|
||
ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
|
||
ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
|
||
int pri1, pri2;
|
||
|
||
pri1 = allocno_priorities[ALLOCNO_NUM (a1)];
|
||
pri2 = allocno_priorities[ALLOCNO_NUM (a2)];
|
||
if (pri2 != pri1)
|
||
return SORTGT (pri2, pri1);
|
||
|
||
/* If regs are equally good, sort by allocnos, so that the results of
|
||
qsort leave nothing to chance. */
|
||
return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
|
||
}
|
||
|
||
/* Chaitin-Briggs coloring for allocnos in COLORING_ALLOCNO_BITMAP
|
||
taking into account allocnos in CONSIDERATION_ALLOCNO_BITMAP. */
|
||
static void
|
||
color_allocnos (void)
|
||
{
|
||
unsigned int i, n;
|
||
bitmap_iterator bi;
|
||
ira_allocno_t a;
|
||
|
||
if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
|
||
{
|
||
n = 0;
|
||
EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
|
||
{
|
||
a = ira_allocnos[i];
|
||
if (ALLOCNO_COVER_CLASS (a) == NO_REGS)
|
||
{
|
||
ALLOCNO_HARD_REGNO (a) = -1;
|
||
ALLOCNO_ASSIGNED_P (a) = true;
|
||
ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
|
||
ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
{
|
||
fprintf (ira_dump_file, " Spill");
|
||
ira_print_expanded_allocno (a);
|
||
fprintf (ira_dump_file, "\n");
|
||
}
|
||
continue;
|
||
}
|
||
sorted_allocnos[n++] = a;
|
||
}
|
||
if (n != 0)
|
||
{
|
||
setup_allocno_priorities (sorted_allocnos, n);
|
||
qsort (sorted_allocnos, n, sizeof (ira_allocno_t),
|
||
allocno_priority_compare_func);
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
a = sorted_allocnos[i];
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
{
|
||
fprintf (ira_dump_file, " ");
|
||
ira_print_expanded_allocno (a);
|
||
fprintf (ira_dump_file, " -- ");
|
||
}
|
||
if (assign_hard_reg (a, false))
|
||
{
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, "assign hard reg %d\n",
|
||
ALLOCNO_HARD_REGNO (a));
|
||
}
|
||
else
|
||
{
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, "assign memory\n");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Put the allocnos into the corresponding buckets. */
|
||
colorable_allocno_bucket = NULL;
|
||
uncolorable_allocno_bucket = NULL;
|
||
EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
|
||
{
|
||
a = ira_allocnos[i];
|
||
if (ALLOCNO_COVER_CLASS (a) == NO_REGS)
|
||
{
|
||
ALLOCNO_HARD_REGNO (a) = -1;
|
||
ALLOCNO_ASSIGNED_P (a) = true;
|
||
ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
|
||
ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
{
|
||
fprintf (ira_dump_file, " Spill");
|
||
ira_print_expanded_allocno (a);
|
||
fprintf (ira_dump_file, "\n");
|
||
}
|
||
continue;
|
||
}
|
||
put_allocno_into_bucket (a);
|
||
}
|
||
push_allocnos_to_stack ();
|
||
pop_allocnos_from_stack ();
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Output information about the loop given by its LOOP_TREE_NODE. */
|
||
static void
|
||
print_loop_title (ira_loop_tree_node_t loop_tree_node)
|
||
{
|
||
unsigned int j;
|
||
bitmap_iterator bi;
|
||
ira_loop_tree_node_t subloop_node, dest_loop_node;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
ira_assert (loop_tree_node->loop != NULL);
|
||
fprintf (ira_dump_file,
|
||
"\n Loop %d (parent %d, header bb%d, depth %d)\n bbs:",
|
||
loop_tree_node->loop->num,
|
||
(loop_tree_node->parent == NULL
|
||
? -1 : loop_tree_node->parent->loop->num),
|
||
loop_tree_node->loop->header->index,
|
||
loop_depth (loop_tree_node->loop));
|
||
for (subloop_node = loop_tree_node->children;
|
||
subloop_node != NULL;
|
||
subloop_node = subloop_node->next)
|
||
if (subloop_node->bb != NULL)
|
||
{
|
||
fprintf (ira_dump_file, " %d", subloop_node->bb->index);
|
||
FOR_EACH_EDGE (e, ei, subloop_node->bb->succs)
|
||
if (e->dest != EXIT_BLOCK_PTR
|
||
&& ((dest_loop_node = IRA_BB_NODE (e->dest)->parent)
|
||
!= loop_tree_node))
|
||
fprintf (ira_dump_file, "(->%d:l%d)",
|
||
e->dest->index, dest_loop_node->loop->num);
|
||
}
|
||
fprintf (ira_dump_file, "\n all:");
|
||
EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->all_allocnos, 0, j, bi)
|
||
fprintf (ira_dump_file, " %dr%d", j, ALLOCNO_REGNO (ira_allocnos[j]));
|
||
fprintf (ira_dump_file, "\n modified regnos:");
|
||
EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->modified_regnos, 0, j, bi)
|
||
fprintf (ira_dump_file, " %d", j);
|
||
fprintf (ira_dump_file, "\n border:");
|
||
EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->border_allocnos, 0, j, bi)
|
||
fprintf (ira_dump_file, " %dr%d", j, ALLOCNO_REGNO (ira_allocnos[j]));
|
||
fprintf (ira_dump_file, "\n Pressure:");
|
||
for (j = 0; (int) j < ira_reg_class_cover_size; j++)
|
||
{
|
||
enum reg_class cover_class;
|
||
|
||
cover_class = ira_reg_class_cover[j];
|
||
if (loop_tree_node->reg_pressure[cover_class] == 0)
|
||
continue;
|
||
fprintf (ira_dump_file, " %s=%d", reg_class_names[cover_class],
|
||
loop_tree_node->reg_pressure[cover_class]);
|
||
}
|
||
fprintf (ira_dump_file, "\n");
|
||
}
|
||
|
||
/* Color the allocnos inside loop (in the extreme case it can be all
|
||
of the function) given the corresponding LOOP_TREE_NODE. The
|
||
function is called for each loop during top-down traverse of the
|
||
loop tree. */
|
||
static void
|
||
color_pass (ira_loop_tree_node_t loop_tree_node)
|
||
{
|
||
int regno, hard_regno, index = -1;
|
||
int cost, exit_freq, enter_freq;
|
||
unsigned int j;
|
||
bitmap_iterator bi;
|
||
enum machine_mode mode;
|
||
enum reg_class rclass, cover_class;
|
||
ira_allocno_t a, subloop_allocno;
|
||
ira_loop_tree_node_t subloop_node;
|
||
|
||
ira_assert (loop_tree_node->bb == NULL);
|
||
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
|
||
print_loop_title (loop_tree_node);
|
||
|
||
bitmap_copy (coloring_allocno_bitmap, loop_tree_node->all_allocnos);
|
||
bitmap_copy (consideration_allocno_bitmap, coloring_allocno_bitmap);
|
||
EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
|
||
{
|
||
a = ira_allocnos[j];
|
||
if (ALLOCNO_ASSIGNED_P (a))
|
||
bitmap_clear_bit (coloring_allocno_bitmap, ALLOCNO_NUM (a));
|
||
}
|
||
/* Color all mentioned allocnos including transparent ones. */
|
||
color_allocnos ();
|
||
/* Process caps. They are processed just once. */
|
||
if (flag_ira_region == IRA_REGION_MIXED
|
||
|| flag_ira_region == IRA_REGION_ALL)
|
||
EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->all_allocnos, 0, j, bi)
|
||
{
|
||
a = ira_allocnos[j];
|
||
if (ALLOCNO_CAP_MEMBER (a) == NULL)
|
||
continue;
|
||
/* Remove from processing in the next loop. */
|
||
bitmap_clear_bit (consideration_allocno_bitmap, j);
|
||
rclass = ALLOCNO_COVER_CLASS (a);
|
||
if (flag_ira_region == IRA_REGION_MIXED
|
||
&& (loop_tree_node->reg_pressure[rclass]
|
||
<= ira_available_class_regs[rclass]))
|
||
{
|
||
mode = ALLOCNO_MODE (a);
|
||
hard_regno = ALLOCNO_HARD_REGNO (a);
|
||
if (hard_regno >= 0)
|
||
{
|
||
index = ira_class_hard_reg_index[rclass][hard_regno];
|
||
ira_assert (index >= 0);
|
||
}
|
||
regno = ALLOCNO_REGNO (a);
|
||
subloop_allocno = ALLOCNO_CAP_MEMBER (a);
|
||
subloop_node = ALLOCNO_LOOP_TREE_NODE (subloop_allocno);
|
||
ira_assert (!ALLOCNO_ASSIGNED_P (subloop_allocno));
|
||
ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
|
||
ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
|
||
if (hard_regno >= 0)
|
||
update_copy_costs (subloop_allocno, true);
|
||
/* We don't need updated costs anymore: */
|
||
ira_free_allocno_updated_costs (subloop_allocno);
|
||
}
|
||
}
|
||
/* Update costs of the corresponding allocnos (not caps) in the
|
||
subloops. */
|
||
for (subloop_node = loop_tree_node->subloops;
|
||
subloop_node != NULL;
|
||
subloop_node = subloop_node->subloop_next)
|
||
{
|
||
ira_assert (subloop_node->bb == NULL);
|
||
EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
|
||
{
|
||
a = ira_allocnos[j];
|
||
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
|
||
mode = ALLOCNO_MODE (a);
|
||
rclass = ALLOCNO_COVER_CLASS (a);
|
||
hard_regno = ALLOCNO_HARD_REGNO (a);
|
||
/* Use hard register class here. ??? */
|
||
if (hard_regno >= 0)
|
||
{
|
||
index = ira_class_hard_reg_index[rclass][hard_regno];
|
||
ira_assert (index >= 0);
|
||
}
|
||
regno = ALLOCNO_REGNO (a);
|
||
/* ??? conflict costs */
|
||
subloop_allocno = subloop_node->regno_allocno_map[regno];
|
||
if (subloop_allocno == NULL
|
||
|| ALLOCNO_CAP (subloop_allocno) != NULL)
|
||
continue;
|
||
ira_assert (ALLOCNO_COVER_CLASS (subloop_allocno) == rclass);
|
||
ira_assert (bitmap_bit_p (subloop_node->all_allocnos,
|
||
ALLOCNO_NUM (subloop_allocno)));
|
||
if ((flag_ira_region == IRA_REGION_MIXED)
|
||
&& (loop_tree_node->reg_pressure[rclass]
|
||
<= ira_available_class_regs[rclass]))
|
||
{
|
||
if (! ALLOCNO_ASSIGNED_P (subloop_allocno))
|
||
{
|
||
ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
|
||
ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
|
||
if (hard_regno >= 0)
|
||
update_copy_costs (subloop_allocno, true);
|
||
/* We don't need updated costs anymore: */
|
||
ira_free_allocno_updated_costs (subloop_allocno);
|
||
}
|
||
continue;
|
||
}
|
||
exit_freq = ira_loop_edge_freq (subloop_node, regno, true);
|
||
enter_freq = ira_loop_edge_freq (subloop_node, regno, false);
|
||
ira_assert (regno < ira_reg_equiv_len);
|
||
if (ira_reg_equiv_invariant_p[regno]
|
||
|| ira_reg_equiv_const[regno] != NULL_RTX)
|
||
{
|
||
if (! ALLOCNO_ASSIGNED_P (subloop_allocno))
|
||
{
|
||
ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
|
||
ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
|
||
if (hard_regno >= 0)
|
||
update_copy_costs (subloop_allocno, true);
|
||
/* We don't need updated costs anymore: */
|
||
ira_free_allocno_updated_costs (subloop_allocno);
|
||
}
|
||
}
|
||
else if (hard_regno < 0)
|
||
{
|
||
ALLOCNO_UPDATED_MEMORY_COST (subloop_allocno)
|
||
-= ((ira_memory_move_cost[mode][rclass][1] * enter_freq)
|
||
+ (ira_memory_move_cost[mode][rclass][0] * exit_freq));
|
||
}
|
||
else
|
||
{
|
||
cover_class = ALLOCNO_COVER_CLASS (subloop_allocno);
|
||
cost = (ira_get_register_move_cost (mode, rclass, rclass)
|
||
* (exit_freq + enter_freq));
|
||
ira_allocate_and_set_or_copy_costs
|
||
(&ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno), cover_class,
|
||
ALLOCNO_UPDATED_COVER_CLASS_COST (subloop_allocno),
|
||
ALLOCNO_HARD_REG_COSTS (subloop_allocno));
|
||
ira_allocate_and_set_or_copy_costs
|
||
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (subloop_allocno),
|
||
cover_class, 0,
|
||
ALLOCNO_CONFLICT_HARD_REG_COSTS (subloop_allocno));
|
||
ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index] -= cost;
|
||
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (subloop_allocno)[index]
|
||
-= cost;
|
||
if (ALLOCNO_UPDATED_COVER_CLASS_COST (subloop_allocno)
|
||
> ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index])
|
||
ALLOCNO_UPDATED_COVER_CLASS_COST (subloop_allocno)
|
||
= ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index];
|
||
ALLOCNO_UPDATED_MEMORY_COST (subloop_allocno)
|
||
+= (ira_memory_move_cost[mode][rclass][0] * enter_freq
|
||
+ ira_memory_move_cost[mode][rclass][1] * exit_freq);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Initialize the common data for coloring and calls functions to do
|
||
Chaitin-Briggs and regional coloring. */
|
||
static void
|
||
do_coloring (void)
|
||
{
|
||
coloring_allocno_bitmap = ira_allocate_bitmap ();
|
||
allocnos_for_spilling
|
||
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
|
||
* ira_allocnos_num);
|
||
splay_tree_node_pool = create_alloc_pool ("splay tree nodes",
|
||
sizeof (struct splay_tree_node_s),
|
||
100);
|
||
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, "\n**** Allocnos coloring:\n\n");
|
||
|
||
ira_traverse_loop_tree (false, ira_loop_tree_root, color_pass, NULL);
|
||
|
||
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
|
||
ira_print_disposition (ira_dump_file);
|
||
|
||
free_alloc_pool (splay_tree_node_pool);
|
||
ira_free_bitmap (coloring_allocno_bitmap);
|
||
ira_free (allocnos_for_spilling);
|
||
}
|
||
|
||
|
||
|
||
/* Move spill/restore code, which are to be generated in ira-emit.c,
|
||
to less frequent points (if it is profitable) by reassigning some
|
||
allocnos (in loop with subloops containing in another loop) to
|
||
memory which results in longer live-range where the corresponding
|
||
pseudo-registers will be in memory. */
|
||
static void
|
||
move_spill_restore (void)
|
||
{
|
||
int cost, regno, hard_regno, hard_regno2, index;
|
||
bool changed_p;
|
||
int enter_freq, exit_freq;
|
||
enum machine_mode mode;
|
||
enum reg_class rclass;
|
||
ira_allocno_t a, parent_allocno, subloop_allocno;
|
||
ira_loop_tree_node_t parent, loop_node, subloop_node;
|
||
ira_allocno_iterator ai;
|
||
|
||
for (;;)
|
||
{
|
||
changed_p = false;
|
||
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, "New iteration of spill/restore move\n");
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
regno = ALLOCNO_REGNO (a);
|
||
loop_node = ALLOCNO_LOOP_TREE_NODE (a);
|
||
if (ALLOCNO_CAP_MEMBER (a) != NULL
|
||
|| ALLOCNO_CAP (a) != NULL
|
||
|| (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0
|
||
|| loop_node->children == NULL
|
||
/* don't do the optimization because it can create
|
||
copies and the reload pass can spill the allocno set
|
||
by copy although the allocno will not get memory
|
||
slot. */
|
||
|| ira_reg_equiv_invariant_p[regno]
|
||
|| ira_reg_equiv_const[regno] != NULL_RTX
|
||
|| !bitmap_bit_p (loop_node->border_allocnos, ALLOCNO_NUM (a)))
|
||
continue;
|
||
mode = ALLOCNO_MODE (a);
|
||
rclass = ALLOCNO_COVER_CLASS (a);
|
||
index = ira_class_hard_reg_index[rclass][hard_regno];
|
||
ira_assert (index >= 0);
|
||
cost = (ALLOCNO_MEMORY_COST (a)
|
||
- (ALLOCNO_HARD_REG_COSTS (a) == NULL
|
||
? ALLOCNO_COVER_CLASS_COST (a)
|
||
: ALLOCNO_HARD_REG_COSTS (a)[index]));
|
||
for (subloop_node = loop_node->subloops;
|
||
subloop_node != NULL;
|
||
subloop_node = subloop_node->subloop_next)
|
||
{
|
||
ira_assert (subloop_node->bb == NULL);
|
||
subloop_allocno = subloop_node->regno_allocno_map[regno];
|
||
if (subloop_allocno == NULL)
|
||
continue;
|
||
ira_assert (rclass == ALLOCNO_COVER_CLASS (subloop_allocno));
|
||
/* We have accumulated cost. To get the real cost of
|
||
allocno usage in the loop we should subtract costs of
|
||
the subloop allocnos. */
|
||
cost -= (ALLOCNO_MEMORY_COST (subloop_allocno)
|
||
- (ALLOCNO_HARD_REG_COSTS (subloop_allocno) == NULL
|
||
? ALLOCNO_COVER_CLASS_COST (subloop_allocno)
|
||
: ALLOCNO_HARD_REG_COSTS (subloop_allocno)[index]));
|
||
exit_freq = ira_loop_edge_freq (subloop_node, regno, true);
|
||
enter_freq = ira_loop_edge_freq (subloop_node, regno, false);
|
||
if ((hard_regno2 = ALLOCNO_HARD_REGNO (subloop_allocno)) < 0)
|
||
cost -= (ira_memory_move_cost[mode][rclass][0] * exit_freq
|
||
+ ira_memory_move_cost[mode][rclass][1] * enter_freq);
|
||
else
|
||
{
|
||
cost
|
||
+= (ira_memory_move_cost[mode][rclass][0] * exit_freq
|
||
+ ira_memory_move_cost[mode][rclass][1] * enter_freq);
|
||
if (hard_regno2 != hard_regno)
|
||
cost -= (ira_get_register_move_cost (mode, rclass, rclass)
|
||
* (exit_freq + enter_freq));
|
||
}
|
||
}
|
||
if ((parent = loop_node->parent) != NULL
|
||
&& (parent_allocno = parent->regno_allocno_map[regno]) != NULL)
|
||
{
|
||
ira_assert (rclass == ALLOCNO_COVER_CLASS (parent_allocno));
|
||
exit_freq = ira_loop_edge_freq (loop_node, regno, true);
|
||
enter_freq = ira_loop_edge_freq (loop_node, regno, false);
|
||
if ((hard_regno2 = ALLOCNO_HARD_REGNO (parent_allocno)) < 0)
|
||
cost -= (ira_memory_move_cost[mode][rclass][0] * exit_freq
|
||
+ ira_memory_move_cost[mode][rclass][1] * enter_freq);
|
||
else
|
||
{
|
||
cost
|
||
+= (ira_memory_move_cost[mode][rclass][1] * exit_freq
|
||
+ ira_memory_move_cost[mode][rclass][0] * enter_freq);
|
||
if (hard_regno2 != hard_regno)
|
||
cost -= (ira_get_register_move_cost (mode, rclass, rclass)
|
||
* (exit_freq + enter_freq));
|
||
}
|
||
}
|
||
if (cost < 0)
|
||
{
|
||
ALLOCNO_HARD_REGNO (a) = -1;
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
{
|
||
fprintf
|
||
(ira_dump_file,
|
||
" Moving spill/restore for a%dr%d up from loop %d",
|
||
ALLOCNO_NUM (a), regno, loop_node->loop->num);
|
||
fprintf (ira_dump_file, " - profit %d\n", -cost);
|
||
}
|
||
changed_p = true;
|
||
}
|
||
}
|
||
if (! changed_p)
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Update current hard reg costs and current conflict hard reg costs
|
||
for allocno A. It is done by processing its copies containing
|
||
other allocnos already assigned. */
|
||
static void
|
||
update_curr_costs (ira_allocno_t a)
|
||
{
|
||
int i, hard_regno, cost;
|
||
enum machine_mode mode;
|
||
enum reg_class cover_class, rclass;
|
||
ira_allocno_t another_a;
|
||
ira_copy_t cp, next_cp;
|
||
|
||
ira_free_allocno_updated_costs (a);
|
||
ira_assert (! ALLOCNO_ASSIGNED_P (a));
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
if (cover_class == NO_REGS)
|
||
return;
|
||
mode = ALLOCNO_MODE (a);
|
||
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
|
||
{
|
||
if (cp->first == a)
|
||
{
|
||
next_cp = cp->next_first_allocno_copy;
|
||
another_a = cp->second;
|
||
}
|
||
else if (cp->second == a)
|
||
{
|
||
next_cp = cp->next_second_allocno_copy;
|
||
another_a = cp->first;
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
if (! ira_reg_classes_intersect_p[cover_class][ALLOCNO_COVER_CLASS
|
||
(another_a)]
|
||
|| ! ALLOCNO_ASSIGNED_P (another_a)
|
||
|| (hard_regno = ALLOCNO_HARD_REGNO (another_a)) < 0)
|
||
continue;
|
||
rclass = REGNO_REG_CLASS (hard_regno);
|
||
i = ira_class_hard_reg_index[cover_class][hard_regno];
|
||
if (i < 0)
|
||
continue;
|
||
cost = (cp->first == a
|
||
? ira_get_register_move_cost (mode, rclass, cover_class)
|
||
: ira_get_register_move_cost (mode, cover_class, rclass));
|
||
ira_allocate_and_set_or_copy_costs
|
||
(&ALLOCNO_UPDATED_HARD_REG_COSTS (a),
|
||
cover_class, ALLOCNO_COVER_CLASS_COST (a),
|
||
ALLOCNO_HARD_REG_COSTS (a));
|
||
ira_allocate_and_set_or_copy_costs
|
||
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
|
||
cover_class, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
|
||
ALLOCNO_UPDATED_HARD_REG_COSTS (a)[i] -= cp->freq * cost;
|
||
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a)[i] -= cp->freq * cost;
|
||
}
|
||
}
|
||
|
||
/* Try to assign hard registers to the unassigned allocnos and
|
||
allocnos conflicting with them or conflicting with allocnos whose
|
||
regno >= START_REGNO. The function is called after ira_flattening,
|
||
so more allocnos (including ones created in ira-emit.c) will have a
|
||
chance to get a hard register. We use simple assignment algorithm
|
||
based on priorities. */
|
||
void
|
||
ira_reassign_conflict_allocnos (int start_regno)
|
||
{
|
||
int i, allocnos_to_color_num;
|
||
ira_allocno_t a;
|
||
enum reg_class cover_class;
|
||
bitmap allocnos_to_color;
|
||
ira_allocno_iterator ai;
|
||
|
||
allocnos_to_color = ira_allocate_bitmap ();
|
||
allocnos_to_color_num = 0;
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
int n = ALLOCNO_NUM_OBJECTS (a);
|
||
|
||
if (! ALLOCNO_ASSIGNED_P (a)
|
||
&& ! bitmap_bit_p (allocnos_to_color, ALLOCNO_NUM (a)))
|
||
{
|
||
if (ALLOCNO_COVER_CLASS (a) != NO_REGS)
|
||
sorted_allocnos[allocnos_to_color_num++] = a;
|
||
else
|
||
{
|
||
ALLOCNO_ASSIGNED_P (a) = true;
|
||
ALLOCNO_HARD_REGNO (a) = -1;
|
||
ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
|
||
ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
|
||
}
|
||
bitmap_set_bit (allocnos_to_color, ALLOCNO_NUM (a));
|
||
}
|
||
if (ALLOCNO_REGNO (a) < start_regno
|
||
|| (cover_class = ALLOCNO_COVER_CLASS (a)) == NO_REGS)
|
||
continue;
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
||
ira_object_t conflict_obj;
|
||
ira_object_conflict_iterator oci;
|
||
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
|
||
{
|
||
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
|
||
ira_assert (ira_reg_classes_intersect_p
|
||
[cover_class][ALLOCNO_COVER_CLASS (conflict_a)]);
|
||
if (!bitmap_set_bit (allocnos_to_color, ALLOCNO_NUM (conflict_a)))
|
||
continue;
|
||
sorted_allocnos[allocnos_to_color_num++] = conflict_a;
|
||
}
|
||
}
|
||
}
|
||
ira_free_bitmap (allocnos_to_color);
|
||
if (allocnos_to_color_num > 1)
|
||
{
|
||
setup_allocno_priorities (sorted_allocnos, allocnos_to_color_num);
|
||
qsort (sorted_allocnos, allocnos_to_color_num, sizeof (ira_allocno_t),
|
||
allocno_priority_compare_func);
|
||
}
|
||
for (i = 0; i < allocnos_to_color_num; i++)
|
||
{
|
||
a = sorted_allocnos[i];
|
||
ALLOCNO_ASSIGNED_P (a) = false;
|
||
update_curr_costs (a);
|
||
}
|
||
for (i = 0; i < allocnos_to_color_num; i++)
|
||
{
|
||
a = sorted_allocnos[i];
|
||
if (assign_hard_reg (a, true))
|
||
{
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf
|
||
(ira_dump_file,
|
||
" Secondary allocation: assign hard reg %d to reg %d\n",
|
||
ALLOCNO_HARD_REGNO (a), ALLOCNO_REGNO (a));
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* This page contains code to coalesce memory stack slots used by
|
||
spilled allocnos. This results in smaller stack frame, better data
|
||
locality, and in smaller code for some architectures like
|
||
x86/x86_64 where insn size depends on address displacement value.
|
||
On the other hand, it can worsen insn scheduling after the RA but
|
||
in practice it is less important than smaller stack frames. */
|
||
|
||
/* TRUE if we coalesced some allocnos. In other words, if we got
|
||
loops formed by members first_coalesced_allocno and
|
||
next_coalesced_allocno containing more one allocno. */
|
||
static bool allocno_coalesced_p;
|
||
|
||
/* Bitmap used to prevent a repeated allocno processing because of
|
||
coalescing. */
|
||
static bitmap processed_coalesced_allocno_bitmap;
|
||
|
||
/* The function is used to sort allocnos according to their execution
|
||
frequencies. */
|
||
static int
|
||
copy_freq_compare_func (const void *v1p, const void *v2p)
|
||
{
|
||
ira_copy_t cp1 = *(const ira_copy_t *) v1p, cp2 = *(const ira_copy_t *) v2p;
|
||
int pri1, pri2;
|
||
|
||
pri1 = cp1->freq;
|
||
pri2 = cp2->freq;
|
||
if (pri2 - pri1)
|
||
return pri2 - pri1;
|
||
|
||
/* If freqencies are equal, sort by copies, so that the results of
|
||
qsort leave nothing to chance. */
|
||
return cp1->num - cp2->num;
|
||
}
|
||
|
||
/* Merge two sets of coalesced allocnos given correspondingly by
|
||
allocnos A1 and A2 (more accurately merging A2 set into A1
|
||
set). */
|
||
static void
|
||
merge_allocnos (ira_allocno_t a1, ira_allocno_t a2)
|
||
{
|
||
ira_allocno_t a, first, last, next;
|
||
|
||
first = ALLOCNO_FIRST_COALESCED_ALLOCNO (a1);
|
||
if (first == ALLOCNO_FIRST_COALESCED_ALLOCNO (a2))
|
||
return;
|
||
for (last = a2, a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a2);;
|
||
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
|
||
{
|
||
ALLOCNO_FIRST_COALESCED_ALLOCNO (a) = first;
|
||
if (a == a2)
|
||
break;
|
||
last = a;
|
||
}
|
||
next = ALLOCNO_NEXT_COALESCED_ALLOCNO (first);
|
||
ALLOCNO_NEXT_COALESCED_ALLOCNO (first) = a2;
|
||
ALLOCNO_NEXT_COALESCED_ALLOCNO (last) = next;
|
||
}
|
||
|
||
/* Given two sets of coalesced sets of allocnos, A1 and A2, this
|
||
function determines if any conflicts exist between the two sets.
|
||
We use live ranges to find conflicts because conflicts are
|
||
represented only for allocnos of the same cover class and during
|
||
the reload pass we coalesce allocnos for sharing stack memory
|
||
slots. */
|
||
static bool
|
||
coalesced_allocno_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
|
||
{
|
||
ira_allocno_t a, conflict_allocno;
|
||
|
||
bitmap_clear (processed_coalesced_allocno_bitmap);
|
||
if (allocno_coalesced_p)
|
||
{
|
||
for (a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a1);;
|
||
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
|
||
{
|
||
bitmap_set_bit (processed_coalesced_allocno_bitmap,
|
||
OBJECT_CONFLICT_ID (ALLOCNO_OBJECT (a, 0)));
|
||
if (a == a1)
|
||
break;
|
||
}
|
||
}
|
||
for (a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a2);;
|
||
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
|
||
{
|
||
for (conflict_allocno = ALLOCNO_NEXT_COALESCED_ALLOCNO (a1);;
|
||
conflict_allocno
|
||
= ALLOCNO_NEXT_COALESCED_ALLOCNO (conflict_allocno))
|
||
{
|
||
if (allocnos_have_intersected_live_ranges_p (a, conflict_allocno))
|
||
return true;
|
||
if (conflict_allocno == a1)
|
||
break;
|
||
}
|
||
|
||
if (a == a2)
|
||
break;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* The major function for aggressive allocno coalescing. We coalesce
|
||
only spilled allocnos. If some allocnos have been coalesced, we
|
||
set up flag allocno_coalesced_p. */
|
||
static void
|
||
coalesce_allocnos (void)
|
||
{
|
||
ira_allocno_t a;
|
||
ira_copy_t cp, next_cp, *sorted_copies;
|
||
unsigned int j;
|
||
int i, n, cp_num, regno;
|
||
bitmap_iterator bi;
|
||
|
||
sorted_copies = (ira_copy_t *) ira_allocate (ira_copies_num
|
||
* sizeof (ira_copy_t));
|
||
cp_num = 0;
|
||
/* Collect copies. */
|
||
EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, j, bi)
|
||
{
|
||
a = ira_allocnos[j];
|
||
regno = ALLOCNO_REGNO (a);
|
||
if (! ALLOCNO_ASSIGNED_P (a) || ALLOCNO_HARD_REGNO (a) >= 0
|
||
|| (regno < ira_reg_equiv_len
|
||
&& (ira_reg_equiv_const[regno] != NULL_RTX
|
||
|| ira_reg_equiv_invariant_p[regno])))
|
||
continue;
|
||
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
|
||
{
|
||
if (cp->first == a)
|
||
{
|
||
next_cp = cp->next_first_allocno_copy;
|
||
regno = ALLOCNO_REGNO (cp->second);
|
||
/* For priority coloring we coalesce allocnos only with
|
||
the same cover class not with intersected cover
|
||
classes as it were possible. It is done for
|
||
simplicity. */
|
||
if ((cp->insn != NULL || cp->constraint_p)
|
||
&& ALLOCNO_ASSIGNED_P (cp->second)
|
||
&& ALLOCNO_HARD_REGNO (cp->second) < 0
|
||
&& (regno >= ira_reg_equiv_len
|
||
|| (! ira_reg_equiv_invariant_p[regno]
|
||
&& ira_reg_equiv_const[regno] == NULL_RTX)))
|
||
sorted_copies[cp_num++] = cp;
|
||
}
|
||
else if (cp->second == a)
|
||
next_cp = cp->next_second_allocno_copy;
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
qsort (sorted_copies, cp_num, sizeof (ira_copy_t), copy_freq_compare_func);
|
||
/* Coalesced copies, most frequently executed first. */
|
||
for (; cp_num != 0;)
|
||
{
|
||
for (i = 0; i < cp_num; i++)
|
||
{
|
||
cp = sorted_copies[i];
|
||
if (! coalesced_allocno_conflict_p (cp->first, cp->second))
|
||
{
|
||
allocno_coalesced_p = true;
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf
|
||
(ira_dump_file,
|
||
" Coalescing copy %d:a%dr%d-a%dr%d (freq=%d)\n",
|
||
cp->num, ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
|
||
ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second),
|
||
cp->freq);
|
||
merge_allocnos (cp->first, cp->second);
|
||
i++;
|
||
break;
|
||
}
|
||
}
|
||
/* Collect the rest of copies. */
|
||
for (n = 0; i < cp_num; i++)
|
||
{
|
||
cp = sorted_copies[i];
|
||
if (ALLOCNO_FIRST_COALESCED_ALLOCNO (cp->first)
|
||
!= ALLOCNO_FIRST_COALESCED_ALLOCNO (cp->second))
|
||
sorted_copies[n++] = cp;
|
||
}
|
||
cp_num = n;
|
||
}
|
||
ira_free (sorted_copies);
|
||
}
|
||
|
||
/* Usage cost and order number of coalesced allocno set to which
|
||
given pseudo register belongs to. */
|
||
static int *regno_coalesced_allocno_cost;
|
||
static int *regno_coalesced_allocno_num;
|
||
|
||
/* Sort pseudos according frequencies of coalesced allocno sets they
|
||
belong to (putting most frequently ones first), and according to
|
||
coalesced allocno set order numbers. */
|
||
static int
|
||
coalesced_pseudo_reg_freq_compare (const void *v1p, const void *v2p)
|
||
{
|
||
const int regno1 = *(const int *) v1p;
|
||
const int regno2 = *(const int *) v2p;
|
||
int diff;
|
||
|
||
if ((diff = (regno_coalesced_allocno_cost[regno2]
|
||
- regno_coalesced_allocno_cost[regno1])) != 0)
|
||
return diff;
|
||
if ((diff = (regno_coalesced_allocno_num[regno1]
|
||
- regno_coalesced_allocno_num[regno2])) != 0)
|
||
return diff;
|
||
return regno1 - regno2;
|
||
}
|
||
|
||
/* Widest width in which each pseudo reg is referred to (via subreg).
|
||
It is used for sorting pseudo registers. */
|
||
static unsigned int *regno_max_ref_width;
|
||
|
||
/* Redefine STACK_GROWS_DOWNWARD in terms of 0 or 1. */
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
# undef STACK_GROWS_DOWNWARD
|
||
# define STACK_GROWS_DOWNWARD 1
|
||
#else
|
||
# define STACK_GROWS_DOWNWARD 0
|
||
#endif
|
||
|
||
/* Sort pseudos according their slot numbers (putting ones with
|
||
smaller numbers first, or last when the frame pointer is not
|
||
needed). */
|
||
static int
|
||
coalesced_pseudo_reg_slot_compare (const void *v1p, const void *v2p)
|
||
{
|
||
const int regno1 = *(const int *) v1p;
|
||
const int regno2 = *(const int *) v2p;
|
||
ira_allocno_t a1 = ira_regno_allocno_map[regno1];
|
||
ira_allocno_t a2 = ira_regno_allocno_map[regno2];
|
||
int diff, slot_num1, slot_num2;
|
||
int total_size1, total_size2;
|
||
|
||
if (a1 == NULL || ALLOCNO_HARD_REGNO (a1) >= 0)
|
||
{
|
||
if (a2 == NULL || ALLOCNO_HARD_REGNO (a2) >= 0)
|
||
return regno1 - regno2;
|
||
return 1;
|
||
}
|
||
else if (a2 == NULL || ALLOCNO_HARD_REGNO (a2) >= 0)
|
||
return -1;
|
||
slot_num1 = -ALLOCNO_HARD_REGNO (a1);
|
||
slot_num2 = -ALLOCNO_HARD_REGNO (a2);
|
||
if ((diff = slot_num1 - slot_num2) != 0)
|
||
return (frame_pointer_needed
|
||
|| !FRAME_GROWS_DOWNWARD == STACK_GROWS_DOWNWARD ? diff : -diff);
|
||
total_size1 = MAX (PSEUDO_REGNO_BYTES (regno1), regno_max_ref_width[regno1]);
|
||
total_size2 = MAX (PSEUDO_REGNO_BYTES (regno2), regno_max_ref_width[regno2]);
|
||
if ((diff = total_size2 - total_size1) != 0)
|
||
return diff;
|
||
return regno1 - regno2;
|
||
}
|
||
|
||
/* Setup REGNO_COALESCED_ALLOCNO_COST and REGNO_COALESCED_ALLOCNO_NUM
|
||
for coalesced allocno sets containing allocnos with their regnos
|
||
given in array PSEUDO_REGNOS of length N. */
|
||
static void
|
||
setup_coalesced_allocno_costs_and_nums (int *pseudo_regnos, int n)
|
||
{
|
||
int i, num, regno, cost;
|
||
ira_allocno_t allocno, a;
|
||
|
||
for (num = i = 0; i < n; i++)
|
||
{
|
||
regno = pseudo_regnos[i];
|
||
allocno = ira_regno_allocno_map[regno];
|
||
if (allocno == NULL)
|
||
{
|
||
regno_coalesced_allocno_cost[regno] = 0;
|
||
regno_coalesced_allocno_num[regno] = ++num;
|
||
continue;
|
||
}
|
||
if (ALLOCNO_FIRST_COALESCED_ALLOCNO (allocno) != allocno)
|
||
continue;
|
||
num++;
|
||
for (cost = 0, a = ALLOCNO_NEXT_COALESCED_ALLOCNO (allocno);;
|
||
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
|
||
{
|
||
cost += ALLOCNO_FREQ (a);
|
||
if (a == allocno)
|
||
break;
|
||
}
|
||
for (a = ALLOCNO_NEXT_COALESCED_ALLOCNO (allocno);;
|
||
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
|
||
{
|
||
regno_coalesced_allocno_num[ALLOCNO_REGNO (a)] = num;
|
||
regno_coalesced_allocno_cost[ALLOCNO_REGNO (a)] = cost;
|
||
if (a == allocno)
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Collect spilled allocnos representing coalesced allocno sets (the
|
||
first coalesced allocno). The collected allocnos are returned
|
||
through array SPILLED_COALESCED_ALLOCNOS. The function returns the
|
||
number of the collected allocnos. The allocnos are given by their
|
||
regnos in array PSEUDO_REGNOS of length N. */
|
||
static int
|
||
collect_spilled_coalesced_allocnos (int *pseudo_regnos, int n,
|
||
ira_allocno_t *spilled_coalesced_allocnos)
|
||
{
|
||
int i, num, regno;
|
||
ira_allocno_t allocno;
|
||
|
||
for (num = i = 0; i < n; i++)
|
||
{
|
||
regno = pseudo_regnos[i];
|
||
allocno = ira_regno_allocno_map[regno];
|
||
if (allocno == NULL || ALLOCNO_HARD_REGNO (allocno) >= 0
|
||
|| ALLOCNO_FIRST_COALESCED_ALLOCNO (allocno) != allocno)
|
||
continue;
|
||
spilled_coalesced_allocnos[num++] = allocno;
|
||
}
|
||
return num;
|
||
}
|
||
|
||
/* Array of live ranges of size IRA_ALLOCNOS_NUM. Live range for
|
||
given slot contains live ranges of coalesced allocnos assigned to
|
||
given slot. */
|
||
static live_range_t *slot_coalesced_allocnos_live_ranges;
|
||
|
||
/* Return TRUE if coalesced allocnos represented by ALLOCNO has live
|
||
ranges intersected with live ranges of coalesced allocnos assigned
|
||
to slot with number N. */
|
||
static bool
|
||
slot_coalesced_allocno_live_ranges_intersect_p (ira_allocno_t allocno, int n)
|
||
{
|
||
ira_allocno_t a;
|
||
|
||
for (a = ALLOCNO_NEXT_COALESCED_ALLOCNO (allocno);;
|
||
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
|
||
{
|
||
int i;
|
||
int nr = ALLOCNO_NUM_OBJECTS (a);
|
||
for (i = 0; i < nr; i++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
||
if (ira_live_ranges_intersect_p (slot_coalesced_allocnos_live_ranges[n],
|
||
OBJECT_LIVE_RANGES (obj)))
|
||
return true;
|
||
}
|
||
if (a == allocno)
|
||
break;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Update live ranges of slot to which coalesced allocnos represented
|
||
by ALLOCNO were assigned. */
|
||
static void
|
||
setup_slot_coalesced_allocno_live_ranges (ira_allocno_t allocno)
|
||
{
|
||
int i, n;
|
||
ira_allocno_t a;
|
||
live_range_t r;
|
||
|
||
n = ALLOCNO_TEMP (allocno);
|
||
for (a = ALLOCNO_NEXT_COALESCED_ALLOCNO (allocno);;
|
||
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
|
||
{
|
||
int nr = ALLOCNO_NUM_OBJECTS (a);
|
||
for (i = 0; i < nr; i++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
||
r = ira_copy_live_range_list (OBJECT_LIVE_RANGES (obj));
|
||
slot_coalesced_allocnos_live_ranges[n]
|
||
= ira_merge_live_ranges
|
||
(slot_coalesced_allocnos_live_ranges[n], r);
|
||
}
|
||
if (a == allocno)
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* We have coalesced allocnos involving in copies. Coalesce allocnos
|
||
further in order to share the same memory stack slot. Allocnos
|
||
representing sets of allocnos coalesced before the call are given
|
||
in array SPILLED_COALESCED_ALLOCNOS of length NUM. Return TRUE if
|
||
some allocnos were coalesced in the function. */
|
||
static bool
|
||
coalesce_spill_slots (ira_allocno_t *spilled_coalesced_allocnos, int num)
|
||
{
|
||
int i, j, n, last_coalesced_allocno_num;
|
||
ira_allocno_t allocno, a;
|
||
bool merged_p = false;
|
||
bitmap set_jump_crosses = regstat_get_setjmp_crosses ();
|
||
|
||
slot_coalesced_allocnos_live_ranges
|
||
= (live_range_t *) ira_allocate (sizeof (live_range_t) * ira_allocnos_num);
|
||
memset (slot_coalesced_allocnos_live_ranges, 0,
|
||
sizeof (live_range_t) * ira_allocnos_num);
|
||
last_coalesced_allocno_num = 0;
|
||
/* Coalesce non-conflicting spilled allocnos preferring most
|
||
frequently used. */
|
||
for (i = 0; i < num; i++)
|
||
{
|
||
allocno = spilled_coalesced_allocnos[i];
|
||
if (ALLOCNO_FIRST_COALESCED_ALLOCNO (allocno) != allocno
|
||
|| bitmap_bit_p (set_jump_crosses, ALLOCNO_REGNO (allocno))
|
||
|| (ALLOCNO_REGNO (allocno) < ira_reg_equiv_len
|
||
&& (ira_reg_equiv_const[ALLOCNO_REGNO (allocno)] != NULL_RTX
|
||
|| ira_reg_equiv_invariant_p[ALLOCNO_REGNO (allocno)])))
|
||
continue;
|
||
for (j = 0; j < i; j++)
|
||
{
|
||
a = spilled_coalesced_allocnos[j];
|
||
n = ALLOCNO_TEMP (a);
|
||
if (ALLOCNO_FIRST_COALESCED_ALLOCNO (a) == a
|
||
&& ! bitmap_bit_p (set_jump_crosses, ALLOCNO_REGNO (a))
|
||
&& (ALLOCNO_REGNO (a) >= ira_reg_equiv_len
|
||
|| (! ira_reg_equiv_invariant_p[ALLOCNO_REGNO (a)]
|
||
&& ira_reg_equiv_const[ALLOCNO_REGNO (a)] == NULL_RTX))
|
||
&& ! slot_coalesced_allocno_live_ranges_intersect_p (allocno, n))
|
||
break;
|
||
}
|
||
if (j >= i)
|
||
{
|
||
/* No coalescing: set up number for coalesced allocnos
|
||
represented by ALLOCNO. */
|
||
ALLOCNO_TEMP (allocno) = last_coalesced_allocno_num++;
|
||
setup_slot_coalesced_allocno_live_ranges (allocno);
|
||
}
|
||
else
|
||
{
|
||
allocno_coalesced_p = true;
|
||
merged_p = true;
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file,
|
||
" Coalescing spilled allocnos a%dr%d->a%dr%d\n",
|
||
ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno),
|
||
ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
|
||
ALLOCNO_TEMP (allocno) = ALLOCNO_TEMP (a);
|
||
setup_slot_coalesced_allocno_live_ranges (allocno);
|
||
merge_allocnos (a, allocno);
|
||
ira_assert (ALLOCNO_FIRST_COALESCED_ALLOCNO (a) == a);
|
||
}
|
||
}
|
||
for (i = 0; i < ira_allocnos_num; i++)
|
||
ira_finish_live_range_list (slot_coalesced_allocnos_live_ranges[i]);
|
||
ira_free (slot_coalesced_allocnos_live_ranges);
|
||
return merged_p;
|
||
}
|
||
|
||
/* Sort pseudo-register numbers in array PSEUDO_REGNOS of length N for
|
||
subsequent assigning stack slots to them in the reload pass. To do
|
||
this we coalesce spilled allocnos first to decrease the number of
|
||
memory-memory move insns. This function is called by the
|
||
reload. */
|
||
void
|
||
ira_sort_regnos_for_alter_reg (int *pseudo_regnos, int n,
|
||
unsigned int *reg_max_ref_width)
|
||
{
|
||
int max_regno = max_reg_num ();
|
||
int i, regno, num, slot_num;
|
||
ira_allocno_t allocno, a;
|
||
ira_allocno_iterator ai;
|
||
ira_allocno_t *spilled_coalesced_allocnos;
|
||
|
||
/* Set up allocnos can be coalesced. */
|
||
coloring_allocno_bitmap = ira_allocate_bitmap ();
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
regno = pseudo_regnos[i];
|
||
allocno = ira_regno_allocno_map[regno];
|
||
if (allocno != NULL)
|
||
bitmap_set_bit (coloring_allocno_bitmap,
|
||
ALLOCNO_NUM (allocno));
|
||
}
|
||
allocno_coalesced_p = false;
|
||
processed_coalesced_allocno_bitmap = ira_allocate_bitmap ();
|
||
coalesce_allocnos ();
|
||
ira_free_bitmap (coloring_allocno_bitmap);
|
||
regno_coalesced_allocno_cost
|
||
= (int *) ira_allocate (max_regno * sizeof (int));
|
||
regno_coalesced_allocno_num
|
||
= (int *) ira_allocate (max_regno * sizeof (int));
|
||
memset (regno_coalesced_allocno_num, 0, max_regno * sizeof (int));
|
||
setup_coalesced_allocno_costs_and_nums (pseudo_regnos, n);
|
||
/* Sort regnos according frequencies of the corresponding coalesced
|
||
allocno sets. */
|
||
qsort (pseudo_regnos, n, sizeof (int), coalesced_pseudo_reg_freq_compare);
|
||
spilled_coalesced_allocnos
|
||
= (ira_allocno_t *) ira_allocate (ira_allocnos_num
|
||
* sizeof (ira_allocno_t));
|
||
/* Collect allocnos representing the spilled coalesced allocno
|
||
sets. */
|
||
num = collect_spilled_coalesced_allocnos (pseudo_regnos, n,
|
||
spilled_coalesced_allocnos);
|
||
if (flag_ira_share_spill_slots
|
||
&& coalesce_spill_slots (spilled_coalesced_allocnos, num))
|
||
{
|
||
setup_coalesced_allocno_costs_and_nums (pseudo_regnos, n);
|
||
qsort (pseudo_regnos, n, sizeof (int),
|
||
coalesced_pseudo_reg_freq_compare);
|
||
num = collect_spilled_coalesced_allocnos (pseudo_regnos, n,
|
||
spilled_coalesced_allocnos);
|
||
}
|
||
ira_free_bitmap (processed_coalesced_allocno_bitmap);
|
||
allocno_coalesced_p = false;
|
||
/* Assign stack slot numbers to spilled allocno sets, use smaller
|
||
numbers for most frequently used coalesced allocnos. -1 is
|
||
reserved for dynamic search of stack slots for pseudos spilled by
|
||
the reload. */
|
||
slot_num = 1;
|
||
for (i = 0; i < num; i++)
|
||
{
|
||
allocno = spilled_coalesced_allocnos[i];
|
||
if (ALLOCNO_FIRST_COALESCED_ALLOCNO (allocno) != allocno
|
||
|| ALLOCNO_HARD_REGNO (allocno) >= 0
|
||
|| (ALLOCNO_REGNO (allocno) < ira_reg_equiv_len
|
||
&& (ira_reg_equiv_const[ALLOCNO_REGNO (allocno)] != NULL_RTX
|
||
|| ira_reg_equiv_invariant_p[ALLOCNO_REGNO (allocno)])))
|
||
continue;
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, " Slot %d (freq,size):", slot_num);
|
||
slot_num++;
|
||
for (a = ALLOCNO_NEXT_COALESCED_ALLOCNO (allocno);;
|
||
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
|
||
{
|
||
ira_assert (ALLOCNO_HARD_REGNO (a) < 0);
|
||
ALLOCNO_HARD_REGNO (a) = -slot_num;
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, " a%dr%d(%d,%d)",
|
||
ALLOCNO_NUM (a), ALLOCNO_REGNO (a), ALLOCNO_FREQ (a),
|
||
MAX (PSEUDO_REGNO_BYTES (ALLOCNO_REGNO (a)),
|
||
reg_max_ref_width[ALLOCNO_REGNO (a)]));
|
||
|
||
if (a == allocno)
|
||
break;
|
||
}
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, "\n");
|
||
}
|
||
ira_spilled_reg_stack_slots_num = slot_num - 1;
|
||
ira_free (spilled_coalesced_allocnos);
|
||
/* Sort regnos according the slot numbers. */
|
||
regno_max_ref_width = reg_max_ref_width;
|
||
qsort (pseudo_regnos, n, sizeof (int), coalesced_pseudo_reg_slot_compare);
|
||
/* Uncoalesce allocnos which is necessary for (re)assigning during
|
||
the reload pass. */
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
ALLOCNO_FIRST_COALESCED_ALLOCNO (a) = a;
|
||
ALLOCNO_NEXT_COALESCED_ALLOCNO (a) = a;
|
||
}
|
||
ira_free (regno_coalesced_allocno_num);
|
||
ira_free (regno_coalesced_allocno_cost);
|
||
}
|
||
|
||
|
||
|
||
/* This page contains code used by the reload pass to improve the
|
||
final code. */
|
||
|
||
/* The function is called from reload to mark changes in the
|
||
allocation of REGNO made by the reload. Remember that reg_renumber
|
||
reflects the change result. */
|
||
void
|
||
ira_mark_allocation_change (int regno)
|
||
{
|
||
ira_allocno_t a = ira_regno_allocno_map[regno];
|
||
int old_hard_regno, hard_regno, cost;
|
||
enum reg_class cover_class = ALLOCNO_COVER_CLASS (a);
|
||
|
||
ira_assert (a != NULL);
|
||
hard_regno = reg_renumber[regno];
|
||
if ((old_hard_regno = ALLOCNO_HARD_REGNO (a)) == hard_regno)
|
||
return;
|
||
if (old_hard_regno < 0)
|
||
cost = -ALLOCNO_MEMORY_COST (a);
|
||
else
|
||
{
|
||
ira_assert (ira_class_hard_reg_index[cover_class][old_hard_regno] >= 0);
|
||
cost = -(ALLOCNO_HARD_REG_COSTS (a) == NULL
|
||
? ALLOCNO_COVER_CLASS_COST (a)
|
||
: ALLOCNO_HARD_REG_COSTS (a)
|
||
[ira_class_hard_reg_index[cover_class][old_hard_regno]]);
|
||
update_copy_costs (a, false);
|
||
}
|
||
ira_overall_cost -= cost;
|
||
ALLOCNO_HARD_REGNO (a) = hard_regno;
|
||
if (hard_regno < 0)
|
||
{
|
||
ALLOCNO_HARD_REGNO (a) = -1;
|
||
cost += ALLOCNO_MEMORY_COST (a);
|
||
}
|
||
else if (ira_class_hard_reg_index[cover_class][hard_regno] >= 0)
|
||
{
|
||
cost += (ALLOCNO_HARD_REG_COSTS (a) == NULL
|
||
? ALLOCNO_COVER_CLASS_COST (a)
|
||
: ALLOCNO_HARD_REG_COSTS (a)
|
||
[ira_class_hard_reg_index[cover_class][hard_regno]]);
|
||
update_copy_costs (a, true);
|
||
}
|
||
else
|
||
/* Reload changed class of the allocno. */
|
||
cost = 0;
|
||
ira_overall_cost += cost;
|
||
}
|
||
|
||
/* This function is called when reload deletes memory-memory move. In
|
||
this case we marks that the allocation of the corresponding
|
||
allocnos should be not changed in future. Otherwise we risk to get
|
||
a wrong code. */
|
||
void
|
||
ira_mark_memory_move_deletion (int dst_regno, int src_regno)
|
||
{
|
||
ira_allocno_t dst = ira_regno_allocno_map[dst_regno];
|
||
ira_allocno_t src = ira_regno_allocno_map[src_regno];
|
||
|
||
ira_assert (dst != NULL && src != NULL
|
||
&& ALLOCNO_HARD_REGNO (dst) < 0
|
||
&& ALLOCNO_HARD_REGNO (src) < 0);
|
||
ALLOCNO_DONT_REASSIGN_P (dst) = true;
|
||
ALLOCNO_DONT_REASSIGN_P (src) = true;
|
||
}
|
||
|
||
/* Try to assign a hard register (except for FORBIDDEN_REGS) to
|
||
allocno A and return TRUE in the case of success. */
|
||
static bool
|
||
allocno_reload_assign (ira_allocno_t a, HARD_REG_SET forbidden_regs)
|
||
{
|
||
int hard_regno;
|
||
enum reg_class cover_class;
|
||
int regno = ALLOCNO_REGNO (a);
|
||
HARD_REG_SET saved[2];
|
||
int i, n;
|
||
|
||
n = ALLOCNO_NUM_OBJECTS (a);
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
||
COPY_HARD_REG_SET (saved[i], OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
|
||
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), forbidden_regs);
|
||
if (! flag_caller_saves && ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
|
||
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
|
||
call_used_reg_set);
|
||
}
|
||
ALLOCNO_ASSIGNED_P (a) = false;
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
update_curr_costs (a);
|
||
assign_hard_reg (a, true);
|
||
hard_regno = ALLOCNO_HARD_REGNO (a);
|
||
reg_renumber[regno] = hard_regno;
|
||
if (hard_regno < 0)
|
||
ALLOCNO_HARD_REGNO (a) = -1;
|
||
else
|
||
{
|
||
ira_assert (ira_class_hard_reg_index[cover_class][hard_regno] >= 0);
|
||
ira_overall_cost -= (ALLOCNO_MEMORY_COST (a)
|
||
- (ALLOCNO_HARD_REG_COSTS (a) == NULL
|
||
? ALLOCNO_COVER_CLASS_COST (a)
|
||
: ALLOCNO_HARD_REG_COSTS (a)
|
||
[ira_class_hard_reg_index
|
||
[cover_class][hard_regno]]));
|
||
if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
|
||
&& ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
|
||
call_used_reg_set))
|
||
{
|
||
ira_assert (flag_caller_saves);
|
||
caller_save_needed = 1;
|
||
}
|
||
}
|
||
|
||
/* If we found a hard register, modify the RTL for the pseudo
|
||
register to show the hard register, and mark the pseudo register
|
||
live. */
|
||
if (reg_renumber[regno] >= 0)
|
||
{
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, ": reassign to %d\n", reg_renumber[regno]);
|
||
SET_REGNO (regno_reg_rtx[regno], reg_renumber[regno]);
|
||
mark_home_live (regno);
|
||
}
|
||
else if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file, "\n");
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
||
COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), saved[i]);
|
||
}
|
||
return reg_renumber[regno] >= 0;
|
||
}
|
||
|
||
/* Sort pseudos according their usage frequencies (putting most
|
||
frequently ones first). */
|
||
static int
|
||
pseudo_reg_compare (const void *v1p, const void *v2p)
|
||
{
|
||
int regno1 = *(const int *) v1p;
|
||
int regno2 = *(const int *) v2p;
|
||
int diff;
|
||
|
||
if ((diff = REG_FREQ (regno2) - REG_FREQ (regno1)) != 0)
|
||
return diff;
|
||
return regno1 - regno2;
|
||
}
|
||
|
||
/* Try to allocate hard registers to SPILLED_PSEUDO_REGS (there are
|
||
NUM of them) or spilled pseudos conflicting with pseudos in
|
||
SPILLED_PSEUDO_REGS. Return TRUE and update SPILLED, if the
|
||
allocation has been changed. The function doesn't use
|
||
BAD_SPILL_REGS and hard registers in PSEUDO_FORBIDDEN_REGS and
|
||
PSEUDO_PREVIOUS_REGS for the corresponding pseudos. The function
|
||
is called by the reload pass at the end of each reload
|
||
iteration. */
|
||
bool
|
||
ira_reassign_pseudos (int *spilled_pseudo_regs, int num,
|
||
HARD_REG_SET bad_spill_regs,
|
||
HARD_REG_SET *pseudo_forbidden_regs,
|
||
HARD_REG_SET *pseudo_previous_regs,
|
||
bitmap spilled)
|
||
{
|
||
int i, n, regno;
|
||
bool changed_p;
|
||
ira_allocno_t a;
|
||
HARD_REG_SET forbidden_regs;
|
||
bitmap temp = BITMAP_ALLOC (NULL);
|
||
|
||
/* Add pseudos which conflict with pseudos already in
|
||
SPILLED_PSEUDO_REGS to SPILLED_PSEUDO_REGS. This is preferable
|
||
to allocating in two steps as some of the conflicts might have
|
||
a higher priority than the pseudos passed in SPILLED_PSEUDO_REGS. */
|
||
for (i = 0; i < num; i++)
|
||
bitmap_set_bit (temp, spilled_pseudo_regs[i]);
|
||
|
||
for (i = 0, n = num; i < n; i++)
|
||
{
|
||
int nr, j;
|
||
int regno = spilled_pseudo_regs[i];
|
||
bitmap_set_bit (temp, regno);
|
||
|
||
a = ira_regno_allocno_map[regno];
|
||
nr = ALLOCNO_NUM_OBJECTS (a);
|
||
for (j = 0; j < nr; j++)
|
||
{
|
||
ira_object_t conflict_obj;
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, j);
|
||
ira_object_conflict_iterator oci;
|
||
|
||
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
|
||
{
|
||
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
|
||
if (ALLOCNO_HARD_REGNO (conflict_a) < 0
|
||
&& ! ALLOCNO_DONT_REASSIGN_P (conflict_a)
|
||
&& bitmap_set_bit (temp, ALLOCNO_REGNO (conflict_a)))
|
||
{
|
||
spilled_pseudo_regs[num++] = ALLOCNO_REGNO (conflict_a);
|
||
/* ?!? This seems wrong. */
|
||
bitmap_set_bit (consideration_allocno_bitmap,
|
||
ALLOCNO_NUM (conflict_a));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (num > 1)
|
||
qsort (spilled_pseudo_regs, num, sizeof (int), pseudo_reg_compare);
|
||
changed_p = false;
|
||
/* Try to assign hard registers to pseudos from
|
||
SPILLED_PSEUDO_REGS. */
|
||
for (i = 0; i < num; i++)
|
||
{
|
||
regno = spilled_pseudo_regs[i];
|
||
COPY_HARD_REG_SET (forbidden_regs, bad_spill_regs);
|
||
IOR_HARD_REG_SET (forbidden_regs, pseudo_forbidden_regs[regno]);
|
||
IOR_HARD_REG_SET (forbidden_regs, pseudo_previous_regs[regno]);
|
||
gcc_assert (reg_renumber[regno] < 0);
|
||
a = ira_regno_allocno_map[regno];
|
||
ira_mark_allocation_change (regno);
|
||
ira_assert (reg_renumber[regno] < 0);
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
||
fprintf (ira_dump_file,
|
||
" Try Assign %d(a%d), cost=%d", regno, ALLOCNO_NUM (a),
|
||
ALLOCNO_MEMORY_COST (a)
|
||
- ALLOCNO_COVER_CLASS_COST (a));
|
||
allocno_reload_assign (a, forbidden_regs);
|
||
if (reg_renumber[regno] >= 0)
|
||
{
|
||
CLEAR_REGNO_REG_SET (spilled, regno);
|
||
changed_p = true;
|
||
}
|
||
}
|
||
BITMAP_FREE (temp);
|
||
return changed_p;
|
||
}
|
||
|
||
/* The function is called by reload and returns already allocated
|
||
stack slot (if any) for REGNO with given INHERENT_SIZE and
|
||
TOTAL_SIZE. In the case of failure to find a slot which can be
|
||
used for REGNO, the function returns NULL. */
|
||
rtx
|
||
ira_reuse_stack_slot (int regno, unsigned int inherent_size,
|
||
unsigned int total_size)
|
||
{
|
||
unsigned int i;
|
||
int slot_num, best_slot_num;
|
||
int cost, best_cost;
|
||
ira_copy_t cp, next_cp;
|
||
ira_allocno_t another_allocno, allocno = ira_regno_allocno_map[regno];
|
||
rtx x;
|
||
bitmap_iterator bi;
|
||
struct ira_spilled_reg_stack_slot *slot = NULL;
|
||
|
||
ira_assert (inherent_size == PSEUDO_REGNO_BYTES (regno)
|
||
&& inherent_size <= total_size
|
||
&& ALLOCNO_HARD_REGNO (allocno) < 0);
|
||
if (! flag_ira_share_spill_slots)
|
||
return NULL_RTX;
|
||
slot_num = -ALLOCNO_HARD_REGNO (allocno) - 2;
|
||
if (slot_num != -1)
|
||
{
|
||
slot = &ira_spilled_reg_stack_slots[slot_num];
|
||
x = slot->mem;
|
||
}
|
||
else
|
||
{
|
||
best_cost = best_slot_num = -1;
|
||
x = NULL_RTX;
|
||
/* It means that the pseudo was spilled in the reload pass, try
|
||
to reuse a slot. */
|
||
for (slot_num = 0;
|
||
slot_num < ira_spilled_reg_stack_slots_num;
|
||
slot_num++)
|
||
{
|
||
slot = &ira_spilled_reg_stack_slots[slot_num];
|
||
if (slot->mem == NULL_RTX)
|
||
continue;
|
||
if (slot->width < total_size
|
||
|| GET_MODE_SIZE (GET_MODE (slot->mem)) < inherent_size)
|
||
continue;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
|
||
FIRST_PSEUDO_REGISTER, i, bi)
|
||
{
|
||
another_allocno = ira_regno_allocno_map[i];
|
||
if (allocnos_have_intersected_live_ranges_p (allocno,
|
||
another_allocno))
|
||
goto cont;
|
||
}
|
||
for (cost = 0, cp = ALLOCNO_COPIES (allocno);
|
||
cp != NULL;
|
||
cp = next_cp)
|
||
{
|
||
if (cp->first == allocno)
|
||
{
|
||
next_cp = cp->next_first_allocno_copy;
|
||
another_allocno = cp->second;
|
||
}
|
||
else if (cp->second == allocno)
|
||
{
|
||
next_cp = cp->next_second_allocno_copy;
|
||
another_allocno = cp->first;
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
if (cp->insn == NULL_RTX)
|
||
continue;
|
||
if (bitmap_bit_p (&slot->spilled_regs,
|
||
ALLOCNO_REGNO (another_allocno)))
|
||
cost += cp->freq;
|
||
}
|
||
if (cost > best_cost)
|
||
{
|
||
best_cost = cost;
|
||
best_slot_num = slot_num;
|
||
}
|
||
cont:
|
||
;
|
||
}
|
||
if (best_cost >= 0)
|
||
{
|
||
slot_num = best_slot_num;
|
||
slot = &ira_spilled_reg_stack_slots[slot_num];
|
||
SET_REGNO_REG_SET (&slot->spilled_regs, regno);
|
||
x = slot->mem;
|
||
ALLOCNO_HARD_REGNO (allocno) = -slot_num - 2;
|
||
}
|
||
}
|
||
if (x != NULL_RTX)
|
||
{
|
||
ira_assert (slot->width >= total_size);
|
||
#ifdef ENABLE_IRA_CHECKING
|
||
EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
|
||
FIRST_PSEUDO_REGISTER, i, bi)
|
||
{
|
||
ira_assert (! pseudos_have_intersected_live_ranges_p (regno, i));
|
||
}
|
||
#endif
|
||
SET_REGNO_REG_SET (&slot->spilled_regs, regno);
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file)
|
||
{
|
||
fprintf (ira_dump_file, " Assigning %d(freq=%d) slot %d of",
|
||
regno, REG_FREQ (regno), slot_num);
|
||
EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
|
||
FIRST_PSEUDO_REGISTER, i, bi)
|
||
{
|
||
if ((unsigned) regno != i)
|
||
fprintf (ira_dump_file, " %d", i);
|
||
}
|
||
fprintf (ira_dump_file, "\n");
|
||
}
|
||
}
|
||
return x;
|
||
}
|
||
|
||
/* This is called by reload every time a new stack slot X with
|
||
TOTAL_SIZE was allocated for REGNO. We store this info for
|
||
subsequent ira_reuse_stack_slot calls. */
|
||
void
|
||
ira_mark_new_stack_slot (rtx x, int regno, unsigned int total_size)
|
||
{
|
||
struct ira_spilled_reg_stack_slot *slot;
|
||
int slot_num;
|
||
ira_allocno_t allocno;
|
||
|
||
ira_assert (PSEUDO_REGNO_BYTES (regno) <= total_size);
|
||
allocno = ira_regno_allocno_map[regno];
|
||
slot_num = -ALLOCNO_HARD_REGNO (allocno) - 2;
|
||
if (slot_num == -1)
|
||
{
|
||
slot_num = ira_spilled_reg_stack_slots_num++;
|
||
ALLOCNO_HARD_REGNO (allocno) = -slot_num - 2;
|
||
}
|
||
slot = &ira_spilled_reg_stack_slots[slot_num];
|
||
INIT_REG_SET (&slot->spilled_regs);
|
||
SET_REGNO_REG_SET (&slot->spilled_regs, regno);
|
||
slot->mem = x;
|
||
slot->width = total_size;
|
||
if (internal_flag_ira_verbose > 3 && ira_dump_file)
|
||
fprintf (ira_dump_file, " Assigning %d(freq=%d) a new slot %d\n",
|
||
regno, REG_FREQ (regno), slot_num);
|
||
}
|
||
|
||
|
||
/* Return spill cost for pseudo-registers whose numbers are in array
|
||
REGNOS (with a negative number as an end marker) for reload with
|
||
given IN and OUT for INSN. Return also number points (through
|
||
EXCESS_PRESSURE_LIVE_LENGTH) where the pseudo-register lives and
|
||
the register pressure is high, number of references of the
|
||
pseudo-registers (through NREFS), number of callee-clobbered
|
||
hard-registers occupied by the pseudo-registers (through
|
||
CALL_USED_COUNT), and the first hard regno occupied by the
|
||
pseudo-registers (through FIRST_HARD_REGNO). */
|
||
static int
|
||
calculate_spill_cost (int *regnos, rtx in, rtx out, rtx insn,
|
||
int *excess_pressure_live_length,
|
||
int *nrefs, int *call_used_count, int *first_hard_regno)
|
||
{
|
||
int i, cost, regno, hard_regno, j, count, saved_cost, nregs;
|
||
bool in_p, out_p;
|
||
int length;
|
||
ira_allocno_t a;
|
||
|
||
*nrefs = 0;
|
||
for (length = count = cost = i = 0;; i++)
|
||
{
|
||
regno = regnos[i];
|
||
if (regno < 0)
|
||
break;
|
||
*nrefs += REG_N_REFS (regno);
|
||
hard_regno = reg_renumber[regno];
|
||
ira_assert (hard_regno >= 0);
|
||
a = ira_regno_allocno_map[regno];
|
||
length += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) / ALLOCNO_NUM_OBJECTS (a);
|
||
cost += ALLOCNO_MEMORY_COST (a) - ALLOCNO_COVER_CLASS_COST (a);
|
||
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
|
||
for (j = 0; j < nregs; j++)
|
||
if (! TEST_HARD_REG_BIT (call_used_reg_set, hard_regno + j))
|
||
break;
|
||
if (j == nregs)
|
||
count++;
|
||
in_p = in && REG_P (in) && (int) REGNO (in) == hard_regno;
|
||
out_p = out && REG_P (out) && (int) REGNO (out) == hard_regno;
|
||
if ((in_p || out_p)
|
||
&& find_regno_note (insn, REG_DEAD, hard_regno) != NULL_RTX)
|
||
{
|
||
saved_cost = 0;
|
||
if (in_p)
|
||
saved_cost += ira_memory_move_cost
|
||
[ALLOCNO_MODE (a)][ALLOCNO_COVER_CLASS (a)][1];
|
||
if (out_p)
|
||
saved_cost
|
||
+= ira_memory_move_cost
|
||
[ALLOCNO_MODE (a)][ALLOCNO_COVER_CLASS (a)][0];
|
||
cost -= REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)) * saved_cost;
|
||
}
|
||
}
|
||
*excess_pressure_live_length = length;
|
||
*call_used_count = count;
|
||
hard_regno = -1;
|
||
if (regnos[0] >= 0)
|
||
{
|
||
hard_regno = reg_renumber[regnos[0]];
|
||
}
|
||
*first_hard_regno = hard_regno;
|
||
return cost;
|
||
}
|
||
|
||
/* Return TRUE if spilling pseudo-registers whose numbers are in array
|
||
REGNOS is better than spilling pseudo-registers with numbers in
|
||
OTHER_REGNOS for reload with given IN and OUT for INSN. The
|
||
function used by the reload pass to make better register spilling
|
||
decisions. */
|
||
bool
|
||
ira_better_spill_reload_regno_p (int *regnos, int *other_regnos,
|
||
rtx in, rtx out, rtx insn)
|
||
{
|
||
int cost, other_cost;
|
||
int length, other_length;
|
||
int nrefs, other_nrefs;
|
||
int call_used_count, other_call_used_count;
|
||
int hard_regno, other_hard_regno;
|
||
|
||
cost = calculate_spill_cost (regnos, in, out, insn,
|
||
&length, &nrefs, &call_used_count, &hard_regno);
|
||
other_cost = calculate_spill_cost (other_regnos, in, out, insn,
|
||
&other_length, &other_nrefs,
|
||
&other_call_used_count,
|
||
&other_hard_regno);
|
||
if (nrefs == 0 && other_nrefs != 0)
|
||
return true;
|
||
if (nrefs != 0 && other_nrefs == 0)
|
||
return false;
|
||
if (cost != other_cost)
|
||
return cost < other_cost;
|
||
if (length != other_length)
|
||
return length > other_length;
|
||
#ifdef REG_ALLOC_ORDER
|
||
if (hard_regno >= 0 && other_hard_regno >= 0)
|
||
return (inv_reg_alloc_order[hard_regno]
|
||
< inv_reg_alloc_order[other_hard_regno]);
|
||
#else
|
||
if (call_used_count != other_call_used_count)
|
||
return call_used_count > other_call_used_count;
|
||
#endif
|
||
return false;
|
||
}
|
||
|
||
|
||
|
||
/* Allocate and initialize data necessary for assign_hard_reg. */
|
||
void
|
||
ira_initiate_assign (void)
|
||
{
|
||
sorted_allocnos
|
||
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
|
||
* ira_allocnos_num);
|
||
consideration_allocno_bitmap = ira_allocate_bitmap ();
|
||
initiate_cost_update ();
|
||
allocno_priorities = (int *) ira_allocate (sizeof (int) * ira_allocnos_num);
|
||
}
|
||
|
||
/* Deallocate data used by assign_hard_reg. */
|
||
void
|
||
ira_finish_assign (void)
|
||
{
|
||
ira_free (sorted_allocnos);
|
||
ira_free_bitmap (consideration_allocno_bitmap);
|
||
finish_cost_update ();
|
||
ira_free (allocno_priorities);
|
||
}
|
||
|
||
|
||
|
||
/* Entry function doing color-based register allocation. */
|
||
static void
|
||
color (void)
|
||
{
|
||
allocno_stack_vec = VEC_alloc (ira_allocno_t, heap, ira_allocnos_num);
|
||
removed_splay_allocno_vec
|
||
= VEC_alloc (ira_allocno_t, heap, ira_allocnos_num);
|
||
memset (allocated_hardreg_p, 0, sizeof (allocated_hardreg_p));
|
||
ira_initiate_assign ();
|
||
do_coloring ();
|
||
ira_finish_assign ();
|
||
VEC_free (ira_allocno_t, heap, removed_splay_allocno_vec);
|
||
VEC_free (ira_allocno_t, heap, allocno_stack_vec);
|
||
move_spill_restore ();
|
||
}
|
||
|
||
|
||
|
||
/* This page contains a simple register allocator without usage of
|
||
allocno conflicts. This is used for fast allocation for -O0. */
|
||
|
||
/* Do register allocation by not using allocno conflicts. It uses
|
||
only allocno live ranges. The algorithm is close to Chow's
|
||
priority coloring. */
|
||
static void
|
||
fast_allocation (void)
|
||
{
|
||
int i, j, k, num, class_size, hard_regno;
|
||
#ifdef STACK_REGS
|
||
bool no_stack_reg_p;
|
||
#endif
|
||
enum reg_class cover_class;
|
||
enum machine_mode mode;
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
live_range_t r;
|
||
HARD_REG_SET conflict_hard_regs, *used_hard_regs;
|
||
|
||
sorted_allocnos = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
|
||
* ira_allocnos_num);
|
||
num = 0;
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
sorted_allocnos[num++] = a;
|
||
allocno_priorities = (int *) ira_allocate (sizeof (int) * ira_allocnos_num);
|
||
setup_allocno_priorities (sorted_allocnos, num);
|
||
used_hard_regs = (HARD_REG_SET *) ira_allocate (sizeof (HARD_REG_SET)
|
||
* ira_max_point);
|
||
for (i = 0; i < ira_max_point; i++)
|
||
CLEAR_HARD_REG_SET (used_hard_regs[i]);
|
||
qsort (sorted_allocnos, num, sizeof (ira_allocno_t),
|
||
allocno_priority_compare_func);
|
||
for (i = 0; i < num; i++)
|
||
{
|
||
int nr, l;
|
||
|
||
a = sorted_allocnos[i];
|
||
nr = ALLOCNO_NUM_OBJECTS (a);
|
||
CLEAR_HARD_REG_SET (conflict_hard_regs);
|
||
for (l = 0; l < nr; l++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, l);
|
||
IOR_HARD_REG_SET (conflict_hard_regs,
|
||
OBJECT_CONFLICT_HARD_REGS (obj));
|
||
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
||
for (j = r->start; j <= r->finish; j++)
|
||
IOR_HARD_REG_SET (conflict_hard_regs, used_hard_regs[j]);
|
||
}
|
||
cover_class = ALLOCNO_COVER_CLASS (a);
|
||
ALLOCNO_ASSIGNED_P (a) = true;
|
||
ALLOCNO_HARD_REGNO (a) = -1;
|
||
if (hard_reg_set_subset_p (reg_class_contents[cover_class],
|
||
conflict_hard_regs))
|
||
continue;
|
||
mode = ALLOCNO_MODE (a);
|
||
#ifdef STACK_REGS
|
||
no_stack_reg_p = ALLOCNO_NO_STACK_REG_P (a);
|
||
#endif
|
||
class_size = ira_class_hard_regs_num[cover_class];
|
||
for (j = 0; j < class_size; j++)
|
||
{
|
||
hard_regno = ira_class_hard_regs[cover_class][j];
|
||
#ifdef STACK_REGS
|
||
if (no_stack_reg_p && FIRST_STACK_REG <= hard_regno
|
||
&& hard_regno <= LAST_STACK_REG)
|
||
continue;
|
||
#endif
|
||
if (!ira_hard_reg_not_in_set_p (hard_regno, mode, conflict_hard_regs)
|
||
|| (TEST_HARD_REG_BIT
|
||
(prohibited_class_mode_regs[cover_class][mode], hard_regno)))
|
||
continue;
|
||
ALLOCNO_HARD_REGNO (a) = hard_regno;
|
||
for (l = 0; l < nr; l++)
|
||
{
|
||
ira_object_t obj = ALLOCNO_OBJECT (a, l);
|
||
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
||
for (k = r->start; k <= r->finish; k++)
|
||
IOR_HARD_REG_SET (used_hard_regs[k],
|
||
ira_reg_mode_hard_regset[hard_regno][mode]);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
ira_free (sorted_allocnos);
|
||
ira_free (used_hard_regs);
|
||
ira_free (allocno_priorities);
|
||
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
|
||
ira_print_disposition (ira_dump_file);
|
||
}
|
||
|
||
|
||
|
||
/* Entry function doing coloring. */
|
||
void
|
||
ira_color (void)
|
||
{
|
||
ira_allocno_t a;
|
||
ira_allocno_iterator ai;
|
||
|
||
/* Setup updated costs. */
|
||
FOR_EACH_ALLOCNO (a, ai)
|
||
{
|
||
ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
|
||
ALLOCNO_UPDATED_COVER_CLASS_COST (a) = ALLOCNO_COVER_CLASS_COST (a);
|
||
}
|
||
if (ira_conflicts_p)
|
||
color ();
|
||
else
|
||
fast_allocation ();
|
||
}
|