dc9b92facf
Fix insertion of range of instances convertible to value_type. libstdc++-v3/ChangeLog: PR libstdc++/105717 * include/bits/hashtable_policy.h (_ConvertToValueType): New. * include/bits/hashtable.h (_Hashtable<>::_M_insert_unique_aux): New. (_Hashtable<>::_M_insert(_Arg&&, const _NodeGenerator&, true_type)): Use latters. (_Hashtable<>::_M_insert(_Arg&&, const _NodeGenerator&, false_type)): Likewise. (_Hashtable(_InputIterator, _InputIterator, size_type, const _Hash&, const _Equal&, const allocator_type&, true_type)): Use this.insert range. (_Hashtable(_InputIterator, _InputIterator, size_type, const _Hash&, const _Equal&, const allocator_type&, false_type)): Use _M_insert. * testsuite/23_containers/unordered_map/cons/56112.cc: Check how many times conversion is done. * testsuite/23_containers/unordered_map/insert/105717.cc: New test. * testsuite/23_containers/unordered_set/insert/105717.cc: New test.
2710 lines
88 KiB
C++
2710 lines
88 KiB
C++
// hashtable.h header -*- C++ -*-
|
|
|
|
// Copyright (C) 2007-2022 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 3, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
|
// permissions described in the GCC Runtime Library Exception, version
|
|
// 3.1, as published by the Free Software Foundation.
|
|
|
|
// You should have received a copy of the GNU General Public License and
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
// <http://www.gnu.org/licenses/>.
|
|
|
|
/** @file bits/hashtable.h
|
|
* This is an internal header file, included by other library headers.
|
|
* Do not attempt to use it directly. @headername{unordered_map, unordered_set}
|
|
*/
|
|
|
|
#ifndef _HASHTABLE_H
|
|
#define _HASHTABLE_H 1
|
|
|
|
#pragma GCC system_header
|
|
|
|
#include <bits/hashtable_policy.h>
|
|
#include <bits/enable_special_members.h>
|
|
#include <bits/stl_function.h> // __has_is_transparent_t
|
|
#if __cplusplus > 201402L
|
|
# include <bits/node_handle.h>
|
|
#endif
|
|
|
|
namespace std _GLIBCXX_VISIBILITY(default)
|
|
{
|
|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
|
|
/// @cond undocumented
|
|
|
|
template<typename _Tp, typename _Hash>
|
|
using __cache_default
|
|
= __not_<__and_<// Do not cache for fast hasher.
|
|
__is_fast_hash<_Hash>,
|
|
// Mandatory to have erase not throwing.
|
|
__is_nothrow_invocable<const _Hash&, const _Tp&>>>;
|
|
|
|
// Helper to conditionally delete the default constructor.
|
|
// The _Hash_node_base type is used to distinguish this specialization
|
|
// from any other potentially-overlapping subobjects of the hashtable.
|
|
template<typename _Equal, typename _Hash, typename _Allocator>
|
|
using _Hashtable_enable_default_ctor
|
|
= _Enable_default_constructor<__and_<is_default_constructible<_Equal>,
|
|
is_default_constructible<_Hash>,
|
|
is_default_constructible<_Allocator>>{},
|
|
__detail::_Hash_node_base>;
|
|
|
|
/**
|
|
* Primary class template _Hashtable.
|
|
*
|
|
* @ingroup hashtable-detail
|
|
*
|
|
* @tparam _Value CopyConstructible type.
|
|
*
|
|
* @tparam _Key CopyConstructible type.
|
|
*
|
|
* @tparam _Alloc An allocator type
|
|
* ([lib.allocator.requirements]) whose _Alloc::value_type is
|
|
* _Value. As a conforming extension, we allow for
|
|
* _Alloc::value_type != _Value.
|
|
*
|
|
* @tparam _ExtractKey Function object that takes an object of type
|
|
* _Value and returns a value of type _Key.
|
|
*
|
|
* @tparam _Equal Function object that takes two objects of type k
|
|
* and returns a bool-like value that is true if the two objects
|
|
* are considered equal.
|
|
*
|
|
* @tparam _Hash The hash function. A unary function object with
|
|
* argument type _Key and result type size_t. Return values should
|
|
* be distributed over the entire range [0, numeric_limits<size_t>:::max()].
|
|
*
|
|
* @tparam _RangeHash The range-hashing function (in the terminology of
|
|
* Tavori and Dreizin). A binary function object whose argument
|
|
* types and result type are all size_t. Given arguments r and N,
|
|
* the return value is in the range [0, N).
|
|
*
|
|
* @tparam _Unused Not used.
|
|
*
|
|
* @tparam _RehashPolicy Policy class with three members, all of
|
|
* which govern the bucket count. _M_next_bkt(n) returns a bucket
|
|
* count no smaller than n. _M_bkt_for_elements(n) returns a
|
|
* bucket count appropriate for an element count of n.
|
|
* _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
|
|
* current bucket count is n_bkt and the current element count is
|
|
* n_elt, we need to increase the bucket count for n_ins insertions.
|
|
* If so, returns make_pair(true, n), where n is the new bucket count. If
|
|
* not, returns make_pair(false, <anything>)
|
|
*
|
|
* @tparam _Traits Compile-time class with three boolean
|
|
* std::integral_constant members: __cache_hash_code, __constant_iterators,
|
|
* __unique_keys.
|
|
*
|
|
* Each _Hashtable data structure has:
|
|
*
|
|
* - _Bucket[] _M_buckets
|
|
* - _Hash_node_base _M_before_begin
|
|
* - size_type _M_bucket_count
|
|
* - size_type _M_element_count
|
|
*
|
|
* with _Bucket being _Hash_node_base* and _Hash_node containing:
|
|
*
|
|
* - _Hash_node* _M_next
|
|
* - Tp _M_value
|
|
* - size_t _M_hash_code if cache_hash_code is true
|
|
*
|
|
* In terms of Standard containers the hashtable is like the aggregation of:
|
|
*
|
|
* - std::forward_list<_Node> containing the elements
|
|
* - std::vector<std::forward_list<_Node>::iterator> representing the buckets
|
|
*
|
|
* The non-empty buckets contain the node before the first node in the
|
|
* bucket. This design makes it possible to implement something like a
|
|
* std::forward_list::insert_after on container insertion and
|
|
* std::forward_list::erase_after on container erase
|
|
* calls. _M_before_begin is equivalent to
|
|
* std::forward_list::before_begin. Empty buckets contain
|
|
* nullptr. Note that one of the non-empty buckets contains
|
|
* &_M_before_begin which is not a dereferenceable node so the
|
|
* node pointer in a bucket shall never be dereferenced, only its
|
|
* next node can be.
|
|
*
|
|
* Walking through a bucket's nodes requires a check on the hash code to
|
|
* see if each node is still in the bucket. Such a design assumes a
|
|
* quite efficient hash functor and is one of the reasons it is
|
|
* highly advisable to set __cache_hash_code to true.
|
|
*
|
|
* The container iterators are simply built from nodes. This way
|
|
* incrementing the iterator is perfectly efficient independent of
|
|
* how many empty buckets there are in the container.
|
|
*
|
|
* On insert we compute the element's hash code and use it to find the
|
|
* bucket index. If the element must be inserted in an empty bucket
|
|
* we add it at the beginning of the singly linked list and make the
|
|
* bucket point to _M_before_begin. The bucket that used to point to
|
|
* _M_before_begin, if any, is updated to point to its new before
|
|
* begin node.
|
|
*
|
|
* On erase, the simple iterator design requires using the hash
|
|
* functor to get the index of the bucket to update. For this
|
|
* reason, when __cache_hash_code is set to false the hash functor must
|
|
* not throw and this is enforced by a static assertion.
|
|
*
|
|
* Functionality is implemented by decomposition into base classes,
|
|
* where the derived _Hashtable class is used in _Map_base,
|
|
* _Insert, _Rehash_base, and _Equality base classes to access the
|
|
* "this" pointer. _Hashtable_base is used in the base classes as a
|
|
* non-recursive, fully-completed-type so that detailed nested type
|
|
* information, such as iterator type and node type, can be
|
|
* used. This is similar to the "Curiously Recurring Template
|
|
* Pattern" (CRTP) technique, but uses a reconstructed, not
|
|
* explicitly passed, template pattern.
|
|
*
|
|
* Base class templates are:
|
|
* - __detail::_Hashtable_base
|
|
* - __detail::_Map_base
|
|
* - __detail::_Insert
|
|
* - __detail::_Rehash_base
|
|
* - __detail::_Equality
|
|
*/
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
class _Hashtable
|
|
: public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _Traits>,
|
|
public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused,
|
|
_RehashPolicy, _Traits>,
|
|
public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused,
|
|
_RehashPolicy, _Traits>,
|
|
public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused,
|
|
_RehashPolicy, _Traits>,
|
|
public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused,
|
|
_RehashPolicy, _Traits>,
|
|
private __detail::_Hashtable_alloc<
|
|
__alloc_rebind<_Alloc,
|
|
__detail::_Hash_node<_Value,
|
|
_Traits::__hash_cached::value>>>,
|
|
private _Hashtable_enable_default_ctor<_Equal, _Hash, _Alloc>
|
|
{
|
|
static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
|
|
"unordered container must have a non-const, non-volatile value_type");
|
|
#if __cplusplus > 201703L || defined __STRICT_ANSI__
|
|
static_assert(is_same<typename _Alloc::value_type, _Value>{},
|
|
"unordered container must have the same value_type as its allocator");
|
|
#endif
|
|
|
|
using __traits_type = _Traits;
|
|
using __hash_cached = typename __traits_type::__hash_cached;
|
|
using __constant_iterators = typename __traits_type::__constant_iterators;
|
|
using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
|
|
using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
|
|
|
|
using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
|
|
|
|
using __node_value_type =
|
|
__detail::_Hash_node_value<_Value, __hash_cached::value>;
|
|
using __node_ptr = typename __hashtable_alloc::__node_ptr;
|
|
using __value_alloc_traits =
|
|
typename __hashtable_alloc::__value_alloc_traits;
|
|
using __node_alloc_traits =
|
|
typename __hashtable_alloc::__node_alloc_traits;
|
|
using __node_base = typename __hashtable_alloc::__node_base;
|
|
using __node_base_ptr = typename __hashtable_alloc::__node_base_ptr;
|
|
using __buckets_ptr = typename __hashtable_alloc::__buckets_ptr;
|
|
|
|
using __insert_base = __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey,
|
|
_Equal, _Hash,
|
|
_RangeHash, _Unused,
|
|
_RehashPolicy, _Traits>;
|
|
using __enable_default_ctor
|
|
= _Hashtable_enable_default_ctor<_Equal, _Hash, _Alloc>;
|
|
|
|
public:
|
|
typedef _Key key_type;
|
|
typedef _Value value_type;
|
|
typedef _Alloc allocator_type;
|
|
typedef _Equal key_equal;
|
|
|
|
// mapped_type, if present, comes from _Map_base.
|
|
// hasher, if present, comes from _Hash_code_base/_Hashtable_base.
|
|
typedef typename __value_alloc_traits::pointer pointer;
|
|
typedef typename __value_alloc_traits::const_pointer const_pointer;
|
|
typedef value_type& reference;
|
|
typedef const value_type& const_reference;
|
|
|
|
using iterator = typename __insert_base::iterator;
|
|
|
|
using const_iterator = typename __insert_base::const_iterator;
|
|
|
|
using local_iterator = __detail::_Local_iterator<key_type, _Value,
|
|
_ExtractKey, _Hash, _RangeHash, _Unused,
|
|
__constant_iterators::value,
|
|
__hash_cached::value>;
|
|
|
|
using const_local_iterator = __detail::_Local_const_iterator<
|
|
key_type, _Value,
|
|
_ExtractKey, _Hash, _RangeHash, _Unused,
|
|
__constant_iterators::value, __hash_cached::value>;
|
|
|
|
private:
|
|
using __rehash_type = _RehashPolicy;
|
|
using __rehash_state = typename __rehash_type::_State;
|
|
|
|
using __unique_keys = typename __traits_type::__unique_keys;
|
|
|
|
using __hashtable_base = __detail::
|
|
_Hashtable_base<_Key, _Value, _ExtractKey,
|
|
_Equal, _Hash, _RangeHash, _Unused, _Traits>;
|
|
|
|
using __hash_code_base = typename __hashtable_base::__hash_code_base;
|
|
using __hash_code = typename __hashtable_base::__hash_code;
|
|
using __ireturn_type = typename __insert_base::__ireturn_type;
|
|
|
|
using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
|
|
_Equal, _Hash, _RangeHash, _Unused,
|
|
_RehashPolicy, _Traits>;
|
|
|
|
using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
|
|
_ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused,
|
|
_RehashPolicy, _Traits>;
|
|
|
|
using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
|
|
_Equal, _Hash, _RangeHash, _Unused,
|
|
_RehashPolicy, _Traits>;
|
|
|
|
using __reuse_or_alloc_node_gen_t =
|
|
__detail::_ReuseOrAllocNode<__node_alloc_type>;
|
|
using __alloc_node_gen_t =
|
|
__detail::_AllocNode<__node_alloc_type>;
|
|
using __node_builder_t =
|
|
__detail::_NodeBuilder<_ExtractKey>;
|
|
|
|
// Simple RAII type for managing a node containing an element
|
|
struct _Scoped_node
|
|
{
|
|
// Take ownership of a node with a constructed element.
|
|
_Scoped_node(__node_ptr __n, __hashtable_alloc* __h)
|
|
: _M_h(__h), _M_node(__n) { }
|
|
|
|
// Allocate a node and construct an element within it.
|
|
template<typename... _Args>
|
|
_Scoped_node(__hashtable_alloc* __h, _Args&&... __args)
|
|
: _M_h(__h),
|
|
_M_node(__h->_M_allocate_node(std::forward<_Args>(__args)...))
|
|
{ }
|
|
|
|
// Destroy element and deallocate node.
|
|
~_Scoped_node() { if (_M_node) _M_h->_M_deallocate_node(_M_node); };
|
|
|
|
_Scoped_node(const _Scoped_node&) = delete;
|
|
_Scoped_node& operator=(const _Scoped_node&) = delete;
|
|
|
|
__hashtable_alloc* _M_h;
|
|
__node_ptr _M_node;
|
|
};
|
|
|
|
template<typename _Ht>
|
|
static constexpr
|
|
__conditional_t<std::is_lvalue_reference<_Ht>::value,
|
|
const value_type&, value_type&&>
|
|
__fwd_value_for(value_type& __val) noexcept
|
|
{ return std::move(__val); }
|
|
|
|
// Compile-time diagnostics.
|
|
|
|
// _Hash_code_base has everything protected, so use this derived type to
|
|
// access it.
|
|
struct __hash_code_base_access : __hash_code_base
|
|
{ using __hash_code_base::_M_bucket_index; };
|
|
|
|
// To get bucket index we need _RangeHash not to throw.
|
|
static_assert(is_nothrow_default_constructible<_RangeHash>::value,
|
|
"Functor used to map hash code to bucket index"
|
|
" must be nothrow default constructible");
|
|
static_assert(noexcept(
|
|
std::declval<const _RangeHash&>()((std::size_t)0, (std::size_t)0)),
|
|
"Functor used to map hash code to bucket index must be"
|
|
" noexcept");
|
|
|
|
// To compute bucket index we also need _ExtratKey not to throw.
|
|
static_assert(is_nothrow_default_constructible<_ExtractKey>::value,
|
|
"_ExtractKey must be nothrow default constructible");
|
|
static_assert(noexcept(
|
|
std::declval<const _ExtractKey&>()(std::declval<_Value>())),
|
|
"_ExtractKey functor must be noexcept invocable");
|
|
|
|
template<typename _Keya, typename _Valuea, typename _Alloca,
|
|
typename _ExtractKeya, typename _Equala,
|
|
typename _Hasha, typename _RangeHasha, typename _Unuseda,
|
|
typename _RehashPolicya, typename _Traitsa,
|
|
bool _Unique_keysa>
|
|
friend struct __detail::_Map_base;
|
|
|
|
template<typename _Keya, typename _Valuea, typename _Alloca,
|
|
typename _ExtractKeya, typename _Equala,
|
|
typename _Hasha, typename _RangeHasha, typename _Unuseda,
|
|
typename _RehashPolicya, typename _Traitsa>
|
|
friend struct __detail::_Insert_base;
|
|
|
|
template<typename _Keya, typename _Valuea, typename _Alloca,
|
|
typename _ExtractKeya, typename _Equala,
|
|
typename _Hasha, typename _RangeHasha, typename _Unuseda,
|
|
typename _RehashPolicya, typename _Traitsa,
|
|
bool _Constant_iteratorsa>
|
|
friend struct __detail::_Insert;
|
|
|
|
template<typename _Keya, typename _Valuea, typename _Alloca,
|
|
typename _ExtractKeya, typename _Equala,
|
|
typename _Hasha, typename _RangeHasha, typename _Unuseda,
|
|
typename _RehashPolicya, typename _Traitsa,
|
|
bool _Unique_keysa>
|
|
friend struct __detail::_Equality;
|
|
|
|
public:
|
|
using size_type = typename __hashtable_base::size_type;
|
|
using difference_type = typename __hashtable_base::difference_type;
|
|
|
|
#if __cplusplus > 201402L
|
|
using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
|
|
using insert_return_type = _Node_insert_return<iterator, node_type>;
|
|
#endif
|
|
|
|
private:
|
|
__buckets_ptr _M_buckets = &_M_single_bucket;
|
|
size_type _M_bucket_count = 1;
|
|
__node_base _M_before_begin;
|
|
size_type _M_element_count = 0;
|
|
_RehashPolicy _M_rehash_policy;
|
|
|
|
// A single bucket used when only need for 1 bucket. Especially
|
|
// interesting in move semantic to leave hashtable with only 1 bucket
|
|
// which is not allocated so that we can have those operations noexcept
|
|
// qualified.
|
|
// Note that we can't leave hashtable with 0 bucket without adding
|
|
// numerous checks in the code to avoid 0 modulus.
|
|
__node_base_ptr _M_single_bucket = nullptr;
|
|
|
|
void
|
|
_M_update_bbegin()
|
|
{
|
|
if (_M_begin())
|
|
_M_buckets[_M_bucket_index(*_M_begin())] = &_M_before_begin;
|
|
}
|
|
|
|
void
|
|
_M_update_bbegin(__node_ptr __n)
|
|
{
|
|
_M_before_begin._M_nxt = __n;
|
|
_M_update_bbegin();
|
|
}
|
|
|
|
bool
|
|
_M_uses_single_bucket(__buckets_ptr __bkts) const
|
|
{ return __builtin_expect(__bkts == &_M_single_bucket, false); }
|
|
|
|
bool
|
|
_M_uses_single_bucket() const
|
|
{ return _M_uses_single_bucket(_M_buckets); }
|
|
|
|
static constexpr size_t
|
|
__small_size_threshold() noexcept
|
|
{
|
|
return
|
|
__detail::_Hashtable_hash_traits<_Hash>::__small_size_threshold();
|
|
}
|
|
|
|
__hashtable_alloc&
|
|
_M_base_alloc() { return *this; }
|
|
|
|
__buckets_ptr
|
|
_M_allocate_buckets(size_type __bkt_count)
|
|
{
|
|
if (__builtin_expect(__bkt_count == 1, false))
|
|
{
|
|
_M_single_bucket = nullptr;
|
|
return &_M_single_bucket;
|
|
}
|
|
|
|
return __hashtable_alloc::_M_allocate_buckets(__bkt_count);
|
|
}
|
|
|
|
void
|
|
_M_deallocate_buckets(__buckets_ptr __bkts, size_type __bkt_count)
|
|
{
|
|
if (_M_uses_single_bucket(__bkts))
|
|
return;
|
|
|
|
__hashtable_alloc::_M_deallocate_buckets(__bkts, __bkt_count);
|
|
}
|
|
|
|
void
|
|
_M_deallocate_buckets()
|
|
{ _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
|
|
|
|
// Gets bucket begin, deals with the fact that non-empty buckets contain
|
|
// their before begin node.
|
|
__node_ptr
|
|
_M_bucket_begin(size_type __bkt) const;
|
|
|
|
__node_ptr
|
|
_M_begin() const
|
|
{ return static_cast<__node_ptr>(_M_before_begin._M_nxt); }
|
|
|
|
// Assign *this using another _Hashtable instance. Whether elements
|
|
// are copied or moved depends on the _Ht reference.
|
|
template<typename _Ht>
|
|
void
|
|
_M_assign_elements(_Ht&&);
|
|
|
|
template<typename _Ht, typename _NodeGenerator>
|
|
void
|
|
_M_assign(_Ht&&, const _NodeGenerator&);
|
|
|
|
void
|
|
_M_move_assign(_Hashtable&&, true_type);
|
|
|
|
void
|
|
_M_move_assign(_Hashtable&&, false_type);
|
|
|
|
void
|
|
_M_reset() noexcept;
|
|
|
|
_Hashtable(const _Hash& __h, const _Equal& __eq,
|
|
const allocator_type& __a)
|
|
: __hashtable_base(__h, __eq),
|
|
__hashtable_alloc(__node_alloc_type(__a)),
|
|
__enable_default_ctor(_Enable_default_constructor_tag{})
|
|
{ }
|
|
|
|
template<bool _No_realloc = true>
|
|
static constexpr bool
|
|
_S_nothrow_move()
|
|
{
|
|
#if __cplusplus <= 201402L
|
|
return __and_<__bool_constant<_No_realloc>,
|
|
is_nothrow_copy_constructible<_Hash>,
|
|
is_nothrow_copy_constructible<_Equal>>::value;
|
|
#else
|
|
if constexpr (_No_realloc)
|
|
if constexpr (is_nothrow_copy_constructible<_Hash>())
|
|
return is_nothrow_copy_constructible<_Equal>();
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
_Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
|
|
true_type /* alloc always equal */)
|
|
noexcept(_S_nothrow_move());
|
|
|
|
_Hashtable(_Hashtable&&, __node_alloc_type&&,
|
|
false_type /* alloc always equal */);
|
|
|
|
template<typename _InputIterator>
|
|
_Hashtable(_InputIterator __first, _InputIterator __last,
|
|
size_type __bkt_count_hint,
|
|
const _Hash&, const _Equal&, const allocator_type&,
|
|
true_type __uks);
|
|
|
|
template<typename _InputIterator>
|
|
_Hashtable(_InputIterator __first, _InputIterator __last,
|
|
size_type __bkt_count_hint,
|
|
const _Hash&, const _Equal&, const allocator_type&,
|
|
false_type __uks);
|
|
|
|
public:
|
|
// Constructor, destructor, assignment, swap
|
|
_Hashtable() = default;
|
|
|
|
_Hashtable(const _Hashtable&);
|
|
|
|
_Hashtable(const _Hashtable&, const allocator_type&);
|
|
|
|
explicit
|
|
_Hashtable(size_type __bkt_count_hint,
|
|
const _Hash& __hf = _Hash(),
|
|
const key_equal& __eql = key_equal(),
|
|
const allocator_type& __a = allocator_type());
|
|
|
|
// Use delegating constructors.
|
|
_Hashtable(_Hashtable&& __ht)
|
|
noexcept(_S_nothrow_move())
|
|
: _Hashtable(std::move(__ht), std::move(__ht._M_node_allocator()),
|
|
true_type{})
|
|
{ }
|
|
|
|
_Hashtable(_Hashtable&& __ht, const allocator_type& __a)
|
|
noexcept(_S_nothrow_move<__node_alloc_traits::_S_always_equal()>())
|
|
: _Hashtable(std::move(__ht), __node_alloc_type(__a),
|
|
typename __node_alloc_traits::is_always_equal{})
|
|
{ }
|
|
|
|
explicit
|
|
_Hashtable(const allocator_type& __a)
|
|
: __hashtable_alloc(__node_alloc_type(__a)),
|
|
__enable_default_ctor(_Enable_default_constructor_tag{})
|
|
{ }
|
|
|
|
template<typename _InputIterator>
|
|
_Hashtable(_InputIterator __f, _InputIterator __l,
|
|
size_type __bkt_count_hint = 0,
|
|
const _Hash& __hf = _Hash(),
|
|
const key_equal& __eql = key_equal(),
|
|
const allocator_type& __a = allocator_type())
|
|
: _Hashtable(__f, __l, __bkt_count_hint, __hf, __eql, __a,
|
|
__unique_keys{})
|
|
{ }
|
|
|
|
_Hashtable(initializer_list<value_type> __l,
|
|
size_type __bkt_count_hint = 0,
|
|
const _Hash& __hf = _Hash(),
|
|
const key_equal& __eql = key_equal(),
|
|
const allocator_type& __a = allocator_type())
|
|
: _Hashtable(__l.begin(), __l.end(), __bkt_count_hint,
|
|
__hf, __eql, __a, __unique_keys{})
|
|
{ }
|
|
|
|
_Hashtable&
|
|
operator=(const _Hashtable& __ht);
|
|
|
|
_Hashtable&
|
|
operator=(_Hashtable&& __ht)
|
|
noexcept(__node_alloc_traits::_S_nothrow_move()
|
|
&& is_nothrow_move_assignable<_Hash>::value
|
|
&& is_nothrow_move_assignable<_Equal>::value)
|
|
{
|
|
constexpr bool __move_storage =
|
|
__node_alloc_traits::_S_propagate_on_move_assign()
|
|
|| __node_alloc_traits::_S_always_equal();
|
|
_M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
|
|
return *this;
|
|
}
|
|
|
|
_Hashtable&
|
|
operator=(initializer_list<value_type> __l)
|
|
{
|
|
__reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
|
|
_M_before_begin._M_nxt = nullptr;
|
|
clear();
|
|
|
|
// We consider that all elements of __l are going to be inserted.
|
|
auto __l_bkt_count = _M_rehash_policy._M_bkt_for_elements(__l.size());
|
|
|
|
// Do not shrink to keep potential user reservation.
|
|
if (_M_bucket_count < __l_bkt_count)
|
|
rehash(__l_bkt_count);
|
|
|
|
this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys{});
|
|
return *this;
|
|
}
|
|
|
|
~_Hashtable() noexcept;
|
|
|
|
void
|
|
swap(_Hashtable&)
|
|
noexcept(__and_<__is_nothrow_swappable<_Hash>,
|
|
__is_nothrow_swappable<_Equal>>::value);
|
|
|
|
// Basic container operations
|
|
iterator
|
|
begin() noexcept
|
|
{ return iterator(_M_begin()); }
|
|
|
|
const_iterator
|
|
begin() const noexcept
|
|
{ return const_iterator(_M_begin()); }
|
|
|
|
iterator
|
|
end() noexcept
|
|
{ return iterator(nullptr); }
|
|
|
|
const_iterator
|
|
end() const noexcept
|
|
{ return const_iterator(nullptr); }
|
|
|
|
const_iterator
|
|
cbegin() const noexcept
|
|
{ return const_iterator(_M_begin()); }
|
|
|
|
const_iterator
|
|
cend() const noexcept
|
|
{ return const_iterator(nullptr); }
|
|
|
|
size_type
|
|
size() const noexcept
|
|
{ return _M_element_count; }
|
|
|
|
_GLIBCXX_NODISCARD bool
|
|
empty() const noexcept
|
|
{ return size() == 0; }
|
|
|
|
allocator_type
|
|
get_allocator() const noexcept
|
|
{ return allocator_type(this->_M_node_allocator()); }
|
|
|
|
size_type
|
|
max_size() const noexcept
|
|
{ return __node_alloc_traits::max_size(this->_M_node_allocator()); }
|
|
|
|
// Observers
|
|
key_equal
|
|
key_eq() const
|
|
{ return this->_M_eq(); }
|
|
|
|
// hash_function, if present, comes from _Hash_code_base.
|
|
|
|
// Bucket operations
|
|
size_type
|
|
bucket_count() const noexcept
|
|
{ return _M_bucket_count; }
|
|
|
|
size_type
|
|
max_bucket_count() const noexcept
|
|
{ return max_size(); }
|
|
|
|
size_type
|
|
bucket_size(size_type __bkt) const
|
|
{ return std::distance(begin(__bkt), end(__bkt)); }
|
|
|
|
size_type
|
|
bucket(const key_type& __k) const
|
|
{ return _M_bucket_index(this->_M_hash_code(__k)); }
|
|
|
|
local_iterator
|
|
begin(size_type __bkt)
|
|
{
|
|
return local_iterator(*this, _M_bucket_begin(__bkt),
|
|
__bkt, _M_bucket_count);
|
|
}
|
|
|
|
local_iterator
|
|
end(size_type __bkt)
|
|
{ return local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
|
|
|
|
const_local_iterator
|
|
begin(size_type __bkt) const
|
|
{
|
|
return const_local_iterator(*this, _M_bucket_begin(__bkt),
|
|
__bkt, _M_bucket_count);
|
|
}
|
|
|
|
const_local_iterator
|
|
end(size_type __bkt) const
|
|
{ return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
|
|
|
|
// DR 691.
|
|
const_local_iterator
|
|
cbegin(size_type __bkt) const
|
|
{
|
|
return const_local_iterator(*this, _M_bucket_begin(__bkt),
|
|
__bkt, _M_bucket_count);
|
|
}
|
|
|
|
const_local_iterator
|
|
cend(size_type __bkt) const
|
|
{ return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
|
|
|
|
float
|
|
load_factor() const noexcept
|
|
{
|
|
return static_cast<float>(size()) / static_cast<float>(bucket_count());
|
|
}
|
|
|
|
// max_load_factor, if present, comes from _Rehash_base.
|
|
|
|
// Generalization of max_load_factor. Extension, not found in
|
|
// TR1. Only useful if _RehashPolicy is something other than
|
|
// the default.
|
|
const _RehashPolicy&
|
|
__rehash_policy() const
|
|
{ return _M_rehash_policy; }
|
|
|
|
void
|
|
__rehash_policy(const _RehashPolicy& __pol)
|
|
{ _M_rehash_policy = __pol; }
|
|
|
|
// Lookup.
|
|
iterator
|
|
find(const key_type& __k);
|
|
|
|
const_iterator
|
|
find(const key_type& __k) const;
|
|
|
|
size_type
|
|
count(const key_type& __k) const;
|
|
|
|
std::pair<iterator, iterator>
|
|
equal_range(const key_type& __k);
|
|
|
|
std::pair<const_iterator, const_iterator>
|
|
equal_range(const key_type& __k) const;
|
|
|
|
#if __cplusplus >= 202002L
|
|
#define __cpp_lib_generic_unordered_lookup 201811L
|
|
|
|
template<typename _Kt,
|
|
typename = __has_is_transparent_t<_Hash, _Kt>,
|
|
typename = __has_is_transparent_t<_Equal, _Kt>>
|
|
iterator
|
|
_M_find_tr(const _Kt& __k);
|
|
|
|
template<typename _Kt,
|
|
typename = __has_is_transparent_t<_Hash, _Kt>,
|
|
typename = __has_is_transparent_t<_Equal, _Kt>>
|
|
const_iterator
|
|
_M_find_tr(const _Kt& __k) const;
|
|
|
|
template<typename _Kt,
|
|
typename = __has_is_transparent_t<_Hash, _Kt>,
|
|
typename = __has_is_transparent_t<_Equal, _Kt>>
|
|
size_type
|
|
_M_count_tr(const _Kt& __k) const;
|
|
|
|
template<typename _Kt,
|
|
typename = __has_is_transparent_t<_Hash, _Kt>,
|
|
typename = __has_is_transparent_t<_Equal, _Kt>>
|
|
pair<iterator, iterator>
|
|
_M_equal_range_tr(const _Kt& __k);
|
|
|
|
template<typename _Kt,
|
|
typename = __has_is_transparent_t<_Hash, _Kt>,
|
|
typename = __has_is_transparent_t<_Equal, _Kt>>
|
|
pair<const_iterator, const_iterator>
|
|
_M_equal_range_tr(const _Kt& __k) const;
|
|
#endif // C++20
|
|
|
|
private:
|
|
// Bucket index computation helpers.
|
|
size_type
|
|
_M_bucket_index(const __node_value_type& __n) const noexcept
|
|
{ return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
|
|
|
|
size_type
|
|
_M_bucket_index(__hash_code __c) const
|
|
{ return __hash_code_base::_M_bucket_index(__c, _M_bucket_count); }
|
|
|
|
__node_base_ptr
|
|
_M_find_before_node(const key_type&);
|
|
|
|
// Find and insert helper functions and types
|
|
// Find the node before the one matching the criteria.
|
|
__node_base_ptr
|
|
_M_find_before_node(size_type, const key_type&, __hash_code) const;
|
|
|
|
template<typename _Kt>
|
|
__node_base_ptr
|
|
_M_find_before_node_tr(size_type, const _Kt&, __hash_code) const;
|
|
|
|
__node_ptr
|
|
_M_find_node(size_type __bkt, const key_type& __key,
|
|
__hash_code __c) const
|
|
{
|
|
__node_base_ptr __before_n = _M_find_before_node(__bkt, __key, __c);
|
|
if (__before_n)
|
|
return static_cast<__node_ptr>(__before_n->_M_nxt);
|
|
return nullptr;
|
|
}
|
|
|
|
template<typename _Kt>
|
|
__node_ptr
|
|
_M_find_node_tr(size_type __bkt, const _Kt& __key,
|
|
__hash_code __c) const
|
|
{
|
|
auto __before_n = _M_find_before_node_tr(__bkt, __key, __c);
|
|
if (__before_n)
|
|
return static_cast<__node_ptr>(__before_n->_M_nxt);
|
|
return nullptr;
|
|
}
|
|
|
|
// Insert a node at the beginning of a bucket.
|
|
void
|
|
_M_insert_bucket_begin(size_type, __node_ptr);
|
|
|
|
// Remove the bucket first node
|
|
void
|
|
_M_remove_bucket_begin(size_type __bkt, __node_ptr __next_n,
|
|
size_type __next_bkt);
|
|
|
|
// Get the node before __n in the bucket __bkt
|
|
__node_base_ptr
|
|
_M_get_previous_node(size_type __bkt, __node_ptr __n);
|
|
|
|
pair<const_iterator, __hash_code>
|
|
_M_compute_hash_code(const_iterator __hint, const key_type& __k) const;
|
|
|
|
// Insert node __n with hash code __code, in bucket __bkt if no
|
|
// rehash (assumes no element with same key already present).
|
|
// Takes ownership of __n if insertion succeeds, throws otherwise.
|
|
iterator
|
|
_M_insert_unique_node(size_type __bkt, __hash_code,
|
|
__node_ptr __n, size_type __n_elt = 1);
|
|
|
|
// Insert node __n with key __k and hash code __code.
|
|
// Takes ownership of __n if insertion succeeds, throws otherwise.
|
|
iterator
|
|
_M_insert_multi_node(__node_ptr __hint,
|
|
__hash_code __code, __node_ptr __n);
|
|
|
|
template<typename... _Args>
|
|
std::pair<iterator, bool>
|
|
_M_emplace(true_type __uks, _Args&&... __args);
|
|
|
|
template<typename... _Args>
|
|
iterator
|
|
_M_emplace(false_type __uks, _Args&&... __args)
|
|
{ return _M_emplace(cend(), __uks, std::forward<_Args>(__args)...); }
|
|
|
|
// Emplace with hint, useless when keys are unique.
|
|
template<typename... _Args>
|
|
iterator
|
|
_M_emplace(const_iterator, true_type __uks, _Args&&... __args)
|
|
{ return _M_emplace(__uks, std::forward<_Args>(__args)...).first; }
|
|
|
|
template<typename... _Args>
|
|
iterator
|
|
_M_emplace(const_iterator, false_type __uks, _Args&&... __args);
|
|
|
|
template<typename _Kt, typename _Arg, typename _NodeGenerator>
|
|
std::pair<iterator, bool>
|
|
_M_insert_unique(_Kt&&, _Arg&&, const _NodeGenerator&);
|
|
|
|
template<typename _Kt>
|
|
static __conditional_t<
|
|
__and_<__is_nothrow_invocable<_Hash&, const key_type&>,
|
|
__not_<__is_nothrow_invocable<_Hash&, _Kt>>>::value,
|
|
key_type, _Kt&&>
|
|
_S_forward_key(_Kt&& __k)
|
|
{ return std::forward<_Kt>(__k); }
|
|
|
|
static const key_type&
|
|
_S_forward_key(const key_type& __k)
|
|
{ return __k; }
|
|
|
|
static key_type&&
|
|
_S_forward_key(key_type&& __k)
|
|
{ return std::move(__k); }
|
|
|
|
template<typename _Arg, typename _NodeGenerator>
|
|
std::pair<iterator, bool>
|
|
_M_insert_unique_aux(_Arg&& __arg, const _NodeGenerator& __node_gen)
|
|
{
|
|
return _M_insert_unique(
|
|
_S_forward_key(_ExtractKey{}(std::forward<_Arg>(__arg))),
|
|
std::forward<_Arg>(__arg), __node_gen);
|
|
}
|
|
|
|
template<typename _Arg, typename _NodeGenerator>
|
|
std::pair<iterator, bool>
|
|
_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
|
|
true_type /* __uks */)
|
|
{
|
|
using __to_value
|
|
= __detail::_ConvertToValueType<_ExtractKey, value_type>;
|
|
return _M_insert_unique_aux(
|
|
__to_value{}(std::forward<_Arg>(__arg)), __node_gen);
|
|
}
|
|
|
|
template<typename _Arg, typename _NodeGenerator>
|
|
iterator
|
|
_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
|
|
false_type __uks)
|
|
{
|
|
using __to_value
|
|
= __detail::_ConvertToValueType<_ExtractKey, value_type>;
|
|
return _M_insert(cend(),
|
|
__to_value{}(std::forward<_Arg>(__arg)), __node_gen, __uks);
|
|
}
|
|
|
|
// Insert with hint, not used when keys are unique.
|
|
template<typename _Arg, typename _NodeGenerator>
|
|
iterator
|
|
_M_insert(const_iterator, _Arg&& __arg,
|
|
const _NodeGenerator& __node_gen, true_type __uks)
|
|
{
|
|
return
|
|
_M_insert(std::forward<_Arg>(__arg), __node_gen, __uks).first;
|
|
}
|
|
|
|
// Insert with hint when keys are not unique.
|
|
template<typename _Arg, typename _NodeGenerator>
|
|
iterator
|
|
_M_insert(const_iterator, _Arg&&,
|
|
const _NodeGenerator&, false_type __uks);
|
|
|
|
size_type
|
|
_M_erase(true_type __uks, const key_type&);
|
|
|
|
size_type
|
|
_M_erase(false_type __uks, const key_type&);
|
|
|
|
iterator
|
|
_M_erase(size_type __bkt, __node_base_ptr __prev_n, __node_ptr __n);
|
|
|
|
public:
|
|
// Emplace
|
|
template<typename... _Args>
|
|
__ireturn_type
|
|
emplace(_Args&&... __args)
|
|
{ return _M_emplace(__unique_keys{}, std::forward<_Args>(__args)...); }
|
|
|
|
template<typename... _Args>
|
|
iterator
|
|
emplace_hint(const_iterator __hint, _Args&&... __args)
|
|
{
|
|
return _M_emplace(__hint, __unique_keys{},
|
|
std::forward<_Args>(__args)...);
|
|
}
|
|
|
|
// Insert member functions via inheritance.
|
|
|
|
// Erase
|
|
iterator
|
|
erase(const_iterator);
|
|
|
|
// LWG 2059.
|
|
iterator
|
|
erase(iterator __it)
|
|
{ return erase(const_iterator(__it)); }
|
|
|
|
size_type
|
|
erase(const key_type& __k)
|
|
{ return _M_erase(__unique_keys{}, __k); }
|
|
|
|
iterator
|
|
erase(const_iterator, const_iterator);
|
|
|
|
void
|
|
clear() noexcept;
|
|
|
|
// Set number of buckets keeping it appropriate for container's number
|
|
// of elements.
|
|
void rehash(size_type __bkt_count);
|
|
|
|
// DR 1189.
|
|
// reserve, if present, comes from _Rehash_base.
|
|
|
|
#if __cplusplus > 201402L
|
|
/// Re-insert an extracted node into a container with unique keys.
|
|
insert_return_type
|
|
_M_reinsert_node(node_type&& __nh)
|
|
{
|
|
insert_return_type __ret;
|
|
if (__nh.empty())
|
|
__ret.position = end();
|
|
else
|
|
{
|
|
__glibcxx_assert(get_allocator() == __nh.get_allocator());
|
|
|
|
const key_type& __k = __nh._M_key();
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
size_type __bkt = _M_bucket_index(__code);
|
|
if (__node_ptr __n = _M_find_node(__bkt, __k, __code))
|
|
{
|
|
__ret.node = std::move(__nh);
|
|
__ret.position = iterator(__n);
|
|
__ret.inserted = false;
|
|
}
|
|
else
|
|
{
|
|
__ret.position
|
|
= _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
|
|
__nh._M_ptr = nullptr;
|
|
__ret.inserted = true;
|
|
}
|
|
}
|
|
return __ret;
|
|
}
|
|
|
|
/// Re-insert an extracted node into a container with equivalent keys.
|
|
iterator
|
|
_M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
|
|
{
|
|
if (__nh.empty())
|
|
return end();
|
|
|
|
__glibcxx_assert(get_allocator() == __nh.get_allocator());
|
|
|
|
const key_type& __k = __nh._M_key();
|
|
auto __code = this->_M_hash_code(__k);
|
|
auto __ret
|
|
= _M_insert_multi_node(__hint._M_cur, __code, __nh._M_ptr);
|
|
__nh._M_ptr = nullptr;
|
|
return __ret;
|
|
}
|
|
|
|
private:
|
|
node_type
|
|
_M_extract_node(size_t __bkt, __node_base_ptr __prev_n)
|
|
{
|
|
__node_ptr __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
|
|
if (__prev_n == _M_buckets[__bkt])
|
|
_M_remove_bucket_begin(__bkt, __n->_M_next(),
|
|
__n->_M_nxt ? _M_bucket_index(*__n->_M_next()) : 0);
|
|
else if (__n->_M_nxt)
|
|
{
|
|
size_type __next_bkt = _M_bucket_index(*__n->_M_next());
|
|
if (__next_bkt != __bkt)
|
|
_M_buckets[__next_bkt] = __prev_n;
|
|
}
|
|
|
|
__prev_n->_M_nxt = __n->_M_nxt;
|
|
__n->_M_nxt = nullptr;
|
|
--_M_element_count;
|
|
return { __n, this->_M_node_allocator() };
|
|
}
|
|
|
|
public:
|
|
// Extract a node.
|
|
node_type
|
|
extract(const_iterator __pos)
|
|
{
|
|
size_t __bkt = _M_bucket_index(*__pos._M_cur);
|
|
return _M_extract_node(__bkt,
|
|
_M_get_previous_node(__bkt, __pos._M_cur));
|
|
}
|
|
|
|
/// Extract a node.
|
|
node_type
|
|
extract(const _Key& __k)
|
|
{
|
|
node_type __nh;
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
std::size_t __bkt = _M_bucket_index(__code);
|
|
if (__node_base_ptr __prev_node = _M_find_before_node(__bkt, __k, __code))
|
|
__nh = _M_extract_node(__bkt, __prev_node);
|
|
return __nh;
|
|
}
|
|
|
|
/// Merge from a compatible container into one with unique keys.
|
|
template<typename _Compatible_Hashtable>
|
|
void
|
|
_M_merge_unique(_Compatible_Hashtable& __src)
|
|
{
|
|
static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
|
|
node_type>, "Node types are compatible");
|
|
__glibcxx_assert(get_allocator() == __src.get_allocator());
|
|
|
|
auto __n_elt = __src.size();
|
|
for (auto __i = __src.cbegin(), __end = __src.cend(); __i != __end;)
|
|
{
|
|
auto __pos = __i++;
|
|
const key_type& __k = _ExtractKey{}(*__pos);
|
|
__hash_code __code
|
|
= this->_M_hash_code(__src.hash_function(), *__pos._M_cur);
|
|
size_type __bkt = _M_bucket_index(__code);
|
|
if (_M_find_node(__bkt, __k, __code) == nullptr)
|
|
{
|
|
auto __nh = __src.extract(__pos);
|
|
_M_insert_unique_node(__bkt, __code, __nh._M_ptr, __n_elt);
|
|
__nh._M_ptr = nullptr;
|
|
__n_elt = 1;
|
|
}
|
|
else if (__n_elt != 1)
|
|
--__n_elt;
|
|
}
|
|
}
|
|
|
|
/// Merge from a compatible container into one with equivalent keys.
|
|
template<typename _Compatible_Hashtable>
|
|
void
|
|
_M_merge_multi(_Compatible_Hashtable& __src)
|
|
{
|
|
static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
|
|
node_type>, "Node types are compatible");
|
|
__glibcxx_assert(get_allocator() == __src.get_allocator());
|
|
|
|
__node_ptr __hint = nullptr;
|
|
this->reserve(size() + __src.size());
|
|
for (auto __i = __src.cbegin(), __end = __src.cend(); __i != __end;)
|
|
{
|
|
auto __pos = __i++;
|
|
__hash_code __code
|
|
= this->_M_hash_code(__src.hash_function(), *__pos._M_cur);
|
|
auto __nh = __src.extract(__pos);
|
|
__hint = _M_insert_multi_node(__hint, __code, __nh._M_ptr)._M_cur;
|
|
__nh._M_ptr = nullptr;
|
|
}
|
|
}
|
|
#endif // C++17
|
|
|
|
private:
|
|
// Helper rehash method used when keys are unique.
|
|
void _M_rehash_aux(size_type __bkt_count, true_type __uks);
|
|
|
|
// Helper rehash method used when keys can be non-unique.
|
|
void _M_rehash_aux(size_type __bkt_count, false_type __uks);
|
|
|
|
// Unconditionally change size of bucket array to n, restore
|
|
// hash policy state to __state on exception.
|
|
void _M_rehash(size_type __bkt_count, const __rehash_state& __state);
|
|
};
|
|
|
|
// Definitions of class template _Hashtable's out-of-line member functions.
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_bucket_begin(size_type __bkt) const
|
|
-> __node_ptr
|
|
{
|
|
__node_base_ptr __n = _M_buckets[__bkt];
|
|
return __n ? static_cast<__node_ptr>(__n->_M_nxt) : nullptr;
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_Hashtable(size_type __bkt_count_hint,
|
|
const _Hash& __h, const _Equal& __eq, const allocator_type& __a)
|
|
: _Hashtable(__h, __eq, __a)
|
|
{
|
|
auto __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count_hint);
|
|
if (__bkt_count > _M_bucket_count)
|
|
{
|
|
_M_buckets = _M_allocate_buckets(__bkt_count);
|
|
_M_bucket_count = __bkt_count;
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename _InputIterator>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_Hashtable(_InputIterator __f, _InputIterator __l,
|
|
size_type __bkt_count_hint,
|
|
const _Hash& __h, const _Equal& __eq,
|
|
const allocator_type& __a, true_type /* __uks */)
|
|
: _Hashtable(__bkt_count_hint, __h, __eq, __a)
|
|
{ this->insert(__f, __l); }
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename _InputIterator>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_Hashtable(_InputIterator __f, _InputIterator __l,
|
|
size_type __bkt_count_hint,
|
|
const _Hash& __h, const _Equal& __eq,
|
|
const allocator_type& __a, false_type __uks)
|
|
: _Hashtable(__h, __eq, __a)
|
|
{
|
|
auto __nb_elems = __detail::__distance_fw(__f, __l);
|
|
auto __bkt_count =
|
|
_M_rehash_policy._M_next_bkt(
|
|
std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
|
|
__bkt_count_hint));
|
|
|
|
if (__bkt_count > _M_bucket_count)
|
|
{
|
|
_M_buckets = _M_allocate_buckets(__bkt_count);
|
|
_M_bucket_count = __bkt_count;
|
|
}
|
|
|
|
__alloc_node_gen_t __node_gen(*this);
|
|
for (; __f != __l; ++__f)
|
|
_M_insert(*__f, __node_gen, __uks);
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
operator=(const _Hashtable& __ht)
|
|
-> _Hashtable&
|
|
{
|
|
if (&__ht == this)
|
|
return *this;
|
|
|
|
if (__node_alloc_traits::_S_propagate_on_copy_assign())
|
|
{
|
|
auto& __this_alloc = this->_M_node_allocator();
|
|
auto& __that_alloc = __ht._M_node_allocator();
|
|
if (!__node_alloc_traits::_S_always_equal()
|
|
&& __this_alloc != __that_alloc)
|
|
{
|
|
// Replacement allocator cannot free existing storage.
|
|
this->_M_deallocate_nodes(_M_begin());
|
|
_M_before_begin._M_nxt = nullptr;
|
|
_M_deallocate_buckets();
|
|
_M_buckets = nullptr;
|
|
std::__alloc_on_copy(__this_alloc, __that_alloc);
|
|
__hashtable_base::operator=(__ht);
|
|
_M_bucket_count = __ht._M_bucket_count;
|
|
_M_element_count = __ht._M_element_count;
|
|
_M_rehash_policy = __ht._M_rehash_policy;
|
|
__alloc_node_gen_t __alloc_node_gen(*this);
|
|
__try
|
|
{
|
|
_M_assign(__ht, __alloc_node_gen);
|
|
}
|
|
__catch(...)
|
|
{
|
|
// _M_assign took care of deallocating all memory. Now we
|
|
// must make sure this instance remains in a usable state.
|
|
_M_reset();
|
|
__throw_exception_again;
|
|
}
|
|
return *this;
|
|
}
|
|
std::__alloc_on_copy(__this_alloc, __that_alloc);
|
|
}
|
|
|
|
// Reuse allocated buckets and nodes.
|
|
_M_assign_elements(__ht);
|
|
return *this;
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename _Ht>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_assign_elements(_Ht&& __ht)
|
|
{
|
|
__buckets_ptr __former_buckets = nullptr;
|
|
std::size_t __former_bucket_count = _M_bucket_count;
|
|
const __rehash_state& __former_state = _M_rehash_policy._M_state();
|
|
|
|
if (_M_bucket_count != __ht._M_bucket_count)
|
|
{
|
|
__former_buckets = _M_buckets;
|
|
_M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
|
|
_M_bucket_count = __ht._M_bucket_count;
|
|
}
|
|
else
|
|
__builtin_memset(_M_buckets, 0,
|
|
_M_bucket_count * sizeof(__node_base_ptr));
|
|
|
|
__try
|
|
{
|
|
__hashtable_base::operator=(std::forward<_Ht>(__ht));
|
|
_M_element_count = __ht._M_element_count;
|
|
_M_rehash_policy = __ht._M_rehash_policy;
|
|
__reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
|
|
_M_before_begin._M_nxt = nullptr;
|
|
_M_assign(std::forward<_Ht>(__ht), __roan);
|
|
if (__former_buckets)
|
|
_M_deallocate_buckets(__former_buckets, __former_bucket_count);
|
|
}
|
|
__catch(...)
|
|
{
|
|
if (__former_buckets)
|
|
{
|
|
// Restore previous buckets.
|
|
_M_deallocate_buckets();
|
|
_M_rehash_policy._M_reset(__former_state);
|
|
_M_buckets = __former_buckets;
|
|
_M_bucket_count = __former_bucket_count;
|
|
}
|
|
__builtin_memset(_M_buckets, 0,
|
|
_M_bucket_count * sizeof(__node_base_ptr));
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename _Ht, typename _NodeGenerator>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_assign(_Ht&& __ht, const _NodeGenerator& __node_gen)
|
|
{
|
|
__buckets_ptr __buckets = nullptr;
|
|
if (!_M_buckets)
|
|
_M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
|
|
|
|
__try
|
|
{
|
|
if (!__ht._M_before_begin._M_nxt)
|
|
return;
|
|
|
|
// First deal with the special first node pointed to by
|
|
// _M_before_begin.
|
|
__node_ptr __ht_n = __ht._M_begin();
|
|
__node_ptr __this_n
|
|
= __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
|
|
this->_M_copy_code(*__this_n, *__ht_n);
|
|
_M_update_bbegin(__this_n);
|
|
|
|
// Then deal with other nodes.
|
|
__node_ptr __prev_n = __this_n;
|
|
for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
|
|
{
|
|
__this_n = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
|
|
__prev_n->_M_nxt = __this_n;
|
|
this->_M_copy_code(*__this_n, *__ht_n);
|
|
size_type __bkt = _M_bucket_index(*__this_n);
|
|
if (!_M_buckets[__bkt])
|
|
_M_buckets[__bkt] = __prev_n;
|
|
__prev_n = __this_n;
|
|
}
|
|
}
|
|
__catch(...)
|
|
{
|
|
clear();
|
|
if (__buckets)
|
|
_M_deallocate_buckets();
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_reset() noexcept
|
|
{
|
|
_M_rehash_policy._M_reset();
|
|
_M_bucket_count = 1;
|
|
_M_single_bucket = nullptr;
|
|
_M_buckets = &_M_single_bucket;
|
|
_M_before_begin._M_nxt = nullptr;
|
|
_M_element_count = 0;
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_move_assign(_Hashtable&& __ht, true_type)
|
|
{
|
|
if (__builtin_expect(std::__addressof(__ht) == this, false))
|
|
return;
|
|
|
|
this->_M_deallocate_nodes(_M_begin());
|
|
_M_deallocate_buckets();
|
|
__hashtable_base::operator=(std::move(__ht));
|
|
_M_rehash_policy = __ht._M_rehash_policy;
|
|
if (!__ht._M_uses_single_bucket())
|
|
_M_buckets = __ht._M_buckets;
|
|
else
|
|
{
|
|
_M_buckets = &_M_single_bucket;
|
|
_M_single_bucket = __ht._M_single_bucket;
|
|
}
|
|
|
|
_M_bucket_count = __ht._M_bucket_count;
|
|
_M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
|
|
_M_element_count = __ht._M_element_count;
|
|
std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
|
|
|
|
// Fix bucket containing the _M_before_begin pointer that can't be moved.
|
|
_M_update_bbegin();
|
|
__ht._M_reset();
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_move_assign(_Hashtable&& __ht, false_type)
|
|
{
|
|
if (__ht._M_node_allocator() == this->_M_node_allocator())
|
|
_M_move_assign(std::move(__ht), true_type{});
|
|
else
|
|
{
|
|
// Can't move memory, move elements then.
|
|
_M_assign_elements(std::move(__ht));
|
|
__ht.clear();
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_Hashtable(const _Hashtable& __ht)
|
|
: __hashtable_base(__ht),
|
|
__map_base(__ht),
|
|
__rehash_base(__ht),
|
|
__hashtable_alloc(
|
|
__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
|
|
__enable_default_ctor(__ht),
|
|
_M_buckets(nullptr),
|
|
_M_bucket_count(__ht._M_bucket_count),
|
|
_M_element_count(__ht._M_element_count),
|
|
_M_rehash_policy(__ht._M_rehash_policy)
|
|
{
|
|
__alloc_node_gen_t __alloc_node_gen(*this);
|
|
_M_assign(__ht, __alloc_node_gen);
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
|
|
true_type /* alloc always equal */)
|
|
noexcept(_S_nothrow_move())
|
|
: __hashtable_base(__ht),
|
|
__map_base(__ht),
|
|
__rehash_base(__ht),
|
|
__hashtable_alloc(std::move(__a)),
|
|
__enable_default_ctor(__ht),
|
|
_M_buckets(__ht._M_buckets),
|
|
_M_bucket_count(__ht._M_bucket_count),
|
|
_M_before_begin(__ht._M_before_begin._M_nxt),
|
|
_M_element_count(__ht._M_element_count),
|
|
_M_rehash_policy(__ht._M_rehash_policy)
|
|
{
|
|
// Update buckets if __ht is using its single bucket.
|
|
if (__ht._M_uses_single_bucket())
|
|
{
|
|
_M_buckets = &_M_single_bucket;
|
|
_M_single_bucket = __ht._M_single_bucket;
|
|
}
|
|
|
|
// Fix bucket containing the _M_before_begin pointer that can't be moved.
|
|
_M_update_bbegin();
|
|
|
|
__ht._M_reset();
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_Hashtable(const _Hashtable& __ht, const allocator_type& __a)
|
|
: __hashtable_base(__ht),
|
|
__map_base(__ht),
|
|
__rehash_base(__ht),
|
|
__hashtable_alloc(__node_alloc_type(__a)),
|
|
__enable_default_ctor(__ht),
|
|
_M_buckets(),
|
|
_M_bucket_count(__ht._M_bucket_count),
|
|
_M_element_count(__ht._M_element_count),
|
|
_M_rehash_policy(__ht._M_rehash_policy)
|
|
{
|
|
__alloc_node_gen_t __alloc_node_gen(*this);
|
|
_M_assign(__ht, __alloc_node_gen);
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
|
|
false_type /* alloc always equal */)
|
|
: __hashtable_base(__ht),
|
|
__map_base(__ht),
|
|
__rehash_base(__ht),
|
|
__hashtable_alloc(std::move(__a)),
|
|
__enable_default_ctor(__ht),
|
|
_M_buckets(nullptr),
|
|
_M_bucket_count(__ht._M_bucket_count),
|
|
_M_element_count(__ht._M_element_count),
|
|
_M_rehash_policy(__ht._M_rehash_policy)
|
|
{
|
|
if (__ht._M_node_allocator() == this->_M_node_allocator())
|
|
{
|
|
if (__ht._M_uses_single_bucket())
|
|
{
|
|
_M_buckets = &_M_single_bucket;
|
|
_M_single_bucket = __ht._M_single_bucket;
|
|
}
|
|
else
|
|
_M_buckets = __ht._M_buckets;
|
|
|
|
// Fix bucket containing the _M_before_begin pointer that can't be
|
|
// moved.
|
|
_M_update_bbegin(__ht._M_begin());
|
|
|
|
__ht._M_reset();
|
|
}
|
|
else
|
|
{
|
|
__alloc_node_gen_t __alloc_gen(*this);
|
|
|
|
using _Fwd_Ht = __conditional_t<
|
|
__move_if_noexcept_cond<value_type>::value,
|
|
const _Hashtable&, _Hashtable&&>;
|
|
_M_assign(std::forward<_Fwd_Ht>(__ht), __alloc_gen);
|
|
__ht.clear();
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
~_Hashtable() noexcept
|
|
{
|
|
// Getting a bucket index from a node shall not throw because it is used
|
|
// in methods (erase, swap...) that shall not throw. Need a complete
|
|
// type to check this, so do it in the destructor not at class scope.
|
|
static_assert(noexcept(declval<const __hash_code_base_access&>()
|
|
._M_bucket_index(declval<const __node_value_type&>(),
|
|
(std::size_t)0)),
|
|
"Cache the hash code or qualify your functors involved"
|
|
" in hash code and bucket index computation with noexcept");
|
|
|
|
clear();
|
|
_M_deallocate_buckets();
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
swap(_Hashtable& __x)
|
|
noexcept(__and_<__is_nothrow_swappable<_Hash>,
|
|
__is_nothrow_swappable<_Equal>>::value)
|
|
{
|
|
// The only base class with member variables is hash_code_base.
|
|
// We define _Hash_code_base::_M_swap because different
|
|
// specializations have different members.
|
|
this->_M_swap(__x);
|
|
|
|
std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
|
|
std::swap(_M_rehash_policy, __x._M_rehash_policy);
|
|
|
|
// Deal properly with potentially moved instances.
|
|
if (this->_M_uses_single_bucket())
|
|
{
|
|
if (!__x._M_uses_single_bucket())
|
|
{
|
|
_M_buckets = __x._M_buckets;
|
|
__x._M_buckets = &__x._M_single_bucket;
|
|
}
|
|
}
|
|
else if (__x._M_uses_single_bucket())
|
|
{
|
|
__x._M_buckets = _M_buckets;
|
|
_M_buckets = &_M_single_bucket;
|
|
}
|
|
else
|
|
std::swap(_M_buckets, __x._M_buckets);
|
|
|
|
std::swap(_M_bucket_count, __x._M_bucket_count);
|
|
std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
|
|
std::swap(_M_element_count, __x._M_element_count);
|
|
std::swap(_M_single_bucket, __x._M_single_bucket);
|
|
|
|
// Fix buckets containing the _M_before_begin pointers that can't be
|
|
// swapped.
|
|
_M_update_bbegin();
|
|
__x._M_update_bbegin();
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
find(const key_type& __k)
|
|
-> iterator
|
|
{
|
|
if (size() <= __small_size_threshold())
|
|
{
|
|
for (auto __it = begin(); __it != end(); ++__it)
|
|
if (this->_M_key_equals(__k, *__it._M_cur))
|
|
return __it;
|
|
return end();
|
|
}
|
|
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
std::size_t __bkt = _M_bucket_index(__code);
|
|
return iterator(_M_find_node(__bkt, __k, __code));
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
find(const key_type& __k) const
|
|
-> const_iterator
|
|
{
|
|
if (size() <= __small_size_threshold())
|
|
{
|
|
for (auto __it = begin(); __it != end(); ++__it)
|
|
if (this->_M_key_equals(__k, *__it._M_cur))
|
|
return __it;
|
|
return end();
|
|
}
|
|
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
std::size_t __bkt = _M_bucket_index(__code);
|
|
return const_iterator(_M_find_node(__bkt, __k, __code));
|
|
}
|
|
|
|
#if __cplusplus > 201703L
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename _Kt, typename, typename>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_find_tr(const _Kt& __k)
|
|
-> iterator
|
|
{
|
|
__hash_code __code = this->_M_hash_code_tr(__k);
|
|
std::size_t __bkt = _M_bucket_index(__code);
|
|
return iterator(_M_find_node_tr(__bkt, __k, __code));
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename _Kt, typename, typename>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_find_tr(const _Kt& __k) const
|
|
-> const_iterator
|
|
{
|
|
__hash_code __code = this->_M_hash_code_tr(__k);
|
|
std::size_t __bkt = _M_bucket_index(__code);
|
|
return const_iterator(_M_find_node_tr(__bkt, __k, __code));
|
|
}
|
|
#endif
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
count(const key_type& __k) const
|
|
-> size_type
|
|
{
|
|
auto __it = find(__k);
|
|
if (!__it._M_cur)
|
|
return 0;
|
|
|
|
if (__unique_keys::value)
|
|
return 1;
|
|
|
|
// All equivalent values are next to each other, if we find a
|
|
// non-equivalent value after an equivalent one it means that we won't
|
|
// find any new equivalent value.
|
|
size_type __result = 1;
|
|
for (auto __ref = __it++;
|
|
__it._M_cur && this->_M_node_equals(*__ref._M_cur, *__it._M_cur);
|
|
++__it)
|
|
++__result;
|
|
|
|
return __result;
|
|
}
|
|
|
|
#if __cplusplus > 201703L
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename _Kt, typename, typename>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_count_tr(const _Kt& __k) const
|
|
-> size_type
|
|
{
|
|
__hash_code __code = this->_M_hash_code_tr(__k);
|
|
std::size_t __bkt = _M_bucket_index(__code);
|
|
auto __n = _M_find_node_tr(__bkt, __k, __code);
|
|
if (!__n)
|
|
return 0;
|
|
|
|
// All equivalent values are next to each other, if we find a
|
|
// non-equivalent value after an equivalent one it means that we won't
|
|
// find any new equivalent value.
|
|
iterator __it(__n);
|
|
size_type __result = 1;
|
|
for (++__it;
|
|
__it._M_cur && this->_M_equals_tr(__k, __code, *__it._M_cur);
|
|
++__it)
|
|
++__result;
|
|
|
|
return __result;
|
|
}
|
|
#endif
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
equal_range(const key_type& __k)
|
|
-> pair<iterator, iterator>
|
|
{
|
|
auto __ite = find(__k);
|
|
if (!__ite._M_cur)
|
|
return { __ite, __ite };
|
|
|
|
auto __beg = __ite++;
|
|
if (__unique_keys::value)
|
|
return { __beg, __ite };
|
|
|
|
// All equivalent values are next to each other, if we find a
|
|
// non-equivalent value after an equivalent one it means that we won't
|
|
// find any new equivalent value.
|
|
while (__ite._M_cur && this->_M_node_equals(*__beg._M_cur, *__ite._M_cur))
|
|
++__ite;
|
|
|
|
return { __beg, __ite };
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
equal_range(const key_type& __k) const
|
|
-> pair<const_iterator, const_iterator>
|
|
{
|
|
auto __ite = find(__k);
|
|
if (!__ite._M_cur)
|
|
return { __ite, __ite };
|
|
|
|
auto __beg = __ite++;
|
|
if (__unique_keys::value)
|
|
return { __beg, __ite };
|
|
|
|
// All equivalent values are next to each other, if we find a
|
|
// non-equivalent value after an equivalent one it means that we won't
|
|
// find any new equivalent value.
|
|
while (__ite._M_cur && this->_M_node_equals(*__beg._M_cur, *__ite._M_cur))
|
|
++__ite;
|
|
|
|
return { __beg, __ite };
|
|
}
|
|
|
|
#if __cplusplus > 201703L
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename _Kt, typename, typename>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_equal_range_tr(const _Kt& __k)
|
|
-> pair<iterator, iterator>
|
|
{
|
|
__hash_code __code = this->_M_hash_code_tr(__k);
|
|
std::size_t __bkt = _M_bucket_index(__code);
|
|
auto __n = _M_find_node_tr(__bkt, __k, __code);
|
|
iterator __ite(__n);
|
|
if (!__n)
|
|
return { __ite, __ite };
|
|
|
|
// All equivalent values are next to each other, if we find a
|
|
// non-equivalent value after an equivalent one it means that we won't
|
|
// find any new equivalent value.
|
|
auto __beg = __ite++;
|
|
while (__ite._M_cur && this->_M_equals_tr(__k, __code, *__ite._M_cur))
|
|
++__ite;
|
|
|
|
return { __beg, __ite };
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename _Kt, typename, typename>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_equal_range_tr(const _Kt& __k) const
|
|
-> pair<const_iterator, const_iterator>
|
|
{
|
|
__hash_code __code = this->_M_hash_code_tr(__k);
|
|
std::size_t __bkt = _M_bucket_index(__code);
|
|
auto __n = _M_find_node_tr(__bkt, __k, __code);
|
|
const_iterator __ite(__n);
|
|
if (!__n)
|
|
return { __ite, __ite };
|
|
|
|
// All equivalent values are next to each other, if we find a
|
|
// non-equivalent value after an equivalent one it means that we won't
|
|
// find any new equivalent value.
|
|
auto __beg = __ite++;
|
|
while (__ite._M_cur && this->_M_equals_tr(__k, __code, *__ite._M_cur))
|
|
++__ite;
|
|
|
|
return { __beg, __ite };
|
|
}
|
|
#endif
|
|
|
|
// Find the node before the one whose key compares equal to k.
|
|
// Return nullptr if no node is found.
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_find_before_node(const key_type& __k)
|
|
-> __node_base_ptr
|
|
{
|
|
__node_base_ptr __prev_p = &_M_before_begin;
|
|
if (!__prev_p->_M_nxt)
|
|
return nullptr;
|
|
|
|
for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);
|
|
__p != nullptr;
|
|
__p = __p->_M_next())
|
|
{
|
|
if (this->_M_key_equals(__k, *__p))
|
|
return __prev_p;
|
|
|
|
__prev_p = __p;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Find the node before the one whose key compares equal to k in the bucket
|
|
// bkt. Return nullptr if no node is found.
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_find_before_node(size_type __bkt, const key_type& __k,
|
|
__hash_code __code) const
|
|
-> __node_base_ptr
|
|
{
|
|
__node_base_ptr __prev_p = _M_buckets[__bkt];
|
|
if (!__prev_p)
|
|
return nullptr;
|
|
|
|
for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);;
|
|
__p = __p->_M_next())
|
|
{
|
|
if (this->_M_equals(__k, __code, *__p))
|
|
return __prev_p;
|
|
|
|
if (!__p->_M_nxt || _M_bucket_index(*__p->_M_next()) != __bkt)
|
|
break;
|
|
__prev_p = __p;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename _Kt>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_find_before_node_tr(size_type __bkt, const _Kt& __k,
|
|
__hash_code __code) const
|
|
-> __node_base_ptr
|
|
{
|
|
__node_base_ptr __prev_p = _M_buckets[__bkt];
|
|
if (!__prev_p)
|
|
return nullptr;
|
|
|
|
for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);;
|
|
__p = __p->_M_next())
|
|
{
|
|
if (this->_M_equals_tr(__k, __code, *__p))
|
|
return __prev_p;
|
|
|
|
if (!__p->_M_nxt || _M_bucket_index(*__p->_M_next()) != __bkt)
|
|
break;
|
|
__prev_p = __p;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_insert_bucket_begin(size_type __bkt, __node_ptr __node)
|
|
{
|
|
if (_M_buckets[__bkt])
|
|
{
|
|
// Bucket is not empty, we just need to insert the new node
|
|
// after the bucket before begin.
|
|
__node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
|
|
_M_buckets[__bkt]->_M_nxt = __node;
|
|
}
|
|
else
|
|
{
|
|
// The bucket is empty, the new node is inserted at the
|
|
// beginning of the singly-linked list and the bucket will
|
|
// contain _M_before_begin pointer.
|
|
__node->_M_nxt = _M_before_begin._M_nxt;
|
|
_M_before_begin._M_nxt = __node;
|
|
|
|
if (__node->_M_nxt)
|
|
// We must update former begin bucket that is pointing to
|
|
// _M_before_begin.
|
|
_M_buckets[_M_bucket_index(*__node->_M_next())] = __node;
|
|
|
|
_M_buckets[__bkt] = &_M_before_begin;
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_remove_bucket_begin(size_type __bkt, __node_ptr __next,
|
|
size_type __next_bkt)
|
|
{
|
|
if (!__next || __next_bkt != __bkt)
|
|
{
|
|
// Bucket is now empty
|
|
// First update next bucket if any
|
|
if (__next)
|
|
_M_buckets[__next_bkt] = _M_buckets[__bkt];
|
|
|
|
// Second update before begin node if necessary
|
|
if (&_M_before_begin == _M_buckets[__bkt])
|
|
_M_before_begin._M_nxt = __next;
|
|
_M_buckets[__bkt] = nullptr;
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_get_previous_node(size_type __bkt, __node_ptr __n)
|
|
-> __node_base_ptr
|
|
{
|
|
__node_base_ptr __prev_n = _M_buckets[__bkt];
|
|
while (__prev_n->_M_nxt != __n)
|
|
__prev_n = __prev_n->_M_nxt;
|
|
return __prev_n;
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename... _Args>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_emplace(true_type /* __uks */, _Args&&... __args)
|
|
-> pair<iterator, bool>
|
|
{
|
|
// First build the node to get access to the hash code
|
|
_Scoped_node __node { this, std::forward<_Args>(__args)... };
|
|
const key_type& __k = _ExtractKey{}(__node._M_node->_M_v());
|
|
if (size() <= __small_size_threshold())
|
|
{
|
|
for (auto __it = begin(); __it != end(); ++__it)
|
|
if (this->_M_key_equals(__k, *__it._M_cur))
|
|
// There is already an equivalent node, no insertion
|
|
return { __it, false };
|
|
}
|
|
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
size_type __bkt = _M_bucket_index(__code);
|
|
if (size() > __small_size_threshold())
|
|
if (__node_ptr __p = _M_find_node(__bkt, __k, __code))
|
|
// There is already an equivalent node, no insertion
|
|
return { iterator(__p), false };
|
|
|
|
// Insert the node
|
|
auto __pos = _M_insert_unique_node(__bkt, __code, __node._M_node);
|
|
__node._M_node = nullptr;
|
|
return { __pos, true };
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename... _Args>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_emplace(const_iterator __hint, false_type /* __uks */,
|
|
_Args&&... __args)
|
|
-> iterator
|
|
{
|
|
// First build the node to get its hash code.
|
|
_Scoped_node __node { this, std::forward<_Args>(__args)... };
|
|
const key_type& __k = _ExtractKey{}(__node._M_node->_M_v());
|
|
|
|
auto __res = this->_M_compute_hash_code(__hint, __k);
|
|
auto __pos
|
|
= _M_insert_multi_node(__res.first._M_cur, __res.second,
|
|
__node._M_node);
|
|
__node._M_node = nullptr;
|
|
return __pos;
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_compute_hash_code(const_iterator __hint, const key_type& __k) const
|
|
-> pair<const_iterator, __hash_code>
|
|
{
|
|
if (size() <= __small_size_threshold())
|
|
{
|
|
if (__hint != cend())
|
|
{
|
|
for (auto __it = __hint; __it != cend(); ++__it)
|
|
if (this->_M_key_equals(__k, *__it._M_cur))
|
|
return { __it, this->_M_hash_code(*__it._M_cur) };
|
|
}
|
|
|
|
for (auto __it = cbegin(); __it != __hint; ++__it)
|
|
if (this->_M_key_equals(__k, *__it._M_cur))
|
|
return { __it, this->_M_hash_code(*__it._M_cur) };
|
|
}
|
|
|
|
return { __hint, this->_M_hash_code(__k) };
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_insert_unique_node(size_type __bkt, __hash_code __code,
|
|
__node_ptr __node, size_type __n_elt)
|
|
-> iterator
|
|
{
|
|
const __rehash_state& __saved_state = _M_rehash_policy._M_state();
|
|
std::pair<bool, std::size_t> __do_rehash
|
|
= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
|
|
__n_elt);
|
|
|
|
if (__do_rehash.first)
|
|
{
|
|
_M_rehash(__do_rehash.second, __saved_state);
|
|
__bkt = _M_bucket_index(__code);
|
|
}
|
|
|
|
this->_M_store_code(*__node, __code);
|
|
|
|
// Always insert at the beginning of the bucket.
|
|
_M_insert_bucket_begin(__bkt, __node);
|
|
++_M_element_count;
|
|
return iterator(__node);
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_insert_multi_node(__node_ptr __hint,
|
|
__hash_code __code, __node_ptr __node)
|
|
-> iterator
|
|
{
|
|
const __rehash_state& __saved_state = _M_rehash_policy._M_state();
|
|
std::pair<bool, std::size_t> __do_rehash
|
|
= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
|
|
|
|
if (__do_rehash.first)
|
|
_M_rehash(__do_rehash.second, __saved_state);
|
|
|
|
this->_M_store_code(*__node, __code);
|
|
const key_type& __k = _ExtractKey{}(__node->_M_v());
|
|
size_type __bkt = _M_bucket_index(__code);
|
|
|
|
// Find the node before an equivalent one or use hint if it exists and
|
|
// if it is equivalent.
|
|
__node_base_ptr __prev
|
|
= __builtin_expect(__hint != nullptr, false)
|
|
&& this->_M_equals(__k, __code, *__hint)
|
|
? __hint
|
|
: _M_find_before_node(__bkt, __k, __code);
|
|
|
|
if (__prev)
|
|
{
|
|
// Insert after the node before the equivalent one.
|
|
__node->_M_nxt = __prev->_M_nxt;
|
|
__prev->_M_nxt = __node;
|
|
if (__builtin_expect(__prev == __hint, false))
|
|
// hint might be the last bucket node, in this case we need to
|
|
// update next bucket.
|
|
if (__node->_M_nxt
|
|
&& !this->_M_equals(__k, __code, *__node->_M_next()))
|
|
{
|
|
size_type __next_bkt = _M_bucket_index(*__node->_M_next());
|
|
if (__next_bkt != __bkt)
|
|
_M_buckets[__next_bkt] = __node;
|
|
}
|
|
}
|
|
else
|
|
// The inserted node has no equivalent in the hashtable. We must
|
|
// insert the new node at the beginning of the bucket to preserve
|
|
// equivalent elements' relative positions.
|
|
_M_insert_bucket_begin(__bkt, __node);
|
|
++_M_element_count;
|
|
return iterator(__node);
|
|
}
|
|
|
|
// Insert v if no element with its key is already present.
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename _Kt, typename _Arg, typename _NodeGenerator>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_insert_unique(_Kt&& __k, _Arg&& __v,
|
|
const _NodeGenerator& __node_gen)
|
|
-> pair<iterator, bool>
|
|
{
|
|
if (size() <= __small_size_threshold())
|
|
for (auto __it = begin(); __it != end(); ++__it)
|
|
if (this->_M_key_equals_tr(__k, *__it._M_cur))
|
|
return { __it, false };
|
|
|
|
__hash_code __code = this->_M_hash_code_tr(__k);
|
|
size_type __bkt = _M_bucket_index(__code);
|
|
|
|
if (size() > __small_size_threshold())
|
|
if (__node_ptr __node = _M_find_node_tr(__bkt, __k, __code))
|
|
return { iterator(__node), false };
|
|
|
|
_Scoped_node __node {
|
|
__node_builder_t::_S_build(std::forward<_Kt>(__k),
|
|
std::forward<_Arg>(__v),
|
|
__node_gen),
|
|
this
|
|
};
|
|
auto __pos
|
|
= _M_insert_unique_node(__bkt, __code, __node._M_node);
|
|
__node._M_node = nullptr;
|
|
return { __pos, true };
|
|
}
|
|
|
|
// Insert v unconditionally.
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
template<typename _Arg, typename _NodeGenerator>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_insert(const_iterator __hint, _Arg&& __v,
|
|
const _NodeGenerator& __node_gen,
|
|
false_type /* __uks */)
|
|
-> iterator
|
|
{
|
|
// First allocate new node so that we don't do anything if it throws.
|
|
_Scoped_node __node{ __node_gen(std::forward<_Arg>(__v)), this };
|
|
|
|
// Second compute the hash code so that we don't rehash if it throws.
|
|
auto __res = this->_M_compute_hash_code(
|
|
__hint, _ExtractKey{}(__node._M_node->_M_v()));
|
|
|
|
auto __pos
|
|
= _M_insert_multi_node(__res.first._M_cur, __res.second,
|
|
__node._M_node);
|
|
__node._M_node = nullptr;
|
|
return __pos;
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
erase(const_iterator __it)
|
|
-> iterator
|
|
{
|
|
__node_ptr __n = __it._M_cur;
|
|
std::size_t __bkt = _M_bucket_index(*__n);
|
|
|
|
// Look for previous node to unlink it from the erased one, this
|
|
// is why we need buckets to contain the before begin to make
|
|
// this search fast.
|
|
__node_base_ptr __prev_n = _M_get_previous_node(__bkt, __n);
|
|
return _M_erase(__bkt, __prev_n, __n);
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_erase(size_type __bkt, __node_base_ptr __prev_n, __node_ptr __n)
|
|
-> iterator
|
|
{
|
|
if (__prev_n == _M_buckets[__bkt])
|
|
_M_remove_bucket_begin(__bkt, __n->_M_next(),
|
|
__n->_M_nxt ? _M_bucket_index(*__n->_M_next()) : 0);
|
|
else if (__n->_M_nxt)
|
|
{
|
|
size_type __next_bkt = _M_bucket_index(*__n->_M_next());
|
|
if (__next_bkt != __bkt)
|
|
_M_buckets[__next_bkt] = __prev_n;
|
|
}
|
|
|
|
__prev_n->_M_nxt = __n->_M_nxt;
|
|
iterator __result(__n->_M_next());
|
|
this->_M_deallocate_node(__n);
|
|
--_M_element_count;
|
|
|
|
return __result;
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_erase(true_type /* __uks */, const key_type& __k)
|
|
-> size_type
|
|
{
|
|
__node_base_ptr __prev_n;
|
|
__node_ptr __n;
|
|
std::size_t __bkt;
|
|
if (size() <= __small_size_threshold())
|
|
{
|
|
__prev_n = _M_find_before_node(__k);
|
|
if (!__prev_n)
|
|
return 0;
|
|
|
|
// We found a matching node, erase it.
|
|
__n = static_cast<__node_ptr>(__prev_n->_M_nxt);
|
|
__bkt = _M_bucket_index(*__n);
|
|
}
|
|
else
|
|
{
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
__bkt = _M_bucket_index(__code);
|
|
|
|
// Look for the node before the first matching node.
|
|
__prev_n = _M_find_before_node(__bkt, __k, __code);
|
|
if (!__prev_n)
|
|
return 0;
|
|
|
|
// We found a matching node, erase it.
|
|
__n = static_cast<__node_ptr>(__prev_n->_M_nxt);
|
|
}
|
|
|
|
_M_erase(__bkt, __prev_n, __n);
|
|
return 1;
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_erase(false_type /* __uks */, const key_type& __k)
|
|
-> size_type
|
|
{
|
|
std::size_t __bkt;
|
|
__node_base_ptr __prev_n;
|
|
__node_ptr __n;
|
|
if (size() <= __small_size_threshold())
|
|
{
|
|
__prev_n = _M_find_before_node(__k);
|
|
if (!__prev_n)
|
|
return 0;
|
|
|
|
// We found a matching node, erase it.
|
|
__n = static_cast<__node_ptr>(__prev_n->_M_nxt);
|
|
__bkt = _M_bucket_index(*__n);
|
|
}
|
|
else
|
|
{
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
__bkt = _M_bucket_index(__code);
|
|
|
|
// Look for the node before the first matching node.
|
|
__prev_n = _M_find_before_node(__bkt, __k, __code);
|
|
if (!__prev_n)
|
|
return 0;
|
|
|
|
__n = static_cast<__node_ptr>(__prev_n->_M_nxt);
|
|
}
|
|
|
|
// _GLIBCXX_RESOLVE_LIB_DEFECTS
|
|
// 526. Is it undefined if a function in the standard changes
|
|
// in parameters?
|
|
// We use one loop to find all matching nodes and another to deallocate
|
|
// them so that the key stays valid during the first loop. It might be
|
|
// invalidated indirectly when destroying nodes.
|
|
__node_ptr __n_last = __n->_M_next();
|
|
while (__n_last && this->_M_node_equals(*__n, *__n_last))
|
|
__n_last = __n_last->_M_next();
|
|
|
|
std::size_t __n_last_bkt = __n_last ? _M_bucket_index(*__n_last) : __bkt;
|
|
|
|
// Deallocate nodes.
|
|
size_type __result = 0;
|
|
do
|
|
{
|
|
__node_ptr __p = __n->_M_next();
|
|
this->_M_deallocate_node(__n);
|
|
__n = __p;
|
|
++__result;
|
|
}
|
|
while (__n != __n_last);
|
|
|
|
_M_element_count -= __result;
|
|
if (__prev_n == _M_buckets[__bkt])
|
|
_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
|
|
else if (__n_last_bkt != __bkt)
|
|
_M_buckets[__n_last_bkt] = __prev_n;
|
|
__prev_n->_M_nxt = __n_last;
|
|
return __result;
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
auto
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
erase(const_iterator __first, const_iterator __last)
|
|
-> iterator
|
|
{
|
|
__node_ptr __n = __first._M_cur;
|
|
__node_ptr __last_n = __last._M_cur;
|
|
if (__n == __last_n)
|
|
return iterator(__n);
|
|
|
|
std::size_t __bkt = _M_bucket_index(*__n);
|
|
|
|
__node_base_ptr __prev_n = _M_get_previous_node(__bkt, __n);
|
|
bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
|
|
std::size_t __n_bkt = __bkt;
|
|
for (;;)
|
|
{
|
|
do
|
|
{
|
|
__node_ptr __tmp = __n;
|
|
__n = __n->_M_next();
|
|
this->_M_deallocate_node(__tmp);
|
|
--_M_element_count;
|
|
if (!__n)
|
|
break;
|
|
__n_bkt = _M_bucket_index(*__n);
|
|
}
|
|
while (__n != __last_n && __n_bkt == __bkt);
|
|
if (__is_bucket_begin)
|
|
_M_remove_bucket_begin(__bkt, __n, __n_bkt);
|
|
if (__n == __last_n)
|
|
break;
|
|
__is_bucket_begin = true;
|
|
__bkt = __n_bkt;
|
|
}
|
|
|
|
if (__n && (__n_bkt != __bkt || __is_bucket_begin))
|
|
_M_buckets[__n_bkt] = __prev_n;
|
|
__prev_n->_M_nxt = __n;
|
|
return iterator(__n);
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
clear() noexcept
|
|
{
|
|
this->_M_deallocate_nodes(_M_begin());
|
|
__builtin_memset(_M_buckets, 0,
|
|
_M_bucket_count * sizeof(__node_base_ptr));
|
|
_M_element_count = 0;
|
|
_M_before_begin._M_nxt = nullptr;
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
rehash(size_type __bkt_count)
|
|
{
|
|
const __rehash_state& __saved_state = _M_rehash_policy._M_state();
|
|
__bkt_count
|
|
= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
|
|
__bkt_count);
|
|
__bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count);
|
|
|
|
if (__bkt_count != _M_bucket_count)
|
|
_M_rehash(__bkt_count, __saved_state);
|
|
else
|
|
// No rehash, restore previous state to keep it consistent with
|
|
// container state.
|
|
_M_rehash_policy._M_reset(__saved_state);
|
|
}
|
|
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_rehash(size_type __bkt_count, const __rehash_state& __state)
|
|
{
|
|
__try
|
|
{
|
|
_M_rehash_aux(__bkt_count, __unique_keys{});
|
|
}
|
|
__catch(...)
|
|
{
|
|
// A failure here means that buckets allocation failed. We only
|
|
// have to restore hash policy previous state.
|
|
_M_rehash_policy._M_reset(__state);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
// Rehash when there is no equivalent elements.
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_rehash_aux(size_type __bkt_count, true_type /* __uks */)
|
|
{
|
|
__buckets_ptr __new_buckets = _M_allocate_buckets(__bkt_count);
|
|
__node_ptr __p = _M_begin();
|
|
_M_before_begin._M_nxt = nullptr;
|
|
std::size_t __bbegin_bkt = 0;
|
|
while (__p)
|
|
{
|
|
__node_ptr __next = __p->_M_next();
|
|
std::size_t __bkt
|
|
= __hash_code_base::_M_bucket_index(*__p, __bkt_count);
|
|
if (!__new_buckets[__bkt])
|
|
{
|
|
__p->_M_nxt = _M_before_begin._M_nxt;
|
|
_M_before_begin._M_nxt = __p;
|
|
__new_buckets[__bkt] = &_M_before_begin;
|
|
if (__p->_M_nxt)
|
|
__new_buckets[__bbegin_bkt] = __p;
|
|
__bbegin_bkt = __bkt;
|
|
}
|
|
else
|
|
{
|
|
__p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
|
|
__new_buckets[__bkt]->_M_nxt = __p;
|
|
}
|
|
|
|
__p = __next;
|
|
}
|
|
|
|
_M_deallocate_buckets();
|
|
_M_bucket_count = __bkt_count;
|
|
_M_buckets = __new_buckets;
|
|
}
|
|
|
|
// Rehash when there can be equivalent elements, preserve their relative
|
|
// order.
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _Hash, typename _RangeHash, typename _Unused,
|
|
typename _RehashPolicy, typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
|
|
_M_rehash_aux(size_type __bkt_count, false_type /* __uks */)
|
|
{
|
|
__buckets_ptr __new_buckets = _M_allocate_buckets(__bkt_count);
|
|
__node_ptr __p = _M_begin();
|
|
_M_before_begin._M_nxt = nullptr;
|
|
std::size_t __bbegin_bkt = 0;
|
|
std::size_t __prev_bkt = 0;
|
|
__node_ptr __prev_p = nullptr;
|
|
bool __check_bucket = false;
|
|
|
|
while (__p)
|
|
{
|
|
__node_ptr __next = __p->_M_next();
|
|
std::size_t __bkt
|
|
= __hash_code_base::_M_bucket_index(*__p, __bkt_count);
|
|
|
|
if (__prev_p && __prev_bkt == __bkt)
|
|
{
|
|
// Previous insert was already in this bucket, we insert after
|
|
// the previously inserted one to preserve equivalent elements
|
|
// relative order.
|
|
__p->_M_nxt = __prev_p->_M_nxt;
|
|
__prev_p->_M_nxt = __p;
|
|
|
|
// Inserting after a node in a bucket require to check that we
|
|
// haven't change the bucket last node, in this case next
|
|
// bucket containing its before begin node must be updated. We
|
|
// schedule a check as soon as we move out of the sequence of
|
|
// equivalent nodes to limit the number of checks.
|
|
__check_bucket = true;
|
|
}
|
|
else
|
|
{
|
|
if (__check_bucket)
|
|
{
|
|
// Check if we shall update the next bucket because of
|
|
// insertions into __prev_bkt bucket.
|
|
if (__prev_p->_M_nxt)
|
|
{
|
|
std::size_t __next_bkt
|
|
= __hash_code_base::_M_bucket_index(
|
|
*__prev_p->_M_next(), __bkt_count);
|
|
if (__next_bkt != __prev_bkt)
|
|
__new_buckets[__next_bkt] = __prev_p;
|
|
}
|
|
__check_bucket = false;
|
|
}
|
|
|
|
if (!__new_buckets[__bkt])
|
|
{
|
|
__p->_M_nxt = _M_before_begin._M_nxt;
|
|
_M_before_begin._M_nxt = __p;
|
|
__new_buckets[__bkt] = &_M_before_begin;
|
|
if (__p->_M_nxt)
|
|
__new_buckets[__bbegin_bkt] = __p;
|
|
__bbegin_bkt = __bkt;
|
|
}
|
|
else
|
|
{
|
|
__p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
|
|
__new_buckets[__bkt]->_M_nxt = __p;
|
|
}
|
|
}
|
|
__prev_p = __p;
|
|
__prev_bkt = __bkt;
|
|
__p = __next;
|
|
}
|
|
|
|
if (__check_bucket && __prev_p->_M_nxt)
|
|
{
|
|
std::size_t __next_bkt
|
|
= __hash_code_base::_M_bucket_index(*__prev_p->_M_next(),
|
|
__bkt_count);
|
|
if (__next_bkt != __prev_bkt)
|
|
__new_buckets[__next_bkt] = __prev_p;
|
|
}
|
|
|
|
_M_deallocate_buckets();
|
|
_M_bucket_count = __bkt_count;
|
|
_M_buckets = __new_buckets;
|
|
}
|
|
|
|
#if __cplusplus > 201402L
|
|
template<typename, typename, typename> class _Hash_merge_helper { };
|
|
#endif // C++17
|
|
|
|
#if __cpp_deduction_guides >= 201606
|
|
// Used to constrain deduction guides
|
|
template<typename _Hash>
|
|
using _RequireNotAllocatorOrIntegral
|
|
= __enable_if_t<!__or_<is_integral<_Hash>, __is_allocator<_Hash>>::value>;
|
|
#endif
|
|
|
|
/// @endcond
|
|
_GLIBCXX_END_NAMESPACE_VERSION
|
|
} // namespace std
|
|
|
|
#endif // _HASHTABLE_H
|