6dfd8a7790
2000-06-20 Bryce McKinlay <bryce@albatross.co.nz> * java/lang/ThreadGroup.java: Merged with classpath. * prims.cc (_Jv_RunMain): Don't use ain_group'. * gnu/gcj/runtime/FirstThread.java: Remove ThreadGroup constructor argument. * java/lang/Thread.java (Thread): Bootstrap initial thread from ThreadGroup.root if Thread.currentThread is null. Honour the ThreadGroup's max priority setting. From-SVN: r34615
1037 lines
24 KiB
C++
1037 lines
24 KiB
C++
// prims.cc - Code for core of runtime environment.
|
||
|
||
/* Copyright (C) 1998, 1999, 2000 Free Software Foundation
|
||
|
||
This file is part of libgcj.
|
||
|
||
This software is copyrighted work licensed under the terms of the
|
||
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
|
||
details. */
|
||
|
||
#include <config.h>
|
||
|
||
#ifdef USE_WIN32_SIGNALLING
|
||
#include <windows.h>
|
||
#endif /* USE_WIN32_SIGNALLING */
|
||
|
||
#ifdef USE_WINSOCK
|
||
#undef __INSIDE_CYGWIN__
|
||
#include <winsock.h>
|
||
#endif /* USE_WINSOCK */
|
||
|
||
#include <stdlib.h>
|
||
#include <stdarg.h>
|
||
#include <stdio.h>
|
||
#include <string.h>
|
||
#include <signal.h>
|
||
|
||
#ifdef HAVE_UNISTD_H
|
||
#include <unistd.h>
|
||
#endif
|
||
|
||
#include <gcj/cni.h>
|
||
#include <jvm.h>
|
||
#include <java-signal.h>
|
||
#include <java-threads.h>
|
||
|
||
#ifdef ENABLE_JVMPI
|
||
#include <jvmpi.h>
|
||
#endif
|
||
|
||
#ifndef DISABLE_GETENV_PROPERTIES
|
||
#include <ctype.h>
|
||
#include <java-props.h>
|
||
#define PROCESS_GCJ_PROPERTIES process_gcj_properties()
|
||
#else
|
||
#define PROCESS_GCJ_PROPERTIES
|
||
#endif // DISABLE_GETENV_PROPERTIES
|
||
|
||
#include <java/lang/Class.h>
|
||
#include <java/lang/Runtime.h>
|
||
#include <java/lang/String.h>
|
||
#include <java/lang/Thread.h>
|
||
#include <java/lang/ThreadGroup.h>
|
||
#include <gnu/gcj/runtime/FirstThread.h>
|
||
#include <java/lang/ArrayIndexOutOfBoundsException.h>
|
||
#include <java/lang/ArithmeticException.h>
|
||
#include <java/lang/ClassFormatError.h>
|
||
#include <java/lang/NegativeArraySizeException.h>
|
||
#include <java/lang/NullPointerException.h>
|
||
#include <java/lang/OutOfMemoryError.h>
|
||
#include <java/lang/System.h>
|
||
#include <java/lang/reflect/Modifier.h>
|
||
#include <java/io/PrintStream.h>
|
||
|
||
#ifdef USE_LTDL
|
||
#include <ltdl.h>
|
||
#endif
|
||
|
||
#define ObjectClass _CL_Q34java4lang6Object
|
||
extern java::lang::Class ObjectClass;
|
||
|
||
// We allocate a single OutOfMemoryError exception which we keep
|
||
// around for use if we run out of memory.
|
||
static java::lang::OutOfMemoryError *no_memory;
|
||
|
||
// Largest representable size_t.
|
||
#define SIZE_T_MAX ((size_t) (~ (size_t) 0))
|
||
|
||
// Properties set at compile time.
|
||
const char **_Jv_Compiler_Properties;
|
||
|
||
#ifndef DISABLE_GETENV_PROPERTIES
|
||
// Property key/value pairs.
|
||
property_pair *_Jv_Environment_Properties;
|
||
#endif
|
||
|
||
// The name of this executable.
|
||
static char * _Jv_execName;
|
||
|
||
#ifdef ENABLE_JVMPI
|
||
// Pointer to JVMPI notification functions.
|
||
void (*_Jv_JVMPI_Notify_OBJECT_ALLOC) (JVMPI_Event *event);
|
||
void (*_Jv_JVMPI_Notify_THREAD_START) (JVMPI_Event *event);
|
||
void (*_Jv_JVMPI_Notify_THREAD_END) (JVMPI_Event *event);
|
||
#endif
|
||
|
||
|
||
extern "C" void _Jv_ThrowSignal (void *) __attribute ((noreturn));
|
||
|
||
// Just like _Jv_Throw, but fill in the stack trace first. Although
|
||
// this is declared extern in order that its name not be mangled, it
|
||
// is not intended to be used outside this file.
|
||
void
|
||
_Jv_ThrowSignal (void *e)
|
||
{
|
||
java::lang::Throwable *throwable = (java::lang::Throwable *)e;
|
||
throwable->fillInStackTrace ();
|
||
_Jv_Throw (throwable);
|
||
}
|
||
|
||
#ifdef HANDLE_SEGV
|
||
static java::lang::NullPointerException *nullp;
|
||
|
||
SIGNAL_HANDLER (catch_segv)
|
||
{
|
||
MAKE_THROW_FRAME (nullp);
|
||
_Jv_ThrowSignal (nullp);
|
||
}
|
||
#endif
|
||
|
||
static java::lang::ArithmeticException *arithexception;
|
||
|
||
#ifdef HANDLE_FPE
|
||
SIGNAL_HANDLER (catch_fpe)
|
||
{
|
||
#ifdef HANDLE_DIVIDE_OVERFLOW
|
||
HANDLE_DIVIDE_OVERFLOW;
|
||
#else
|
||
MAKE_THROW_FRAME (arithexception);
|
||
#endif
|
||
_Jv_ThrowSignal (arithexception);
|
||
}
|
||
#endif
|
||
|
||
|
||
|
||
jboolean
|
||
_Jv_equalUtf8Consts (Utf8Const* a, Utf8Const *b)
|
||
{
|
||
int len;
|
||
_Jv_ushort *aptr, *bptr;
|
||
if (a == b)
|
||
return true;
|
||
if (a->hash != b->hash)
|
||
return false;
|
||
len = a->length;
|
||
if (b->length != len)
|
||
return false;
|
||
aptr = (_Jv_ushort *)a->data;
|
||
bptr = (_Jv_ushort *)b->data;
|
||
len = (len + 1) >> 1;
|
||
while (--len >= 0)
|
||
if (*aptr++ != *bptr++)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* True iff A is equal to STR.
|
||
HASH is STR->hashCode().
|
||
*/
|
||
|
||
jboolean
|
||
_Jv_equal (Utf8Const* a, jstring str, jint hash)
|
||
{
|
||
if (a->hash != (_Jv_ushort) hash)
|
||
return false;
|
||
jint len = str->length();
|
||
jint i = 0;
|
||
jchar *sptr = _Jv_GetStringChars (str);
|
||
unsigned char* ptr = (unsigned char*) a->data;
|
||
unsigned char* limit = ptr + a->length;
|
||
for (;; i++, sptr++)
|
||
{
|
||
int ch = UTF8_GET (ptr, limit);
|
||
if (i == len)
|
||
return ch < 0;
|
||
if (ch != *sptr)
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Like _Jv_equal, but stop after N characters. */
|
||
jboolean
|
||
_Jv_equaln (Utf8Const *a, jstring str, jint n)
|
||
{
|
||
jint len = str->length();
|
||
jint i = 0;
|
||
jchar *sptr = _Jv_GetStringChars (str);
|
||
unsigned char* ptr = (unsigned char*) a->data;
|
||
unsigned char* limit = ptr + a->length;
|
||
for (; n-- > 0; i++, sptr++)
|
||
{
|
||
int ch = UTF8_GET (ptr, limit);
|
||
if (i == len)
|
||
return ch < 0;
|
||
if (ch != *sptr)
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Count the number of Unicode chars encoded in a given Ut8 string. */
|
||
int
|
||
_Jv_strLengthUtf8(char* str, int len)
|
||
{
|
||
unsigned char* ptr;
|
||
unsigned char* limit;
|
||
int str_length;
|
||
|
||
ptr = (unsigned char*) str;
|
||
limit = ptr + len;
|
||
str_length = 0;
|
||
for (; ptr < limit; str_length++) {
|
||
if (UTF8_GET (ptr, limit) < 0) {
|
||
return (-1);
|
||
}
|
||
}
|
||
return (str_length);
|
||
}
|
||
|
||
/* Calculate a hash value for a string encoded in Utf8 format.
|
||
* This returns the same hash value as specified or java.lang.String.hashCode.
|
||
*/
|
||
static jint
|
||
hashUtf8String (char* str, int len)
|
||
{
|
||
unsigned char* ptr = (unsigned char*) str;
|
||
unsigned char* limit = ptr + len;
|
||
jint hash = 0;
|
||
|
||
for (; ptr < limit;)
|
||
{
|
||
int ch = UTF8_GET (ptr, limit);
|
||
/* Updated specification from
|
||
http://www.javasoft.com/docs/books/jls/clarify.html. */
|
||
hash = (31 * hash) + ch;
|
||
}
|
||
return hash;
|
||
}
|
||
|
||
_Jv_Utf8Const *
|
||
_Jv_makeUtf8Const (char* s, int len)
|
||
{
|
||
if (len < 0)
|
||
len = strlen (s);
|
||
Utf8Const* m = (Utf8Const*) _Jv_AllocBytes (sizeof(Utf8Const) + len + 1);
|
||
if (! m)
|
||
JvThrow (no_memory);
|
||
memcpy (m->data, s, len);
|
||
m->data[len] = 0;
|
||
m->length = len;
|
||
m->hash = hashUtf8String (s, len) & 0xFFFF;
|
||
return (m);
|
||
}
|
||
|
||
_Jv_Utf8Const *
|
||
_Jv_makeUtf8Const (jstring string)
|
||
{
|
||
jint hash = string->hashCode ();
|
||
jint len = _Jv_GetStringUTFLength (string);
|
||
|
||
Utf8Const* m = (Utf8Const*)
|
||
_Jv_AllocBytesChecked (sizeof(Utf8Const) + len + 1);
|
||
|
||
m->hash = hash;
|
||
m->length = len;
|
||
|
||
_Jv_GetStringUTFRegion (string, 0, string->length (), m->data);
|
||
m->data[len] = 0;
|
||
|
||
return m;
|
||
}
|
||
|
||
|
||
|
||
#ifdef DEBUG
|
||
void
|
||
_Jv_Abort (const char *function, const char *file, int line,
|
||
const char *message)
|
||
#else
|
||
void
|
||
_Jv_Abort (const char *, const char *, int, const char *message)
|
||
#endif
|
||
{
|
||
#ifdef DEBUG
|
||
fprintf (stderr,
|
||
"libgcj failure: %s\n in function %s, file %s, line %d\n",
|
||
message, function, file, line);
|
||
#else
|
||
java::io::PrintStream *err = java::lang::System::err;
|
||
err->print(JvNewStringLatin1 ("libgcj failure: "));
|
||
err->println(JvNewStringLatin1 (message));
|
||
err->flush();
|
||
#endif
|
||
abort ();
|
||
}
|
||
|
||
static void
|
||
fail_on_finalization (jobject)
|
||
{
|
||
JvFail ("object was finalized");
|
||
}
|
||
|
||
void
|
||
_Jv_GCWatch (jobject obj)
|
||
{
|
||
_Jv_RegisterFinalizer (obj, fail_on_finalization);
|
||
}
|
||
|
||
void
|
||
_Jv_ThrowBadArrayIndex(jint bad_index)
|
||
{
|
||
JvThrow (new java::lang::ArrayIndexOutOfBoundsException
|
||
(java::lang::String::valueOf(bad_index)));
|
||
}
|
||
|
||
void
|
||
_Jv_ThrowNullPointerException ()
|
||
{
|
||
throw new java::lang::NullPointerException ();
|
||
}
|
||
|
||
// Allocate some unscanned memory and throw an exception if no memory.
|
||
void *
|
||
_Jv_AllocBytesChecked (jsize size)
|
||
{
|
||
void *r = _Jv_AllocBytes (size);
|
||
if (! r)
|
||
_Jv_Throw (no_memory);
|
||
return r;
|
||
}
|
||
|
||
// Allocate a new object of class C. SIZE is the size of the object
|
||
// to allocate. You might think this is redundant, but it isn't; some
|
||
// classes, such as String, aren't of fixed size.
|
||
jobject
|
||
_Jv_AllocObject (jclass c, jint size)
|
||
{
|
||
_Jv_InitClass (c);
|
||
|
||
jobject obj = (jobject) _Jv_AllocObj (size);
|
||
if (__builtin_expect (! obj, false))
|
||
JvThrow (no_memory);
|
||
*((_Jv_VTable **) obj) = c->vtable;
|
||
|
||
// If this class has inherited finalize from Object, then don't
|
||
// bother registering a finalizer. We know that finalize() is the
|
||
// very first method after the dummy entry. If this turns out to be
|
||
// unreliable, a more robust implementation can be written. Such an
|
||
// implementation would look for Object.finalize in Object's method
|
||
// table at startup, and then use that information to find the
|
||
// appropriate index in the method vector.
|
||
if (c->vtable->method[1] != ObjectClass.vtable->method[1])
|
||
_Jv_RegisterFinalizer (obj, _Jv_FinalizeObject);
|
||
|
||
#ifdef ENABLE_JVMPI
|
||
// Service JVMPI request.
|
||
|
||
if (__builtin_expect (_Jv_JVMPI_Notify_OBJECT_ALLOC != 0, false))
|
||
{
|
||
JVMPI_Event event;
|
||
|
||
event.event_type = JVMPI_EVENT_OBJECT_ALLOC;
|
||
event.env_id = NULL;
|
||
event.u.obj_alloc.arena_id = 0;
|
||
event.u.obj_alloc.class_id = (jobjectID) c;
|
||
event.u.obj_alloc.is_array = 0;
|
||
event.u.obj_alloc.size = size;
|
||
event.u.obj_alloc.obj_id = (jobjectID) obj;
|
||
|
||
_Jv_DisableGC ();
|
||
(*_Jv_JVMPI_Notify_OBJECT_ALLOC) (&event);
|
||
_Jv_EnableGC ();
|
||
}
|
||
#endif
|
||
|
||
return obj;
|
||
}
|
||
|
||
// Allocate a new array of Java objects. Each object is of type
|
||
// `elementClass'. `init' is used to initialize each slot in the
|
||
// array.
|
||
jobjectArray
|
||
_Jv_NewObjectArray (jsize count, jclass elementClass, jobject init)
|
||
{
|
||
if (__builtin_expect (count < 0, false))
|
||
JvThrow (new java::lang::NegativeArraySizeException);
|
||
|
||
JvAssert (! elementClass->isPrimitive ());
|
||
|
||
jobjectArray obj = NULL;
|
||
size_t size = (size_t) _Jv_GetArrayElementFromElementType (obj,
|
||
elementClass);
|
||
|
||
// Check for overflow.
|
||
if (__builtin_expect ((size_t) count >
|
||
(SIZE_T_MAX - size) / sizeof (jobject), false))
|
||
JvThrow (no_memory);
|
||
|
||
size += count * sizeof (jobject);
|
||
|
||
// FIXME: second argument should be "current loader" //
|
||
jclass clas = _Jv_FindArrayClass (elementClass, 0);
|
||
|
||
obj = (jobjectArray) _Jv_AllocArray (size);
|
||
if (__builtin_expect (! obj, false))
|
||
JvThrow (no_memory);
|
||
obj->length = count;
|
||
jobject* ptr = elements(obj);
|
||
// We know the allocator returns zeroed memory. So don't bother
|
||
// zeroing it again.
|
||
if (init)
|
||
{
|
||
while (--count >= 0)
|
||
*ptr++ = init;
|
||
}
|
||
// Set the vtbl last to avoid problems if the GC happens during the
|
||
// window in this function between the allocation and this
|
||
// assignment.
|
||
*((_Jv_VTable **) obj) = clas->vtable;
|
||
return obj;
|
||
}
|
||
|
||
// Allocate a new array of primitives. ELTYPE is the type of the
|
||
// element, COUNT is the size of the array.
|
||
jobject
|
||
_Jv_NewPrimArray (jclass eltype, jint count)
|
||
{
|
||
int elsize = eltype->size();
|
||
if (__builtin_expect (count < 0, false))
|
||
JvThrow (new java::lang::NegativeArraySizeException ());
|
||
|
||
JvAssert (eltype->isPrimitive ());
|
||
jobject dummy = NULL;
|
||
size_t size = (size_t) _Jv_GetArrayElementFromElementType (dummy, eltype);
|
||
|
||
// Check for overflow.
|
||
if (__builtin_expect ((size_t) count >
|
||
(SIZE_T_MAX - size) / elsize, false))
|
||
JvThrow (no_memory);
|
||
|
||
__JArray *arr = (__JArray*) _Jv_AllocObj (size + elsize * count);
|
||
if (__builtin_expect (! arr, false))
|
||
JvThrow (no_memory);
|
||
arr->length = count;
|
||
// Note that we assume we are given zeroed memory by the allocator.
|
||
|
||
jclass klass = _Jv_FindArrayClass (eltype, 0);
|
||
// Set the vtbl last to avoid problems if the GC happens during the
|
||
// window in this function between the allocation and this
|
||
// assignment.
|
||
*((_Jv_VTable **) arr) = klass->vtable;
|
||
return arr;
|
||
}
|
||
|
||
jobject
|
||
_Jv_NewArray (jint type, jint size)
|
||
{
|
||
switch (type)
|
||
{
|
||
case 4: return JvNewBooleanArray (size);
|
||
case 5: return JvNewCharArray (size);
|
||
case 6: return JvNewFloatArray (size);
|
||
case 7: return JvNewDoubleArray (size);
|
||
case 8: return JvNewByteArray (size);
|
||
case 9: return JvNewShortArray (size);
|
||
case 10: return JvNewIntArray (size);
|
||
case 11: return JvNewLongArray (size);
|
||
}
|
||
JvFail ("newarray - bad type code");
|
||
return NULL; // Placate compiler.
|
||
}
|
||
|
||
jobject
|
||
_Jv_NewMultiArray (jclass type, jint dimensions, jint *sizes)
|
||
{
|
||
JvAssert (type->isArray());
|
||
jclass element_type = type->getComponentType();
|
||
jobject result;
|
||
if (element_type->isPrimitive())
|
||
result = _Jv_NewPrimArray (element_type, sizes[0]);
|
||
else
|
||
result = _Jv_NewObjectArray (sizes[0], element_type, NULL);
|
||
|
||
if (dimensions > 1)
|
||
{
|
||
JvAssert (! element_type->isPrimitive());
|
||
JvAssert (element_type->isArray());
|
||
jobject *contents = elements ((jobjectArray) result);
|
||
for (int i = 0; i < sizes[0]; ++i)
|
||
contents[i] = _Jv_NewMultiArray (element_type, dimensions - 1,
|
||
sizes + 1);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
jobject
|
||
_Jv_NewMultiArray (jclass array_type, jint dimensions, ...)
|
||
{
|
||
va_list args;
|
||
jint sizes[dimensions];
|
||
va_start (args, dimensions);
|
||
for (int i = 0; i < dimensions; ++i)
|
||
{
|
||
jint size = va_arg (args, jint);
|
||
sizes[i] = size;
|
||
}
|
||
va_end (args);
|
||
|
||
return _Jv_NewMultiArray (array_type, dimensions, sizes);
|
||
}
|
||
|
||
|
||
|
||
class _Jv_PrimClass : public java::lang::Class
|
||
{
|
||
public:
|
||
// FIXME: calling convention is weird. If we use the natural types
|
||
// then the compiler will complain because they aren't Java types.
|
||
_Jv_PrimClass (jobject cname, jbyte sig, jint len, jobject array_vtable)
|
||
{
|
||
using namespace java::lang::reflect;
|
||
|
||
// We must initialize every field of the class. We do this in
|
||
// the same order they are declared in Class.h.
|
||
next = NULL;
|
||
name = _Jv_makeUtf8Const ((char *) cname, -1);
|
||
accflags = Modifier::PUBLIC | Modifier::FINAL;
|
||
superclass = NULL;
|
||
constants.size = 0;
|
||
constants.tags = NULL;
|
||
constants.data = NULL;
|
||
methods = NULL;
|
||
method_count = sig;
|
||
vtable_method_count = 0;
|
||
fields = NULL;
|
||
size_in_bytes = len;
|
||
field_count = 0;
|
||
static_field_count = 0;
|
||
vtable = JV_PRIMITIVE_VTABLE;
|
||
interfaces = NULL;
|
||
loader = NULL;
|
||
interface_count = 0;
|
||
state = JV_STATE_DONE;
|
||
thread = NULL;
|
||
|
||
// Note that we have to set `methods' to NULL.
|
||
if (sig != 'V')
|
||
_Jv_FindArrayClass (this, NULL, (_Jv_VTable *) array_vtable);
|
||
}
|
||
};
|
||
|
||
// We use this to define both primitive classes and the vtables for
|
||
// arrays of primitive classes. The latter are given names so that we
|
||
// can refer to them from the compiler, allowing us to construct
|
||
// arrays of primitives statically.
|
||
#define DECLARE_PRIM_TYPE(NAME, SIG, LEN) \
|
||
_Jv_ArrayVTable _Jv_##NAME##VTable; \
|
||
_Jv_PrimClass _Jv_##NAME##Class((jobject) #NAME, (jbyte) SIG, (jint) LEN, \
|
||
(jobject) &_Jv_##NAME##VTable)
|
||
|
||
DECLARE_PRIM_TYPE(byte, 'B', 1);
|
||
DECLARE_PRIM_TYPE(short, 'S', 2);
|
||
DECLARE_PRIM_TYPE(int, 'I', 4);
|
||
DECLARE_PRIM_TYPE(long, 'J', 8);
|
||
DECLARE_PRIM_TYPE(boolean, 'Z', 1);
|
||
DECLARE_PRIM_TYPE(char, 'C', 2);
|
||
DECLARE_PRIM_TYPE(float, 'F', 4);
|
||
DECLARE_PRIM_TYPE(double, 'D', 8);
|
||
DECLARE_PRIM_TYPE(void, 'V', 0);
|
||
|
||
jclass
|
||
_Jv_FindClassFromSignature (char *sig, java::lang::ClassLoader *loader)
|
||
{
|
||
switch (*sig)
|
||
{
|
||
case 'B':
|
||
return JvPrimClass (byte);
|
||
case 'S':
|
||
return JvPrimClass (short);
|
||
case 'I':
|
||
return JvPrimClass (int);
|
||
case 'J':
|
||
return JvPrimClass (long);
|
||
case 'Z':
|
||
return JvPrimClass (boolean);
|
||
case 'C':
|
||
return JvPrimClass (char);
|
||
case 'F':
|
||
return JvPrimClass (float);
|
||
case 'D':
|
||
return JvPrimClass (double);
|
||
case 'V':
|
||
return JvPrimClass (void);
|
||
case 'L':
|
||
{
|
||
int i;
|
||
for (i = 1; sig[i] && sig[i] != ';'; ++i)
|
||
;
|
||
_Jv_Utf8Const *name = _Jv_makeUtf8Const (&sig[1], i - 1);
|
||
return _Jv_FindClass (name, loader);
|
||
|
||
}
|
||
case '[':
|
||
return _Jv_FindArrayClass (_Jv_FindClassFromSignature (&sig[1], loader),
|
||
loader);
|
||
}
|
||
JvFail ("couldn't understand class signature");
|
||
return NULL; // Placate compiler.
|
||
}
|
||
|
||
|
||
|
||
JArray<jstring> *
|
||
JvConvertArgv (int argc, const char **argv)
|
||
{
|
||
if (argc < 0)
|
||
argc = 0;
|
||
jobjectArray ar = JvNewObjectArray(argc, &StringClass, NULL);
|
||
jobject* ptr = elements(ar);
|
||
for (int i = 0; i < argc; i++)
|
||
{
|
||
const char *arg = argv[i];
|
||
// FIXME - should probably use JvNewStringUTF.
|
||
*ptr++ = JvNewStringLatin1(arg, strlen(arg));
|
||
}
|
||
return (JArray<jstring>*) ar;
|
||
}
|
||
|
||
// FIXME: These variables are static so that they will be
|
||
// automatically scanned by the Boehm collector. This is needed
|
||
// because with qthreads the collector won't scan the initial stack --
|
||
// it will only scan the qthreads stacks.
|
||
|
||
// Command line arguments.
|
||
static jobject arg_vec;
|
||
|
||
// The primary thread.
|
||
static java::lang::Thread *main_thread;
|
||
|
||
char *
|
||
_Jv_ThisExecutable (void)
|
||
{
|
||
return _Jv_execName;
|
||
}
|
||
|
||
void
|
||
_Jv_ThisExecutable (const char *name)
|
||
{
|
||
if (name)
|
||
{
|
||
_Jv_execName = new char[strlen (name) + 1];
|
||
strcpy (_Jv_execName, name);
|
||
}
|
||
}
|
||
|
||
#ifdef USE_WIN32_SIGNALLING
|
||
|
||
extern "C" int* win32_get_restart_frame (void *);
|
||
|
||
LONG CALLBACK
|
||
win32_exception_handler (LPEXCEPTION_POINTERS e)
|
||
{
|
||
int* setjmp_buf;
|
||
if (e->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
|
||
setjmp_buf = win32_get_restart_frame (nullp);
|
||
else if (e->ExceptionRecord->ExceptionCode == EXCEPTION_INT_DIVIDE_BY_ZERO)
|
||
setjmp_buf = win32_get_restart_frame (arithexception);
|
||
else
|
||
return EXCEPTION_CONTINUE_SEARCH;
|
||
|
||
e->ContextRecord->Ebp = setjmp_buf[0];
|
||
// FIXME: Why does i386-signal.h increment the PC here, do we need to do it?
|
||
e->ContextRecord->Eip = setjmp_buf[1];
|
||
// FIXME: Is this the stack pointer? Do we need it?
|
||
e->ContextRecord->Esp = setjmp_buf[2];
|
||
|
||
return EXCEPTION_CONTINUE_EXECUTION;
|
||
}
|
||
|
||
#endif
|
||
|
||
static void
|
||
main_init ()
|
||
{
|
||
INIT_SEGV;
|
||
#ifdef HANDLE_FPE
|
||
INIT_FPE;
|
||
#else
|
||
arithexception = new java::lang::ArithmeticException
|
||
(JvNewStringLatin1 ("/ by zero"));
|
||
#endif
|
||
|
||
no_memory = new java::lang::OutOfMemoryError;
|
||
|
||
#ifdef USE_LTDL
|
||
LTDL_SET_PRELOADED_SYMBOLS ();
|
||
#endif
|
||
|
||
#ifdef USE_WINSOCK
|
||
// Initialise winsock for networking
|
||
WSADATA data;
|
||
if (WSAStartup (MAKEWORD (1, 1), &data))
|
||
MessageBox (NULL, "Error initialising winsock library.", "Error", MB_OK | MB_ICONEXCLAMATION);
|
||
#endif /* USE_WINSOCK */
|
||
|
||
#ifdef USE_WIN32_SIGNALLING
|
||
// Install exception handler
|
||
SetUnhandledExceptionFilter (win32_exception_handler);
|
||
#else
|
||
// We only want this on POSIX systems.
|
||
struct sigaction act;
|
||
act.sa_handler = SIG_IGN;
|
||
sigemptyset (&act.sa_mask);
|
||
act.sa_flags = 0;
|
||
sigaction (SIGPIPE, &act, NULL);
|
||
#endif /* USE_WIN32_SIGNALLING */
|
||
|
||
_Jv_JNI_Init ();
|
||
}
|
||
|
||
#ifndef DISABLE_GETENV_PROPERTIES
|
||
|
||
static char *
|
||
next_property_key (char *s, size_t *length)
|
||
{
|
||
size_t l = 0;
|
||
|
||
JvAssert (s);
|
||
|
||
// Skip over whitespace
|
||
while (isspace (*s))
|
||
s++;
|
||
|
||
// If we've reached the end, return NULL. Also return NULL if for
|
||
// some reason we've come across a malformed property string.
|
||
if (*s == 0
|
||
|| *s == ':'
|
||
|| *s == '=')
|
||
return NULL;
|
||
|
||
// Determine the length of the property key.
|
||
while (s[l] != 0
|
||
&& ! isspace (s[l])
|
||
&& s[l] != ':'
|
||
&& s[l] != '=')
|
||
{
|
||
if (s[l] == '\\'
|
||
&& s[l+1] != 0)
|
||
l++;
|
||
l++;
|
||
}
|
||
|
||
*length = l;
|
||
|
||
return s;
|
||
}
|
||
|
||
static char *
|
||
next_property_value (char *s, size_t *length)
|
||
{
|
||
size_t l = 0;
|
||
|
||
JvAssert (s);
|
||
|
||
while (isspace (*s))
|
||
s++;
|
||
|
||
if (*s == ':'
|
||
|| *s == '=')
|
||
s++;
|
||
|
||
while (isspace (*s))
|
||
s++;
|
||
|
||
// If we've reached the end, return NULL.
|
||
if (*s == 0)
|
||
return NULL;
|
||
|
||
// Determine the length of the property value.
|
||
while (s[l] != 0
|
||
&& ! isspace (s[l])
|
||
&& s[l] != ':'
|
||
&& s[l] != '=')
|
||
{
|
||
if (s[l] == '\\'
|
||
&& s[l+1] != 0)
|
||
l += 2;
|
||
else
|
||
l++;
|
||
}
|
||
|
||
*length = l;
|
||
|
||
return s;
|
||
}
|
||
|
||
static void
|
||
process_gcj_properties ()
|
||
{
|
||
char *props = getenv("GCJ_PROPERTIES");
|
||
char *p = props;
|
||
size_t length;
|
||
size_t property_count = 0;
|
||
|
||
if (NULL == props)
|
||
return;
|
||
|
||
// Whip through props quickly in order to count the number of
|
||
// property values.
|
||
while (p && (p = next_property_key (p, &length)))
|
||
{
|
||
// Skip to the end of the key
|
||
p += length;
|
||
|
||
p = next_property_value (p, &length);
|
||
if (p)
|
||
p += length;
|
||
|
||
property_count++;
|
||
}
|
||
|
||
// Allocate an array of property value/key pairs.
|
||
_Jv_Environment_Properties =
|
||
(property_pair *) malloc (sizeof(property_pair)
|
||
* (property_count + 1));
|
||
|
||
// Go through the properties again, initializing _Jv_Properties
|
||
// along the way.
|
||
p = props;
|
||
property_count = 0;
|
||
while (p && (p = next_property_key (p, &length)))
|
||
{
|
||
_Jv_Environment_Properties[property_count].key = p;
|
||
_Jv_Environment_Properties[property_count].key_length = length;
|
||
|
||
// Skip to the end of the key
|
||
p += length;
|
||
|
||
p = next_property_value (p, &length);
|
||
|
||
_Jv_Environment_Properties[property_count].value = p;
|
||
_Jv_Environment_Properties[property_count].value_length = length;
|
||
|
||
if (p)
|
||
p += length;
|
||
|
||
property_count++;
|
||
}
|
||
memset ((void *) &_Jv_Environment_Properties[property_count],
|
||
0, sizeof (property_pair));
|
||
{
|
||
size_t i = 0;
|
||
|
||
// Null terminate the strings.
|
||
while (_Jv_Environment_Properties[i].key)
|
||
{
|
||
_Jv_Environment_Properties[i].key[_Jv_Environment_Properties[i].key_length] = 0;
|
||
_Jv_Environment_Properties[i++].value[_Jv_Environment_Properties[i].value_length] = 0;
|
||
}
|
||
}
|
||
}
|
||
#endif // DISABLE_GETENV_PROPERTIES
|
||
|
||
void
|
||
JvRunMain (jclass klass, int argc, const char **argv)
|
||
{
|
||
PROCESS_GCJ_PROPERTIES;
|
||
|
||
main_init ();
|
||
#ifdef HAVE_PROC_SELF_EXE
|
||
char exec_name[20];
|
||
sprintf (exec_name, "/proc/%d/exe", getpid ());
|
||
_Jv_ThisExecutable (exec_name);
|
||
#else
|
||
_Jv_ThisExecutable (argv[0]);
|
||
#endif
|
||
|
||
arg_vec = JvConvertArgv (argc - 1, argv + 1);
|
||
main_thread = new gnu::gcj::runtime::FirstThread (klass, arg_vec);
|
||
|
||
main_thread->start();
|
||
_Jv_ThreadWait ();
|
||
|
||
java::lang::Runtime::getRuntime ()->exit (0);
|
||
}
|
||
|
||
void
|
||
_Jv_RunMain (const char *class_name, int argc, const char **argv)
|
||
{
|
||
PROCESS_GCJ_PROPERTIES;
|
||
|
||
main_init ();
|
||
|
||
#ifdef HAVE_PROC_SELF_EXE
|
||
char exec_name[20];
|
||
sprintf (exec_name, "/proc/%d/exe", getpid ());
|
||
_Jv_ThisExecutable (exec_name);
|
||
#endif
|
||
|
||
arg_vec = JvConvertArgv (argc - 1, argv + 1);
|
||
main_thread = new gnu::gcj::runtime::FirstThread (JvNewStringLatin1 (class_name),
|
||
arg_vec);
|
||
main_thread->start();
|
||
_Jv_ThreadWait ();
|
||
|
||
java::lang::Runtime::getRuntime ()->exit (0);
|
||
}
|
||
|
||
|
||
|
||
// Parse a string and return a heap size.
|
||
static size_t
|
||
parse_heap_size (const char *spec)
|
||
{
|
||
char *end;
|
||
unsigned long val = strtoul (spec, &end, 10);
|
||
if (*end == 'k' || *end == 'K')
|
||
val *= 1024;
|
||
else if (*end == 'm' || *end == 'M')
|
||
val *= 1048576;
|
||
return (size_t) val;
|
||
}
|
||
|
||
// Set the initial heap size. This might be ignored by the GC layer.
|
||
// This must be called before _Jv_RunMain.
|
||
void
|
||
_Jv_SetInitialHeapSize (const char *arg)
|
||
{
|
||
size_t size = parse_heap_size (arg);
|
||
_Jv_GCSetInitialHeapSize (size);
|
||
}
|
||
|
||
// Set the maximum heap size. This might be ignored by the GC layer.
|
||
// This must be called before _Jv_RunMain.
|
||
void
|
||
_Jv_SetMaximumHeapSize (const char *arg)
|
||
{
|
||
size_t size = parse_heap_size (arg);
|
||
_Jv_GCSetMaximumHeapSize (size);
|
||
}
|
||
|
||
|
||
|
||
void *
|
||
_Jv_Malloc (jsize size)
|
||
{
|
||
if (__builtin_expect (size == 0, false))
|
||
size = 1;
|
||
void *ptr = malloc ((size_t) size);
|
||
if (__builtin_expect (ptr == NULL, false))
|
||
JvThrow (no_memory);
|
||
return ptr;
|
||
}
|
||
|
||
void *
|
||
_Jv_Realloc (void *ptr, jsize size)
|
||
{
|
||
if (__builtin_expect (size == 0, false))
|
||
size = 1;
|
||
ptr = realloc (ptr, (size_t) size);
|
||
if (__builtin_expect (ptr == NULL, false))
|
||
JvThrow (no_memory);
|
||
return ptr;
|
||
}
|
||
|
||
void *
|
||
_Jv_MallocUnchecked (jsize size)
|
||
{
|
||
if (__builtin_expect (size == 0, false))
|
||
size = 1;
|
||
return malloc ((size_t) size);
|
||
}
|
||
|
||
void
|
||
_Jv_Free (void* ptr)
|
||
{
|
||
return free (ptr);
|
||
}
|
||
|
||
|
||
|
||
// In theory, these routines can be #ifdef'd away on machines which
|
||
// support divide overflow signals. However, we never know if some
|
||
// code might have been compiled with "-fuse-divide-subroutine", so we
|
||
// always include them in libgcj.
|
||
|
||
jint
|
||
_Jv_divI (jint dividend, jint divisor)
|
||
{
|
||
if (__builtin_expect (divisor == 0, false))
|
||
_Jv_ThrowSignal (arithexception);
|
||
|
||
if (dividend == (jint) 0x80000000L && divisor == -1)
|
||
return dividend;
|
||
|
||
return dividend / divisor;
|
||
}
|
||
|
||
jint
|
||
_Jv_remI (jint dividend, jint divisor)
|
||
{
|
||
if (__builtin_expect (divisor == 0, false))
|
||
_Jv_ThrowSignal (arithexception);
|
||
|
||
if (dividend == (jint) 0x80000000L && divisor == -1)
|
||
return 0;
|
||
|
||
return dividend % divisor;
|
||
}
|
||
|
||
jlong
|
||
_Jv_divJ (jlong dividend, jlong divisor)
|
||
{
|
||
if (__builtin_expect (divisor == 0, false))
|
||
_Jv_ThrowSignal (arithexception);
|
||
|
||
if (dividend == (jlong) 0x8000000000000000LL && divisor == -1)
|
||
return dividend;
|
||
|
||
return dividend / divisor;
|
||
}
|
||
|
||
jlong
|
||
_Jv_remJ (jlong dividend, jlong divisor)
|
||
{
|
||
if (__builtin_expect (divisor == 0, false))
|
||
_Jv_ThrowSignal (arithexception);
|
||
|
||
if (dividend == (jlong) 0x8000000000000000LL && divisor == -1)
|
||
return 0;
|
||
|
||
return dividend % divisor;
|
||
}
|