gcc/libgfortran/m4/ifunction.m4
Tobias Burnus 0cd0559e8c re PR fortran/33197 (Fortran 2008: math functions)
gcc/fortran/
2010-08-27  Tobias Burnus  <burnus@net-b.de>

        PR fortran/33197
        * gcc/fortran/intrinsic.c (add_functions): Add norm2 and parity.
        * gcc/fortran/intrinsic.h (gfc_check_norm2, gfc_check_parity):
        gfc_simplify_norm2, gfc_simplify_parity, gfc_resolve_norm2,
        gfc_resolve_parity): New prototypes.
        * gcc/fortran/gfortran.h (gfc_isym_id): New enum items
        GFC_ISYM_NORM2 and GFC_ISYM_PARITY.
        * gcc/fortran/iresolve.c (gfc_resolve_norm2,
        gfc_resolve_parity): New functions.
        * gcc/fortran/check.c (gfc_check_norm2, gfc_check_parity):
        New functions.
        * gcc/fortran/trans-intrinsic.c (gfc_conv_intrinsic_arith,
        gfc_conv_intrinsic_function): Handle NORM2 and PARITY.
        * gcc/fortran/intrinsic.texi (NORM2, PARITY): Add.
        * gcc/fortran/simplify.c (simplify_transformation_to_array):
        Add post-processing opterator.
        (gfc_simplify_all, gfc_simplify_any, gfc_simplify_count,
        gfc_simplify_product, gfc_simplify_sum): Update call.
        (add_squared, do_sqrt, gfc_simplify_norm2, do_xor,
        gfc_simplify_parity): New functions.

gcc/testsuite/
2010-08-27  Tobias Burnus  <burnus@net-b.de>

        PR fortran/33197
        * gcc/testsuite/gfortran.dg/norm2_1.f90: New.
        * gcc/testsuite/gfortran.dg/norm2_2.f90: New.
        * gcc/testsuite/gfortran.dg/norm2_3.f90: New.
        * gcc/testsuite/gfortran.dg/norm2_4.f90: New.
        * gcc/testsuite/gfortran.dg/parity_1.f90: New.
        * gcc/testsuite/gfortran.dg/parity_2.f90: New.
        * gcc/testsuite/gfortran.dg/parity_3.f90: New.

libgfortran/
2010-08-27  Tobias Burnus  <burnus@net-b.de>

        PR fortran/33197
        * libgfortran/m4/ifunction.m4 (FINISH_ARRAY_FUNCTION,
        ARRAY_FUNCTION): Allow expression after loop.
        * libgfortran/m4/norm2.m4: New for _gfortran_norm2_r{4,8,10,16}.
        * libgfortran/m4/parity.m4: New for
        * _gfortran_parity_l{1,2,4,8,16}.
        * libgfortran/gfortran.map: Add new functions.
        * libgfortran/Makefile.am: Ditto.
        * libgfortran/m4/minloc1.m4: Add empty argument for
        * ARRAY_FUNCTION.
        * libgfortran/m4/maxloc1.m4: Ditto.
        * libgfortran/m4/all.m4: Ditto.
        * libgfortran/m4/minval.m4: Ditto.
        * libgfortran/m4/maxval.m4: Ditto.
        * libgfortran/m4/count.m4: Ditto.
        * libgfortran/m4/product.m4: Ditto.
        * libgfortran/m4/any.m4: Ditto.
        * Makefile.in: Regenerated.
        * generated/minval_r8.c: Regenerated.
        * generated/maxloc1_4_r8.c: Regenerated.
        * generated/minloc1_16_r16.c: Regenerated.
        * generated/norm2_r4.c: Regenerated.
        * generated/sum_i8.c: Regenerated.
        * generated/parity_l2.c: Regenerated.
        * generated/any_l16.c: Regenerated.
        * generated/maxval_i2.c: Regenerated.
        * generated/any_l2.c: Regenerated.
        * generated/product_r4.c: Regenerated.
        * generated/maxloc1_8_i4.c: Regenerated.
        * generated/parity_l16.c: Regenerated.
        * generated/all_l1.c: Regenerated.
        * generated/product_i2.c: Regenerated.
        * generated/minloc1_8_r16.c: Regenerated.
        * generated/maxloc1_8_r16.c: Regenerated.
        * generated/sum_r16.c: Regenerated.
        * generated/sum_i1.c: Regenerated.
        * generated/minloc1_4_r8.c: Regenerated.
        * generated/maxloc1_16_r16.c: Regenerated.
        * generated/minloc1_16_i4.c: Regenerated.
        * generated/maxloc1_16_i4.c: Regenerated.
        * generated/maxval_r16.c: Regenerated.
        * generated/product_c10.c: Regenerated.
        * generated/minloc1_8_i4.c: Regenerated.
        * generated/all_l2.c: Regenerated.
        * generated/product_c4.c: Regenerated.
        * generated/sum_r4.c: Regenerated.
        * generated/all_l16.c: Regenerated.
        * generated/minloc1_16_r10.c: Regenerated.
        * generated/sum_i2.c: Regenerated.
        * generated/maxloc1_8_r8.c: Regenerated.
        * generated/minval_i16.c: Regenerated.
        * generated/parity_l4.c: Regenerated.
        * generated/maxval_i4.c: Regenerated.
        * generated/any_l4.c: Regenerated.
        * generated/minval_i8.c: Regenerated.
        * generated/maxloc1_4_i8.c: Regenerated.
        * generated/minloc1_4_i16.c: Regenerated.
        * generated/maxloc1_4_i16.c: Regenerated.
        * generated/minloc1_8_r10.c: Regenerated.
        * generated/product_i4.c: Regenerated.
        * generated/maxloc1_8_r10.c: Regenerated.
        * generated/sum_c16.c: Regenerated.
        * generated/minloc1_16_r8.c: Regenerated.
        * generated/maxloc1_16_r8.c: Regenerated.
        * generated/count_4_l.c: Regenerated.
        * generated/sum_r10.c: Regenerated.
        * generated/count_8_l.c: Regenerated.
        * generated/sum_c4.c: Regenerated.
        * generated/maxloc1_16_r10.c: Regenerated.
        * generated/minloc1_8_r8.c: Regenerated.
        * generated/maxval_r10.c: Regenerated.
        * generated/minval_i1.c: Regenerated.
        * generated/maxloc1_4_i1.c: Regenerated.
        * generated/minloc1_4_i8.c: Regenerated.
        * generated/product_i16.c: Regenerated.
        * generated/all_l4.c: Regenerated.
        * generated/norm2_r16.c: Regenerated.
        * generated/minval_r4.c: Regenerated.
        * generated/maxloc1_4_r4.c: Regenerated.
        * generated/sum_i4.c: Regenerated.
        * generated/maxval_r8.c: Regenerated.
        * generated/norm2_r8.c: Regenerated.
        * generated/minloc1_4_i1.c: Regenerated.
        * generated/minval_r16.c: Regenerated.
        * generated/minval_i2.c: Regenerated.
        * generated/maxloc1_4_i2.c: Regenerated.
        * generated/product_r8.c: Regenerated.
        * generated/maxloc1_8_i8.c: Regenerated.
        * generated/sum_c10.c: Regenerated.
        * generated/minloc1_4_r16.c: Regenerated.
        * generated/maxloc1_4_r16.c: Regenerated.
        * generated/count_1_l.c: Regenerated.
        * generated/minloc1_4_r4.c: Regenerated.
        * generated/minloc1_16_i8.c: Regenerated.
        * generated/maxloc1_16_i8.c: Regenerated.
        * generated/minloc1_4_i2.c: Regenerated.
        * generated/maxloc1_8_i1.c: Regenerated.
        * generated/minloc1_8_i8.c: Regenerated.
        * generated/product_r16.c: Regenerated.
        * generated/product_c8.c: Regenerated.
        * generated/sum_r8.c: Regenerated.
        * generated/norm2_r10.c: Regenerated.
        * generated/minloc1_16_i16.c: Regenerated.
        * generated/maxloc1_8_r4.c: Regenerated.
        * generated/minloc1_16_i1.c: Regenerated.
        * generated/maxloc1_16_i1.c: Regenerated.
        * generated/minval_r10.c: Regenerated.
        * generated/count_16_l.c: Regenerated.
        * generated/parity_l8.c: Regenerated.
        * generated/minloc1_8_i1.c: Regenerated.
        * generated/minval_i4.c: Regenerated.
        * generated/maxloc1_4_i4.c: Regenerated.
        * generated/maxloc1_8_i2.c: Regenerated.
        * generated/maxval_i8.c: Regenerated.
        * generated/any_l8.c: Regenerated.
        * generated/minloc1_4_r10.c: Regenerated.
        * generated/minloc1_8_i16.c: Regenerated.
        * generated/maxloc1_4_r10.c: Regenerated.
        * generated/maxloc1_8_i16.c: Regenerated.
        * generated/minloc1_16_r4.c: Regenerated.
        * generated/maxloc1_16_r4.c: Regenerated.
        * generated/product_i8.c: Regenerated.
        * generated/sum_i16.c: Regenerated.
        * generated/count_2_l.c: Regenerated.
        * generated/maxloc1_16_i16.c: Regenerated.
        * generated/minloc1_8_r4.c: Regenerated.
        * generated/sum_c8.c: Regenerated.
        * generated/minloc1_16_i2.c: Regenerated.
        * generated/maxloc1_16_i2.c: Regenerated.
        * generated/parity_l1.c: Regenerated.
        * generated/maxval_i16.c: Regenerated.
        * generated/maxval_i1.c: Regenerated.
        * generated/minloc1_4_i4.c: Regenerated.
        * generated/any_l1.c: Regenerated.
        * generated/minloc1_8_i2.c: Regenerated.
        * generated/product_c16.c: Regenerated.
        * generated/product_r10.c: Regenerated.
        * generated/product_i1.c: Regenerated.
        * generated/all_l8.c: Regenerated.
        * generated/maxval_r4.c: Regenerated.

From-SVN: r163595
2010-08-27 21:17:45 +02:00

507 lines
12 KiB
Plaintext

dnl Support macro file for intrinsic functions.
dnl Contains the generic sections of the array functions.
dnl This file is part of the GNU Fortran Runtime Library (libgfortran)
dnl Distributed under the GNU GPL with exception. See COPYING for details.
dnl
dnl Pass the implementation for a single section as the parameter to
dnl {MASK_}ARRAY_FUNCTION.
dnl The variables base, delta, and len describe the input section.
dnl For masked section the mask is described by mbase and mdelta.
dnl These should not be modified. The result should be stored in *dest.
dnl The names count, extent, sstride, dstride, base, dest, rank, dim
dnl retarray, array, pdim and mstride should not be used.
dnl The variable n is declared as index_type and may be used.
dnl Other variable declarations may be placed at the start of the code,
dnl The types of the array parameter and the return value are
dnl atype_name and rtype_name respectively.
dnl Execution should be allowed to continue to the end of the block.
dnl You should not return or break from the inner loop of the implementation.
dnl Care should also be taken to avoid using the names defined in iparm.m4
define(START_ARRAY_FUNCTION,
`
extern void name`'rtype_qual`_'atype_code (rtype * const restrict,
atype * const restrict, const index_type * const restrict);
export_proto(name`'rtype_qual`_'atype_code);
void
name`'rtype_qual`_'atype_code (rtype * const restrict retarray,
atype * const restrict array,
const index_type * const restrict pdim)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
const atype_name * restrict base;
rtype_name * restrict dest;
index_type rank;
index_type n;
index_type len;
index_type delta;
index_type dim;
int continue_loop;
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
len = GFC_DESCRIPTOR_EXTENT(array,dim);
if (len < 0)
len = 0;
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
for (n = 0; n < dim; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
alloc_size = sizeof (rtype_name) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
* extent[rank-1];
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" u_name intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
bounds_ifunction_return ((array_t *) retarray, extent,
"return value", "u_name");
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
if (extent[n] <= 0)
len = 0;
}
base = array->data;
dest = retarray->data;
continue_loop = 1;
while (continue_loop)
{
const atype_name * restrict src;
rtype_name result;
src = base;
{
')dnl
define(START_ARRAY_BLOCK,
` if (len <= 0)
*dest = '$1`;
else
{
for (n = 0; n < len; n++, src += delta)
{
')dnl
define(FINISH_ARRAY_FUNCTION,
` }
'$1`
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
continue_loop = 0;
break;
}
else
{
count[n]++;
base += sstride[n];
dest += dstride[n];
}
}
}
}')dnl
define(START_MASKED_ARRAY_FUNCTION,
`
extern void `m'name`'rtype_qual`_'atype_code (rtype * const restrict,
atype * const restrict, const index_type * const restrict,
gfc_array_l1 * const restrict);
export_proto(`m'name`'rtype_qual`_'atype_code);
void
`m'name`'rtype_qual`_'atype_code (rtype * const restrict retarray,
atype * const restrict array,
const index_type * const restrict pdim,
gfc_array_l1 * const restrict mask)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
index_type mstride[GFC_MAX_DIMENSIONS];
rtype_name * restrict dest;
const atype_name * restrict base;
const GFC_LOGICAL_1 * restrict mbase;
int rank;
int dim;
index_type n;
index_type len;
index_type delta;
index_type mdelta;
int mask_kind;
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
len = GFC_DESCRIPTOR_EXTENT(array,dim);
if (len <= 0)
return;
mbase = mask->data;
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
else
runtime_error ("Funny sized logical array");
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
for (n = 0; n < dim; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
alloc_size = sizeof (rtype_name) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
* extent[rank-1];
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in u_name intrinsic");
if (unlikely (compile_options.bounds_check))
{
bounds_ifunction_return ((array_t *) retarray, extent,
"return value", "u_name");
bounds_equal_extents ((array_t *) mask, (array_t *) array,
"MASK argument", "u_name");
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
if (extent[n] <= 0)
return;
}
dest = retarray->data;
base = array->data;
while (base)
{
const atype_name * restrict src;
const GFC_LOGICAL_1 * restrict msrc;
rtype_name result;
src = base;
msrc = mbase;
{
')dnl
define(START_MASKED_ARRAY_BLOCK,
` if (len <= 0)
*dest = '$1`;
else
{
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
{
')dnl
define(FINISH_MASKED_ARRAY_FUNCTION,
` }
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
mbase += mstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
mbase -= mstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
mbase += mstride[n];
dest += dstride[n];
}
}
}
}')dnl
define(SCALAR_ARRAY_FUNCTION,
`
extern void `s'name`'rtype_qual`_'atype_code (rtype * const restrict,
atype * const restrict, const index_type * const restrict,
GFC_LOGICAL_4 *);
export_proto(`s'name`'rtype_qual`_'atype_code);
void
`s'name`'rtype_qual`_'atype_code (rtype * const restrict retarray,
atype * const restrict array,
const index_type * const restrict pdim,
GFC_LOGICAL_4 * mask)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
rtype_name * restrict dest;
index_type rank;
index_type n;
index_type dim;
if (*mask)
{
name`'rtype_qual`_'atype_code (retarray, array, pdim);
return;
}
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
for (n = 0; n < dim; n++)
{
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] <= 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
extent[n] =
GFC_DESCRIPTOR_EXTENT(array,n + 1);
if (extent[n] <= 0)
extent[n] = 0;
}
if (retarray->data == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
alloc_size = sizeof (rtype_name) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
* extent[rank-1];
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
else
retarray->data = internal_malloc_size (alloc_size);
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" u_name intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
{
for (n=0; n < rank; n++)
{
index_type ret_extent;
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
if (extent[n] != ret_extent)
runtime_error ("Incorrect extent in return value of"
" u_name intrinsic in dimension %ld:"
" is %ld, should be %ld", (long int) n + 1,
(long int) ret_extent, (long int) extent[n]);
}
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
}
dest = retarray->data;
while(1)
{
*dest = '$1`;
count[0]++;
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
return;
else
{
count[n]++;
dest += dstride[n];
}
}
}
}')dnl
define(ARRAY_FUNCTION,
`START_ARRAY_FUNCTION
$2
START_ARRAY_BLOCK($1)
$3
FINISH_ARRAY_FUNCTION($4)')dnl
define(MASKED_ARRAY_FUNCTION,
`START_MASKED_ARRAY_FUNCTION
$2
START_MASKED_ARRAY_BLOCK($1)
$3
FINISH_MASKED_ARRAY_FUNCTION')dnl