23a5b65a92
From-SVN: r206289
1227 lines
32 KiB
C
1227 lines
32 KiB
C
/* Convert a program in SSA form into Normal form.
|
|
Copyright (C) 2004-2014 Free Software Foundation, Inc.
|
|
Contributed by Andrew Macleod <amacleod@redhat.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "stor-layout.h"
|
|
#include "basic-block.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "bitmap.h"
|
|
#include "sbitmap.h"
|
|
#include "tree-ssa-alias.h"
|
|
#include "internal-fn.h"
|
|
#include "tree-eh.h"
|
|
#include "gimple-expr.h"
|
|
#include "is-a.h"
|
|
#include "gimple.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimple-ssa.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-phinodes.h"
|
|
#include "ssa-iterators.h"
|
|
#include "stringpool.h"
|
|
#include "tree-ssanames.h"
|
|
#include "dumpfile.h"
|
|
#include "diagnostic-core.h"
|
|
#include "tree-ssa-live.h"
|
|
#include "tree-ssa-ter.h"
|
|
#include "tree-ssa-coalesce.h"
|
|
#include "tree-outof-ssa.h"
|
|
|
|
/* FIXME: A lot of code here deals with expanding to RTL. All that code
|
|
should be in cfgexpand.c. */
|
|
#include "expr.h"
|
|
|
|
/* Return TRUE if expression STMT is suitable for replacement. */
|
|
|
|
bool
|
|
ssa_is_replaceable_p (gimple stmt)
|
|
{
|
|
use_operand_p use_p;
|
|
tree def;
|
|
gimple use_stmt;
|
|
|
|
/* Only consider modify stmts. */
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
/* If the statement may throw an exception, it cannot be replaced. */
|
|
if (stmt_could_throw_p (stmt))
|
|
return false;
|
|
|
|
/* Punt if there is more than 1 def. */
|
|
def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
|
|
if (!def)
|
|
return false;
|
|
|
|
/* Only consider definitions which have a single use. */
|
|
if (!single_imm_use (def, &use_p, &use_stmt))
|
|
return false;
|
|
|
|
/* Used in this block, but at the TOP of the block, not the end. */
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI)
|
|
return false;
|
|
|
|
/* There must be no VDEFs. */
|
|
if (gimple_vdef (stmt))
|
|
return false;
|
|
|
|
/* Float expressions must go through memory if float-store is on. */
|
|
if (flag_float_store
|
|
&& FLOAT_TYPE_P (gimple_expr_type (stmt)))
|
|
return false;
|
|
|
|
/* An assignment with a register variable on the RHS is not
|
|
replaceable. */
|
|
if (gimple_assign_rhs_code (stmt) == VAR_DECL
|
|
&& DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
|
|
return false;
|
|
|
|
/* No function calls can be replaced. */
|
|
if (is_gimple_call (stmt))
|
|
return false;
|
|
|
|
/* Leave any stmt with volatile operands alone as well. */
|
|
if (gimple_has_volatile_ops (stmt))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Used to hold all the components required to do SSA PHI elimination.
|
|
The node and pred/succ list is a simple linear list of nodes and
|
|
edges represented as pairs of nodes.
|
|
|
|
The predecessor and successor list: Nodes are entered in pairs, where
|
|
[0] ->PRED, [1]->SUCC. All the even indexes in the array represent
|
|
predecessors, all the odd elements are successors.
|
|
|
|
Rationale:
|
|
When implemented as bitmaps, very large programs SSA->Normal times were
|
|
being dominated by clearing the interference graph.
|
|
|
|
Typically this list of edges is extremely small since it only includes
|
|
PHI results and uses from a single edge which have not coalesced with
|
|
each other. This means that no virtual PHI nodes are included, and
|
|
empirical evidence suggests that the number of edges rarely exceed
|
|
3, and in a bootstrap of GCC, the maximum size encountered was 7.
|
|
This also limits the number of possible nodes that are involved to
|
|
rarely more than 6, and in the bootstrap of gcc, the maximum number
|
|
of nodes encountered was 12. */
|
|
|
|
typedef struct _elim_graph {
|
|
/* Size of the elimination vectors. */
|
|
int size;
|
|
|
|
/* List of nodes in the elimination graph. */
|
|
vec<int> nodes;
|
|
|
|
/* The predecessor and successor edge list. */
|
|
vec<int> edge_list;
|
|
|
|
/* Source locus on each edge */
|
|
vec<source_location> edge_locus;
|
|
|
|
/* Visited vector. */
|
|
sbitmap visited;
|
|
|
|
/* Stack for visited nodes. */
|
|
vec<int> stack;
|
|
|
|
/* The variable partition map. */
|
|
var_map map;
|
|
|
|
/* Edge being eliminated by this graph. */
|
|
edge e;
|
|
|
|
/* List of constant copies to emit. These are pushed on in pairs. */
|
|
vec<int> const_dests;
|
|
vec<tree> const_copies;
|
|
|
|
/* Source locations for any constant copies. */
|
|
vec<source_location> copy_locus;
|
|
} *elim_graph;
|
|
|
|
|
|
/* For an edge E find out a good source location to associate with
|
|
instructions inserted on edge E. If E has an implicit goto set,
|
|
use its location. Otherwise search instructions in predecessors
|
|
of E for a location, and use that one. That makes sense because
|
|
we insert on edges for PHI nodes, and effects of PHIs happen on
|
|
the end of the predecessor conceptually. */
|
|
|
|
static void
|
|
set_location_for_edge (edge e)
|
|
{
|
|
if (e->goto_locus)
|
|
{
|
|
set_curr_insn_location (e->goto_locus);
|
|
}
|
|
else
|
|
{
|
|
basic_block bb = e->src;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
do
|
|
{
|
|
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
if (gimple_has_location (stmt) || gimple_block (stmt))
|
|
{
|
|
set_curr_insn_location (gimple_location (stmt));
|
|
return;
|
|
}
|
|
}
|
|
/* Nothing found in this basic block. Make a half-assed attempt
|
|
to continue with another block. */
|
|
if (single_pred_p (bb))
|
|
bb = single_pred (bb);
|
|
else
|
|
bb = e->src;
|
|
}
|
|
while (bb != e->src);
|
|
}
|
|
}
|
|
|
|
/* Emit insns to copy SRC into DEST converting SRC if necessary. As
|
|
SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
|
|
which we deduce the size to copy in that case. */
|
|
|
|
static inline rtx
|
|
emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
|
|
{
|
|
rtx seq;
|
|
|
|
start_sequence ();
|
|
|
|
if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
|
|
src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
|
|
if (GET_MODE (src) == BLKmode)
|
|
{
|
|
gcc_assert (GET_MODE (dest) == BLKmode);
|
|
emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
|
|
}
|
|
else
|
|
emit_move_insn (dest, src);
|
|
|
|
seq = get_insns ();
|
|
end_sequence ();
|
|
|
|
return seq;
|
|
}
|
|
|
|
/* Insert a copy instruction from partition SRC to DEST onto edge E. */
|
|
|
|
static void
|
|
insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
|
|
{
|
|
tree var;
|
|
rtx seq;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"Inserting a partition copy on edge BB%d->BB%d :"
|
|
"PART.%d = PART.%d",
|
|
e->src->index,
|
|
e->dest->index, dest, src);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
gcc_assert (SA.partition_to_pseudo[dest]);
|
|
gcc_assert (SA.partition_to_pseudo[src]);
|
|
|
|
set_location_for_edge (e);
|
|
/* If a locus is provided, override the default. */
|
|
if (locus)
|
|
set_curr_insn_location (locus);
|
|
|
|
var = partition_to_var (SA.map, src);
|
|
seq = emit_partition_copy (SA.partition_to_pseudo[dest],
|
|
SA.partition_to_pseudo[src],
|
|
TYPE_UNSIGNED (TREE_TYPE (var)),
|
|
var);
|
|
|
|
insert_insn_on_edge (seq, e);
|
|
}
|
|
|
|
/* Insert a copy instruction from expression SRC to partition DEST
|
|
onto edge E. */
|
|
|
|
static void
|
|
insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
|
|
{
|
|
rtx seq, x;
|
|
enum machine_mode dest_mode, src_mode;
|
|
int unsignedp;
|
|
tree var;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
|
|
e->src->index,
|
|
e->dest->index, dest);
|
|
print_generic_expr (dump_file, src, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
gcc_assert (SA.partition_to_pseudo[dest]);
|
|
|
|
set_location_for_edge (e);
|
|
/* If a locus is provided, override the default. */
|
|
if (locus)
|
|
set_curr_insn_location (locus);
|
|
|
|
start_sequence ();
|
|
|
|
var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
|
|
src_mode = TYPE_MODE (TREE_TYPE (src));
|
|
dest_mode = GET_MODE (SA.partition_to_pseudo[dest]);
|
|
gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
|
|
gcc_assert (!REG_P (SA.partition_to_pseudo[dest])
|
|
|| dest_mode == promote_decl_mode (var, &unsignedp));
|
|
|
|
if (src_mode != dest_mode)
|
|
{
|
|
x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
|
|
x = convert_modes (dest_mode, src_mode, x, unsignedp);
|
|
}
|
|
else if (src_mode == BLKmode)
|
|
{
|
|
x = SA.partition_to_pseudo[dest];
|
|
store_expr (src, x, 0, false);
|
|
}
|
|
else
|
|
x = expand_expr (src, SA.partition_to_pseudo[dest],
|
|
dest_mode, EXPAND_NORMAL);
|
|
|
|
if (x != SA.partition_to_pseudo[dest])
|
|
emit_move_insn (SA.partition_to_pseudo[dest], x);
|
|
seq = get_insns ();
|
|
end_sequence ();
|
|
|
|
insert_insn_on_edge (seq, e);
|
|
}
|
|
|
|
/* Insert a copy instruction from RTL expression SRC to partition DEST
|
|
onto edge E. */
|
|
|
|
static void
|
|
insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
|
|
source_location locus)
|
|
{
|
|
rtx seq;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
|
|
e->src->index,
|
|
e->dest->index, dest);
|
|
print_simple_rtl (dump_file, src);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
gcc_assert (SA.partition_to_pseudo[dest]);
|
|
|
|
set_location_for_edge (e);
|
|
/* If a locus is provided, override the default. */
|
|
if (locus)
|
|
set_curr_insn_location (locus);
|
|
|
|
/* We give the destination as sizeexp in case src/dest are BLKmode
|
|
mems. Usually we give the source. As we result from SSA names
|
|
the left and right size should be the same (and no WITH_SIZE_EXPR
|
|
involved), so it doesn't matter. */
|
|
seq = emit_partition_copy (SA.partition_to_pseudo[dest],
|
|
src, unsignedsrcp,
|
|
partition_to_var (SA.map, dest));
|
|
|
|
insert_insn_on_edge (seq, e);
|
|
}
|
|
|
|
/* Insert a copy instruction from partition SRC to RTL lvalue DEST
|
|
onto edge E. */
|
|
|
|
static void
|
|
insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
|
|
{
|
|
tree var;
|
|
rtx seq;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"Inserting a temp copy on edge BB%d->BB%d : ",
|
|
e->src->index,
|
|
e->dest->index);
|
|
print_simple_rtl (dump_file, dest);
|
|
fprintf (dump_file, "= PART.%d\n", src);
|
|
}
|
|
|
|
gcc_assert (SA.partition_to_pseudo[src]);
|
|
|
|
set_location_for_edge (e);
|
|
/* If a locus is provided, override the default. */
|
|
if (locus)
|
|
set_curr_insn_location (locus);
|
|
|
|
var = partition_to_var (SA.map, src);
|
|
seq = emit_partition_copy (dest,
|
|
SA.partition_to_pseudo[src],
|
|
TYPE_UNSIGNED (TREE_TYPE (var)),
|
|
var);
|
|
|
|
insert_insn_on_edge (seq, e);
|
|
}
|
|
|
|
|
|
/* Create an elimination graph with SIZE nodes and associated data
|
|
structures. */
|
|
|
|
static elim_graph
|
|
new_elim_graph (int size)
|
|
{
|
|
elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
|
|
|
|
g->nodes.create (30);
|
|
g->const_dests.create (20);
|
|
g->const_copies.create (20);
|
|
g->copy_locus.create (10);
|
|
g->edge_list.create (20);
|
|
g->edge_locus.create (10);
|
|
g->stack.create (30);
|
|
|
|
g->visited = sbitmap_alloc (size);
|
|
|
|
return g;
|
|
}
|
|
|
|
|
|
/* Empty elimination graph G. */
|
|
|
|
static inline void
|
|
clear_elim_graph (elim_graph g)
|
|
{
|
|
g->nodes.truncate (0);
|
|
g->edge_list.truncate (0);
|
|
g->edge_locus.truncate (0);
|
|
}
|
|
|
|
|
|
/* Delete elimination graph G. */
|
|
|
|
static inline void
|
|
delete_elim_graph (elim_graph g)
|
|
{
|
|
sbitmap_free (g->visited);
|
|
g->stack.release ();
|
|
g->edge_list.release ();
|
|
g->const_copies.release ();
|
|
g->const_dests.release ();
|
|
g->nodes.release ();
|
|
g->copy_locus.release ();
|
|
g->edge_locus.release ();
|
|
|
|
free (g);
|
|
}
|
|
|
|
|
|
/* Return the number of nodes in graph G. */
|
|
|
|
static inline int
|
|
elim_graph_size (elim_graph g)
|
|
{
|
|
return g->nodes.length ();
|
|
}
|
|
|
|
|
|
/* Add NODE to graph G, if it doesn't exist already. */
|
|
|
|
static inline void
|
|
elim_graph_add_node (elim_graph g, int node)
|
|
{
|
|
int x;
|
|
int t;
|
|
|
|
FOR_EACH_VEC_ELT (g->nodes, x, t)
|
|
if (t == node)
|
|
return;
|
|
g->nodes.safe_push (node);
|
|
}
|
|
|
|
|
|
/* Add the edge PRED->SUCC to graph G. */
|
|
|
|
static inline void
|
|
elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
|
|
{
|
|
g->edge_list.safe_push (pred);
|
|
g->edge_list.safe_push (succ);
|
|
g->edge_locus.safe_push (locus);
|
|
}
|
|
|
|
|
|
/* Remove an edge from graph G for which NODE is the predecessor, and
|
|
return the successor node. -1 is returned if there is no such edge. */
|
|
|
|
static inline int
|
|
elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
|
|
{
|
|
int y;
|
|
unsigned x;
|
|
for (x = 0; x < g->edge_list.length (); x += 2)
|
|
if (g->edge_list[x] == node)
|
|
{
|
|
g->edge_list[x] = -1;
|
|
y = g->edge_list[x + 1];
|
|
g->edge_list[x + 1] = -1;
|
|
*locus = g->edge_locus[x / 2];
|
|
g->edge_locus[x / 2] = UNKNOWN_LOCATION;
|
|
return y;
|
|
}
|
|
*locus = UNKNOWN_LOCATION;
|
|
return -1;
|
|
}
|
|
|
|
|
|
/* Find all the nodes in GRAPH which are successors to NODE in the
|
|
edge list. VAR will hold the partition number found. CODE is the
|
|
code fragment executed for every node found. */
|
|
|
|
#define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
|
|
do { \
|
|
unsigned x_; \
|
|
int y_; \
|
|
for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
|
|
{ \
|
|
y_ = (GRAPH)->edge_list[x_]; \
|
|
if (y_ != (NODE)) \
|
|
continue; \
|
|
(void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \
|
|
(void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
|
|
CODE; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/* Find all the nodes which are predecessors of NODE in the edge list for
|
|
GRAPH. VAR will hold the partition number found. CODE is the
|
|
code fragment executed for every node found. */
|
|
|
|
#define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
|
|
do { \
|
|
unsigned x_; \
|
|
int y_; \
|
|
for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
|
|
{ \
|
|
y_ = (GRAPH)->edge_list[x_ + 1]; \
|
|
if (y_ != (NODE)) \
|
|
continue; \
|
|
(void) ((VAR) = (GRAPH)->edge_list[x_]); \
|
|
(void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
|
|
CODE; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/* Add T to elimination graph G. */
|
|
|
|
static inline void
|
|
eliminate_name (elim_graph g, int T)
|
|
{
|
|
elim_graph_add_node (g, T);
|
|
}
|
|
|
|
/* Return true if this phi argument T should have a copy queued when using
|
|
var_map MAP. PHI nodes should contain only ssa_names and invariants. A
|
|
test for ssa_name is definitely simpler, but don't let invalid contents
|
|
slip through in the meantime. */
|
|
|
|
static inline bool
|
|
queue_phi_copy_p (var_map map, tree t)
|
|
{
|
|
if (TREE_CODE (t) == SSA_NAME)
|
|
{
|
|
if (var_to_partition (map, t) == NO_PARTITION)
|
|
return true;
|
|
return false;
|
|
}
|
|
gcc_checking_assert (is_gimple_min_invariant (t));
|
|
return true;
|
|
}
|
|
|
|
/* Build elimination graph G for basic block BB on incoming PHI edge
|
|
G->e. */
|
|
|
|
static void
|
|
eliminate_build (elim_graph g)
|
|
{
|
|
tree Ti;
|
|
int p0, pi;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
clear_elim_graph (g);
|
|
|
|
for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple phi = gsi_stmt (gsi);
|
|
source_location locus;
|
|
|
|
p0 = var_to_partition (g->map, gimple_phi_result (phi));
|
|
/* Ignore results which are not in partitions. */
|
|
if (p0 == NO_PARTITION)
|
|
continue;
|
|
|
|
Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
|
|
locus = gimple_phi_arg_location_from_edge (phi, g->e);
|
|
|
|
/* If this argument is a constant, or a SSA_NAME which is being
|
|
left in SSA form, just queue a copy to be emitted on this
|
|
edge. */
|
|
if (queue_phi_copy_p (g->map, Ti))
|
|
{
|
|
/* Save constant copies until all other copies have been emitted
|
|
on this edge. */
|
|
g->const_dests.safe_push (p0);
|
|
g->const_copies.safe_push (Ti);
|
|
g->copy_locus.safe_push (locus);
|
|
}
|
|
else
|
|
{
|
|
pi = var_to_partition (g->map, Ti);
|
|
if (p0 != pi)
|
|
{
|
|
eliminate_name (g, p0);
|
|
eliminate_name (g, pi);
|
|
elim_graph_add_edge (g, p0, pi, locus);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Push successors of T onto the elimination stack for G. */
|
|
|
|
static void
|
|
elim_forward (elim_graph g, int T)
|
|
{
|
|
int S;
|
|
source_location locus;
|
|
|
|
bitmap_set_bit (g->visited, T);
|
|
FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
|
|
{
|
|
if (!bitmap_bit_p (g->visited, S))
|
|
elim_forward (g, S);
|
|
});
|
|
g->stack.safe_push (T);
|
|
}
|
|
|
|
|
|
/* Return 1 if there unvisited predecessors of T in graph G. */
|
|
|
|
static int
|
|
elim_unvisited_predecessor (elim_graph g, int T)
|
|
{
|
|
int P;
|
|
source_location locus;
|
|
|
|
FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
|
|
{
|
|
if (!bitmap_bit_p (g->visited, P))
|
|
return 1;
|
|
});
|
|
return 0;
|
|
}
|
|
|
|
/* Process predecessors first, and insert a copy. */
|
|
|
|
static void
|
|
elim_backward (elim_graph g, int T)
|
|
{
|
|
int P;
|
|
source_location locus;
|
|
|
|
bitmap_set_bit (g->visited, T);
|
|
FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
|
|
{
|
|
if (!bitmap_bit_p (g->visited, P))
|
|
{
|
|
elim_backward (g, P);
|
|
insert_partition_copy_on_edge (g->e, P, T, locus);
|
|
}
|
|
});
|
|
}
|
|
|
|
/* Allocate a new pseudo register usable for storing values sitting
|
|
in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
|
|
|
|
static rtx
|
|
get_temp_reg (tree name)
|
|
{
|
|
tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
|
|
tree type = TREE_TYPE (var);
|
|
int unsignedp;
|
|
enum machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
|
|
rtx x = gen_reg_rtx (reg_mode);
|
|
if (POINTER_TYPE_P (type))
|
|
mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
|
|
return x;
|
|
}
|
|
|
|
/* Insert required copies for T in graph G. Check for a strongly connected
|
|
region, and create a temporary to break the cycle if one is found. */
|
|
|
|
static void
|
|
elim_create (elim_graph g, int T)
|
|
{
|
|
int P, S;
|
|
source_location locus;
|
|
|
|
if (elim_unvisited_predecessor (g, T))
|
|
{
|
|
tree var = partition_to_var (g->map, T);
|
|
rtx U = get_temp_reg (var);
|
|
int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
|
|
|
|
insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
|
|
FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
|
|
{
|
|
if (!bitmap_bit_p (g->visited, P))
|
|
{
|
|
elim_backward (g, P);
|
|
insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
|
|
}
|
|
});
|
|
}
|
|
else
|
|
{
|
|
S = elim_graph_remove_succ_edge (g, T, &locus);
|
|
if (S != -1)
|
|
{
|
|
bitmap_set_bit (g->visited, T);
|
|
insert_partition_copy_on_edge (g->e, T, S, locus);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Eliminate all the phi nodes on edge E in graph G. */
|
|
|
|
static void
|
|
eliminate_phi (edge e, elim_graph g)
|
|
{
|
|
int x;
|
|
|
|
gcc_assert (g->const_copies.length () == 0);
|
|
gcc_assert (g->copy_locus.length () == 0);
|
|
|
|
/* Abnormal edges already have everything coalesced. */
|
|
if (e->flags & EDGE_ABNORMAL)
|
|
return;
|
|
|
|
g->e = e;
|
|
|
|
eliminate_build (g);
|
|
|
|
if (elim_graph_size (g) != 0)
|
|
{
|
|
int part;
|
|
|
|
bitmap_clear (g->visited);
|
|
g->stack.truncate (0);
|
|
|
|
FOR_EACH_VEC_ELT (g->nodes, x, part)
|
|
{
|
|
if (!bitmap_bit_p (g->visited, part))
|
|
elim_forward (g, part);
|
|
}
|
|
|
|
bitmap_clear (g->visited);
|
|
while (g->stack.length () > 0)
|
|
{
|
|
x = g->stack.pop ();
|
|
if (!bitmap_bit_p (g->visited, x))
|
|
elim_create (g, x);
|
|
}
|
|
}
|
|
|
|
/* If there are any pending constant copies, issue them now. */
|
|
while (g->const_copies.length () > 0)
|
|
{
|
|
int dest;
|
|
tree src;
|
|
source_location locus;
|
|
|
|
src = g->const_copies.pop ();
|
|
dest = g->const_dests.pop ();
|
|
locus = g->copy_locus.pop ();
|
|
insert_value_copy_on_edge (e, dest, src, locus);
|
|
}
|
|
}
|
|
|
|
|
|
/* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
|
|
check to see if this allows another PHI node to be removed. */
|
|
|
|
static void
|
|
remove_gimple_phi_args (gimple phi)
|
|
{
|
|
use_operand_p arg_p;
|
|
ssa_op_iter iter;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Removing Dead PHI definition: ");
|
|
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
|
|
}
|
|
|
|
FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
|
|
{
|
|
tree arg = USE_FROM_PTR (arg_p);
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
|
{
|
|
/* Remove the reference to the existing argument. */
|
|
SET_USE (arg_p, NULL_TREE);
|
|
if (has_zero_uses (arg))
|
|
{
|
|
gimple stmt;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
stmt = SSA_NAME_DEF_STMT (arg);
|
|
|
|
/* Also remove the def if it is a PHI node. */
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
{
|
|
remove_gimple_phi_args (stmt);
|
|
gsi = gsi_for_stmt (stmt);
|
|
remove_phi_node (&gsi, true);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
|
|
|
|
static void
|
|
eliminate_useless_phis (void)
|
|
{
|
|
basic_block bb;
|
|
gimple_stmt_iterator gsi;
|
|
tree result;
|
|
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
|
|
{
|
|
gimple phi = gsi_stmt (gsi);
|
|
result = gimple_phi_result (phi);
|
|
if (virtual_operand_p (result))
|
|
{
|
|
#ifdef ENABLE_CHECKING
|
|
size_t i;
|
|
/* There should be no arguments which are not virtual, or the
|
|
results will be incorrect. */
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
tree arg = PHI_ARG_DEF (phi, i);
|
|
if (TREE_CODE (arg) == SSA_NAME
|
|
&& !virtual_operand_p (arg))
|
|
{
|
|
fprintf (stderr, "Argument of PHI is not virtual (");
|
|
print_generic_expr (stderr, arg, TDF_SLIM);
|
|
fprintf (stderr, "), but the result is :");
|
|
print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
|
|
internal_error ("SSA corruption");
|
|
}
|
|
}
|
|
#endif
|
|
remove_phi_node (&gsi, true);
|
|
}
|
|
else
|
|
{
|
|
/* Also remove real PHIs with no uses. */
|
|
if (has_zero_uses (result))
|
|
{
|
|
remove_gimple_phi_args (phi);
|
|
remove_phi_node (&gsi, true);
|
|
}
|
|
else
|
|
gsi_next (&gsi);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* This function will rewrite the current program using the variable mapping
|
|
found in MAP. If the replacement vector VALUES is provided, any
|
|
occurrences of partitions with non-null entries in the vector will be
|
|
replaced with the expression in the vector instead of its mapped
|
|
variable. */
|
|
|
|
static void
|
|
rewrite_trees (var_map map ATTRIBUTE_UNUSED)
|
|
{
|
|
#ifdef ENABLE_CHECKING
|
|
basic_block bb;
|
|
/* Search for PHIs where the destination has no partition, but one
|
|
or more arguments has a partition. This should not happen and can
|
|
create incorrect code. */
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple phi = gsi_stmt (gsi);
|
|
tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
|
|
if (T0 == NULL_TREE)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
tree arg = PHI_ARG_DEF (phi, i);
|
|
|
|
if (TREE_CODE (arg) == SSA_NAME
|
|
&& var_to_partition (map, arg) != NO_PARTITION)
|
|
{
|
|
fprintf (stderr, "Argument of PHI is in a partition :(");
|
|
print_generic_expr (stderr, arg, TDF_SLIM);
|
|
fprintf (stderr, "), but the result is not :");
|
|
print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
|
|
internal_error ("SSA corruption");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Given the out-of-ssa info object SA (with prepared partitions)
|
|
eliminate all phi nodes in all basic blocks. Afterwards no
|
|
basic block will have phi nodes anymore and there are possibly
|
|
some RTL instructions inserted on edges. */
|
|
|
|
void
|
|
expand_phi_nodes (struct ssaexpand *sa)
|
|
{
|
|
basic_block bb;
|
|
elim_graph g = new_elim_graph (sa->map->num_partitions);
|
|
g->map = sa->map;
|
|
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb,
|
|
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
|
if (!gimple_seq_empty_p (phi_nodes (bb)))
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
eliminate_phi (e, g);
|
|
set_phi_nodes (bb, NULL);
|
|
/* We can't redirect EH edges in RTL land, so we need to do this
|
|
here. Redirection happens only when splitting is necessary,
|
|
which it is only for critical edges, normally. For EH edges
|
|
it might also be necessary when the successor has more than
|
|
one predecessor. In that case the edge is either required to
|
|
be fallthru (which EH edges aren't), or the predecessor needs
|
|
to end with a jump (which again, isn't the case with EH edges).
|
|
Hence, split all EH edges on which we inserted instructions
|
|
and whose successor has multiple predecessors. */
|
|
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
|
|
{
|
|
if (e->insns.r && (e->flags & EDGE_EH)
|
|
&& !single_pred_p (e->dest))
|
|
{
|
|
rtx insns = e->insns.r;
|
|
basic_block bb;
|
|
e->insns.r = NULL_RTX;
|
|
bb = split_edge (e);
|
|
single_pred_edge (bb)->insns.r = insns;
|
|
}
|
|
else
|
|
ei_next (&ei);
|
|
}
|
|
}
|
|
|
|
delete_elim_graph (g);
|
|
}
|
|
|
|
|
|
/* Remove the ssa-names in the current function and translate them into normal
|
|
compiler variables. PERFORM_TER is true if Temporary Expression Replacement
|
|
should also be used. */
|
|
|
|
static void
|
|
remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
|
|
{
|
|
bitmap values = NULL;
|
|
var_map map;
|
|
unsigned i;
|
|
|
|
map = coalesce_ssa_name ();
|
|
|
|
/* Return to viewing the variable list as just all reference variables after
|
|
coalescing has been performed. */
|
|
partition_view_normal (map, false);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "After Coalescing:\n");
|
|
dump_var_map (dump_file, map);
|
|
}
|
|
|
|
if (perform_ter)
|
|
{
|
|
values = find_replaceable_exprs (map);
|
|
if (values && dump_file && (dump_flags & TDF_DETAILS))
|
|
dump_replaceable_exprs (dump_file, values);
|
|
}
|
|
|
|
rewrite_trees (map);
|
|
|
|
sa->map = map;
|
|
sa->values = values;
|
|
sa->partition_has_default_def = BITMAP_ALLOC (NULL);
|
|
for (i = 1; i < num_ssa_names; i++)
|
|
{
|
|
tree t = ssa_name (i);
|
|
if (t && SSA_NAME_IS_DEFAULT_DEF (t))
|
|
{
|
|
int p = var_to_partition (map, t);
|
|
if (p != NO_PARTITION)
|
|
bitmap_set_bit (sa->partition_has_default_def, p);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* If not already done so for basic block BB, assign increasing uids
|
|
to each of its instructions. */
|
|
|
|
static void
|
|
maybe_renumber_stmts_bb (basic_block bb)
|
|
{
|
|
unsigned i = 0;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
if (!bb->aux)
|
|
return;
|
|
bb->aux = NULL;
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
gimple_set_uid (stmt, i);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
|
|
/* Return true if we can determine that the SSA_NAMEs RESULT (a result
|
|
of a PHI node) and ARG (one of its arguments) conflict. Return false
|
|
otherwise, also when we simply aren't sure. */
|
|
|
|
static bool
|
|
trivially_conflicts_p (basic_block bb, tree result, tree arg)
|
|
{
|
|
use_operand_p use;
|
|
imm_use_iterator imm_iter;
|
|
gimple defa = SSA_NAME_DEF_STMT (arg);
|
|
|
|
/* If ARG isn't defined in the same block it's too complicated for
|
|
our little mind. */
|
|
if (gimple_bb (defa) != bb)
|
|
return false;
|
|
|
|
FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
|
|
{
|
|
gimple use_stmt = USE_STMT (use);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
/* Now, if there's a use of RESULT that lies outside this basic block,
|
|
then there surely is a conflict with ARG. */
|
|
if (gimple_bb (use_stmt) != bb)
|
|
return true;
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI)
|
|
continue;
|
|
/* The use now is in a real stmt of BB, so if ARG was defined
|
|
in a PHI node (like RESULT) both conflict. */
|
|
if (gimple_code (defa) == GIMPLE_PHI)
|
|
return true;
|
|
maybe_renumber_stmts_bb (bb);
|
|
/* If the use of RESULT occurs after the definition of ARG,
|
|
the two conflict too. */
|
|
if (gimple_uid (defa) < gimple_uid (use_stmt))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Search every PHI node for arguments associated with backedges which
|
|
we can trivially determine will need a copy (the argument is either
|
|
not an SSA_NAME or the argument has a different underlying variable
|
|
than the PHI result).
|
|
|
|
Insert a copy from the PHI argument to a new destination at the
|
|
end of the block with the backedge to the top of the loop. Update
|
|
the PHI argument to reference this new destination. */
|
|
|
|
static void
|
|
insert_backedge_copies (void)
|
|
{
|
|
basic_block bb;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
mark_dfs_back_edges ();
|
|
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
/* Mark block as possibly needing calculation of UIDs. */
|
|
bb->aux = &bb->aux;
|
|
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple phi = gsi_stmt (gsi);
|
|
tree result = gimple_phi_result (phi);
|
|
size_t i;
|
|
|
|
if (virtual_operand_p (result))
|
|
continue;
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
tree arg = gimple_phi_arg_def (phi, i);
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
|
|
|
/* If the argument is not an SSA_NAME, then we will need a
|
|
constant initialization. If the argument is an SSA_NAME with
|
|
a different underlying variable then a copy statement will be
|
|
needed. */
|
|
if ((e->flags & EDGE_DFS_BACK)
|
|
&& (TREE_CODE (arg) != SSA_NAME
|
|
|| SSA_NAME_VAR (arg) != SSA_NAME_VAR (result)
|
|
|| trivially_conflicts_p (bb, result, arg)))
|
|
{
|
|
tree name;
|
|
gimple stmt, last = NULL;
|
|
gimple_stmt_iterator gsi2;
|
|
|
|
gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
|
|
if (!gsi_end_p (gsi2))
|
|
last = gsi_stmt (gsi2);
|
|
|
|
/* In theory the only way we ought to get back to the
|
|
start of a loop should be with a COND_EXPR or GOTO_EXPR.
|
|
However, better safe than sorry.
|
|
If the block ends with a control statement or
|
|
something that might throw, then we have to
|
|
insert this assignment before the last
|
|
statement. Else insert it after the last statement. */
|
|
if (last && stmt_ends_bb_p (last))
|
|
{
|
|
/* If the last statement in the block is the definition
|
|
site of the PHI argument, then we can't insert
|
|
anything after it. */
|
|
if (TREE_CODE (arg) == SSA_NAME
|
|
&& SSA_NAME_DEF_STMT (arg) == last)
|
|
continue;
|
|
}
|
|
|
|
/* Create a new instance of the underlying variable of the
|
|
PHI result. */
|
|
name = copy_ssa_name (result, NULL);
|
|
stmt = gimple_build_assign (name,
|
|
gimple_phi_arg_def (phi, i));
|
|
|
|
/* copy location if present. */
|
|
if (gimple_phi_arg_has_location (phi, i))
|
|
gimple_set_location (stmt,
|
|
gimple_phi_arg_location (phi, i));
|
|
|
|
/* Insert the new statement into the block and update
|
|
the PHI node. */
|
|
if (last && stmt_ends_bb_p (last))
|
|
gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
|
|
else
|
|
gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
|
|
SET_PHI_ARG_DEF (phi, i, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Unmark this block again. */
|
|
bb->aux = NULL;
|
|
}
|
|
}
|
|
|
|
/* Free all memory associated with going out of SSA form. SA is
|
|
the outof-SSA info object. */
|
|
|
|
void
|
|
finish_out_of_ssa (struct ssaexpand *sa)
|
|
{
|
|
free (sa->partition_to_pseudo);
|
|
if (sa->values)
|
|
BITMAP_FREE (sa->values);
|
|
delete_var_map (sa->map);
|
|
BITMAP_FREE (sa->partition_has_default_def);
|
|
memset (sa, 0, sizeof *sa);
|
|
}
|
|
|
|
/* Take the current function out of SSA form, translating PHIs as described in
|
|
R. Morgan, ``Building an Optimizing Compiler'',
|
|
Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
|
|
|
|
unsigned int
|
|
rewrite_out_of_ssa (struct ssaexpand *sa)
|
|
{
|
|
/* If elimination of a PHI requires inserting a copy on a backedge,
|
|
then we will have to split the backedge which has numerous
|
|
undesirable performance effects.
|
|
|
|
A significant number of such cases can be handled here by inserting
|
|
copies into the loop itself. */
|
|
insert_backedge_copies ();
|
|
|
|
|
|
/* Eliminate PHIs which are of no use, such as virtual or dead phis. */
|
|
eliminate_useless_phis ();
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
|
|
|
|
remove_ssa_form (flag_tree_ter, sa);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
|
|
|
|
return 0;
|
|
}
|