gcc/libgfortran/caf/single.c
Thomas Schwinge 17abb5ac38 libgfortran LIBGFOR_MINIMAL enhancements.
Based on GCC trunk r220892, for nvptx-none:

                    === gfortran Summary ===

    # of expected passes            [-31320-]{+32117+}
    # of unexpected failures        [-7222-]{+6821+}
    # of expected failures          78
    # of unresolved testcases       [-6441-]{+6158+}
    # of untested testcases         [-432-]{+391+}
    # of unsupported tests          639

	libgfortran/
	* caf/single.c (caf_runtime_error): Revert 2014-11-28 changes.
	* runtime/minimal.c (STRERR_MAXSZ): Don't define.
	(runtime_error_at, sys_abort): Bring more in line with the
	non-LIBGFOR_MINIMAL code.
	(runtime_warning_at, internal_error): New functions.

From-SVN: r221363
2015-03-11 22:42:56 +01:00

1150 lines
31 KiB
C

/* Single-image implementation of GNU Fortran Coarray Library
Copyright (C) 2011-2015 Free Software Foundation, Inc.
Contributed by Tobias Burnus <burnus@net-b.de>
This file is part of the GNU Fortran Coarray Runtime Library (libcaf).
Libcaf is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Libcaf is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libcaf.h"
#include <stdio.h> /* For fputs and fprintf. */
#include <stdlib.h> /* For exit and malloc. */
#include <string.h> /* For memcpy and memset. */
#include <stdarg.h> /* For variadic arguments. */
#include <assert.h>
/* Define GFC_CAF_CHECK to enable run-time checking. */
/* #define GFC_CAF_CHECK 1 */
typedef void* single_token_t;
#define TOKEN(X) ((single_token_t) (X))
/* Single-image implementation of the CAF library.
Note: For performance reasons -fcoarry=single should be used
rather than this library. */
/* Global variables. */
caf_static_t *caf_static_list = NULL;
/* Keep in sync with mpi.c. */
static void
caf_runtime_error (const char *message, ...)
{
va_list ap;
fprintf (stderr, "Fortran runtime error: ");
va_start (ap, message);
vfprintf (stderr, message, ap);
va_end (ap);
fprintf (stderr, "\n");
/* FIXME: Shutdown the Fortran RTL to flush the buffer. PR 43849. */
exit (EXIT_FAILURE);
}
void
_gfortran_caf_init (int *argc __attribute__ ((unused)),
char ***argv __attribute__ ((unused)))
{
}
void
_gfortran_caf_finalize (void)
{
while (caf_static_list != NULL)
{
caf_static_t *tmp = caf_static_list->prev;
free (caf_static_list->token);
free (caf_static_list);
caf_static_list = tmp;
}
}
int
_gfortran_caf_this_image (int distance __attribute__ ((unused)))
{
return 1;
}
int
_gfortran_caf_num_images (int distance __attribute__ ((unused)),
int failed __attribute__ ((unused)))
{
return 1;
}
void *
_gfortran_caf_register (size_t size, caf_register_t type, caf_token_t *token,
int *stat, char *errmsg, int errmsg_len)
{
void *local;
if (type == CAF_REGTYPE_LOCK_STATIC || type == CAF_REGTYPE_LOCK_ALLOC
|| type == CAF_REGTYPE_CRITICAL)
local = calloc (size, sizeof (bool));
else
local = malloc (size);
*token = malloc (sizeof (single_token_t));
if (unlikely (local == NULL || token == NULL))
{
const char msg[] = "Failed to allocate coarray";
if (stat)
{
*stat = 1;
if (errmsg_len > 0)
{
int len = ((int) sizeof (msg) > errmsg_len) ? errmsg_len
: (int) sizeof (msg);
memcpy (errmsg, msg, len);
if (errmsg_len > len)
memset (&errmsg[len], ' ', errmsg_len-len);
}
return NULL;
}
else
caf_runtime_error (msg);
}
*token = local;
if (stat)
*stat = 0;
if (type == CAF_REGTYPE_COARRAY_STATIC || type == CAF_REGTYPE_LOCK_STATIC
|| type == CAF_REGTYPE_CRITICAL)
{
caf_static_t *tmp = malloc (sizeof (caf_static_t));
tmp->prev = caf_static_list;
tmp->token = *token;
caf_static_list = tmp;
}
return local;
}
void
_gfortran_caf_deregister (caf_token_t *token, int *stat,
char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
free (TOKEN(*token));
if (stat)
*stat = 0;
}
void
_gfortran_caf_sync_all (int *stat,
char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
__asm__ __volatile__ ("":::"memory");
if (stat)
*stat = 0;
}
void
_gfortran_caf_sync_memory (int *stat,
char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
__asm__ __volatile__ ("":::"memory");
if (stat)
*stat = 0;
}
void
_gfortran_caf_sync_images (int count __attribute__ ((unused)),
int images[] __attribute__ ((unused)),
int *stat,
char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
#ifdef GFC_CAF_CHECK
int i;
for (i = 0; i < count; i++)
if (images[i] != 1)
{
fprintf (stderr, "COARRAY ERROR: Invalid image index %d to SYNC "
"IMAGES", images[i]);
exit (EXIT_FAILURE);
}
#endif
__asm__ __volatile__ ("":::"memory");
if (stat)
*stat = 0;
}
void
_gfortran_caf_error_stop_str (const char *string, int32_t len)
{
fputs ("ERROR STOP ", stderr);
while (len--)
fputc (*(string++), stderr);
fputs ("\n", stderr);
exit (1);
}
void
_gfortran_caf_error_stop (int32_t error)
{
fprintf (stderr, "ERROR STOP %d\n", error);
exit (error);
}
void
_gfortran_caf_co_broadcast (gfc_descriptor_t *a __attribute__ ((unused)),
int source_image __attribute__ ((unused)),
int *stat, char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
if (stat)
*stat = 0;
}
void
_gfortran_caf_co_sum (gfc_descriptor_t *a __attribute__ ((unused)),
int result_image __attribute__ ((unused)),
int *stat, char *errmsg __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
if (stat)
*stat = 0;
}
void
_gfortran_caf_co_min (gfc_descriptor_t *a __attribute__ ((unused)),
int result_image __attribute__ ((unused)),
int *stat, char *errmsg __attribute__ ((unused)),
int a_len __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
if (stat)
*stat = 0;
}
void
_gfortran_caf_co_max (gfc_descriptor_t *a __attribute__ ((unused)),
int result_image __attribute__ ((unused)),
int *stat, char *errmsg __attribute__ ((unused)),
int a_len __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
if (stat)
*stat = 0;
}
void
_gfortran_caf_co_reduce (gfc_descriptor_t *a __attribute__ ((unused)),
void * (*opr) (void *, void *)
__attribute__ ((unused)),
int opr_flags __attribute__ ((unused)),
int result_image __attribute__ ((unused)),
int *stat, char *errmsg __attribute__ ((unused)),
int a_len __attribute__ ((unused)),
int errmsg_len __attribute__ ((unused)))
{
if (stat)
*stat = 0;
}
static void
assign_char4_from_char1 (size_t dst_size, size_t src_size, uint32_t *dst,
unsigned char *src)
{
size_t i, n;
n = dst_size/4 > src_size ? src_size : dst_size/4;
for (i = 0; i < n; ++i)
dst[i] = (int32_t) src[i];
for (; i < dst_size/4; ++i)
dst[i] = (int32_t) ' ';
}
static void
assign_char1_from_char4 (size_t dst_size, size_t src_size, unsigned char *dst,
uint32_t *src)
{
size_t i, n;
n = dst_size > src_size/4 ? src_size/4 : dst_size;
for (i = 0; i < n; ++i)
dst[i] = src[i] > UINT8_MAX ? (unsigned char) '?' : (unsigned char) src[i];
if (dst_size > n)
memset(&dst[n], ' ', dst_size - n);
}
static void
convert_type (void *dst, int dst_type, int dst_kind, void *src, int src_type,
int src_kind)
{
#ifdef HAVE_GFC_INTEGER_16
typedef __int128 int128t;
#else
typedef int64_t int128t;
#endif
#if defined(GFC_REAL_16_IS_LONG_DOUBLE)
typedef long double real128t;
typedef _Complex long double complex128t;
#elif defined(HAVE_GFC_REAL_16)
typedef _Complex float __attribute__((mode(TC))) __complex128;
typedef __float128 real128t;
typedef __complex128 complex128t;
#elif defined(HAVE_GFC_REAL_10)
typedef long double real128t;
typedef long double complex128t;
#else
typedef double real128t;
typedef _Complex double complex128t;
#endif
int128t int_val = 0;
real128t real_val = 0;
complex128t cmpx_val = 0;
switch (src_type)
{
case BT_INTEGER:
if (src_kind == 1)
int_val = *(int8_t*) src;
else if (src_kind == 2)
int_val = *(int16_t*) src;
else if (src_kind == 4)
int_val = *(int32_t*) src;
else if (src_kind == 8)
int_val = *(int64_t*) src;
#ifdef HAVE_GFC_INTEGER_16
else if (src_kind == 16)
int_val = *(int128t*) src;
#endif
else
goto error;
break;
case BT_REAL:
if (src_kind == 4)
real_val = *(float*) src;
else if (src_kind == 8)
real_val = *(double*) src;
#ifdef HAVE_GFC_REAL_10
else if (src_kind == 10)
real_val = *(long double*) src;
#endif
#ifdef HAVE_GFC_REAL_16
else if (src_kind == 16)
real_val = *(real128t*) src;
#endif
else
goto error;
break;
case BT_COMPLEX:
if (src_kind == 4)
cmpx_val = *(_Complex float*) src;
else if (src_kind == 8)
cmpx_val = *(_Complex double*) src;
#ifdef HAVE_GFC_REAL_10
else if (src_kind == 10)
cmpx_val = *(_Complex long double*) src;
#endif
#ifdef HAVE_GFC_REAL_16
else if (src_kind == 16)
cmpx_val = *(complex128t*) src;
#endif
else
goto error;
break;
default:
goto error;
}
switch (dst_type)
{
case BT_INTEGER:
if (src_type == BT_INTEGER)
{
if (dst_kind == 1)
*(int8_t*) dst = (int8_t) int_val;
else if (dst_kind == 2)
*(int16_t*) dst = (int16_t) int_val;
else if (dst_kind == 4)
*(int32_t*) dst = (int32_t) int_val;
else if (dst_kind == 8)
*(int64_t*) dst = (int64_t) int_val;
#ifdef HAVE_GFC_INTEGER_16
else if (dst_kind == 16)
*(int128t*) dst = (int128t) int_val;
#endif
else
goto error;
}
else if (src_type == BT_REAL)
{
if (dst_kind == 1)
*(int8_t*) dst = (int8_t) real_val;
else if (dst_kind == 2)
*(int16_t*) dst = (int16_t) real_val;
else if (dst_kind == 4)
*(int32_t*) dst = (int32_t) real_val;
else if (dst_kind == 8)
*(int64_t*) dst = (int64_t) real_val;
#ifdef HAVE_GFC_INTEGER_16
else if (dst_kind == 16)
*(int128t*) dst = (int128t) real_val;
#endif
else
goto error;
}
else if (src_type == BT_COMPLEX)
{
if (dst_kind == 1)
*(int8_t*) dst = (int8_t) cmpx_val;
else if (dst_kind == 2)
*(int16_t*) dst = (int16_t) cmpx_val;
else if (dst_kind == 4)
*(int32_t*) dst = (int32_t) cmpx_val;
else if (dst_kind == 8)
*(int64_t*) dst = (int64_t) cmpx_val;
#ifdef HAVE_GFC_INTEGER_16
else if (dst_kind == 16)
*(int128t*) dst = (int128t) cmpx_val;
#endif
else
goto error;
}
else
goto error;
break;
case BT_REAL:
if (src_type == BT_INTEGER)
{
if (dst_kind == 4)
*(float*) dst = (float) int_val;
else if (dst_kind == 8)
*(double*) dst = (double) int_val;
#ifdef HAVE_GFC_REAL_10
else if (dst_kind == 10)
*(long double*) dst = (long double) int_val;
#endif
#ifdef HAVE_GFC_REAL_16
else if (dst_kind == 16)
*(real128t*) dst = (real128t) int_val;
#endif
else
goto error;
}
else if (src_type == BT_REAL)
{
if (dst_kind == 4)
*(float*) dst = (float) real_val;
else if (dst_kind == 8)
*(double*) dst = (double) real_val;
#ifdef HAVE_GFC_REAL_10
else if (dst_kind == 10)
*(long double*) dst = (long double) real_val;
#endif
#ifdef HAVE_GFC_REAL_16
else if (dst_kind == 16)
*(real128t*) dst = (real128t) real_val;
#endif
else
goto error;
}
else if (src_type == BT_COMPLEX)
{
if (dst_kind == 4)
*(float*) dst = (float) cmpx_val;
else if (dst_kind == 8)
*(double*) dst = (double) cmpx_val;
#ifdef HAVE_GFC_REAL_10
else if (dst_kind == 10)
*(long double*) dst = (long double) cmpx_val;
#endif
#ifdef HAVE_GFC_REAL_16
else if (dst_kind == 16)
*(real128t*) dst = (real128t) cmpx_val;
#endif
else
goto error;
}
break;
case BT_COMPLEX:
if (src_type == BT_INTEGER)
{
if (dst_kind == 4)
*(_Complex float*) dst = (_Complex float) int_val;
else if (dst_kind == 8)
*(_Complex double*) dst = (_Complex double) int_val;
#ifdef HAVE_GFC_REAL_10
else if (dst_kind == 10)
*(_Complex long double*) dst = (_Complex long double) int_val;
#endif
#ifdef HAVE_GFC_REAL_16
else if (dst_kind == 16)
*(complex128t*) dst = (complex128t) int_val;
#endif
else
goto error;
}
else if (src_type == BT_REAL)
{
if (dst_kind == 4)
*(_Complex float*) dst = (_Complex float) real_val;
else if (dst_kind == 8)
*(_Complex double*) dst = (_Complex double) real_val;
#ifdef HAVE_GFC_REAL_10
else if (dst_kind == 10)
*(_Complex long double*) dst = (_Complex long double) real_val;
#endif
#ifdef HAVE_GFC_REAL_16
else if (dst_kind == 16)
*(complex128t*) dst = (complex128t) real_val;
#endif
else
goto error;
}
else if (src_type == BT_COMPLEX)
{
if (dst_kind == 4)
*(_Complex float*) dst = (_Complex float) cmpx_val;
else if (dst_kind == 8)
*(_Complex double*) dst = (_Complex double) cmpx_val;
#ifdef HAVE_GFC_REAL_10
else if (dst_kind == 10)
*(_Complex long double*) dst = (_Complex long double) cmpx_val;
#endif
#ifdef HAVE_GFC_REAL_16
else if (dst_kind == 16)
*(complex128t*) dst = (complex128t) cmpx_val;
#endif
else
goto error;
}
else
goto error;
break;
default:
goto error;
}
error:
fprintf (stderr, "libcaf_single RUNTIME ERROR: Cannot convert type %d kind "
"%d to type %d kind %d\n", src_type, src_kind, dst_type, dst_kind);
abort();
}
void
_gfortran_caf_get (caf_token_t token, size_t offset,
int image_index __attribute__ ((unused)),
gfc_descriptor_t *src,
caf_vector_t *src_vector __attribute__ ((unused)),
gfc_descriptor_t *dest, int src_kind, int dst_kind,
bool may_require_tmp)
{
/* FIXME: Handle vector subscripts. */
size_t i, k, size;
int j;
int rank = GFC_DESCRIPTOR_RANK (dest);
size_t src_size = GFC_DESCRIPTOR_SIZE (src);
size_t dst_size = GFC_DESCRIPTOR_SIZE (dest);
if (rank == 0)
{
void *sr = (void *) ((char *) TOKEN (token) + offset);
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
&& dst_kind == src_kind)
{
memmove (GFC_DESCRIPTOR_DATA (dest), sr,
dst_size > src_size ? src_size : dst_size);
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) GFC_DESCRIPTOR_DATA (dest) + src_size,
' ', dst_size - src_size);
else /* dst_kind == 4. */
for (i = src_size/4; i < dst_size/4; i++)
((int32_t*) GFC_DESCRIPTOR_DATA (dest))[i] = (int32_t) ' ';
}
}
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, GFC_DESCRIPTOR_DATA (dest),
sr);
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, GFC_DESCRIPTOR_DATA (dest),
sr);
else
convert_type (GFC_DESCRIPTOR_DATA (dest), GFC_DESCRIPTOR_TYPE (dest),
dst_kind, sr, GFC_DESCRIPTOR_TYPE (src), src_kind);
return;
}
size = 1;
for (j = 0; j < rank; j++)
{
ptrdiff_t dimextent = dest->dim[j]._ubound - dest->dim[j].lower_bound + 1;
if (dimextent < 0)
dimextent = 0;
size *= dimextent;
}
if (size == 0)
return;
if (may_require_tmp)
{
ptrdiff_t array_offset_sr, array_offset_dst;
void *tmp = malloc (size*src_size);
array_offset_dst = 0;
for (i = 0; i < size; i++)
{
ptrdiff_t array_offset_sr = 0;
ptrdiff_t stride = 1;
ptrdiff_t extent = 1;
for (j = 0; j < GFC_DESCRIPTOR_RANK (src)-1; j++)
{
array_offset_sr += ((i / (extent*stride))
% (src->dim[j]._ubound
- src->dim[j].lower_bound + 1))
* src->dim[j]._stride;
extent = (src->dim[j]._ubound - src->dim[j].lower_bound + 1);
stride = src->dim[j]._stride;
}
array_offset_sr += (i / extent) * src->dim[rank-1]._stride;
void *sr = (void *)((char *) TOKEN (token) + offset
+ array_offset_sr*GFC_DESCRIPTOR_SIZE (src));
memcpy ((void *) ((char *) tmp + array_offset_dst), sr, src_size);
array_offset_dst += src_size;
}
array_offset_sr = 0;
for (i = 0; i < size; i++)
{
ptrdiff_t array_offset_dst = 0;
ptrdiff_t stride = 1;
ptrdiff_t extent = 1;
for (j = 0; j < rank-1; j++)
{
array_offset_dst += ((i / (extent*stride))
% (dest->dim[j]._ubound
- dest->dim[j].lower_bound + 1))
* dest->dim[j]._stride;
extent = (dest->dim[j]._ubound - dest->dim[j].lower_bound + 1);
stride = dest->dim[j]._stride;
}
array_offset_dst += (i / extent) * dest->dim[rank-1]._stride;
void *dst = dest->base_addr
+ array_offset_dst*GFC_DESCRIPTOR_SIZE (dest);
void *sr = tmp + array_offset_sr;
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
&& dst_kind == src_kind)
{
memmove (dst, sr, dst_size > src_size ? src_size : dst_size);
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER
&& dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) dst + src_size, ' ',
dst_size-src_size);
else /* dst_kind == 4. */
for (k = src_size/4; k < dst_size/4; k++)
((int32_t*) dst)[k] = (int32_t) ' ';
}
}
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, dst, sr);
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, dst, sr);
else
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
sr, GFC_DESCRIPTOR_TYPE (src), src_kind);
array_offset_sr += src_size;
}
free (tmp);
return;
}
for (i = 0; i < size; i++)
{
ptrdiff_t array_offset_dst = 0;
ptrdiff_t stride = 1;
ptrdiff_t extent = 1;
for (j = 0; j < rank-1; j++)
{
array_offset_dst += ((i / (extent*stride))
% (dest->dim[j]._ubound
- dest->dim[j].lower_bound + 1))
* dest->dim[j]._stride;
extent = (dest->dim[j]._ubound - dest->dim[j].lower_bound + 1);
stride = dest->dim[j]._stride;
}
array_offset_dst += (i / extent) * dest->dim[rank-1]._stride;
void *dst = dest->base_addr + array_offset_dst*GFC_DESCRIPTOR_SIZE (dest);
ptrdiff_t array_offset_sr = 0;
stride = 1;
extent = 1;
for (j = 0; j < GFC_DESCRIPTOR_RANK (src)-1; j++)
{
array_offset_sr += ((i / (extent*stride))
% (src->dim[j]._ubound
- src->dim[j].lower_bound + 1))
* src->dim[j]._stride;
extent = (src->dim[j]._ubound - src->dim[j].lower_bound + 1);
stride = src->dim[j]._stride;
}
array_offset_sr += (i / extent) * src->dim[rank-1]._stride;
void *sr = (void *)((char *) TOKEN (token) + offset
+ array_offset_sr*GFC_DESCRIPTOR_SIZE (src));
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
&& dst_kind == src_kind)
{
memmove (dst, sr, dst_size > src_size ? src_size : dst_size);
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) dst + src_size, ' ', dst_size-src_size);
else /* dst_kind == 4. */
for (k = src_size/4; k < dst_size/4; k++)
((int32_t*) dst)[k] = (int32_t) ' ';
}
}
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, dst, sr);
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, dst, sr);
else
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
sr, GFC_DESCRIPTOR_TYPE (src), src_kind);
}
}
void
_gfortran_caf_send (caf_token_t token, size_t offset,
int image_index __attribute__ ((unused)),
gfc_descriptor_t *dest,
caf_vector_t *dst_vector __attribute__ ((unused)),
gfc_descriptor_t *src, int dst_kind, int src_kind,
bool may_require_tmp)
{
/* FIXME: Handle vector subscripts. */
size_t i, k, size;
int j;
int rank = GFC_DESCRIPTOR_RANK (dest);
size_t src_size = GFC_DESCRIPTOR_SIZE (src);
size_t dst_size = GFC_DESCRIPTOR_SIZE (dest);
if (rank == 0)
{
void *dst = (void *) ((char *) TOKEN (token) + offset);
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
&& dst_kind == src_kind)
{
memmove (dst, GFC_DESCRIPTOR_DATA (src),
dst_size > src_size ? src_size : dst_size);
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) dst + src_size, ' ', dst_size-src_size);
else /* dst_kind == 4. */
for (i = src_size/4; i < dst_size/4; i++)
((int32_t*) dst)[i] = (int32_t) ' ';
}
}
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, dst,
GFC_DESCRIPTOR_DATA (src));
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, dst,
GFC_DESCRIPTOR_DATA (src));
else
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
GFC_DESCRIPTOR_DATA (src), GFC_DESCRIPTOR_TYPE (src),
src_kind);
return;
}
size = 1;
for (j = 0; j < rank; j++)
{
ptrdiff_t dimextent = dest->dim[j]._ubound - dest->dim[j].lower_bound + 1;
if (dimextent < 0)
dimextent = 0;
size *= dimextent;
}
if (size == 0)
return;
if (may_require_tmp)
{
ptrdiff_t array_offset_sr, array_offset_dst;
void *tmp;
if (GFC_DESCRIPTOR_RANK (src) == 0)
{
tmp = malloc (src_size);
memcpy (tmp, GFC_DESCRIPTOR_DATA (src), src_size);
}
else
{
tmp = malloc (size*src_size);
array_offset_dst = 0;
for (i = 0; i < size; i++)
{
ptrdiff_t array_offset_sr = 0;
ptrdiff_t stride = 1;
ptrdiff_t extent = 1;
for (j = 0; j < GFC_DESCRIPTOR_RANK (src)-1; j++)
{
array_offset_sr += ((i / (extent*stride))
% (src->dim[j]._ubound
- src->dim[j].lower_bound + 1))
* src->dim[j]._stride;
extent = (src->dim[j]._ubound - src->dim[j].lower_bound + 1);
stride = src->dim[j]._stride;
}
array_offset_sr += (i / extent) * src->dim[rank-1]._stride;
void *sr = (void *) ((char *) src->base_addr
+ array_offset_sr*GFC_DESCRIPTOR_SIZE (src));
memcpy ((void *) ((char *) tmp + array_offset_dst), sr, src_size);
array_offset_dst += src_size;
}
}
array_offset_sr = 0;
for (i = 0; i < size; i++)
{
ptrdiff_t array_offset_dst = 0;
ptrdiff_t stride = 1;
ptrdiff_t extent = 1;
for (j = 0; j < rank-1; j++)
{
array_offset_dst += ((i / (extent*stride))
% (dest->dim[j]._ubound
- dest->dim[j].lower_bound + 1))
* dest->dim[j]._stride;
extent = (dest->dim[j]._ubound - dest->dim[j].lower_bound + 1);
stride = dest->dim[j]._stride;
}
array_offset_dst += (i / extent) * dest->dim[rank-1]._stride;
void *dst = (void *)((char *) TOKEN (token) + offset
+ array_offset_dst*GFC_DESCRIPTOR_SIZE (dest));
void *sr = tmp + array_offset_sr;
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
&& dst_kind == src_kind)
{
memmove (dst, sr,
dst_size > src_size ? src_size : dst_size);
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER
&& dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) dst + src_size, ' ',
dst_size-src_size);
else /* dst_kind == 4. */
for (k = src_size/4; k < dst_size/4; k++)
((int32_t*) dst)[k] = (int32_t) ' ';
}
}
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, dst, sr);
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, dst, sr);
else
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
sr, GFC_DESCRIPTOR_TYPE (src), src_kind);
if (GFC_DESCRIPTOR_RANK (src))
array_offset_sr += src_size;
}
free (tmp);
return;
}
for (i = 0; i < size; i++)
{
ptrdiff_t array_offset_dst = 0;
ptrdiff_t stride = 1;
ptrdiff_t extent = 1;
for (j = 0; j < rank-1; j++)
{
array_offset_dst += ((i / (extent*stride))
% (dest->dim[j]._ubound
- dest->dim[j].lower_bound + 1))
* dest->dim[j]._stride;
extent = (dest->dim[j]._ubound - dest->dim[j].lower_bound + 1);
stride = dest->dim[j]._stride;
}
array_offset_dst += (i / extent) * dest->dim[rank-1]._stride;
void *dst = (void *)((char *) TOKEN (token) + offset
+ array_offset_dst*GFC_DESCRIPTOR_SIZE (dest));
void *sr;
if (GFC_DESCRIPTOR_RANK (src) != 0)
{
ptrdiff_t array_offset_sr = 0;
stride = 1;
extent = 1;
for (j = 0; j < GFC_DESCRIPTOR_RANK (src)-1; j++)
{
array_offset_sr += ((i / (extent*stride))
% (src->dim[j]._ubound
- src->dim[j].lower_bound + 1))
* src->dim[j]._stride;
extent = (src->dim[j]._ubound - src->dim[j].lower_bound + 1);
stride = src->dim[j]._stride;
}
array_offset_sr += (i / extent) * src->dim[rank-1]._stride;
sr = (void *)((char *) src->base_addr
+ array_offset_sr*GFC_DESCRIPTOR_SIZE (src));
}
else
sr = src->base_addr;
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
&& dst_kind == src_kind)
{
memmove (dst, sr,
dst_size > src_size ? src_size : dst_size);
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_size > src_size)
{
if (dst_kind == 1)
memset ((void*)(char*) dst + src_size, ' ', dst_size-src_size);
else /* dst_kind == 4. */
for (k = src_size/4; k < dst_size/4; k++)
((int32_t*) dst)[k] = (int32_t) ' ';
}
}
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
assign_char1_from_char4 (dst_size, src_size, dst, sr);
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
assign_char4_from_char1 (dst_size, src_size, dst, sr);
else
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
sr, GFC_DESCRIPTOR_TYPE (src), src_kind);
}
}
void
_gfortran_caf_sendget (caf_token_t dst_token, size_t dst_offset,
int dst_image_index, gfc_descriptor_t *dest,
caf_vector_t *dst_vector, caf_token_t src_token,
size_t src_offset,
int src_image_index __attribute__ ((unused)),
gfc_descriptor_t *src,
caf_vector_t *src_vector __attribute__ ((unused)),
int dst_kind, int src_kind, bool may_require_tmp)
{
/* FIXME: Handle vector subscript of 'src_vector'. */
/* For a single image, src->base_addr should be the same as src_token + offset
but to play save, we do it properly. */
void *src_base = GFC_DESCRIPTOR_DATA (src);
GFC_DESCRIPTOR_DATA (src) = (void *) ((char *) TOKEN (src_token) + src_offset);
_gfortran_caf_send (dst_token, dst_offset, dst_image_index, dest, dst_vector,
src, dst_kind, src_kind, may_require_tmp);
GFC_DESCRIPTOR_DATA (src) = src_base;
}
void
_gfortran_caf_atomic_define (caf_token_t token, size_t offset,
int image_index __attribute__ ((unused)),
void *value, int *stat,
int type __attribute__ ((unused)), int kind)
{
assert(kind == 4);
uint32_t *atom = (uint32_t *) ((char *) TOKEN (token) + offset);
__atomic_store (atom, (uint32_t *) value, __ATOMIC_RELAXED);
if (stat)
*stat = 0;
}
void
_gfortran_caf_atomic_ref (caf_token_t token, size_t offset,
int image_index __attribute__ ((unused)),
void *value, int *stat,
int type __attribute__ ((unused)), int kind)
{
assert(kind == 4);
uint32_t *atom = (uint32_t *) ((char *) TOKEN (token) + offset);
__atomic_load (atom, (uint32_t *) value, __ATOMIC_RELAXED);
if (stat)
*stat = 0;
}
void
_gfortran_caf_atomic_cas (caf_token_t token, size_t offset,
int image_index __attribute__ ((unused)),
void *old, void *compare, void *new_val, int *stat,
int type __attribute__ ((unused)), int kind)
{
assert(kind == 4);
uint32_t *atom = (uint32_t *) ((char *) TOKEN (token) + offset);
*(uint32_t *) old = *(uint32_t *) compare;
(void) __atomic_compare_exchange_n (atom, (uint32_t *) old,
*(uint32_t *) new_val, false,
__ATOMIC_RELAXED, __ATOMIC_RELAXED);
if (stat)
*stat = 0;
}
void
_gfortran_caf_atomic_op (int op, caf_token_t token, size_t offset,
int image_index __attribute__ ((unused)),
void *value, void *old, int *stat,
int type __attribute__ ((unused)), int kind)
{
assert(kind == 4);
uint32_t res;
uint32_t *atom = (uint32_t *) ((char *) TOKEN (token) + offset);
switch (op)
{
case GFC_CAF_ATOMIC_ADD:
res = __atomic_fetch_add (atom, *(uint32_t *) value, __ATOMIC_RELAXED);
break;
case GFC_CAF_ATOMIC_AND:
res = __atomic_fetch_and (atom, *(uint32_t *) value, __ATOMIC_RELAXED);
break;
case GFC_CAF_ATOMIC_OR:
res = __atomic_fetch_or (atom, *(uint32_t *) value, __ATOMIC_RELAXED);
break;
case GFC_CAF_ATOMIC_XOR:
res = __atomic_fetch_xor (atom, *(uint32_t *) value, __ATOMIC_RELAXED);
break;
default:
__builtin_unreachable();
}
if (old)
*(uint32_t *) old = res;
if (stat)
*stat = 0;
}
void
_gfortran_caf_lock (caf_token_t token, size_t index,
int image_index __attribute__ ((unused)),
int *aquired_lock, int *stat, char *errmsg, int errmsg_len)
{
const char *msg = "Already locked";
bool *lock = &((bool *) TOKEN (token))[index];
if (!*lock)
{
*lock = true;
if (aquired_lock)
*aquired_lock = (int) true;
if (stat)
*stat = 0;
return;
}
if (aquired_lock)
{
*aquired_lock = (int) false;
if (stat)
*stat = 0;
return;
}
if (stat)
{
*stat = 1;
if (errmsg_len > 0)
{
int len = ((int) sizeof (msg) > errmsg_len) ? errmsg_len
: (int) sizeof (msg);
memcpy (errmsg, msg, len);
if (errmsg_len > len)
memset (&errmsg[len], ' ', errmsg_len-len);
}
return;
}
_gfortran_caf_error_stop_str (msg, (int32_t) strlen (msg));
}
void
_gfortran_caf_unlock (caf_token_t token, size_t index,
int image_index __attribute__ ((unused)),
int *stat, char *errmsg, int errmsg_len)
{
const char *msg = "Variable is not locked";
bool *lock = &((bool *) TOKEN (token))[index];
if (*lock)
{
*lock = false;
if (stat)
*stat = 0;
return;
}
if (stat)
{
*stat = 1;
if (errmsg_len > 0)
{
int len = ((int) sizeof (msg) > errmsg_len) ? errmsg_len
: (int) sizeof (msg);
memcpy (errmsg, msg, len);
if (errmsg_len > len)
memset (&errmsg[len], ' ', errmsg_len-len);
}
return;
}
_gfortran_caf_error_stop_str (msg, (int32_t) strlen (msg));
}