6de9cd9a88
From-SVN: r81764
139 lines
3.6 KiB
C
139 lines
3.6 KiB
C
/* Implementation of the MATMUL intrinsic
|
|
Copyright 2002 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfor).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with libgfor; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "config.h"
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include "libgfortran.h"
|
|
|
|
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
|
|
Either a or b can be rank 1. In this case x or y is 1. */
|
|
void
|
|
__matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b)
|
|
{
|
|
GFC_REAL_8 *abase;
|
|
GFC_REAL_8 *bbase;
|
|
GFC_REAL_8 *dest;
|
|
GFC_REAL_8 res;
|
|
index_type rxstride;
|
|
index_type rystride;
|
|
index_type xcount;
|
|
index_type ycount;
|
|
index_type xstride;
|
|
index_type ystride;
|
|
index_type x;
|
|
index_type y;
|
|
|
|
GFC_REAL_8 *pa;
|
|
GFC_REAL_8 *pb;
|
|
index_type astride;
|
|
index_type bstride;
|
|
index_type count;
|
|
index_type n;
|
|
|
|
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
|
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
|
abase = a->data;
|
|
bbase = b->data;
|
|
dest = retarray->data;
|
|
|
|
if (retarray->dim[0].stride == 0)
|
|
retarray->dim[0].stride = 1;
|
|
if (a->dim[0].stride == 0)
|
|
a->dim[0].stride = 1;
|
|
if (b->dim[0].stride == 0)
|
|
b->dim[0].stride = 1;
|
|
|
|
|
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
|
{
|
|
rxstride = retarray->dim[0].stride;
|
|
rystride = rxstride;
|
|
}
|
|
else
|
|
{
|
|
rxstride = retarray->dim[0].stride;
|
|
rystride = retarray->dim[1].stride;
|
|
}
|
|
|
|
/* If we have rank 1 parameters, zero the absent stride, and set the size to
|
|
one. */
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
astride = a->dim[0].stride;
|
|
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
|
xstride = 0;
|
|
rxstride = 0;
|
|
xcount = 1;
|
|
}
|
|
else
|
|
{
|
|
astride = a->dim[1].stride;
|
|
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
|
|
xstride = a->dim[0].stride;
|
|
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
|
|
}
|
|
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
bstride = b->dim[0].stride;
|
|
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
|
ystride = 0;
|
|
rystride = 0;
|
|
ycount = 1;
|
|
}
|
|
else
|
|
{
|
|
bstride = b->dim[0].stride;
|
|
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
|
|
ystride = b->dim[1].stride;
|
|
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
|
|
}
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
for (x = 0; x < xcount; x++)
|
|
{
|
|
/* Do the summation for this element. For real and integer types
|
|
this is the same as DOT_PRODUCT. For complex types we use do
|
|
a*b, not conjg(a)*b. */
|
|
pa = abase;
|
|
pb = bbase;
|
|
res = 0;
|
|
|
|
for (n = 0; n < count; n++)
|
|
{
|
|
res += *pa * *pb;
|
|
pa += astride;
|
|
pb += bstride;
|
|
}
|
|
|
|
*dest = res;
|
|
|
|
dest += rxstride;
|
|
abase += xstride;
|
|
}
|
|
abase -= xstride * xcount;
|
|
bbase += ystride;
|
|
dest += rystride - (rxstride * xcount);
|
|
}
|
|
}
|
|
|