2660d12d0a
From-SVN: r195404
1856 lines
51 KiB
C++
1856 lines
51 KiB
C++
//===-- tsan_interceptors.cc ----------------------------------------------===//
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
// FIXME: move as many interceptors as possible into
|
|
// sanitizer_common/sanitizer_common_interceptors.h
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "sanitizer_common/sanitizer_atomic.h"
|
|
#include "sanitizer_common/sanitizer_libc.h"
|
|
#include "sanitizer_common/sanitizer_placement_new.h"
|
|
#include "sanitizer_common/sanitizer_stacktrace.h"
|
|
#include "interception/interception.h"
|
|
#include "tsan_interface.h"
|
|
#include "tsan_platform.h"
|
|
#include "tsan_rtl.h"
|
|
#include "tsan_mman.h"
|
|
#include "tsan_fd.h"
|
|
|
|
using namespace __tsan; // NOLINT
|
|
|
|
const int kSigCount = 128;
|
|
|
|
struct my_siginfo_t {
|
|
int opaque[128];
|
|
};
|
|
|
|
struct sigset_t {
|
|
u64 val[1024 / 8 / sizeof(u64)];
|
|
};
|
|
|
|
struct ucontext_t {
|
|
uptr opaque[117];
|
|
};
|
|
|
|
extern "C" int pthread_attr_init(void *attr);
|
|
extern "C" int pthread_attr_destroy(void *attr);
|
|
extern "C" int pthread_attr_getdetachstate(void *attr, int *v);
|
|
extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
|
|
extern "C" int pthread_attr_getstacksize(void *attr, uptr *stacksize);
|
|
extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
|
|
extern "C" int pthread_setspecific(unsigned key, const void *v);
|
|
extern "C" int pthread_mutexattr_gettype(void *a, int *type);
|
|
extern "C" int pthread_yield();
|
|
extern "C" int pthread_sigmask(int how, const sigset_t *set, sigset_t *oldset);
|
|
extern "C" int sigfillset(sigset_t *set);
|
|
extern "C" void *pthread_self();
|
|
extern "C" void _exit(int status);
|
|
extern "C" int __cxa_atexit(void (*func)(void *arg), void *arg, void *dso);
|
|
extern "C" int *__errno_location();
|
|
extern "C" int fileno_unlocked(void *stream);
|
|
const int PTHREAD_MUTEX_RECURSIVE = 1;
|
|
const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
|
|
const int kPthreadAttrSize = 56;
|
|
const int EINVAL = 22;
|
|
const int EBUSY = 16;
|
|
const int EPOLL_CTL_ADD = 1;
|
|
const int SIGILL = 4;
|
|
const int SIGABRT = 6;
|
|
const int SIGFPE = 8;
|
|
const int SIGSEGV = 11;
|
|
const int SIGPIPE = 13;
|
|
const int SIGBUS = 7;
|
|
void *const MAP_FAILED = (void*)-1;
|
|
const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
|
|
const int MAP_FIXED = 0x10;
|
|
typedef long long_t; // NOLINT
|
|
|
|
// From /usr/include/unistd.h
|
|
# define F_ULOCK 0 /* Unlock a previously locked region. */
|
|
# define F_LOCK 1 /* Lock a region for exclusive use. */
|
|
# define F_TLOCK 2 /* Test and lock a region for exclusive use. */
|
|
# define F_TEST 3 /* Test a region for other processes locks. */
|
|
|
|
typedef void (*sighandler_t)(int sig);
|
|
|
|
#define errno (*__errno_location())
|
|
|
|
union pthread_attr_t {
|
|
char size[kPthreadAttrSize];
|
|
void *align;
|
|
};
|
|
|
|
struct sigaction_t {
|
|
union {
|
|
sighandler_t sa_handler;
|
|
void (*sa_sigaction)(int sig, my_siginfo_t *siginfo, void *uctx);
|
|
};
|
|
sigset_t sa_mask;
|
|
int sa_flags;
|
|
void (*sa_restorer)();
|
|
};
|
|
|
|
const sighandler_t SIG_DFL = (sighandler_t)0;
|
|
const sighandler_t SIG_IGN = (sighandler_t)1;
|
|
const sighandler_t SIG_ERR = (sighandler_t)-1;
|
|
const int SA_SIGINFO = 4;
|
|
const int SIG_SETMASK = 2;
|
|
|
|
namespace std {
|
|
struct nothrow_t {};
|
|
} // namespace std
|
|
|
|
static sigaction_t sigactions[kSigCount];
|
|
|
|
namespace __tsan {
|
|
struct SignalDesc {
|
|
bool armed;
|
|
bool sigaction;
|
|
my_siginfo_t siginfo;
|
|
ucontext_t ctx;
|
|
};
|
|
|
|
struct SignalContext {
|
|
int in_blocking_func;
|
|
int int_signal_send;
|
|
int pending_signal_count;
|
|
SignalDesc pending_signals[kSigCount];
|
|
};
|
|
}
|
|
|
|
static SignalContext *SigCtx(ThreadState *thr) {
|
|
SignalContext *ctx = (SignalContext*)thr->signal_ctx;
|
|
if (ctx == 0 && thr->is_alive) {
|
|
ScopedInRtl in_rtl;
|
|
ctx = (SignalContext*)MmapOrDie(sizeof(*ctx), "SignalContext");
|
|
MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
|
|
thr->signal_ctx = ctx;
|
|
}
|
|
return ctx;
|
|
}
|
|
|
|
static unsigned g_thread_finalize_key;
|
|
|
|
class ScopedInterceptor {
|
|
public:
|
|
ScopedInterceptor(ThreadState *thr, const char *fname, uptr pc);
|
|
~ScopedInterceptor();
|
|
private:
|
|
ThreadState *const thr_;
|
|
const int in_rtl_;
|
|
};
|
|
|
|
ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
|
|
uptr pc)
|
|
: thr_(thr)
|
|
, in_rtl_(thr->in_rtl) {
|
|
if (thr_->in_rtl == 0) {
|
|
Initialize(thr);
|
|
FuncEntry(thr, pc);
|
|
thr_->in_rtl++;
|
|
DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
|
|
} else {
|
|
thr_->in_rtl++;
|
|
}
|
|
}
|
|
|
|
ScopedInterceptor::~ScopedInterceptor() {
|
|
thr_->in_rtl--;
|
|
if (thr_->in_rtl == 0) {
|
|
FuncExit(thr_);
|
|
ProcessPendingSignals(thr_);
|
|
}
|
|
CHECK_EQ(in_rtl_, thr_->in_rtl);
|
|
}
|
|
|
|
#define SCOPED_INTERCEPTOR_RAW(func, ...) \
|
|
ThreadState *thr = cur_thread(); \
|
|
StatInc(thr, StatInterceptor); \
|
|
StatInc(thr, StatInt_##func); \
|
|
const uptr caller_pc = GET_CALLER_PC(); \
|
|
ScopedInterceptor si(thr, #func, caller_pc); \
|
|
const uptr pc = __sanitizer::StackTrace::GetPreviousInstructionPc( \
|
|
__sanitizer::StackTrace::GetCurrentPc()); \
|
|
(void)pc; \
|
|
/**/
|
|
|
|
#define SCOPED_TSAN_INTERCEPTOR(func, ...) \
|
|
SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
|
|
if (REAL(func) == 0) { \
|
|
Printf("FATAL: ThreadSanitizer: failed to intercept %s\n", #func); \
|
|
Die(); \
|
|
} \
|
|
if (thr->in_rtl > 1) \
|
|
return REAL(func)(__VA_ARGS__); \
|
|
/**/
|
|
|
|
#define TSAN_INTERCEPTOR(ret, func, ...) INTERCEPTOR(ret, func, __VA_ARGS__)
|
|
#define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
|
|
|
|
#define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
|
|
|
|
struct BlockingCall {
|
|
explicit BlockingCall(ThreadState *thr)
|
|
: ctx(SigCtx(thr)) {
|
|
ctx->in_blocking_func++;
|
|
}
|
|
|
|
~BlockingCall() {
|
|
ctx->in_blocking_func--;
|
|
}
|
|
|
|
SignalContext *ctx;
|
|
};
|
|
|
|
TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
|
|
SCOPED_TSAN_INTERCEPTOR(sleep, sec);
|
|
unsigned res = BLOCK_REAL(sleep)(sec);
|
|
AfterSleep(thr, pc);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, usleep, long_t usec) {
|
|
SCOPED_TSAN_INTERCEPTOR(usleep, usec);
|
|
int res = BLOCK_REAL(usleep)(usec);
|
|
AfterSleep(thr, pc);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
|
|
SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
|
|
int res = BLOCK_REAL(nanosleep)(req, rem);
|
|
AfterSleep(thr, pc);
|
|
return res;
|
|
}
|
|
|
|
class AtExitContext {
|
|
public:
|
|
AtExitContext()
|
|
: mtx_(MutexTypeAtExit, StatMtxAtExit)
|
|
, pos_() {
|
|
}
|
|
|
|
typedef void(*atexit_t)();
|
|
|
|
int atexit(ThreadState *thr, uptr pc, atexit_t f) {
|
|
Lock l(&mtx_);
|
|
if (pos_ == kMaxAtExit)
|
|
return 1;
|
|
Release(thr, pc, (uptr)this);
|
|
stack_[pos_] = f;
|
|
pos_++;
|
|
return 0;
|
|
}
|
|
|
|
void exit(ThreadState *thr, uptr pc) {
|
|
CHECK_EQ(thr->in_rtl, 0);
|
|
for (;;) {
|
|
atexit_t f = 0;
|
|
{
|
|
Lock l(&mtx_);
|
|
if (pos_) {
|
|
pos_--;
|
|
f = stack_[pos_];
|
|
ScopedInRtl in_rtl;
|
|
Acquire(thr, pc, (uptr)this);
|
|
}
|
|
}
|
|
if (f == 0)
|
|
break;
|
|
DPrintf("#%d: executing atexit func %p\n", thr->tid, f);
|
|
CHECK_EQ(thr->in_rtl, 0);
|
|
f();
|
|
}
|
|
}
|
|
|
|
private:
|
|
static const int kMaxAtExit = 128;
|
|
Mutex mtx_;
|
|
atexit_t stack_[kMaxAtExit];
|
|
int pos_;
|
|
};
|
|
|
|
static AtExitContext *atexit_ctx;
|
|
|
|
static void finalize(void *arg) {
|
|
ThreadState * thr = cur_thread();
|
|
uptr pc = 0;
|
|
atexit_ctx->exit(thr, pc);
|
|
{
|
|
ScopedInRtl in_rtl;
|
|
DestroyAndFree(atexit_ctx);
|
|
}
|
|
int status = Finalize(cur_thread());
|
|
if (status)
|
|
_exit(status);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
|
|
SCOPED_TSAN_INTERCEPTOR(atexit, f);
|
|
return atexit_ctx->atexit(thr, pc, f);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void, longjmp, void *env, int val) {
|
|
SCOPED_TSAN_INTERCEPTOR(longjmp, env, val);
|
|
Printf("ThreadSanitizer: longjmp() is not supported\n");
|
|
Die();
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void, siglongjmp, void *env, int val) {
|
|
SCOPED_TSAN_INTERCEPTOR(siglongjmp, env, val);
|
|
Printf("ThreadSanitizer: siglongjmp() is not supported\n");
|
|
Die();
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, malloc, uptr size) {
|
|
void *p = 0;
|
|
{
|
|
SCOPED_INTERCEPTOR_RAW(malloc, size);
|
|
p = user_alloc(thr, pc, size);
|
|
}
|
|
invoke_malloc_hook(p, size);
|
|
return p;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
|
|
SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
|
|
return user_alloc(thr, pc, sz, align);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
|
|
void *p = 0;
|
|
{
|
|
SCOPED_INTERCEPTOR_RAW(calloc, size, n);
|
|
p = user_alloc(thr, pc, n * size);
|
|
if (p) internal_memset(p, 0, n * size);
|
|
}
|
|
invoke_malloc_hook(p, n * size);
|
|
return p;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
|
|
if (p)
|
|
invoke_free_hook(p);
|
|
{
|
|
SCOPED_INTERCEPTOR_RAW(realloc, p, size);
|
|
p = user_realloc(thr, pc, p, size);
|
|
}
|
|
invoke_malloc_hook(p, size);
|
|
return p;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void, free, void *p) {
|
|
if (p == 0)
|
|
return;
|
|
invoke_free_hook(p);
|
|
SCOPED_INTERCEPTOR_RAW(free, p);
|
|
user_free(thr, pc, p);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void, cfree, void *p) {
|
|
if (p == 0)
|
|
return;
|
|
invoke_free_hook(p);
|
|
SCOPED_INTERCEPTOR_RAW(cfree, p);
|
|
user_free(thr, pc, p);
|
|
}
|
|
|
|
#define OPERATOR_NEW_BODY(mangled_name) \
|
|
void *p = 0; \
|
|
{ \
|
|
SCOPED_INTERCEPTOR_RAW(mangled_name, size); \
|
|
p = user_alloc(thr, pc, size); \
|
|
} \
|
|
invoke_malloc_hook(p, size); \
|
|
return p;
|
|
|
|
void *operator new(__sanitizer::uptr size) {
|
|
OPERATOR_NEW_BODY(_Znwm);
|
|
}
|
|
void *operator new[](__sanitizer::uptr size) {
|
|
OPERATOR_NEW_BODY(_Znam);
|
|
}
|
|
void *operator new(__sanitizer::uptr size, std::nothrow_t const&) {
|
|
OPERATOR_NEW_BODY(_ZnwmRKSt9nothrow_t);
|
|
}
|
|
void *operator new[](__sanitizer::uptr size, std::nothrow_t const&) {
|
|
OPERATOR_NEW_BODY(_ZnamRKSt9nothrow_t);
|
|
}
|
|
|
|
#define OPERATOR_DELETE_BODY(mangled_name) \
|
|
if (ptr == 0) return; \
|
|
invoke_free_hook(ptr); \
|
|
SCOPED_INTERCEPTOR_RAW(mangled_name, ptr); \
|
|
user_free(thr, pc, ptr);
|
|
|
|
void operator delete(void *ptr) {
|
|
OPERATOR_DELETE_BODY(_ZdlPv);
|
|
}
|
|
void operator delete[](void *ptr) {
|
|
OPERATOR_DELETE_BODY(_ZdlPvRKSt9nothrow_t);
|
|
}
|
|
void operator delete(void *ptr, std::nothrow_t const&) {
|
|
OPERATOR_DELETE_BODY(_ZdaPv);
|
|
}
|
|
void operator delete[](void *ptr, std::nothrow_t const&) {
|
|
OPERATOR_DELETE_BODY(_ZdaPvRKSt9nothrow_t);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(uptr, strlen, const char *s) {
|
|
SCOPED_TSAN_INTERCEPTOR(strlen, s);
|
|
uptr len = internal_strlen(s);
|
|
MemoryAccessRange(thr, pc, (uptr)s, len + 1, false);
|
|
return len;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, memset, void *dst, int v, uptr size) {
|
|
SCOPED_TSAN_INTERCEPTOR(memset, dst, v, size);
|
|
MemoryAccessRange(thr, pc, (uptr)dst, size, true);
|
|
return internal_memset(dst, v, size);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, memcpy, void *dst, const void *src, uptr size) {
|
|
SCOPED_TSAN_INTERCEPTOR(memcpy, dst, src, size);
|
|
MemoryAccessRange(thr, pc, (uptr)dst, size, true);
|
|
MemoryAccessRange(thr, pc, (uptr)src, size, false);
|
|
return internal_memcpy(dst, src, size);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, memcmp, const void *s1, const void *s2, uptr n) {
|
|
SCOPED_TSAN_INTERCEPTOR(memcmp, s1, s2, n);
|
|
int res = 0;
|
|
uptr len = 0;
|
|
for (; len < n; len++) {
|
|
if ((res = ((unsigned char*)s1)[len] - ((unsigned char*)s2)[len]))
|
|
break;
|
|
}
|
|
MemoryAccessRange(thr, pc, (uptr)s1, len < n ? len + 1 : n, false);
|
|
MemoryAccessRange(thr, pc, (uptr)s2, len < n ? len + 1 : n, false);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, strcmp, const char *s1, const char *s2) {
|
|
SCOPED_TSAN_INTERCEPTOR(strcmp, s1, s2);
|
|
uptr len = 0;
|
|
for (; s1[len] && s2[len]; len++) {
|
|
if (s1[len] != s2[len])
|
|
break;
|
|
}
|
|
MemoryAccessRange(thr, pc, (uptr)s1, len + 1, false);
|
|
MemoryAccessRange(thr, pc, (uptr)s2, len + 1, false);
|
|
return s1[len] - s2[len];
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, strncmp, const char *s1, const char *s2, uptr n) {
|
|
SCOPED_TSAN_INTERCEPTOR(strncmp, s1, s2, n);
|
|
uptr len = 0;
|
|
for (; len < n && s1[len] && s2[len]; len++) {
|
|
if (s1[len] != s2[len])
|
|
break;
|
|
}
|
|
MemoryAccessRange(thr, pc, (uptr)s1, len < n ? len + 1 : n, false);
|
|
MemoryAccessRange(thr, pc, (uptr)s2, len < n ? len + 1 : n, false);
|
|
return len == n ? 0 : s1[len] - s2[len];
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, memchr, void *s, int c, uptr n) {
|
|
SCOPED_TSAN_INTERCEPTOR(memchr, s, c, n);
|
|
void *res = REAL(memchr)(s, c, n);
|
|
uptr len = res ? (char*)res - (char*)s + 1 : n;
|
|
MemoryAccessRange(thr, pc, (uptr)s, len, false);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, memrchr, char *s, int c, uptr n) {
|
|
SCOPED_TSAN_INTERCEPTOR(memrchr, s, c, n);
|
|
MemoryAccessRange(thr, pc, (uptr)s, n, false);
|
|
return REAL(memrchr)(s, c, n);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, memmove, void *dst, void *src, uptr n) {
|
|
SCOPED_TSAN_INTERCEPTOR(memmove, dst, src, n);
|
|
MemoryAccessRange(thr, pc, (uptr)dst, n, true);
|
|
MemoryAccessRange(thr, pc, (uptr)src, n, false);
|
|
return REAL(memmove)(dst, src, n);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(char*, strchr, char *s, int c) {
|
|
SCOPED_TSAN_INTERCEPTOR(strchr, s, c);
|
|
char *res = REAL(strchr)(s, c);
|
|
uptr len = res ? (char*)res - (char*)s + 1 : internal_strlen(s) + 1;
|
|
MemoryAccessRange(thr, pc, (uptr)s, len, false);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(char*, strchrnul, char *s, int c) {
|
|
SCOPED_TSAN_INTERCEPTOR(strchrnul, s, c);
|
|
char *res = REAL(strchrnul)(s, c);
|
|
uptr len = (char*)res - (char*)s + 1;
|
|
MemoryAccessRange(thr, pc, (uptr)s, len, false);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(char*, strrchr, char *s, int c) {
|
|
SCOPED_TSAN_INTERCEPTOR(strrchr, s, c);
|
|
MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s) + 1, false);
|
|
return REAL(strrchr)(s, c);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) { // NOLINT
|
|
SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src); // NOLINT
|
|
uptr srclen = internal_strlen(src);
|
|
MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
|
|
MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
|
|
return REAL(strcpy)(dst, src); // NOLINT
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
|
|
SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
|
|
uptr srclen = internal_strnlen(src, n);
|
|
MemoryAccessRange(thr, pc, (uptr)dst, n, true);
|
|
MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
|
|
return REAL(strncpy)(dst, src, n);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(const char*, strstr, const char *s1, const char *s2) {
|
|
SCOPED_TSAN_INTERCEPTOR(strstr, s1, s2);
|
|
const char *res = REAL(strstr)(s1, s2);
|
|
uptr len1 = internal_strlen(s1);
|
|
uptr len2 = internal_strlen(s2);
|
|
MemoryAccessRange(thr, pc, (uptr)s1, len1 + 1, false);
|
|
MemoryAccessRange(thr, pc, (uptr)s2, len2 + 1, false);
|
|
return res;
|
|
}
|
|
|
|
static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
|
|
if (*addr) {
|
|
if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
|
|
if (flags & MAP_FIXED) {
|
|
errno = EINVAL;
|
|
return false;
|
|
} else {
|
|
*addr = 0;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, mmap, void *addr, long_t sz, int prot,
|
|
int flags, int fd, unsigned off) {
|
|
SCOPED_TSAN_INTERCEPTOR(mmap, addr, sz, prot, flags, fd, off);
|
|
if (!fix_mmap_addr(&addr, sz, flags))
|
|
return MAP_FAILED;
|
|
void *res = REAL(mmap)(addr, sz, prot, flags, fd, off);
|
|
if (res != MAP_FAILED) {
|
|
MemoryResetRange(thr, pc, (uptr)res, sz);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, mmap64, void *addr, long_t sz, int prot,
|
|
int flags, int fd, u64 off) {
|
|
SCOPED_TSAN_INTERCEPTOR(mmap64, addr, sz, prot, flags, fd, off);
|
|
if (!fix_mmap_addr(&addr, sz, flags))
|
|
return MAP_FAILED;
|
|
void *res = REAL(mmap64)(addr, sz, prot, flags, fd, off);
|
|
if (res != MAP_FAILED) {
|
|
MemoryResetRange(thr, pc, (uptr)res, sz);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
|
|
SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
|
|
int res = REAL(munmap)(addr, sz);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
|
|
SCOPED_TSAN_INTERCEPTOR(memalign, align, sz);
|
|
return user_alloc(thr, pc, sz, align);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
|
|
SCOPED_TSAN_INTERCEPTOR(valloc, sz);
|
|
return user_alloc(thr, pc, sz, GetPageSizeCached());
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
|
|
SCOPED_TSAN_INTERCEPTOR(pvalloc, sz);
|
|
sz = RoundUp(sz, GetPageSizeCached());
|
|
return user_alloc(thr, pc, sz, GetPageSizeCached());
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
|
|
SCOPED_TSAN_INTERCEPTOR(posix_memalign, memptr, align, sz);
|
|
*memptr = user_alloc(thr, pc, sz, align);
|
|
return 0;
|
|
}
|
|
|
|
// Used in thread-safe function static initialization.
|
|
extern "C" int INTERFACE_ATTRIBUTE __cxa_guard_acquire(atomic_uint32_t *g) {
|
|
SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
|
|
for (;;) {
|
|
u32 cmp = atomic_load(g, memory_order_acquire);
|
|
if (cmp == 0) {
|
|
if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
|
|
return 1;
|
|
} else if (cmp == 1) {
|
|
Acquire(thr, pc, (uptr)g);
|
|
return 0;
|
|
} else {
|
|
internal_sched_yield();
|
|
}
|
|
}
|
|
}
|
|
|
|
extern "C" void INTERFACE_ATTRIBUTE __cxa_guard_release(atomic_uint32_t *g) {
|
|
SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
|
|
Release(thr, pc, (uptr)g);
|
|
atomic_store(g, 1, memory_order_release);
|
|
}
|
|
|
|
extern "C" void INTERFACE_ATTRIBUTE __cxa_guard_abort(atomic_uint32_t *g) {
|
|
SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
|
|
atomic_store(g, 0, memory_order_relaxed);
|
|
}
|
|
|
|
static void thread_finalize(void *v) {
|
|
uptr iter = (uptr)v;
|
|
if (iter > 1) {
|
|
if (pthread_setspecific(g_thread_finalize_key, (void*)(iter - 1))) {
|
|
Printf("ThreadSanitizer: failed to set thread key\n");
|
|
Die();
|
|
}
|
|
return;
|
|
}
|
|
{
|
|
ScopedInRtl in_rtl;
|
|
ThreadState *thr = cur_thread();
|
|
ThreadFinish(thr);
|
|
SignalContext *sctx = thr->signal_ctx;
|
|
if (sctx) {
|
|
thr->signal_ctx = 0;
|
|
UnmapOrDie(sctx, sizeof(*sctx));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
struct ThreadParam {
|
|
void* (*callback)(void *arg);
|
|
void *param;
|
|
atomic_uintptr_t tid;
|
|
};
|
|
|
|
extern "C" void *__tsan_thread_start_func(void *arg) {
|
|
ThreadParam *p = (ThreadParam*)arg;
|
|
void* (*callback)(void *arg) = p->callback;
|
|
void *param = p->param;
|
|
int tid = 0;
|
|
{
|
|
ThreadState *thr = cur_thread();
|
|
ScopedInRtl in_rtl;
|
|
if (pthread_setspecific(g_thread_finalize_key, (void*)4)) {
|
|
Printf("ThreadSanitizer: failed to set thread key\n");
|
|
Die();
|
|
}
|
|
while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
|
|
pthread_yield();
|
|
atomic_store(&p->tid, 0, memory_order_release);
|
|
ThreadStart(thr, tid, GetTid());
|
|
CHECK_EQ(thr->in_rtl, 1);
|
|
}
|
|
void *res = callback(param);
|
|
// Prevent the callback from being tail called,
|
|
// it mixes up stack traces.
|
|
volatile int foo = 42;
|
|
foo++;
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_create,
|
|
void *th, void *attr, void *(*callback)(void*), void * param) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_create, th, attr, callback, param);
|
|
pthread_attr_t myattr;
|
|
if (attr == 0) {
|
|
pthread_attr_init(&myattr);
|
|
attr = &myattr;
|
|
}
|
|
int detached = 0;
|
|
pthread_attr_getdetachstate(attr, &detached);
|
|
uptr stacksize = 0;
|
|
pthread_attr_getstacksize(attr, &stacksize);
|
|
// We place the huge ThreadState object into TLS, account for that.
|
|
const uptr minstacksize = GetTlsSize() + 128*1024;
|
|
if (stacksize < minstacksize) {
|
|
DPrintf("ThreadSanitizer: stacksize %zu->%zu\n", stacksize, minstacksize);
|
|
pthread_attr_setstacksize(attr, minstacksize);
|
|
}
|
|
ThreadParam p;
|
|
p.callback = callback;
|
|
p.param = param;
|
|
atomic_store(&p.tid, 0, memory_order_relaxed);
|
|
int res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
|
|
if (res == 0) {
|
|
int tid = ThreadCreate(thr, pc, *(uptr*)th, detached);
|
|
CHECK_NE(tid, 0);
|
|
atomic_store(&p.tid, tid, memory_order_release);
|
|
while (atomic_load(&p.tid, memory_order_acquire) != 0)
|
|
pthread_yield();
|
|
}
|
|
if (attr == &myattr)
|
|
pthread_attr_destroy(&myattr);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_join, th, ret);
|
|
int tid = ThreadTid(thr, pc, (uptr)th);
|
|
int res = BLOCK_REAL(pthread_join)(th, ret);
|
|
if (res == 0) {
|
|
ThreadJoin(thr, pc, tid);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
|
|
int tid = ThreadTid(thr, pc, (uptr)th);
|
|
int res = REAL(pthread_detach)(th);
|
|
if (res == 0) {
|
|
ThreadDetach(thr, pc, tid);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
|
|
int res = REAL(pthread_mutex_init)(m, a);
|
|
if (res == 0) {
|
|
bool recursive = false;
|
|
if (a) {
|
|
int type = 0;
|
|
if (pthread_mutexattr_gettype(a, &type) == 0)
|
|
recursive = (type == PTHREAD_MUTEX_RECURSIVE
|
|
|| type == PTHREAD_MUTEX_RECURSIVE_NP);
|
|
}
|
|
MutexCreate(thr, pc, (uptr)m, false, recursive, false);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
|
|
int res = REAL(pthread_mutex_destroy)(m);
|
|
if (res == 0 || res == EBUSY) {
|
|
MutexDestroy(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_mutex_lock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_lock, m);
|
|
int res = REAL(pthread_mutex_lock)(m);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
|
|
int res = REAL(pthread_mutex_trylock)(m);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
|
|
int res = REAL(pthread_mutex_timedlock)(m, abstime);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_mutex_unlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_unlock, m);
|
|
MutexUnlock(thr, pc, (uptr)m);
|
|
int res = REAL(pthread_mutex_unlock)(m);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
|
|
int res = REAL(pthread_spin_init)(m, pshared);
|
|
if (res == 0) {
|
|
MutexCreate(thr, pc, (uptr)m, false, false, false);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
|
|
int res = REAL(pthread_spin_destroy)(m);
|
|
if (res == 0) {
|
|
MutexDestroy(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
|
|
int res = REAL(pthread_spin_lock)(m);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
|
|
int res = REAL(pthread_spin_trylock)(m);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
|
|
MutexUnlock(thr, pc, (uptr)m);
|
|
int res = REAL(pthread_spin_unlock)(m);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
|
|
int res = REAL(pthread_rwlock_init)(m, a);
|
|
if (res == 0) {
|
|
MutexCreate(thr, pc, (uptr)m, true, false, false);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
|
|
int res = REAL(pthread_rwlock_destroy)(m);
|
|
if (res == 0) {
|
|
MutexDestroy(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
|
|
int res = REAL(pthread_rwlock_rdlock)(m);
|
|
if (res == 0) {
|
|
MutexReadLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
|
|
int res = REAL(pthread_rwlock_tryrdlock)(m);
|
|
if (res == 0) {
|
|
MutexReadLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
|
|
int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
|
|
if (res == 0) {
|
|
MutexReadLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
|
|
int res = REAL(pthread_rwlock_wrlock)(m);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
|
|
int res = REAL(pthread_rwlock_trywrlock)(m);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
|
|
int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
|
|
MutexReadOrWriteUnlock(thr, pc, (uptr)m);
|
|
int res = REAL(pthread_rwlock_unlock)(m);
|
|
return res;
|
|
}
|
|
|
|
// libpthread.so contains several versions of pthread_cond_init symbol.
|
|
// When we just dlsym() it, we get the wrong (old) version.
|
|
/*
|
|
TSAN_INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, c, a);
|
|
int res = REAL(pthread_cond_init)(c, a);
|
|
return res;
|
|
}
|
|
*/
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_cond_destroy, void *c) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, c);
|
|
int res = REAL(pthread_cond_destroy)(c);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_cond_signal, void *c) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, c);
|
|
int res = REAL(pthread_cond_signal)(c);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, c);
|
|
int res = REAL(pthread_cond_broadcast)(c);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, c, m);
|
|
MutexUnlock(thr, pc, (uptr)m);
|
|
int res = REAL(pthread_cond_wait)(c, m);
|
|
MutexLock(thr, pc, (uptr)m);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, c, m, abstime);
|
|
MutexUnlock(thr, pc, (uptr)m);
|
|
int res = REAL(pthread_cond_timedwait)(c, m, abstime);
|
|
MutexLock(thr, pc, (uptr)m);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
|
|
MemoryWrite1Byte(thr, pc, (uptr)b);
|
|
int res = REAL(pthread_barrier_init)(b, a, count);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
|
|
MemoryWrite1Byte(thr, pc, (uptr)b);
|
|
int res = REAL(pthread_barrier_destroy)(b);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
|
|
Release(thr, pc, (uptr)b);
|
|
MemoryRead1Byte(thr, pc, (uptr)b);
|
|
int res = REAL(pthread_barrier_wait)(b);
|
|
MemoryRead1Byte(thr, pc, (uptr)b);
|
|
if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
|
|
Acquire(thr, pc, (uptr)b);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_once, o, f);
|
|
if (o == 0 || f == 0)
|
|
return EINVAL;
|
|
atomic_uint32_t *a = static_cast<atomic_uint32_t*>(o);
|
|
u32 v = atomic_load(a, memory_order_acquire);
|
|
if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
|
|
memory_order_relaxed)) {
|
|
const int old_in_rtl = thr->in_rtl;
|
|
thr->in_rtl = 0;
|
|
(*f)();
|
|
CHECK_EQ(thr->in_rtl, 0);
|
|
thr->in_rtl = old_in_rtl;
|
|
Release(thr, pc, (uptr)o);
|
|
atomic_store(a, 2, memory_order_release);
|
|
} else {
|
|
while (v != 2) {
|
|
pthread_yield();
|
|
v = atomic_load(a, memory_order_acquire);
|
|
}
|
|
Acquire(thr, pc, (uptr)o);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, sem_init, void *s, int pshared, unsigned value) {
|
|
SCOPED_TSAN_INTERCEPTOR(sem_init, s, pshared, value);
|
|
int res = REAL(sem_init)(s, pshared, value);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, sem_destroy, void *s) {
|
|
SCOPED_TSAN_INTERCEPTOR(sem_destroy, s);
|
|
int res = REAL(sem_destroy)(s);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, sem_wait, void *s) {
|
|
SCOPED_TSAN_INTERCEPTOR(sem_wait, s);
|
|
int res = BLOCK_REAL(sem_wait)(s);
|
|
if (res == 0) {
|
|
Acquire(thr, pc, (uptr)s);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, sem_trywait, void *s) {
|
|
SCOPED_TSAN_INTERCEPTOR(sem_trywait, s);
|
|
int res = BLOCK_REAL(sem_trywait)(s);
|
|
if (res == 0) {
|
|
Acquire(thr, pc, (uptr)s);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, sem_timedwait, void *s, void *abstime) {
|
|
SCOPED_TSAN_INTERCEPTOR(sem_timedwait, s, abstime);
|
|
int res = BLOCK_REAL(sem_timedwait)(s, abstime);
|
|
if (res == 0) {
|
|
Acquire(thr, pc, (uptr)s);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, sem_post, void *s) {
|
|
SCOPED_TSAN_INTERCEPTOR(sem_post, s);
|
|
Release(thr, pc, (uptr)s);
|
|
int res = REAL(sem_post)(s);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, sem_getvalue, void *s, int *sval) {
|
|
SCOPED_TSAN_INTERCEPTOR(sem_getvalue, s, sval);
|
|
int res = REAL(sem_getvalue)(s, sval);
|
|
if (res == 0) {
|
|
Acquire(thr, pc, (uptr)s);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
|
|
SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
|
|
int fd = REAL(open)(name, flags, mode);
|
|
if (fd >= 0)
|
|
FdFileCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
|
|
SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
|
|
int fd = REAL(open64)(name, flags, mode);
|
|
if (fd >= 0)
|
|
FdFileCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
|
|
SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
|
|
int fd = REAL(creat)(name, mode);
|
|
if (fd >= 0)
|
|
FdFileCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
|
|
SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
|
|
int fd = REAL(creat64)(name, mode);
|
|
if (fd >= 0)
|
|
FdFileCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, dup, int oldfd) {
|
|
SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
|
|
int newfd = REAL(dup)(oldfd);
|
|
if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
|
|
FdDup(thr, pc, oldfd, newfd);
|
|
return newfd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
|
|
SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
|
|
int newfd2 = REAL(dup2)(oldfd, newfd);
|
|
if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
|
|
FdDup(thr, pc, oldfd, newfd2);
|
|
return newfd2;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
|
|
int newfd2 = REAL(dup3)(oldfd, newfd, flags);
|
|
if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
|
|
FdDup(thr, pc, oldfd, newfd2);
|
|
return newfd2;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
|
|
int fd = REAL(eventfd)(initval, flags);
|
|
if (fd >= 0)
|
|
FdEventCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
|
|
if (fd >= 0)
|
|
FdClose(thr, pc, fd);
|
|
fd = REAL(signalfd)(fd, mask, flags);
|
|
if (fd >= 0)
|
|
FdSignalCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, inotify_init, int fake) {
|
|
SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
|
|
int fd = REAL(inotify_init)(fake);
|
|
if (fd >= 0)
|
|
FdInotifyCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
|
|
int fd = REAL(inotify_init1)(flags);
|
|
if (fd >= 0)
|
|
FdInotifyCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
|
|
SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
|
|
int fd = REAL(socket)(domain, type, protocol);
|
|
if (fd >= 0)
|
|
FdSocketCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
|
|
SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
|
|
int res = REAL(socketpair)(domain, type, protocol, fd);
|
|
if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
|
|
FdPipeCreate(thr, pc, fd[0], fd[1]);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
|
|
SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
|
|
FdSocketConnecting(thr, pc, fd);
|
|
int res = REAL(connect)(fd, addr, addrlen);
|
|
if (res == 0 && fd >= 0)
|
|
FdSocketConnect(thr, pc, fd);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, accept, int fd, void *addr, unsigned *addrlen) {
|
|
SCOPED_TSAN_INTERCEPTOR(accept, fd, addr, addrlen);
|
|
int fd2 = REAL(accept)(fd, addr, addrlen);
|
|
if (fd >= 0 && fd2 >= 0)
|
|
FdSocketAccept(thr, pc, fd, fd2);
|
|
return fd2;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, accept4, int fd, void *addr, unsigned *addrlen, int f) {
|
|
SCOPED_TSAN_INTERCEPTOR(accept4, fd, addr, addrlen, f);
|
|
int fd2 = REAL(accept4)(fd, addr, addrlen, f);
|
|
if (fd >= 0 && fd2 >= 0)
|
|
FdSocketAccept(thr, pc, fd, fd2);
|
|
return fd2;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, epoll_create, int size) {
|
|
SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
|
|
int fd = REAL(epoll_create)(size);
|
|
if (fd >= 0)
|
|
FdPollCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
|
|
int fd = REAL(epoll_create1)(flags);
|
|
if (fd >= 0)
|
|
FdPollCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, close, int fd) {
|
|
SCOPED_TSAN_INTERCEPTOR(close, fd);
|
|
if (fd >= 0)
|
|
FdClose(thr, pc, fd);
|
|
return REAL(close)(fd);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, __close, int fd) {
|
|
SCOPED_TSAN_INTERCEPTOR(__close, fd);
|
|
if (fd >= 0)
|
|
FdClose(thr, pc, fd);
|
|
return REAL(__close)(fd);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
|
|
SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
|
|
int res = REAL(pipe)(pipefd);
|
|
if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
|
|
FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
|
|
int res = REAL(pipe2)(pipefd, flags);
|
|
if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
|
|
FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(long_t, readv, int fd, void *vec, int cnt) {
|
|
SCOPED_TSAN_INTERCEPTOR(readv, fd, vec, cnt);
|
|
int res = REAL(readv)(fd, vec, cnt);
|
|
if (res >= 0 && fd >= 0) {
|
|
FdAcquire(thr, pc, fd);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(long_t, preadv64, int fd, void *vec, int cnt, u64 off) {
|
|
SCOPED_TSAN_INTERCEPTOR(preadv64, fd, vec, cnt, off);
|
|
int res = REAL(preadv64)(fd, vec, cnt, off);
|
|
if (res >= 0 && fd >= 0) {
|
|
FdAcquire(thr, pc, fd);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(long_t, writev, int fd, void *vec, int cnt) {
|
|
SCOPED_TSAN_INTERCEPTOR(writev, fd, vec, cnt);
|
|
if (fd >= 0)
|
|
FdRelease(thr, pc, fd);
|
|
int res = REAL(writev)(fd, vec, cnt);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(long_t, pwritev64, int fd, void *vec, int cnt, u64 off) {
|
|
SCOPED_TSAN_INTERCEPTOR(pwritev64, fd, vec, cnt, off);
|
|
if (fd >= 0)
|
|
FdRelease(thr, pc, fd);
|
|
int res = REAL(pwritev64)(fd, vec, cnt, off);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(long_t, send, int fd, void *buf, long_t len, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(send, fd, buf, len, flags);
|
|
if (fd >= 0)
|
|
FdRelease(thr, pc, fd);
|
|
int res = REAL(send)(fd, buf, len, flags);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(long_t, sendmsg, int fd, void *msg, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(sendmsg, fd, msg, flags);
|
|
if (fd >= 0)
|
|
FdRelease(thr, pc, fd);
|
|
int res = REAL(sendmsg)(fd, msg, flags);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(long_t, recv, int fd, void *buf, long_t len, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(recv, fd, buf, len, flags);
|
|
int res = REAL(recv)(fd, buf, len, flags);
|
|
if (res >= 0 && fd >= 0) {
|
|
FdAcquire(thr, pc, fd);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(long_t, recvmsg, int fd, void *msg, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(recvmsg, fd, msg, flags);
|
|
int res = REAL(recvmsg)(fd, msg, flags);
|
|
if (res >= 0 && fd >= 0) {
|
|
FdAcquire(thr, pc, fd);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, unlink, char *path) {
|
|
SCOPED_TSAN_INTERCEPTOR(unlink, path);
|
|
Release(thr, pc, File2addr(path));
|
|
int res = REAL(unlink)(path);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, fopen, char *path, char *mode) {
|
|
SCOPED_TSAN_INTERCEPTOR(fopen, path, mode);
|
|
void *res = REAL(fopen)(path, mode);
|
|
Acquire(thr, pc, File2addr(path));
|
|
if (res) {
|
|
int fd = fileno_unlocked(res);
|
|
if (fd >= 0)
|
|
FdFileCreate(thr, pc, fd);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, freopen, char *path, char *mode, void *stream) {
|
|
SCOPED_TSAN_INTERCEPTOR(freopen, path, mode, stream);
|
|
if (stream) {
|
|
int fd = fileno_unlocked(stream);
|
|
if (fd >= 0)
|
|
FdClose(thr, pc, fd);
|
|
}
|
|
void *res = REAL(freopen)(path, mode, stream);
|
|
Acquire(thr, pc, File2addr(path));
|
|
if (res) {
|
|
int fd = fileno_unlocked(res);
|
|
if (fd >= 0)
|
|
FdFileCreate(thr, pc, fd);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, fclose, void *stream) {
|
|
{
|
|
SCOPED_TSAN_INTERCEPTOR(fclose, stream);
|
|
if (stream) {
|
|
int fd = fileno_unlocked(stream);
|
|
if (fd >= 0)
|
|
FdClose(thr, pc, fd);
|
|
}
|
|
}
|
|
return REAL(fclose)(stream);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(uptr, fread, void *ptr, uptr size, uptr nmemb, void *f) {
|
|
{
|
|
SCOPED_TSAN_INTERCEPTOR(fread, ptr, size, nmemb, f);
|
|
MemoryAccessRange(thr, pc, (uptr)ptr, size * nmemb, true);
|
|
}
|
|
return REAL(fread)(ptr, size, nmemb, f);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(uptr, fwrite, const void *p, uptr size, uptr nmemb, void *f) {
|
|
{
|
|
SCOPED_TSAN_INTERCEPTOR(fwrite, p, size, nmemb, f);
|
|
MemoryAccessRange(thr, pc, (uptr)p, size * nmemb, false);
|
|
}
|
|
return REAL(fwrite)(p, size, nmemb, f);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, puts, const char *s) {
|
|
SCOPED_TSAN_INTERCEPTOR(puts, s);
|
|
MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s), false);
|
|
return REAL(puts)(s);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, rmdir, char *path) {
|
|
SCOPED_TSAN_INTERCEPTOR(rmdir, path);
|
|
Release(thr, pc, Dir2addr(path));
|
|
int res = REAL(rmdir)(path);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, opendir, char *path) {
|
|
SCOPED_TSAN_INTERCEPTOR(opendir, path);
|
|
void *res = REAL(opendir)(path);
|
|
if (res != 0)
|
|
Acquire(thr, pc, Dir2addr(path));
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
|
|
SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
|
|
if (op == EPOLL_CTL_ADD && epfd >= 0) {
|
|
FdRelease(thr, pc, epfd);
|
|
}
|
|
int res = REAL(epoll_ctl)(epfd, op, fd, ev);
|
|
if (fd >= 0)
|
|
FdAccess(thr, pc, fd);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
|
|
SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
|
|
int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
|
|
if (res > 0 && epfd >= 0) {
|
|
FdAcquire(thr, pc, epfd);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, poll, void *fds, long_t nfds, int timeout) {
|
|
SCOPED_TSAN_INTERCEPTOR(poll, fds, nfds, timeout);
|
|
int res = BLOCK_REAL(poll)(fds, nfds, timeout);
|
|
return res;
|
|
}
|
|
|
|
static void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
|
|
my_siginfo_t *info, void *ctx) {
|
|
ThreadState *thr = cur_thread();
|
|
SignalContext *sctx = SigCtx(thr);
|
|
// Don't mess with synchronous signals.
|
|
if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
|
|
sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE ||
|
|
// If we are sending signal to ourselves, we must process it now.
|
|
(sctx && sig == sctx->int_signal_send) ||
|
|
// If we are in blocking function, we can safely process it now
|
|
// (but check if we are in a recursive interceptor,
|
|
// i.e. pthread_join()->munmap()).
|
|
(sctx && sctx->in_blocking_func == 1 && thr->in_rtl == 1)) {
|
|
CHECK(thr->in_rtl == 0 || thr->in_rtl == 1);
|
|
int in_rtl = thr->in_rtl;
|
|
thr->in_rtl = 0;
|
|
CHECK_EQ(thr->in_signal_handler, false);
|
|
thr->in_signal_handler = true;
|
|
if (sigact)
|
|
sigactions[sig].sa_sigaction(sig, info, ctx);
|
|
else
|
|
sigactions[sig].sa_handler(sig);
|
|
CHECK_EQ(thr->in_signal_handler, true);
|
|
thr->in_signal_handler = false;
|
|
thr->in_rtl = in_rtl;
|
|
return;
|
|
}
|
|
|
|
if (sctx == 0)
|
|
return;
|
|
SignalDesc *signal = &sctx->pending_signals[sig];
|
|
if (signal->armed == false) {
|
|
signal->armed = true;
|
|
signal->sigaction = sigact;
|
|
if (info)
|
|
internal_memcpy(&signal->siginfo, info, sizeof(*info));
|
|
if (ctx)
|
|
internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
|
|
sctx->pending_signal_count++;
|
|
}
|
|
}
|
|
|
|
static void rtl_sighandler(int sig) {
|
|
rtl_generic_sighandler(false, sig, 0, 0);
|
|
}
|
|
|
|
static void rtl_sigaction(int sig, my_siginfo_t *info, void *ctx) {
|
|
rtl_generic_sighandler(true, sig, info, ctx);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, sigaction, int sig, sigaction_t *act, sigaction_t *old) {
|
|
SCOPED_TSAN_INTERCEPTOR(sigaction, sig, act, old);
|
|
if (old)
|
|
internal_memcpy(old, &sigactions[sig], sizeof(*old));
|
|
if (act == 0)
|
|
return 0;
|
|
internal_memcpy(&sigactions[sig], act, sizeof(*act));
|
|
sigaction_t newact;
|
|
internal_memcpy(&newact, act, sizeof(newact));
|
|
sigfillset(&newact.sa_mask);
|
|
if (act->sa_handler != SIG_IGN && act->sa_handler != SIG_DFL) {
|
|
if (newact.sa_flags & SA_SIGINFO)
|
|
newact.sa_sigaction = rtl_sigaction;
|
|
else
|
|
newact.sa_handler = rtl_sighandler;
|
|
}
|
|
int res = REAL(sigaction)(sig, &newact, 0);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(sighandler_t, signal, int sig, sighandler_t h) {
|
|
sigaction_t act;
|
|
act.sa_handler = h;
|
|
REAL(memset)(&act.sa_mask, -1, sizeof(act.sa_mask));
|
|
act.sa_flags = 0;
|
|
sigaction_t old;
|
|
int res = sigaction(sig, &act, &old);
|
|
if (res)
|
|
return SIG_ERR;
|
|
return old.sa_handler;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, raise, int sig) {
|
|
SCOPED_TSAN_INTERCEPTOR(raise, sig);
|
|
SignalContext *sctx = SigCtx(thr);
|
|
CHECK_NE(sctx, 0);
|
|
int prev = sctx->int_signal_send;
|
|
sctx->int_signal_send = sig;
|
|
int res = REAL(raise)(sig);
|
|
CHECK_EQ(sctx->int_signal_send, sig);
|
|
sctx->int_signal_send = prev;
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
|
|
SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
|
|
SignalContext *sctx = SigCtx(thr);
|
|
CHECK_NE(sctx, 0);
|
|
int prev = sctx->int_signal_send;
|
|
if (pid == GetPid()) {
|
|
sctx->int_signal_send = sig;
|
|
}
|
|
int res = REAL(kill)(pid, sig);
|
|
if (pid == GetPid()) {
|
|
CHECK_EQ(sctx->int_signal_send, sig);
|
|
sctx->int_signal_send = prev;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
|
|
SignalContext *sctx = SigCtx(thr);
|
|
CHECK_NE(sctx, 0);
|
|
int prev = sctx->int_signal_send;
|
|
if (tid == pthread_self()) {
|
|
sctx->int_signal_send = sig;
|
|
}
|
|
int res = REAL(pthread_kill)(tid, sig);
|
|
if (tid == pthread_self()) {
|
|
CHECK_EQ(sctx->int_signal_send, sig);
|
|
sctx->int_signal_send = prev;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
|
|
SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
|
|
// It's intercepted merely to process pending signals.
|
|
return REAL(gettimeofday)(tv, tz);
|
|
}
|
|
|
|
// Linux kernel has a bug that leads to kernel deadlock if a process
|
|
// maps TBs of memory and then calls mlock().
|
|
static void MlockIsUnsupported() {
|
|
static atomic_uint8_t printed;
|
|
if (atomic_exchange(&printed, 1, memory_order_relaxed))
|
|
return;
|
|
Printf("INFO: ThreadSanitizer ignores mlock/mlockall/munlock/munlockall\n");
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, mlock, const void *addr, uptr len) {
|
|
MlockIsUnsupported();
|
|
return 0;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, munlock, const void *addr, uptr len) {
|
|
MlockIsUnsupported();
|
|
return 0;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, mlockall, int flags) {
|
|
MlockIsUnsupported();
|
|
return 0;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, munlockall, void) {
|
|
MlockIsUnsupported();
|
|
return 0;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, fork, int fake) {
|
|
SCOPED_TSAN_INTERCEPTOR(fork, fake);
|
|
// It's intercepted merely to process pending signals.
|
|
int pid = REAL(fork)(fake);
|
|
if (pid == 0) {
|
|
// child
|
|
FdOnFork(thr, pc);
|
|
} else if (pid > 0) {
|
|
// parent
|
|
}
|
|
return pid;
|
|
}
|
|
|
|
struct TsanInterceptorContext {
|
|
ThreadState *thr;
|
|
const uptr caller_pc;
|
|
const uptr pc;
|
|
};
|
|
|
|
#define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
|
|
MemoryAccessRange(((TsanInterceptorContext*)ctx)->thr, \
|
|
((TsanInterceptorContext*)ctx)->pc, \
|
|
(uptr)ptr, size, true)
|
|
#define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
|
|
MemoryAccessRange(((TsanInterceptorContext*)ctx)->thr, \
|
|
((TsanInterceptorContext*)ctx)->pc, \
|
|
(uptr)ptr, size, false)
|
|
#define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
|
|
SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__) \
|
|
TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
|
|
ctx = (void*)&_ctx; \
|
|
(void)ctx;
|
|
#define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
|
|
FdAcquire(((TsanInterceptorContext*)ctx)->thr, pc, fd)
|
|
#define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
|
|
FdRelease(((TsanInterceptorContext*)ctx)->thr, pc, fd)
|
|
#define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
|
|
ThreadSetName(((TsanInterceptorContext*)ctx)->thr, name)
|
|
#include "sanitizer_common/sanitizer_common_interceptors.inc"
|
|
|
|
namespace __tsan {
|
|
|
|
void ProcessPendingSignals(ThreadState *thr) {
|
|
CHECK_EQ(thr->in_rtl, 0);
|
|
SignalContext *sctx = SigCtx(thr);
|
|
if (sctx == 0 || sctx->pending_signal_count == 0 || thr->in_signal_handler)
|
|
return;
|
|
Context *ctx = CTX();
|
|
thr->in_signal_handler = true;
|
|
sctx->pending_signal_count = 0;
|
|
// These are too big for stack.
|
|
static THREADLOCAL sigset_t emptyset, oldset;
|
|
sigfillset(&emptyset);
|
|
pthread_sigmask(SIG_SETMASK, &emptyset, &oldset);
|
|
for (int sig = 0; sig < kSigCount; sig++) {
|
|
SignalDesc *signal = &sctx->pending_signals[sig];
|
|
if (signal->armed) {
|
|
signal->armed = false;
|
|
if (sigactions[sig].sa_handler != SIG_DFL
|
|
&& sigactions[sig].sa_handler != SIG_IGN) {
|
|
// Insure that the handler does not spoil errno.
|
|
const int saved_errno = errno;
|
|
errno = 0;
|
|
if (signal->sigaction)
|
|
sigactions[sig].sa_sigaction(sig, &signal->siginfo, &signal->ctx);
|
|
else
|
|
sigactions[sig].sa_handler(sig);
|
|
if (flags()->report_bugs && errno != 0) {
|
|
ScopedInRtl in_rtl;
|
|
__tsan::StackTrace stack;
|
|
uptr pc = signal->sigaction ?
|
|
(uptr)sigactions[sig].sa_sigaction :
|
|
(uptr)sigactions[sig].sa_handler;
|
|
stack.Init(&pc, 1);
|
|
Lock l(&ctx->thread_mtx);
|
|
ScopedReport rep(ReportTypeErrnoInSignal);
|
|
if (!IsFiredSuppression(ctx, rep, stack)) {
|
|
rep.AddStack(&stack);
|
|
OutputReport(ctx, rep, rep.GetReport()->stacks[0]);
|
|
}
|
|
}
|
|
errno = saved_errno;
|
|
}
|
|
}
|
|
}
|
|
pthread_sigmask(SIG_SETMASK, &oldset, 0);
|
|
CHECK_EQ(thr->in_signal_handler, true);
|
|
thr->in_signal_handler = false;
|
|
}
|
|
|
|
static void unreachable() {
|
|
Printf("FATAL: ThreadSanitizer: unreachable called\n");
|
|
Die();
|
|
}
|
|
|
|
void InitializeInterceptors() {
|
|
CHECK_GT(cur_thread()->in_rtl, 0);
|
|
|
|
// We need to setup it early, because functions like dlsym() can call it.
|
|
REAL(memset) = internal_memset;
|
|
REAL(memcpy) = internal_memcpy;
|
|
REAL(memcmp) = internal_memcmp;
|
|
|
|
SANITIZER_COMMON_INTERCEPTORS_INIT;
|
|
|
|
TSAN_INTERCEPT(longjmp);
|
|
TSAN_INTERCEPT(siglongjmp);
|
|
|
|
TSAN_INTERCEPT(malloc);
|
|
TSAN_INTERCEPT(__libc_memalign);
|
|
TSAN_INTERCEPT(calloc);
|
|
TSAN_INTERCEPT(realloc);
|
|
TSAN_INTERCEPT(free);
|
|
TSAN_INTERCEPT(cfree);
|
|
TSAN_INTERCEPT(mmap);
|
|
TSAN_INTERCEPT(mmap64);
|
|
TSAN_INTERCEPT(munmap);
|
|
TSAN_INTERCEPT(memalign);
|
|
TSAN_INTERCEPT(valloc);
|
|
TSAN_INTERCEPT(pvalloc);
|
|
TSAN_INTERCEPT(posix_memalign);
|
|
|
|
TSAN_INTERCEPT(strlen);
|
|
TSAN_INTERCEPT(memset);
|
|
TSAN_INTERCEPT(memcpy);
|
|
TSAN_INTERCEPT(strcmp);
|
|
TSAN_INTERCEPT(memchr);
|
|
TSAN_INTERCEPT(memrchr);
|
|
TSAN_INTERCEPT(memmove);
|
|
TSAN_INTERCEPT(memcmp);
|
|
TSAN_INTERCEPT(strchr);
|
|
TSAN_INTERCEPT(strchrnul);
|
|
TSAN_INTERCEPT(strrchr);
|
|
TSAN_INTERCEPT(strncmp);
|
|
TSAN_INTERCEPT(strcpy); // NOLINT
|
|
TSAN_INTERCEPT(strncpy);
|
|
TSAN_INTERCEPT(strstr);
|
|
|
|
TSAN_INTERCEPT(pthread_create);
|
|
TSAN_INTERCEPT(pthread_join);
|
|
TSAN_INTERCEPT(pthread_detach);
|
|
|
|
TSAN_INTERCEPT(pthread_mutex_init);
|
|
TSAN_INTERCEPT(pthread_mutex_destroy);
|
|
TSAN_INTERCEPT(pthread_mutex_lock);
|
|
TSAN_INTERCEPT(pthread_mutex_trylock);
|
|
TSAN_INTERCEPT(pthread_mutex_timedlock);
|
|
TSAN_INTERCEPT(pthread_mutex_unlock);
|
|
|
|
TSAN_INTERCEPT(pthread_spin_init);
|
|
TSAN_INTERCEPT(pthread_spin_destroy);
|
|
TSAN_INTERCEPT(pthread_spin_lock);
|
|
TSAN_INTERCEPT(pthread_spin_trylock);
|
|
TSAN_INTERCEPT(pthread_spin_unlock);
|
|
|
|
TSAN_INTERCEPT(pthread_rwlock_init);
|
|
TSAN_INTERCEPT(pthread_rwlock_destroy);
|
|
TSAN_INTERCEPT(pthread_rwlock_rdlock);
|
|
TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
|
|
TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
|
|
TSAN_INTERCEPT(pthread_rwlock_wrlock);
|
|
TSAN_INTERCEPT(pthread_rwlock_trywrlock);
|
|
TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
|
|
TSAN_INTERCEPT(pthread_rwlock_unlock);
|
|
|
|
// TSAN_INTERCEPT(pthread_cond_init);
|
|
TSAN_INTERCEPT(pthread_cond_destroy);
|
|
TSAN_INTERCEPT(pthread_cond_signal);
|
|
TSAN_INTERCEPT(pthread_cond_broadcast);
|
|
TSAN_INTERCEPT(pthread_cond_wait);
|
|
TSAN_INTERCEPT(pthread_cond_timedwait);
|
|
|
|
TSAN_INTERCEPT(pthread_barrier_init);
|
|
TSAN_INTERCEPT(pthread_barrier_destroy);
|
|
TSAN_INTERCEPT(pthread_barrier_wait);
|
|
|
|
TSAN_INTERCEPT(pthread_once);
|
|
|
|
TSAN_INTERCEPT(sem_init);
|
|
TSAN_INTERCEPT(sem_destroy);
|
|
TSAN_INTERCEPT(sem_wait);
|
|
TSAN_INTERCEPT(sem_trywait);
|
|
TSAN_INTERCEPT(sem_timedwait);
|
|
TSAN_INTERCEPT(sem_post);
|
|
TSAN_INTERCEPT(sem_getvalue);
|
|
|
|
TSAN_INTERCEPT(open);
|
|
TSAN_INTERCEPT(open64);
|
|
TSAN_INTERCEPT(creat);
|
|
TSAN_INTERCEPT(creat64);
|
|
TSAN_INTERCEPT(dup);
|
|
TSAN_INTERCEPT(dup2);
|
|
TSAN_INTERCEPT(dup3);
|
|
TSAN_INTERCEPT(eventfd);
|
|
TSAN_INTERCEPT(signalfd);
|
|
TSAN_INTERCEPT(inotify_init);
|
|
TSAN_INTERCEPT(inotify_init1);
|
|
TSAN_INTERCEPT(socket);
|
|
TSAN_INTERCEPT(socketpair);
|
|
TSAN_INTERCEPT(connect);
|
|
TSAN_INTERCEPT(accept);
|
|
TSAN_INTERCEPT(accept4);
|
|
TSAN_INTERCEPT(epoll_create);
|
|
TSAN_INTERCEPT(epoll_create1);
|
|
TSAN_INTERCEPT(close);
|
|
TSAN_INTERCEPT(pipe);
|
|
TSAN_INTERCEPT(pipe2);
|
|
|
|
TSAN_INTERCEPT(readv);
|
|
TSAN_INTERCEPT(preadv64);
|
|
TSAN_INTERCEPT(writev);
|
|
TSAN_INTERCEPT(pwritev64);
|
|
TSAN_INTERCEPT(send);
|
|
TSAN_INTERCEPT(sendmsg);
|
|
TSAN_INTERCEPT(recv);
|
|
TSAN_INTERCEPT(recvmsg);
|
|
|
|
TSAN_INTERCEPT(unlink);
|
|
TSAN_INTERCEPT(fopen);
|
|
TSAN_INTERCEPT(freopen);
|
|
TSAN_INTERCEPT(fclose);
|
|
TSAN_INTERCEPT(fread);
|
|
TSAN_INTERCEPT(fwrite);
|
|
TSAN_INTERCEPT(puts);
|
|
TSAN_INTERCEPT(rmdir);
|
|
TSAN_INTERCEPT(opendir);
|
|
|
|
TSAN_INTERCEPT(epoll_ctl);
|
|
TSAN_INTERCEPT(epoll_wait);
|
|
TSAN_INTERCEPT(poll);
|
|
|
|
TSAN_INTERCEPT(sigaction);
|
|
TSAN_INTERCEPT(signal);
|
|
TSAN_INTERCEPT(raise);
|
|
TSAN_INTERCEPT(kill);
|
|
TSAN_INTERCEPT(pthread_kill);
|
|
TSAN_INTERCEPT(sleep);
|
|
TSAN_INTERCEPT(usleep);
|
|
TSAN_INTERCEPT(nanosleep);
|
|
TSAN_INTERCEPT(gettimeofday);
|
|
|
|
TSAN_INTERCEPT(mlock);
|
|
TSAN_INTERCEPT(munlock);
|
|
TSAN_INTERCEPT(mlockall);
|
|
TSAN_INTERCEPT(munlockall);
|
|
|
|
TSAN_INTERCEPT(fork);
|
|
|
|
// Need to setup it, because interceptors check that the function is resolved.
|
|
// But atexit is emitted directly into the module, so can't be resolved.
|
|
REAL(atexit) = (int(*)(void(*)()))unreachable;
|
|
atexit_ctx = new(internal_alloc(MBlockAtExit, sizeof(AtExitContext)))
|
|
AtExitContext();
|
|
|
|
if (__cxa_atexit(&finalize, 0, 0)) {
|
|
Printf("ThreadSanitizer: failed to setup atexit callback\n");
|
|
Die();
|
|
}
|
|
|
|
if (pthread_key_create(&g_thread_finalize_key, &thread_finalize)) {
|
|
Printf("ThreadSanitizer: failed to create thread key\n");
|
|
Die();
|
|
}
|
|
|
|
FdInit();
|
|
}
|
|
|
|
void internal_start_thread(void(*func)(void *arg), void *arg) {
|
|
void *th;
|
|
REAL(pthread_create)(&th, 0, (void*(*)(void *arg))func, arg);
|
|
REAL(pthread_detach)(th);
|
|
}
|
|
|
|
} // namespace __tsan
|