436 lines
13 KiB
C++
436 lines
13 KiB
C++
// Special functions -*- C++ -*-
|
|
|
|
// Copyright (C) 2006, 2007, 2008, 2009
|
|
// Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 3, or (at your option)
|
|
// any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
|
// permissions described in the GCC Runtime Library Exception, version
|
|
// 3.1, as published by the Free Software Foundation.
|
|
|
|
// You should have received a copy of the GNU General Public License and
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
// <http://www.gnu.org/licenses/>.
|
|
|
|
/** @file tr1/riemann_zeta.tcc
|
|
* This is an internal header file, included by other library headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
//
|
|
// ISO C++ 14882 TR1: 5.2 Special functions
|
|
//
|
|
|
|
// Written by Edward Smith-Rowland based on:
|
|
// (1) Handbook of Mathematical Functions,
|
|
// Ed. by Milton Abramowitz and Irene A. Stegun,
|
|
// Dover Publications, New-York, Section 5, pp. 807-808.
|
|
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
|
// (3) Gamma, Exploring Euler's Constant, Julian Havil,
|
|
// Princeton, 2003.
|
|
|
|
#ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
|
|
#define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1
|
|
|
|
#include "special_function_util.h"
|
|
|
|
namespace std
|
|
{
|
|
namespace tr1
|
|
{
|
|
|
|
// [5.2] Special functions
|
|
|
|
// Implementation-space details.
|
|
namespace __detail
|
|
{
|
|
|
|
/**
|
|
* @brief Compute the Riemann zeta function @f$ \zeta(s) @f$
|
|
* by summation for s > 1.
|
|
*
|
|
* The Riemann zeta function is defined by:
|
|
* \f[
|
|
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
|
|
* \f]
|
|
* For s < 1 use the reflection formula:
|
|
* \f[
|
|
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
|
* \f]
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__riemann_zeta_sum(const _Tp __s)
|
|
{
|
|
// A user shouldn't get to this.
|
|
if (__s < _Tp(1))
|
|
std::__throw_domain_error(__N("Bad argument in zeta sum."));
|
|
|
|
const unsigned int max_iter = 10000;
|
|
_Tp __zeta = _Tp(0);
|
|
for (unsigned int __k = 1; __k < max_iter; ++__k)
|
|
{
|
|
_Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
|
|
if (__term < std::numeric_limits<_Tp>::epsilon())
|
|
{
|
|
break;
|
|
}
|
|
__zeta += __term;
|
|
}
|
|
|
|
return __zeta;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Evaluate the Riemann zeta function @f$ \zeta(s) @f$
|
|
* by an alternate series for s > 0.
|
|
*
|
|
* The Riemann zeta function is defined by:
|
|
* \f[
|
|
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
|
|
* \f]
|
|
* For s < 1 use the reflection formula:
|
|
* \f[
|
|
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
|
* \f]
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__riemann_zeta_alt(const _Tp __s)
|
|
{
|
|
_Tp __sgn = _Tp(1);
|
|
_Tp __zeta = _Tp(0);
|
|
for (unsigned int __i = 1; __i < 10000000; ++__i)
|
|
{
|
|
_Tp __term = __sgn / std::pow(__i, __s);
|
|
if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
|
|
break;
|
|
__zeta += __term;
|
|
__sgn *= _Tp(-1);
|
|
}
|
|
__zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
|
|
|
|
return __zeta;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Evaluate the Riemann zeta function by series for all s != 1.
|
|
* Convergence is great until largish negative numbers.
|
|
* Then the convergence of the > 0 sum gets better.
|
|
*
|
|
* The series is:
|
|
* \f[
|
|
* \zeta(s) = \frac{1}{1-2^{1-s}}
|
|
* \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
|
|
* \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
|
|
* \f]
|
|
* Havil 2003, p. 206.
|
|
*
|
|
* The Riemann zeta function is defined by:
|
|
* \f[
|
|
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
|
|
* \f]
|
|
* For s < 1 use the reflection formula:
|
|
* \f[
|
|
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
|
* \f]
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__riemann_zeta_glob(const _Tp __s)
|
|
{
|
|
_Tp __zeta = _Tp(0);
|
|
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
|
// Max e exponent before overflow.
|
|
const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
|
|
* std::log(_Tp(10)) - _Tp(1);
|
|
|
|
// This series works until the binomial coefficient blows up
|
|
// so use reflection.
|
|
if (__s < _Tp(0))
|
|
{
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
|
if (std::tr1::fmod(__s,_Tp(2)) == _Tp(0))
|
|
return _Tp(0);
|
|
else
|
|
#endif
|
|
{
|
|
_Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
|
|
__zeta *= std::pow(_Tp(2)
|
|
* __numeric_constants<_Tp>::__pi(), __s)
|
|
* std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
|
* std::exp(std::tr1::lgamma(_Tp(1) - __s))
|
|
#else
|
|
* std::exp(__log_gamma(_Tp(1) - __s))
|
|
#endif
|
|
/ __numeric_constants<_Tp>::__pi();
|
|
return __zeta;
|
|
}
|
|
}
|
|
|
|
_Tp __num = _Tp(0.5L);
|
|
const unsigned int __maxit = 10000;
|
|
for (unsigned int __i = 0; __i < __maxit; ++__i)
|
|
{
|
|
bool __punt = false;
|
|
_Tp __sgn = _Tp(1);
|
|
_Tp __term = _Tp(0);
|
|
for (unsigned int __j = 0; __j <= __i; ++__j)
|
|
{
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
|
_Tp __bincoeff = std::tr1::lgamma(_Tp(1 + __i))
|
|
- std::tr1::lgamma(_Tp(1 + __j))
|
|
- std::tr1::lgamma(_Tp(1 + __i - __j));
|
|
#else
|
|
_Tp __bincoeff = __log_gamma(_Tp(1 + __i))
|
|
- __log_gamma(_Tp(1 + __j))
|
|
- __log_gamma(_Tp(1 + __i - __j));
|
|
#endif
|
|
if (__bincoeff > __max_bincoeff)
|
|
{
|
|
// This only gets hit for x << 0.
|
|
__punt = true;
|
|
break;
|
|
}
|
|
__bincoeff = std::exp(__bincoeff);
|
|
__term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
|
|
__sgn *= _Tp(-1);
|
|
}
|
|
if (__punt)
|
|
break;
|
|
__term *= __num;
|
|
__zeta += __term;
|
|
if (std::abs(__term/__zeta) < __eps)
|
|
break;
|
|
__num *= _Tp(0.5L);
|
|
}
|
|
|
|
__zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
|
|
|
|
return __zeta;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Compute the Riemann zeta function @f$ \zeta(s) @f$
|
|
* using the product over prime factors.
|
|
* \f[
|
|
* \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
|
|
* \f]
|
|
* where @f$ {p_i} @f$ are the prime numbers.
|
|
*
|
|
* The Riemann zeta function is defined by:
|
|
* \f[
|
|
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
|
|
* \f]
|
|
* For s < 1 use the reflection formula:
|
|
* \f[
|
|
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
|
* \f]
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__riemann_zeta_product(const _Tp __s)
|
|
{
|
|
static const _Tp __prime[] = {
|
|
_Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
|
|
_Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
|
|
_Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
|
|
_Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
|
|
};
|
|
static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);
|
|
|
|
_Tp __zeta = _Tp(1);
|
|
for (unsigned int __i = 0; __i < __num_primes; ++__i)
|
|
{
|
|
const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
|
|
__zeta *= __fact;
|
|
if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
|
|
break;
|
|
}
|
|
|
|
__zeta = _Tp(1) / __zeta;
|
|
|
|
return __zeta;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the Riemann zeta function @f$ \zeta(s) @f$.
|
|
*
|
|
* The Riemann zeta function is defined by:
|
|
* \f[
|
|
* \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
|
|
* \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
|
|
* \Gamma (1 - s) \zeta (1 - s) for s < 1
|
|
* \f]
|
|
* For s < 1 use the reflection formula:
|
|
* \f[
|
|
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
|
* \f]
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__riemann_zeta(const _Tp __s)
|
|
{
|
|
if (__isnan(__s))
|
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
|
else if (__s == _Tp(1))
|
|
return std::numeric_limits<_Tp>::infinity();
|
|
else if (__s < -_Tp(19))
|
|
{
|
|
_Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
|
|
__zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
|
|
* std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
|
* std::exp(std::tr1::lgamma(_Tp(1) - __s))
|
|
#else
|
|
* std::exp(__log_gamma(_Tp(1) - __s))
|
|
#endif
|
|
/ __numeric_constants<_Tp>::__pi();
|
|
return __zeta;
|
|
}
|
|
else if (__s < _Tp(20))
|
|
{
|
|
// Global double sum or McLaurin?
|
|
bool __glob = true;
|
|
if (__glob)
|
|
return __riemann_zeta_glob(__s);
|
|
else
|
|
{
|
|
if (__s > _Tp(1))
|
|
return __riemann_zeta_sum(__s);
|
|
else
|
|
{
|
|
_Tp __zeta = std::pow(_Tp(2)
|
|
* __numeric_constants<_Tp>::__pi(), __s)
|
|
* std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
|
* std::tr1::tgamma(_Tp(1) - __s)
|
|
#else
|
|
* std::exp(__log_gamma(_Tp(1) - __s))
|
|
#endif
|
|
* __riemann_zeta_sum(_Tp(1) - __s);
|
|
return __zeta;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
return __riemann_zeta_product(__s);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
|
|
* for all s != 1 and x > -1.
|
|
*
|
|
* The Hurwitz zeta function is defined by:
|
|
* @f[
|
|
* \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
|
|
* @f]
|
|
* The Riemann zeta function is a special case:
|
|
* @f[
|
|
* \zeta(s) = \zeta(1,s)
|
|
* @f]
|
|
*
|
|
* This functions uses the double sum that converges for s != 1
|
|
* and x > -1:
|
|
* @f[
|
|
* \zeta(x,s) = \frac{1}{s-1}
|
|
* \sum_{n=0}^{\infty} \frac{1}{n + 1}
|
|
* \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
|
|
* @f]
|
|
*/
|
|
template<typename _Tp>
|
|
_Tp
|
|
__hurwitz_zeta_glob(const _Tp __a, const _Tp __s)
|
|
{
|
|
_Tp __zeta = _Tp(0);
|
|
|
|
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
|
|
// Max e exponent before overflow.
|
|
const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
|
|
* std::log(_Tp(10)) - _Tp(1);
|
|
|
|
const unsigned int __maxit = 10000;
|
|
for (unsigned int __i = 0; __i < __maxit; ++__i)
|
|
{
|
|
bool __punt = false;
|
|
_Tp __sgn = _Tp(1);
|
|
_Tp __term = _Tp(0);
|
|
for (unsigned int __j = 0; __j <= __i; ++__j)
|
|
{
|
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
|
_Tp __bincoeff = std::tr1::lgamma(_Tp(1 + __i))
|
|
- std::tr1::lgamma(_Tp(1 + __j))
|
|
- std::tr1::lgamma(_Tp(1 + __i - __j));
|
|
#else
|
|
_Tp __bincoeff = __log_gamma(_Tp(1 + __i))
|
|
- __log_gamma(_Tp(1 + __j))
|
|
- __log_gamma(_Tp(1 + __i - __j));
|
|
#endif
|
|
if (__bincoeff > __max_bincoeff)
|
|
{
|
|
// This only gets hit for x << 0.
|
|
__punt = true;
|
|
break;
|
|
}
|
|
__bincoeff = std::exp(__bincoeff);
|
|
__term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
|
|
__sgn *= _Tp(-1);
|
|
}
|
|
if (__punt)
|
|
break;
|
|
__term /= _Tp(__i + 1);
|
|
if (std::abs(__term / __zeta) < __eps)
|
|
break;
|
|
__zeta += __term;
|
|
}
|
|
|
|
__zeta /= __s - _Tp(1);
|
|
|
|
return __zeta;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
|
|
* for all s != 1 and x > -1.
|
|
*
|
|
* The Hurwitz zeta function is defined by:
|
|
* @f[
|
|
* \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
|
|
* @f]
|
|
* The Riemann zeta function is a special case:
|
|
* @f[
|
|
* \zeta(s) = \zeta(1,s)
|
|
* @f]
|
|
*/
|
|
template<typename _Tp>
|
|
inline _Tp
|
|
__hurwitz_zeta(const _Tp __a, const _Tp __s)
|
|
{
|
|
return __hurwitz_zeta_glob(__a, __s);
|
|
}
|
|
|
|
} // namespace std::tr1::__detail
|
|
}
|
|
}
|
|
|
|
#endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC
|