db963b5287
2011-01-25 Sebastian Pop <sebastian.pop@amd.com> Jakub Jelinek <jakub@redhat.com> PR tree-optimization/47271 * tree-if-conv.c (bb_postdominates_preds): New. (if_convertible_bb_p): Call bb_postdominates_preds. (if_convertible_loop_p_1): Compute CDI_POST_DOMINATORS. (predicate_scalar_phi): Call bb_postdominates_preds. * gcc.dg/tree-ssa/ifc-pr47271.c: New. Co-Authored-By: Jakub Jelinek <jakub@redhat.com> From-SVN: r169233
1776 lines
45 KiB
C
1776 lines
45 KiB
C
/* If-conversion for vectorizer.
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
|
Free Software Foundation, Inc.
|
|
Contributed by Devang Patel <dpatel@apple.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* This pass implements a tree level if-conversion of loops. Its
|
|
initial goal is to help the vectorizer to vectorize loops with
|
|
conditions.
|
|
|
|
A short description of if-conversion:
|
|
|
|
o Decide if a loop is if-convertible or not.
|
|
o Walk all loop basic blocks in breadth first order (BFS order).
|
|
o Remove conditional statements (at the end of basic block)
|
|
and propagate condition into destination basic blocks'
|
|
predicate list.
|
|
o Replace modify expression with conditional modify expression
|
|
using current basic block's condition.
|
|
o Merge all basic blocks
|
|
o Replace phi nodes with conditional modify expr
|
|
o Merge all basic blocks into header
|
|
|
|
Sample transformation:
|
|
|
|
INPUT
|
|
-----
|
|
|
|
# i_23 = PHI <0(0), i_18(10)>;
|
|
<L0>:;
|
|
j_15 = A[i_23];
|
|
if (j_15 > 41) goto <L1>; else goto <L17>;
|
|
|
|
<L17>:;
|
|
goto <bb 3> (<L3>);
|
|
|
|
<L1>:;
|
|
|
|
# iftmp.2_4 = PHI <0(8), 42(2)>;
|
|
<L3>:;
|
|
A[i_23] = iftmp.2_4;
|
|
i_18 = i_23 + 1;
|
|
if (i_18 <= 15) goto <L19>; else goto <L18>;
|
|
|
|
<L19>:;
|
|
goto <bb 1> (<L0>);
|
|
|
|
<L18>:;
|
|
|
|
OUTPUT
|
|
------
|
|
|
|
# i_23 = PHI <0(0), i_18(10)>;
|
|
<L0>:;
|
|
j_15 = A[i_23];
|
|
|
|
<L3>:;
|
|
iftmp.2_4 = j_15 > 41 ? 42 : 0;
|
|
A[i_23] = iftmp.2_4;
|
|
i_18 = i_23 + 1;
|
|
if (i_18 <= 15) goto <L19>; else goto <L18>;
|
|
|
|
<L19>:;
|
|
goto <bb 1> (<L0>);
|
|
|
|
<L18>:;
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "flags.h"
|
|
#include "timevar.h"
|
|
#include "basic-block.h"
|
|
#include "tree-pretty-print.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-dump.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-chrec.h"
|
|
#include "tree-data-ref.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "tree-pass.h"
|
|
#include "dbgcnt.h"
|
|
|
|
/* List of basic blocks in if-conversion-suitable order. */
|
|
static basic_block *ifc_bbs;
|
|
|
|
/* Structure used to predicate basic blocks. This is attached to the
|
|
->aux field of the BBs in the loop to be if-converted. */
|
|
typedef struct bb_predicate_s {
|
|
|
|
/* The condition under which this basic block is executed. */
|
|
tree predicate;
|
|
|
|
/* PREDICATE is gimplified, and the sequence of statements is
|
|
recorded here, in order to avoid the duplication of computations
|
|
that occur in previous conditions. See PR44483. */
|
|
gimple_seq predicate_gimplified_stmts;
|
|
} *bb_predicate_p;
|
|
|
|
/* Returns true when the basic block BB has a predicate. */
|
|
|
|
static inline bool
|
|
bb_has_predicate (basic_block bb)
|
|
{
|
|
return bb->aux != NULL;
|
|
}
|
|
|
|
/* Returns the gimplified predicate for basic block BB. */
|
|
|
|
static inline tree
|
|
bb_predicate (basic_block bb)
|
|
{
|
|
return ((bb_predicate_p) bb->aux)->predicate;
|
|
}
|
|
|
|
/* Sets the gimplified predicate COND for basic block BB. */
|
|
|
|
static inline void
|
|
set_bb_predicate (basic_block bb, tree cond)
|
|
{
|
|
((bb_predicate_p) bb->aux)->predicate = cond;
|
|
}
|
|
|
|
/* Returns the sequence of statements of the gimplification of the
|
|
predicate for basic block BB. */
|
|
|
|
static inline gimple_seq
|
|
bb_predicate_gimplified_stmts (basic_block bb)
|
|
{
|
|
return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts;
|
|
}
|
|
|
|
/* Sets the sequence of statements STMTS of the gimplification of the
|
|
predicate for basic block BB. */
|
|
|
|
static inline void
|
|
set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
|
|
{
|
|
((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts;
|
|
}
|
|
|
|
/* Adds the sequence of statements STMTS to the sequence of statements
|
|
of the predicate for basic block BB. */
|
|
|
|
static inline void
|
|
add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
|
|
{
|
|
gimple_seq_add_seq
|
|
(&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts);
|
|
}
|
|
|
|
/* Initializes to TRUE the predicate of basic block BB. */
|
|
|
|
static inline void
|
|
init_bb_predicate (basic_block bb)
|
|
{
|
|
bb->aux = XNEW (struct bb_predicate_s);
|
|
set_bb_predicate_gimplified_stmts (bb, NULL);
|
|
set_bb_predicate (bb, boolean_true_node);
|
|
}
|
|
|
|
/* Free the predicate of basic block BB. */
|
|
|
|
static inline void
|
|
free_bb_predicate (basic_block bb)
|
|
{
|
|
gimple_seq stmts;
|
|
|
|
if (!bb_has_predicate (bb))
|
|
return;
|
|
|
|
/* Release the SSA_NAMEs created for the gimplification of the
|
|
predicate. */
|
|
stmts = bb_predicate_gimplified_stmts (bb);
|
|
if (stmts)
|
|
{
|
|
gimple_stmt_iterator i;
|
|
|
|
for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
|
|
free_stmt_operands (gsi_stmt (i));
|
|
}
|
|
|
|
free (bb->aux);
|
|
bb->aux = NULL;
|
|
}
|
|
|
|
/* Free the predicate of BB and reinitialize it with the true
|
|
predicate. */
|
|
|
|
static inline void
|
|
reset_bb_predicate (basic_block bb)
|
|
{
|
|
free_bb_predicate (bb);
|
|
init_bb_predicate (bb);
|
|
}
|
|
|
|
/* Returns a new SSA_NAME of type TYPE that is assigned the value of
|
|
the expression EXPR. Inserts the statement created for this
|
|
computation before GSI and leaves the iterator GSI at the same
|
|
statement. */
|
|
|
|
static tree
|
|
ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
|
|
{
|
|
const char *name = "_ifc_";
|
|
tree var, new_name;
|
|
gimple stmt;
|
|
|
|
/* Create new temporary variable. */
|
|
var = create_tmp_var (type, name);
|
|
add_referenced_var (var);
|
|
|
|
/* Build new statement to assign EXPR to new variable. */
|
|
stmt = gimple_build_assign (var, expr);
|
|
|
|
/* Get SSA name for the new variable and set make new statement
|
|
its definition statement. */
|
|
new_name = make_ssa_name (var, stmt);
|
|
gimple_assign_set_lhs (stmt, new_name);
|
|
SSA_NAME_DEF_STMT (new_name) = stmt;
|
|
update_stmt (stmt);
|
|
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
|
return gimple_assign_lhs (stmt);
|
|
}
|
|
|
|
/* Return true when COND is a true predicate. */
|
|
|
|
static inline bool
|
|
is_true_predicate (tree cond)
|
|
{
|
|
return (cond == NULL_TREE
|
|
|| cond == boolean_true_node
|
|
|| integer_onep (cond));
|
|
}
|
|
|
|
/* Returns true when BB has a predicate that is not trivial: true or
|
|
NULL_TREE. */
|
|
|
|
static inline bool
|
|
is_predicated (basic_block bb)
|
|
{
|
|
return !is_true_predicate (bb_predicate (bb));
|
|
}
|
|
|
|
/* Parses the predicate COND and returns its comparison code and
|
|
operands OP0 and OP1. */
|
|
|
|
static enum tree_code
|
|
parse_predicate (tree cond, tree *op0, tree *op1)
|
|
{
|
|
gimple s;
|
|
|
|
if (TREE_CODE (cond) == SSA_NAME
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
|
|
{
|
|
if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
|
|
{
|
|
*op0 = gimple_assign_rhs1 (s);
|
|
*op1 = gimple_assign_rhs2 (s);
|
|
return gimple_assign_rhs_code (s);
|
|
}
|
|
|
|
else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
|
|
{
|
|
tree op = gimple_assign_rhs1 (s);
|
|
tree type = TREE_TYPE (op);
|
|
enum tree_code code = parse_predicate (op, op0, op1);
|
|
|
|
return code == ERROR_MARK ? ERROR_MARK
|
|
: invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
|
|
}
|
|
|
|
return ERROR_MARK;
|
|
}
|
|
|
|
if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
|
|
{
|
|
*op0 = TREE_OPERAND (cond, 0);
|
|
*op1 = TREE_OPERAND (cond, 1);
|
|
return TREE_CODE (cond);
|
|
}
|
|
|
|
return ERROR_MARK;
|
|
}
|
|
|
|
/* Returns the fold of predicate C1 OR C2 at location LOC. */
|
|
|
|
static tree
|
|
fold_or_predicates (location_t loc, tree c1, tree c2)
|
|
{
|
|
tree op1a, op1b, op2a, op2b;
|
|
enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
|
|
enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
|
|
|
|
if (code1 != ERROR_MARK && code2 != ERROR_MARK)
|
|
{
|
|
tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
|
|
code2, op2a, op2b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
|
|
}
|
|
|
|
/* Add condition NC to the predicate list of basic block BB. */
|
|
|
|
static inline void
|
|
add_to_predicate_list (basic_block bb, tree nc)
|
|
{
|
|
tree bc;
|
|
|
|
if (is_true_predicate (nc))
|
|
return;
|
|
|
|
if (!is_predicated (bb))
|
|
bc = nc;
|
|
else
|
|
{
|
|
bc = bb_predicate (bb);
|
|
bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
|
|
}
|
|
|
|
if (!is_gimple_condexpr (bc))
|
|
{
|
|
gimple_seq stmts;
|
|
bc = force_gimple_operand (bc, &stmts, true, NULL_TREE);
|
|
add_bb_predicate_gimplified_stmts (bb, stmts);
|
|
}
|
|
|
|
if (is_true_predicate (bc))
|
|
reset_bb_predicate (bb);
|
|
else
|
|
set_bb_predicate (bb, bc);
|
|
}
|
|
|
|
/* Add the condition COND to the previous condition PREV_COND, and add
|
|
this to the predicate list of the destination of edge E. LOOP is
|
|
the loop to be if-converted. */
|
|
|
|
static void
|
|
add_to_dst_predicate_list (struct loop *loop, edge e,
|
|
tree prev_cond, tree cond)
|
|
{
|
|
if (!flow_bb_inside_loop_p (loop, e->dest))
|
|
return;
|
|
|
|
if (!is_true_predicate (prev_cond))
|
|
cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
|
prev_cond, cond);
|
|
|
|
add_to_predicate_list (e->dest, cond);
|
|
}
|
|
|
|
/* Return true if one of the successor edges of BB exits LOOP. */
|
|
|
|
static bool
|
|
bb_with_exit_edge_p (struct loop *loop, basic_block bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if (loop_exit_edge_p (loop, e))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true when PHI is if-convertible. PHI is part of loop LOOP
|
|
and it belongs to basic block BB.
|
|
|
|
PHI is not if-convertible if:
|
|
- it has more than 2 arguments.
|
|
|
|
When the flag_tree_loop_if_convert_stores is not set, PHI is not
|
|
if-convertible if:
|
|
- a virtual PHI is immediately used in another PHI node,
|
|
- there is a virtual PHI in a BB other than the loop->header. */
|
|
|
|
static bool
|
|
if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "-------------------------\n");
|
|
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
|
|
}
|
|
|
|
if (bb != loop->header && gimple_phi_num_args (phi) != 2)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "More than two phi node args.\n");
|
|
return false;
|
|
}
|
|
|
|
if (flag_tree_loop_if_convert_stores)
|
|
return true;
|
|
|
|
/* When the flag_tree_loop_if_convert_stores is not set, check
|
|
that there are no memory writes in the branches of the loop to be
|
|
if-converted. */
|
|
if (!is_gimple_reg (SSA_NAME_VAR (gimple_phi_result (phi))))
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
|
|
if (bb != loop->header)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Virtual phi not on loop->header.\n");
|
|
return false;
|
|
}
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
|
|
{
|
|
if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Difficult to handle this virtual phi.\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Records the status of a data reference. This struct is attached to
|
|
each DR->aux field. */
|
|
|
|
struct ifc_dr {
|
|
/* -1 when not initialized, 0 when false, 1 when true. */
|
|
int written_at_least_once;
|
|
|
|
/* -1 when not initialized, 0 when false, 1 when true. */
|
|
int rw_unconditionally;
|
|
};
|
|
|
|
#define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
|
|
#define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once)
|
|
#define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
|
|
|
|
/* Returns true when the memory references of STMT are read or written
|
|
unconditionally. In other words, this function returns true when
|
|
for every data reference A in STMT there exist other accesses to
|
|
the same data reference with predicates that add up (OR-up) to the
|
|
true predicate: this ensures that the data reference A is touched
|
|
(read or written) on every iteration of the if-converted loop. */
|
|
|
|
static bool
|
|
memrefs_read_or_written_unconditionally (gimple stmt,
|
|
VEC (data_reference_p, heap) *drs)
|
|
{
|
|
int i, j;
|
|
data_reference_p a, b;
|
|
tree ca = bb_predicate (gimple_bb (stmt));
|
|
|
|
for (i = 0; VEC_iterate (data_reference_p, drs, i, a); i++)
|
|
if (DR_STMT (a) == stmt)
|
|
{
|
|
bool found = false;
|
|
int x = DR_RW_UNCONDITIONALLY (a);
|
|
|
|
if (x == 0)
|
|
return false;
|
|
|
|
if (x == 1)
|
|
continue;
|
|
|
|
for (j = 0; VEC_iterate (data_reference_p, drs, j, b); j++)
|
|
if (DR_STMT (b) != stmt
|
|
&& same_data_refs (a, b))
|
|
{
|
|
tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
|
|
|
|
if (DR_RW_UNCONDITIONALLY (b) == 1
|
|
|| is_true_predicate (cb)
|
|
|| is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
|
|
ca, cb)))
|
|
{
|
|
DR_RW_UNCONDITIONALLY (a) = 1;
|
|
DR_RW_UNCONDITIONALLY (b) = 1;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
{
|
|
DR_RW_UNCONDITIONALLY (a) = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Returns true when the memory references of STMT are unconditionally
|
|
written. In other words, this function returns true when for every
|
|
data reference A written in STMT, there exist other writes to the
|
|
same data reference with predicates that add up (OR-up) to the true
|
|
predicate: this ensures that the data reference A is written on
|
|
every iteration of the if-converted loop. */
|
|
|
|
static bool
|
|
write_memrefs_written_at_least_once (gimple stmt,
|
|
VEC (data_reference_p, heap) *drs)
|
|
{
|
|
int i, j;
|
|
data_reference_p a, b;
|
|
tree ca = bb_predicate (gimple_bb (stmt));
|
|
|
|
for (i = 0; VEC_iterate (data_reference_p, drs, i, a); i++)
|
|
if (DR_STMT (a) == stmt
|
|
&& DR_IS_WRITE (a))
|
|
{
|
|
bool found = false;
|
|
int x = DR_WRITTEN_AT_LEAST_ONCE (a);
|
|
|
|
if (x == 0)
|
|
return false;
|
|
|
|
if (x == 1)
|
|
continue;
|
|
|
|
for (j = 0; VEC_iterate (data_reference_p, drs, j, b); j++)
|
|
if (DR_STMT (b) != stmt
|
|
&& DR_IS_WRITE (b)
|
|
&& same_data_refs_base_objects (a, b))
|
|
{
|
|
tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
|
|
|
|
if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1
|
|
|| is_true_predicate (cb)
|
|
|| is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
|
|
ca, cb)))
|
|
{
|
|
DR_WRITTEN_AT_LEAST_ONCE (a) = 1;
|
|
DR_WRITTEN_AT_LEAST_ONCE (b) = 1;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
{
|
|
DR_WRITTEN_AT_LEAST_ONCE (a) = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when the memory references of STMT won't trap in the
|
|
if-converted code. There are two things that we have to check for:
|
|
|
|
- writes to memory occur to writable memory: if-conversion of
|
|
memory writes transforms the conditional memory writes into
|
|
unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
|
|
into "A[i] = cond ? foo : A[i]", and as the write to memory may not
|
|
be executed at all in the original code, it may be a readonly
|
|
memory. To check that A is not const-qualified, we check that
|
|
there exists at least an unconditional write to A in the current
|
|
function.
|
|
|
|
- reads or writes to memory are valid memory accesses for every
|
|
iteration. To check that the memory accesses are correctly formed
|
|
and that we are allowed to read and write in these locations, we
|
|
check that the memory accesses to be if-converted occur at every
|
|
iteration unconditionally. */
|
|
|
|
static bool
|
|
ifcvt_memrefs_wont_trap (gimple stmt, VEC (data_reference_p, heap) *refs)
|
|
{
|
|
return write_memrefs_written_at_least_once (stmt, refs)
|
|
&& memrefs_read_or_written_unconditionally (stmt, refs);
|
|
}
|
|
|
|
/* Wrapper around gimple_could_trap_p refined for the needs of the
|
|
if-conversion. Try to prove that the memory accesses of STMT could
|
|
not trap in the innermost loop containing STMT. */
|
|
|
|
static bool
|
|
ifcvt_could_trap_p (gimple stmt, VEC (data_reference_p, heap) *refs)
|
|
{
|
|
if (gimple_vuse (stmt)
|
|
&& !gimple_could_trap_p_1 (stmt, false, false)
|
|
&& ifcvt_memrefs_wont_trap (stmt, refs))
|
|
return false;
|
|
|
|
return gimple_could_trap_p (stmt);
|
|
}
|
|
|
|
/* Return true when STMT is if-convertible.
|
|
|
|
GIMPLE_ASSIGN statement is not if-convertible if,
|
|
- it is not movable,
|
|
- it could trap,
|
|
- LHS is not var decl. */
|
|
|
|
static bool
|
|
if_convertible_gimple_assign_stmt_p (gimple stmt,
|
|
VEC (data_reference_p, heap) *refs)
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
basic_block bb;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "-------------------------\n");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
if (!is_gimple_reg_type (TREE_TYPE (lhs)))
|
|
return false;
|
|
|
|
/* Some of these constrains might be too conservative. */
|
|
if (stmt_ends_bb_p (stmt)
|
|
|| gimple_has_volatile_ops (stmt)
|
|
|| (TREE_CODE (lhs) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
|
|
|| gimple_has_side_effects (stmt))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "stmt not suitable for ifcvt\n");
|
|
return false;
|
|
}
|
|
|
|
if (flag_tree_loop_if_convert_stores)
|
|
{
|
|
if (ifcvt_could_trap_p (stmt, refs))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "tree could trap...\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (gimple_assign_rhs_could_trap_p (stmt))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "tree could trap...\n");
|
|
return false;
|
|
}
|
|
|
|
bb = gimple_bb (stmt);
|
|
|
|
if (TREE_CODE (lhs) != SSA_NAME
|
|
&& bb != bb->loop_father->header
|
|
&& !bb_with_exit_edge_p (bb->loop_father, bb))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "LHS is not var\n");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when STMT is if-convertible.
|
|
|
|
A statement is if-convertible if:
|
|
- it is an if-convertible GIMPLE_ASSGIN,
|
|
- it is a GIMPLE_LABEL or a GIMPLE_COND. */
|
|
|
|
static bool
|
|
if_convertible_stmt_p (gimple stmt, VEC (data_reference_p, heap) *refs)
|
|
{
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_LABEL:
|
|
case GIMPLE_DEBUG:
|
|
case GIMPLE_COND:
|
|
return true;
|
|
|
|
case GIMPLE_ASSIGN:
|
|
return if_convertible_gimple_assign_stmt_p (stmt, refs);
|
|
|
|
default:
|
|
/* Don't know what to do with 'em so don't do anything. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "don't know what to do\n");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
}
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when BB post-dominates all its predecessors. */
|
|
|
|
static bool
|
|
bb_postdominates_preds (basic_block bb)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < EDGE_COUNT (bb->preds); i++)
|
|
if (!dominated_by_p (CDI_POST_DOMINATORS, EDGE_PRED (bb, i)->src, bb))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when BB is if-convertible. This routine does not check
|
|
basic block's statements and phis.
|
|
|
|
A basic block is not if-convertible if:
|
|
- it is non-empty and it is after the exit block (in BFS order),
|
|
- it is after the exit block but before the latch,
|
|
- its edges are not normal.
|
|
|
|
EXIT_BB is the basic block containing the exit of the LOOP. BB is
|
|
inside LOOP. */
|
|
|
|
static bool
|
|
if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "----------[%d]-------------\n", bb->index);
|
|
|
|
if (EDGE_COUNT (bb->preds) > 2
|
|
|| EDGE_COUNT (bb->succs) > 2)
|
|
return false;
|
|
|
|
if (exit_bb)
|
|
{
|
|
if (bb != loop->latch)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "basic block after exit bb but before latch\n");
|
|
return false;
|
|
}
|
|
else if (!empty_block_p (bb))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "non empty basic block after exit bb\n");
|
|
return false;
|
|
}
|
|
else if (bb == loop->latch
|
|
&& bb != exit_bb
|
|
&& !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "latch is not dominated by exit_block\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Be less adventurous and handle only normal edges. */
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if (e->flags &
|
|
(EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Difficult to handle edges\n");
|
|
return false;
|
|
}
|
|
|
|
if (EDGE_COUNT (bb->preds) == 2
|
|
&& bb != loop->header
|
|
&& !bb_postdominates_preds (bb))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when all predecessor blocks of BB are visited. The
|
|
VISITED bitmap keeps track of the visited blocks. */
|
|
|
|
static bool
|
|
pred_blocks_visited_p (basic_block bb, bitmap *visited)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
if (!bitmap_bit_p (*visited, e->src->index))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Get body of a LOOP in suitable order for if-conversion. It is
|
|
caller's responsibility to deallocate basic block list.
|
|
If-conversion suitable order is, breadth first sort (BFS) order
|
|
with an additional constraint: select a block only if all its
|
|
predecessors are already selected. */
|
|
|
|
static basic_block *
|
|
get_loop_body_in_if_conv_order (const struct loop *loop)
|
|
{
|
|
basic_block *blocks, *blocks_in_bfs_order;
|
|
basic_block bb;
|
|
bitmap visited;
|
|
unsigned int index = 0;
|
|
unsigned int visited_count = 0;
|
|
|
|
gcc_assert (loop->num_nodes);
|
|
gcc_assert (loop->latch != EXIT_BLOCK_PTR);
|
|
|
|
blocks = XCNEWVEC (basic_block, loop->num_nodes);
|
|
visited = BITMAP_ALLOC (NULL);
|
|
|
|
blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
|
|
|
|
index = 0;
|
|
while (index < loop->num_nodes)
|
|
{
|
|
bb = blocks_in_bfs_order [index];
|
|
|
|
if (bb->flags & BB_IRREDUCIBLE_LOOP)
|
|
{
|
|
free (blocks_in_bfs_order);
|
|
BITMAP_FREE (visited);
|
|
free (blocks);
|
|
return NULL;
|
|
}
|
|
|
|
if (!bitmap_bit_p (visited, bb->index))
|
|
{
|
|
if (pred_blocks_visited_p (bb, &visited)
|
|
|| bb == loop->header)
|
|
{
|
|
/* This block is now visited. */
|
|
bitmap_set_bit (visited, bb->index);
|
|
blocks[visited_count++] = bb;
|
|
}
|
|
}
|
|
|
|
index++;
|
|
|
|
if (index == loop->num_nodes
|
|
&& visited_count != loop->num_nodes)
|
|
/* Not done yet. */
|
|
index = 0;
|
|
}
|
|
free (blocks_in_bfs_order);
|
|
BITMAP_FREE (visited);
|
|
return blocks;
|
|
}
|
|
|
|
/* Returns true when the analysis of the predicates for all the basic
|
|
blocks in LOOP succeeded.
|
|
|
|
predicate_bbs first allocates the predicates of the basic blocks.
|
|
These fields are then initialized with the tree expressions
|
|
representing the predicates under which a basic block is executed
|
|
in the LOOP. As the loop->header is executed at each iteration, it
|
|
has the "true" predicate. Other statements executed under a
|
|
condition are predicated with that condition, for example
|
|
|
|
| if (x)
|
|
| S1;
|
|
| else
|
|
| S2;
|
|
|
|
S1 will be predicated with "x", and
|
|
S2 will be predicated with "!x". */
|
|
|
|
static bool
|
|
predicate_bbs (loop_p loop)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
init_bb_predicate (ifc_bbs[i]);
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = ifc_bbs[i];
|
|
tree cond;
|
|
gimple_stmt_iterator itr;
|
|
|
|
/* The loop latch is always executed and has no extra conditions
|
|
to be processed: skip it. */
|
|
if (bb == loop->latch)
|
|
{
|
|
reset_bb_predicate (loop->latch);
|
|
continue;
|
|
}
|
|
|
|
cond = bb_predicate (bb);
|
|
if (cond
|
|
&& bb != loop->header)
|
|
{
|
|
gimple_seq stmts;
|
|
|
|
cond = force_gimple_operand (cond, &stmts, true, NULL_TREE);
|
|
add_bb_predicate_gimplified_stmts (bb, stmts);
|
|
}
|
|
|
|
for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
|
|
{
|
|
gimple stmt = gsi_stmt (itr);
|
|
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_LABEL:
|
|
case GIMPLE_ASSIGN:
|
|
case GIMPLE_CALL:
|
|
case GIMPLE_DEBUG:
|
|
break;
|
|
|
|
case GIMPLE_COND:
|
|
{
|
|
tree c2, tem;
|
|
edge true_edge, false_edge;
|
|
location_t loc = gimple_location (stmt);
|
|
tree c = fold_build2_loc (loc, gimple_cond_code (stmt),
|
|
boolean_type_node,
|
|
gimple_cond_lhs (stmt),
|
|
gimple_cond_rhs (stmt));
|
|
|
|
/* Add new condition into destination's predicate list. */
|
|
extract_true_false_edges_from_block (gimple_bb (stmt),
|
|
&true_edge, &false_edge);
|
|
|
|
/* If C is true, then TRUE_EDGE is taken. */
|
|
add_to_dst_predicate_list (loop, true_edge, cond, unshare_expr (c));
|
|
|
|
/* If C is false, then FALSE_EDGE is taken. */
|
|
c2 = invert_truthvalue_loc (loc, unshare_expr (c));
|
|
tem = canonicalize_cond_expr_cond (c2);
|
|
if (tem)
|
|
c2 = tem;
|
|
add_to_dst_predicate_list (loop, false_edge, cond, c2);
|
|
|
|
cond = NULL_TREE;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
/* Not handled yet in if-conversion. */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* If current bb has only one successor, then consider it as an
|
|
unconditional goto. */
|
|
if (single_succ_p (bb))
|
|
{
|
|
basic_block bb_n = single_succ (bb);
|
|
|
|
/* The successor bb inherits the predicate of its
|
|
predecessor. If there is no predicate in the predecessor
|
|
bb, then consider the successor bb as always executed. */
|
|
if (cond == NULL_TREE)
|
|
cond = boolean_true_node;
|
|
|
|
add_to_predicate_list (bb_n, cond);
|
|
}
|
|
}
|
|
|
|
/* The loop header is always executed. */
|
|
reset_bb_predicate (loop->header);
|
|
gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
|
|
&& bb_predicate_gimplified_stmts (loop->latch) == NULL);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when LOOP is if-convertible. This is a helper function
|
|
for if_convertible_loop_p. REFS and DDRS are initialized and freed
|
|
in if_convertible_loop_p. */
|
|
|
|
static bool
|
|
if_convertible_loop_p_1 (struct loop *loop,
|
|
VEC (loop_p, heap) **loop_nest,
|
|
VEC (data_reference_p, heap) **refs,
|
|
VEC (ddr_p, heap) **ddrs)
|
|
{
|
|
bool res;
|
|
unsigned int i;
|
|
basic_block exit_bb = NULL;
|
|
|
|
/* Don't if-convert the loop when the data dependences cannot be
|
|
computed: the loop won't be vectorized in that case. */
|
|
res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs);
|
|
if (!res)
|
|
return false;
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
|
|
|
/* Allow statements that can be handled during if-conversion. */
|
|
ifc_bbs = get_loop_body_in_if_conv_order (loop);
|
|
if (!ifc_bbs)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Irreducible loop\n");
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = ifc_bbs[i];
|
|
|
|
if (!if_convertible_bb_p (loop, bb, exit_bb))
|
|
return false;
|
|
|
|
if (bb_with_exit_edge_p (loop, bb))
|
|
exit_bb = bb;
|
|
}
|
|
|
|
res = predicate_bbs (loop);
|
|
if (!res)
|
|
return false;
|
|
|
|
if (flag_tree_loop_if_convert_stores)
|
|
{
|
|
data_reference_p dr;
|
|
|
|
for (i = 0; VEC_iterate (data_reference_p, *refs, i, dr); i++)
|
|
{
|
|
dr->aux = XNEW (struct ifc_dr);
|
|
DR_WRITTEN_AT_LEAST_ONCE (dr) = -1;
|
|
DR_RW_UNCONDITIONALLY (dr) = -1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = ifc_bbs[i];
|
|
gimple_stmt_iterator itr;
|
|
|
|
for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
|
|
if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr)))
|
|
return false;
|
|
|
|
/* Check the if-convertibility of statements in predicated BBs. */
|
|
if (is_predicated (bb))
|
|
for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
|
|
if (!if_convertible_stmt_p (gsi_stmt (itr), *refs))
|
|
return false;
|
|
}
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "Applying if-conversion\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when LOOP is if-convertible.
|
|
LOOP is if-convertible if:
|
|
- it is innermost,
|
|
- it has two or more basic blocks,
|
|
- it has only one exit,
|
|
- loop header is not the exit edge,
|
|
- if its basic blocks and phi nodes are if convertible. */
|
|
|
|
static bool
|
|
if_convertible_loop_p (struct loop *loop)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
bool res = false;
|
|
VEC (data_reference_p, heap) *refs;
|
|
VEC (ddr_p, heap) *ddrs;
|
|
VEC (loop_p, heap) *loop_nest;
|
|
|
|
/* Handle only innermost loop. */
|
|
if (!loop || loop->inner)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "not innermost loop\n");
|
|
return false;
|
|
}
|
|
|
|
/* If only one block, no need for if-conversion. */
|
|
if (loop->num_nodes <= 2)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "less than 2 basic blocks\n");
|
|
return false;
|
|
}
|
|
|
|
/* More than one loop exit is too much to handle. */
|
|
if (!single_exit (loop))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "multiple exits\n");
|
|
return false;
|
|
}
|
|
|
|
/* If one of the loop header's edge is an exit edge then do not
|
|
apply if-conversion. */
|
|
FOR_EACH_EDGE (e, ei, loop->header->succs)
|
|
if (loop_exit_edge_p (loop, e))
|
|
return false;
|
|
|
|
refs = VEC_alloc (data_reference_p, heap, 5);
|
|
ddrs = VEC_alloc (ddr_p, heap, 25);
|
|
loop_nest = VEC_alloc (loop_p, heap, 3);
|
|
res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs);
|
|
|
|
if (flag_tree_loop_if_convert_stores)
|
|
{
|
|
data_reference_p dr;
|
|
unsigned int i;
|
|
|
|
for (i = 0; VEC_iterate (data_reference_p, refs, i, dr); i++)
|
|
free (dr->aux);
|
|
}
|
|
|
|
VEC_free (loop_p, heap, loop_nest);
|
|
free_data_refs (refs);
|
|
free_dependence_relations (ddrs);
|
|
return res;
|
|
}
|
|
|
|
/* Basic block BB has two predecessors. Using predecessor's bb
|
|
predicate, set an appropriate condition COND for the PHI node
|
|
replacement. Return the true block whose phi arguments are
|
|
selected when cond is true. LOOP is the loop containing the
|
|
if-converted region, GSI is the place to insert the code for the
|
|
if-conversion. */
|
|
|
|
static basic_block
|
|
find_phi_replacement_condition (struct loop *loop,
|
|
basic_block bb, tree *cond,
|
|
gimple_stmt_iterator *gsi)
|
|
{
|
|
edge first_edge, second_edge;
|
|
tree tmp_cond;
|
|
|
|
gcc_assert (EDGE_COUNT (bb->preds) == 2);
|
|
first_edge = EDGE_PRED (bb, 0);
|
|
second_edge = EDGE_PRED (bb, 1);
|
|
|
|
/* Use condition based on following criteria:
|
|
1)
|
|
S1: x = !c ? a : b;
|
|
|
|
S2: x = c ? b : a;
|
|
|
|
S2 is preferred over S1. Make 'b' first_bb and use its condition.
|
|
|
|
2) Do not make loop header first_bb.
|
|
|
|
3)
|
|
S1: x = !(c == d)? a : b;
|
|
|
|
S21: t1 = c == d;
|
|
S22: x = t1 ? b : a;
|
|
|
|
S3: x = (c == d) ? b : a;
|
|
|
|
S3 is preferred over S1 and S2*, Make 'b' first_bb and use
|
|
its condition.
|
|
|
|
4) If pred B is dominated by pred A then use pred B's condition.
|
|
See PR23115. */
|
|
|
|
/* Select condition that is not TRUTH_NOT_EXPR. */
|
|
tmp_cond = bb_predicate (first_edge->src);
|
|
gcc_assert (tmp_cond);
|
|
|
|
if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
|
|
{
|
|
edge tmp_edge;
|
|
|
|
tmp_edge = first_edge;
|
|
first_edge = second_edge;
|
|
second_edge = tmp_edge;
|
|
}
|
|
|
|
/* Check if FIRST_BB is loop header or not and make sure that
|
|
FIRST_BB does not dominate SECOND_BB. */
|
|
if (first_edge->src == loop->header
|
|
|| dominated_by_p (CDI_DOMINATORS,
|
|
second_edge->src, first_edge->src))
|
|
{
|
|
*cond = bb_predicate (second_edge->src);
|
|
|
|
if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
|
|
*cond = invert_truthvalue (*cond);
|
|
else
|
|
/* Select non loop header bb. */
|
|
first_edge = second_edge;
|
|
}
|
|
else
|
|
*cond = bb_predicate (first_edge->src);
|
|
|
|
/* Gimplify the condition: the vectorizer prefers to have gimple
|
|
values as conditions. Various targets use different means to
|
|
communicate conditions in vector compare operations. Using a
|
|
gimple value allows the compiler to emit vector compare and
|
|
select RTL without exposing compare's result. */
|
|
*cond = force_gimple_operand_gsi (gsi, unshare_expr (*cond),
|
|
false, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
if (!is_gimple_reg (*cond) && !is_gimple_condexpr (*cond))
|
|
*cond = ifc_temp_var (TREE_TYPE (*cond), unshare_expr (*cond), gsi);
|
|
|
|
gcc_assert (*cond);
|
|
|
|
return first_edge->src;
|
|
}
|
|
|
|
/* Replace a scalar PHI node with a COND_EXPR using COND as condition.
|
|
This routine does not handle PHI nodes with more than two
|
|
arguments.
|
|
|
|
For example,
|
|
S1: A = PHI <x1(1), x2(5)
|
|
is converted into,
|
|
S2: A = cond ? x1 : x2;
|
|
|
|
The generated code is inserted at GSI that points to the top of
|
|
basic block's statement list. When COND is true, phi arg from
|
|
TRUE_BB is selected. */
|
|
|
|
static void
|
|
predicate_scalar_phi (gimple phi, tree cond,
|
|
basic_block true_bb,
|
|
gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple new_stmt;
|
|
basic_block bb;
|
|
tree rhs, res, arg, scev;
|
|
|
|
gcc_assert (gimple_code (phi) == GIMPLE_PHI
|
|
&& gimple_phi_num_args (phi) == 2);
|
|
|
|
res = gimple_phi_result (phi);
|
|
/* Do not handle virtual phi nodes. */
|
|
if (!is_gimple_reg (SSA_NAME_VAR (res)))
|
|
return;
|
|
|
|
bb = gimple_bb (phi);
|
|
|
|
if ((arg = degenerate_phi_result (phi))
|
|
|| ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
|
|
res))
|
|
&& !chrec_contains_undetermined (scev)
|
|
&& scev != res
|
|
&& (arg = gimple_phi_arg_def (phi, 0))))
|
|
rhs = arg;
|
|
else
|
|
{
|
|
tree arg_0, arg_1;
|
|
/* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr. */
|
|
if (EDGE_PRED (bb, 1)->src == true_bb)
|
|
{
|
|
arg_0 = gimple_phi_arg_def (phi, 1);
|
|
arg_1 = gimple_phi_arg_def (phi, 0);
|
|
}
|
|
else
|
|
{
|
|
arg_0 = gimple_phi_arg_def (phi, 0);
|
|
arg_1 = gimple_phi_arg_def (phi, 1);
|
|
}
|
|
|
|
gcc_checking_assert (bb == bb->loop_father->header
|
|
|| bb_postdominates_preds (bb));
|
|
|
|
/* Build new RHS using selected condition and arguments. */
|
|
rhs = build3 (COND_EXPR, TREE_TYPE (res),
|
|
unshare_expr (cond), arg_0, arg_1);
|
|
}
|
|
|
|
new_stmt = gimple_build_assign (res, rhs);
|
|
SSA_NAME_DEF_STMT (gimple_phi_result (phi)) = new_stmt;
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
update_stmt (new_stmt);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "new phi replacement stmt\n");
|
|
print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
|
|
}
|
|
}
|
|
|
|
/* Replaces in LOOP all the scalar phi nodes other than those in the
|
|
LOOP->header block with conditional modify expressions. */
|
|
|
|
static void
|
|
predicate_all_scalar_phis (struct loop *loop)
|
|
{
|
|
basic_block bb;
|
|
unsigned int orig_loop_num_nodes = loop->num_nodes;
|
|
unsigned int i;
|
|
|
|
for (i = 1; i < orig_loop_num_nodes; i++)
|
|
{
|
|
gimple phi;
|
|
tree cond = NULL_TREE;
|
|
gimple_stmt_iterator gsi, phi_gsi;
|
|
basic_block true_bb = NULL;
|
|
bb = ifc_bbs[i];
|
|
|
|
if (bb == loop->header)
|
|
continue;
|
|
|
|
phi_gsi = gsi_start_phis (bb);
|
|
if (gsi_end_p (phi_gsi))
|
|
continue;
|
|
|
|
/* BB has two predecessors. Using predecessor's aux field, set
|
|
appropriate condition for the PHI node replacement. */
|
|
gsi = gsi_after_labels (bb);
|
|
true_bb = find_phi_replacement_condition (loop, bb, &cond, &gsi);
|
|
|
|
while (!gsi_end_p (phi_gsi))
|
|
{
|
|
phi = gsi_stmt (phi_gsi);
|
|
predicate_scalar_phi (phi, cond, true_bb, &gsi);
|
|
release_phi_node (phi);
|
|
gsi_next (&phi_gsi);
|
|
}
|
|
|
|
set_phi_nodes (bb, NULL);
|
|
}
|
|
}
|
|
|
|
/* Insert in each basic block of LOOP the statements produced by the
|
|
gimplification of the predicates. */
|
|
|
|
static void
|
|
insert_gimplified_predicates (loop_p loop)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = ifc_bbs[i];
|
|
gimple_seq stmts;
|
|
|
|
if (!is_predicated (bb))
|
|
{
|
|
/* Do not insert statements for a basic block that is not
|
|
predicated. Also make sure that the predicate of the
|
|
basic block is set to true. */
|
|
reset_bb_predicate (bb);
|
|
continue;
|
|
}
|
|
|
|
stmts = bb_predicate_gimplified_stmts (bb);
|
|
if (stmts)
|
|
{
|
|
if (flag_tree_loop_if_convert_stores)
|
|
{
|
|
/* Insert the predicate of the BB just after the label,
|
|
as the if-conversion of memory writes will use this
|
|
predicate. */
|
|
gimple_stmt_iterator gsi = gsi_after_labels (bb);
|
|
gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
|
|
}
|
|
else
|
|
{
|
|
/* Insert the predicate of the BB at the end of the BB
|
|
as this would reduce the register pressure: the only
|
|
use of this predicate will be in successor BBs. */
|
|
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
|
|
|
if (gsi_end_p (gsi)
|
|
|| stmt_ends_bb_p (gsi_stmt (gsi)))
|
|
gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
|
|
else
|
|
gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
|
|
}
|
|
|
|
/* Once the sequence is code generated, set it to NULL. */
|
|
set_bb_predicate_gimplified_stmts (bb, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Predicate each write to memory in LOOP.
|
|
|
|
This function transforms control flow constructs containing memory
|
|
writes of the form:
|
|
|
|
| for (i = 0; i < N; i++)
|
|
| if (cond)
|
|
| A[i] = expr;
|
|
|
|
into the following form that does not contain control flow:
|
|
|
|
| for (i = 0; i < N; i++)
|
|
| A[i] = cond ? expr : A[i];
|
|
|
|
The original CFG looks like this:
|
|
|
|
| bb_0
|
|
| i = 0
|
|
| end_bb_0
|
|
|
|
|
| bb_1
|
|
| if (i < N) goto bb_5 else goto bb_2
|
|
| end_bb_1
|
|
|
|
|
| bb_2
|
|
| cond = some_computation;
|
|
| if (cond) goto bb_3 else goto bb_4
|
|
| end_bb_2
|
|
|
|
|
| bb_3
|
|
| A[i] = expr;
|
|
| goto bb_4
|
|
| end_bb_3
|
|
|
|
|
| bb_4
|
|
| goto bb_1
|
|
| end_bb_4
|
|
|
|
insert_gimplified_predicates inserts the computation of the COND
|
|
expression at the beginning of the destination basic block:
|
|
|
|
| bb_0
|
|
| i = 0
|
|
| end_bb_0
|
|
|
|
|
| bb_1
|
|
| if (i < N) goto bb_5 else goto bb_2
|
|
| end_bb_1
|
|
|
|
|
| bb_2
|
|
| cond = some_computation;
|
|
| if (cond) goto bb_3 else goto bb_4
|
|
| end_bb_2
|
|
|
|
|
| bb_3
|
|
| cond = some_computation;
|
|
| A[i] = expr;
|
|
| goto bb_4
|
|
| end_bb_3
|
|
|
|
|
| bb_4
|
|
| goto bb_1
|
|
| end_bb_4
|
|
|
|
predicate_mem_writes is then predicating the memory write as follows:
|
|
|
|
| bb_0
|
|
| i = 0
|
|
| end_bb_0
|
|
|
|
|
| bb_1
|
|
| if (i < N) goto bb_5 else goto bb_2
|
|
| end_bb_1
|
|
|
|
|
| bb_2
|
|
| if (cond) goto bb_3 else goto bb_4
|
|
| end_bb_2
|
|
|
|
|
| bb_3
|
|
| cond = some_computation;
|
|
| A[i] = cond ? expr : A[i];
|
|
| goto bb_4
|
|
| end_bb_3
|
|
|
|
|
| bb_4
|
|
| goto bb_1
|
|
| end_bb_4
|
|
|
|
and finally combine_blocks removes the basic block boundaries making
|
|
the loop vectorizable:
|
|
|
|
| bb_0
|
|
| i = 0
|
|
| if (i < N) goto bb_5 else goto bb_1
|
|
| end_bb_0
|
|
|
|
|
| bb_1
|
|
| cond = some_computation;
|
|
| A[i] = cond ? expr : A[i];
|
|
| if (i < N) goto bb_5 else goto bb_4
|
|
| end_bb_1
|
|
|
|
|
| bb_4
|
|
| goto bb_1
|
|
| end_bb_4
|
|
*/
|
|
|
|
static void
|
|
predicate_mem_writes (loop_p loop)
|
|
{
|
|
unsigned int i, orig_loop_num_nodes = loop->num_nodes;
|
|
|
|
for (i = 1; i < orig_loop_num_nodes; i++)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
basic_block bb = ifc_bbs[i];
|
|
tree cond = bb_predicate (bb);
|
|
gimple stmt;
|
|
|
|
if (is_true_predicate (cond))
|
|
continue;
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
if ((stmt = gsi_stmt (gsi))
|
|
&& gimple_assign_single_p (stmt)
|
|
&& gimple_vdef (stmt))
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
tree type = TREE_TYPE (lhs);
|
|
|
|
lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
|
|
rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
|
|
rhs = build3 (COND_EXPR, type, unshare_expr (cond), rhs, lhs);
|
|
gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
|
|
update_stmt (stmt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
|
|
other than the exit and latch of the LOOP. Also resets the
|
|
GIMPLE_DEBUG information. */
|
|
|
|
static void
|
|
remove_conditions_and_labels (loop_p loop)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = ifc_bbs[i];
|
|
|
|
if (bb_with_exit_edge_p (loop, bb)
|
|
|| bb == loop->latch)
|
|
continue;
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
|
|
switch (gimple_code (gsi_stmt (gsi)))
|
|
{
|
|
case GIMPLE_COND:
|
|
case GIMPLE_LABEL:
|
|
gsi_remove (&gsi, true);
|
|
break;
|
|
|
|
case GIMPLE_DEBUG:
|
|
/* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
|
|
if (gimple_debug_bind_p (gsi_stmt (gsi)))
|
|
{
|
|
gimple_debug_bind_reset_value (gsi_stmt (gsi));
|
|
update_stmt (gsi_stmt (gsi));
|
|
}
|
|
gsi_next (&gsi);
|
|
break;
|
|
|
|
default:
|
|
gsi_next (&gsi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Combine all the basic blocks from LOOP into one or two super basic
|
|
blocks. Replace PHI nodes with conditional modify expressions. */
|
|
|
|
static void
|
|
combine_blocks (struct loop *loop)
|
|
{
|
|
basic_block bb, exit_bb, merge_target_bb;
|
|
unsigned int orig_loop_num_nodes = loop->num_nodes;
|
|
unsigned int i;
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
remove_conditions_and_labels (loop);
|
|
insert_gimplified_predicates (loop);
|
|
predicate_all_scalar_phis (loop);
|
|
|
|
if (flag_tree_loop_if_convert_stores)
|
|
predicate_mem_writes (loop);
|
|
|
|
/* Merge basic blocks: first remove all the edges in the loop,
|
|
except for those from the exit block. */
|
|
exit_bb = NULL;
|
|
for (i = 0; i < orig_loop_num_nodes; i++)
|
|
{
|
|
bb = ifc_bbs[i];
|
|
if (bb_with_exit_edge_p (loop, bb))
|
|
{
|
|
exit_bb = bb;
|
|
break;
|
|
}
|
|
}
|
|
gcc_assert (exit_bb != loop->latch);
|
|
|
|
for (i = 1; i < orig_loop_num_nodes; i++)
|
|
{
|
|
bb = ifc_bbs[i];
|
|
|
|
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
|
|
{
|
|
if (e->src == exit_bb)
|
|
ei_next (&ei);
|
|
else
|
|
remove_edge (e);
|
|
}
|
|
}
|
|
|
|
if (exit_bb != NULL)
|
|
{
|
|
if (exit_bb != loop->header)
|
|
{
|
|
/* Connect this node to loop header. */
|
|
make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
|
|
set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
|
|
}
|
|
|
|
/* Redirect non-exit edges to loop->latch. */
|
|
FOR_EACH_EDGE (e, ei, exit_bb->succs)
|
|
{
|
|
if (!loop_exit_edge_p (loop, e))
|
|
redirect_edge_and_branch (e, loop->latch);
|
|
}
|
|
set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
|
|
}
|
|
else
|
|
{
|
|
/* If the loop does not have an exit, reconnect header and latch. */
|
|
make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
|
|
set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
|
|
}
|
|
|
|
merge_target_bb = loop->header;
|
|
for (i = 1; i < orig_loop_num_nodes; i++)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
gimple_stmt_iterator last;
|
|
|
|
bb = ifc_bbs[i];
|
|
|
|
if (bb == exit_bb || bb == loop->latch)
|
|
continue;
|
|
|
|
/* Make stmts member of loop->header. */
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
gimple_set_bb (gsi_stmt (gsi), merge_target_bb);
|
|
|
|
/* Update stmt list. */
|
|
last = gsi_last_bb (merge_target_bb);
|
|
gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
|
|
set_bb_seq (bb, NULL);
|
|
|
|
delete_basic_block (bb);
|
|
}
|
|
|
|
/* If possible, merge loop header to the block with the exit edge.
|
|
This reduces the number of basic blocks to two, to please the
|
|
vectorizer that handles only loops with two nodes. */
|
|
if (exit_bb
|
|
&& exit_bb != loop->header
|
|
&& can_merge_blocks_p (loop->header, exit_bb))
|
|
merge_blocks (loop->header, exit_bb);
|
|
}
|
|
|
|
/* If-convert LOOP when it is legal. For the moment this pass has no
|
|
profitability analysis. Returns true when something changed. */
|
|
|
|
static bool
|
|
tree_if_conversion (struct loop *loop)
|
|
{
|
|
bool changed = false;
|
|
ifc_bbs = NULL;
|
|
|
|
if (!if_convertible_loop_p (loop)
|
|
|| !dbg_cnt (if_conversion_tree))
|
|
goto cleanup;
|
|
|
|
/* Now all statements are if-convertible. Combine all the basic
|
|
blocks into one huge basic block doing the if-conversion
|
|
on-the-fly. */
|
|
combine_blocks (loop);
|
|
|
|
if (flag_tree_loop_if_convert_stores)
|
|
mark_sym_for_renaming (gimple_vop (cfun));
|
|
|
|
changed = true;
|
|
|
|
cleanup:
|
|
if (ifc_bbs)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
free_bb_predicate (ifc_bbs[i]);
|
|
|
|
free (ifc_bbs);
|
|
ifc_bbs = NULL;
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* Tree if-conversion pass management. */
|
|
|
|
static unsigned int
|
|
main_tree_if_conversion (void)
|
|
{
|
|
loop_iterator li;
|
|
struct loop *loop;
|
|
bool changed = false;
|
|
unsigned todo = 0;
|
|
|
|
if (number_of_loops () <= 1)
|
|
return 0;
|
|
|
|
FOR_EACH_LOOP (li, loop, 0)
|
|
changed |= tree_if_conversion (loop);
|
|
|
|
if (changed)
|
|
todo |= TODO_cleanup_cfg;
|
|
|
|
if (changed && flag_tree_loop_if_convert_stores)
|
|
todo |= TODO_update_ssa_only_virtuals;
|
|
|
|
return todo;
|
|
}
|
|
|
|
/* Returns true when the if-conversion pass is enabled. */
|
|
|
|
static bool
|
|
gate_tree_if_conversion (void)
|
|
{
|
|
return ((flag_tree_vectorize && flag_tree_loop_if_convert != 0)
|
|
|| flag_tree_loop_if_convert == 1
|
|
|| flag_tree_loop_if_convert_stores == 1);
|
|
}
|
|
|
|
struct gimple_opt_pass pass_if_conversion =
|
|
{
|
|
{
|
|
GIMPLE_PASS,
|
|
"ifcvt", /* name */
|
|
gate_tree_if_conversion, /* gate */
|
|
main_tree_if_conversion, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_NONE, /* tv_id */
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_dump_func | TODO_verify_stmts | TODO_verify_flow
|
|
/* todo_flags_finish */
|
|
}
|
|
};
|