gcc/libstdc++-v3/include/std/future
Benjamin Kosnik 41ca42469f future: Move error handling bits outside macro guard.
2009-08-10  Benjamin Kosnik  <bkoz@redhat.com>

	* include/std/future: Move error handling bits outside macro guard.
	* src/future.cc: Adjust.

	* include/precompiled/stdc++.h: Add future.
	* doc/xml/manual/using.xml: Same.

From-SVN: r150642
2009-08-11 04:30:35 +00:00

941 lines
24 KiB
C++

// <future> -*- C++ -*-
// Copyright (C) 2009 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file future
* This is a Standard C++ Library header.
*/
#ifndef _GLIBCXX_FUTURE
#define _GLIBCXX_FUTURE 1
#pragma GCC system_header
#ifndef __GXX_EXPERIMENTAL_CXX0X__
# include <c++0x_warning.h>
#else
#include <functional>
#include <memory>
#include <mutex>
#include <condition_variable>
#include <system_error>
#include <exception>
#include <cstdatomic>
namespace std
{
/**
* @defgroup futures Futures
* @ingroup concurrency
*
* Classes for futures support.
* @{
*/
/// Error code for futures
enum class future_errc
{ broken_promise, future_already_retrieved, promise_already_satisfied };
// TODO: requires concepts
// concept_map ErrorCodeEnum<future_errc> { }
template<>
struct is_error_code_enum<future_errc> : public true_type { };
/// Points to a statically-allocated object derived from error_category.
extern const error_category* const future_category;
// TODO: requires constexpr
inline error_code make_error_code(future_errc __errc)
{ return error_code(static_cast<int>(__errc), *future_category); }
// TODO: requires constexpr
inline error_condition make_error_condition(future_errc __errc)
{ return error_condition(static_cast<int>(__errc), *future_category); }
/**
* @brief Exception type thrown by futures.
* @ingroup exceptions
*/
class future_error : public logic_error
{
error_code _M_code;
public:
explicit future_error(future_errc __ec)
: logic_error("std::future_error"), _M_code(make_error_code(__ec))
{ }
virtual ~future_error() throw();
virtual const char*
what() const throw();
const error_code&
code() const throw() { return _M_code; }
};
// Forward declarations.
template<typename _Result>
class unique_future;
template<typename _Result>
class shared_future;
template<typename>
class packaged_task;
template<typename _Result>
class promise;
#if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1) \
&& defined(_GLIBCXX_ATOMIC_BUILTINS_4)
// Holds the result of a future
struct _Future_result_base
{
_Future_result_base() = default;
_Future_result_base(const _Future_result_base&) = delete;
_Future_result_base& operator=(const _Future_result_base&) = delete;
exception_ptr _M_error;
// _M_destroy() allows derived classes to control deallocation,
// which will be needed when allocator support is added to promise.
// See http://gcc.gnu.org/ml/libstdc++/2009-06/msg00032.html
virtual void _M_destroy() = 0;
struct _Deleter
{
void operator()(_Future_result_base* __fr) const { __fr->_M_destroy(); }
};
protected:
~_Future_result_base() = default;
};
// TODO: use template alias when available
/*
template<typename _Res>
using _Future_ptr = unique_ptr<_Res, _Future_result_base::_Deleter>;
*/
template<typename _Res>
struct _Future_ptr
{
typedef unique_ptr<_Res, _Future_result_base::_Deleter> type;
};
// State shared between a promise and one or more associated futures.
class _Future_state
{
typedef _Future_ptr<_Future_result_base>::type _Future_ptr_type;
public:
_Future_state() : _M_result(), _M_retrieved(false) { }
_Future_state(const _Future_state&) = delete;
_Future_state& operator=(const _Future_state&) = delete;
bool
is_ready()
{ return _M_get() != 0; }
bool
has_exception()
{
_Future_result_base* const __res = _M_get();
return __res && !(__res->_M_error == 0);
}
bool
has_value()
{
_Future_result_base* const __res = _M_get();
return __res && (__res->_M_error == 0);
}
_Future_result_base&
wait()
{
unique_lock<mutex> __lock(_M_mutex);
if (!_M_ready())
_M_cond.wait(__lock, std::bind(&_Future_state::_M_ready, this));
return *_M_result;
}
template<typename _Rep, typename _Period>
bool
wait_for(const chrono::duration<_Rep, _Period>& __rel)
{
unique_lock<mutex> __lock(_M_mutex);
return _M_ready() || _M_cond.wait_for(__lock, __rel,
std::bind(&_Future_state::_M_ready, this));
}
template<typename _Clock, typename _Duration>
bool
wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
{
unique_lock<mutex> __lock(_M_mutex);
return _M_ready() || _M_cond.wait_until(__lock, __abs,
std::bind(&_Future_state::_M_ready, this));
}
void
_M_set_result(_Future_ptr_type __res)
{
{
lock_guard<mutex> __lock(_M_mutex);
if (_M_ready())
__throw_future_error(int(future_errc::promise_already_satisfied));
_M_result.swap(__res);
}
_M_cond.notify_all();
}
void
_M_break_promise(_Future_ptr_type __res)
{
if (static_cast<bool>(__res))
{
__res->_M_error
= std::copy_exception(future_error(future_errc::broken_promise));
{
lock_guard<mutex> __lock(_M_mutex);
_M_result.swap(__res);
}
_M_cond.notify_all();
}
}
// called when this object is passed to a unique_future
void
_M_set_retrieved_flag()
{
if (_M_retrieved.test_and_set())
__throw_future_error(int(future_errc::future_already_retrieved));
}
private:
_Future_result_base*
_M_get()
{
lock_guard<mutex> __lock(_M_mutex);
return _M_result.get();
}
bool _M_ready() const { return static_cast<bool>(_M_result); }
_Future_ptr_type _M_result;
mutex _M_mutex;
condition_variable _M_cond;
atomic_flag _M_retrieved;
};
// workaround for CWG issue 664 and c++/34022
template<typename _Result, bool = is_scalar<_Result>::value>
struct _Move_future_result
{
typedef _Result&& __rval_type;
static _Result&& _S_move(_Result& __res) { return std::move(__res); }
};
// specialization for scalar types returns rvalue not rvalue-reference
template<typename _Result>
struct _Move_future_result<_Result, true>
{
typedef _Result __rval_type;
static _Result _S_move(_Result __res) { return __res; }
};
template<typename _Result>
struct _Future_result : _Future_result_base
{
_Future_result() : _M_initialized() { }
~_Future_result()
{
if (_M_initialized)
_M_value().~_Result();
}
// return lvalue, future will add const or rvalue-reference
_Result& _M_value()
{ return *static_cast<_Result*>(_M_addr()); }
void
_M_set(const _Result& __res)
{
::new (_M_addr()) _Result(__res);
_M_initialized = true;
}
void
_M_set(_Result&& __res)
{
typedef _Move_future_result<_Result> _Mover;
::new (_M_addr()) _Result(_Mover::_S_move(__res));
_M_initialized = true;
}
private:
void _M_destroy() { delete this; }
void* _M_addr() { return static_cast<void*>(&_M_storage); }
typename aligned_storage<sizeof(_Result),
alignment_of<_Result>::value>::type _M_storage;
bool _M_initialized;
};
template<typename _Result>
struct _Future_result<_Result&> : _Future_result_base
{
_Future_result() : _M_value_ptr() { }
_Result* _M_value_ptr;
void _M_destroy() { delete this; }
};
template<>
struct _Future_result<void> : _Future_result_base
{
void _M_destroy() { delete this; }
};
// common implementation for unique_future and shared_future
template<typename _Result>
class _Future_impl
{
public:
// disable copying
_Future_impl(const _Future_impl&) = delete;
_Future_impl& operator=(const _Future_impl&) = delete;
// functions to check state and wait for ready
bool is_ready() const { return this->_M_state->is_ready(); }
bool has_exception() const { return this->_M_state->has_exception(); }
bool has_value() const { return this->_M_state->has_value(); }
void wait() const { this->_M_state->wait(); }
template<typename _Rep, typename _Period>
bool
wait_for(const chrono::duration<_Rep, _Period>& __rel) const
{ return this->_M_state->wait_for(__rel); }
template<typename _Clock, typename _Duration>
bool
wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
{ return this->_M_state->wait_until(__abs); }
protected:
// wait for the state to be ready and rethrow any stored exception
_Future_result<_Result>&
_M_get_result()
{
_Future_result_base& __res = this->_M_state->wait();
if (!(__res._M_error == 0))
rethrow_exception(__res._M_error);
return static_cast<_Future_result<_Result>&>(__res);
}
typedef shared_ptr<_Future_state> _State_ptr;
// construction of a unique_future by promise::get_future()
explicit
_Future_impl(const _State_ptr& __state)
: _M_state(__state)
{
if (static_cast<bool>(this->_M_state))
this->_M_state->_M_set_retrieved_flag();
else
__throw_future_error(int(future_errc::future_already_retrieved));
}
// copy construction from a shared_future
explicit
_Future_impl(const shared_future<_Result>&);
// move construction from a unique_future
explicit
_Future_impl(unique_future<_Result>&&);
_State_ptr _M_state;
};
/// primary template for unique_future
template<typename _Result>
class unique_future : public _Future_impl<_Result>
{
typedef _Move_future_result<_Result> _Mover;
public:
/// Move constructor
unique_future(unique_future&& __uf) : _Base_type(std::move(__uf)) { }
// disable copying
unique_future(const unique_future&) = delete;
unique_future& operator=(const unique_future&) = delete;
// retrieving the value
typename _Mover::__rval_type
get()
{ return _Mover::_S_move(this->_M_get_result()._M_value()); }
private:
typedef _Future_impl<_Result> _Base_type;
typedef typename _Base_type::_State_ptr _State_ptr;
friend class promise<_Result>;
explicit
unique_future(const _State_ptr& __state) : _Base_type(__state) { }
};
// partial specialization for unique_future<R&>
template<typename _Result>
class unique_future<_Result&> : public _Future_impl<_Result&>
{
public:
/// Move constructor
unique_future(unique_future&& __uf) : _Base_type(std::move(__uf)) { }
// disable copying
unique_future(const unique_future&) = delete;
unique_future& operator=(const unique_future&) = delete;
// retrieving the value
_Result& get() { return *this->_M_get_result()._M_value_ptr; }
private:
typedef _Future_impl<_Result&> _Base_type;
typedef typename _Base_type::_State_ptr _State_ptr;
friend class promise<_Result&>;
explicit
unique_future(const _State_ptr& __state) : _Base_type(__state) { }
};
// specialization for unique_future<void>
template<>
class unique_future<void> : public _Future_impl<void>
{
public:
/// Move constructor
unique_future(unique_future&& __uf) : _Base_type(std::move(__uf)) { }
// disable copying
unique_future(const unique_future&) = delete;
unique_future& operator=(const unique_future&) = delete;
// retrieving the value
void get() { this->_M_get_result(); }
private:
typedef _Future_impl<void> _Base_type;
typedef _Base_type::_State_ptr _State_ptr;
friend class promise<void>;
explicit
unique_future(const _State_ptr& __state) : _Base_type(__state) { }
};
/// primary template for shared_future
template<typename _Result>
class shared_future : public _Future_impl<_Result>
{
public:
/// Copy constructor
shared_future(const shared_future& __sf) : _Base_type(__sf) { }
/// Construct from a unique_future rvalue
shared_future(unique_future<_Result>&& __uf)
: _Base_type(std::move(__uf))
{ }
shared_future& operator=(const shared_future&) = delete;
// retrieving the value
const _Result&
get()
{ return this->_M_get_result()._M_value(); }
private:
typedef _Future_impl<_Result> _Base_type;
};
// partial specialization for shared_future<R&>
template<typename _Result>
class shared_future<_Result&> : public _Future_impl<_Result&>
{
public:
/// Copy constructor
shared_future(const shared_future& __sf) : _Base_type(__sf) { }
/// Construct from a unique_future rvalue
shared_future(unique_future<_Result&>&& __uf)
: _Base_type(std::move(__uf))
{ }
shared_future& operator=(const shared_future&) = delete;
// retrieving the value
_Result& get() { return *this->_M_get_result()._M_value_ptr; }
private:
typedef _Future_impl<_Result&> _Base_type;
};
// specialization for shared_future<void>
template<>
class shared_future<void> : public _Future_impl<void>
{
public:
/// Copy constructor
shared_future(const shared_future& __sf) : _Base_type(__sf) { }
/// Construct from a unique_future rvalue
shared_future(unique_future<void>&& __uf)
: _Base_type(std::move(__uf))
{ }
shared_future& operator=(const shared_future&) = delete;
// retrieving the value
void get() { this->_M_get_result(); }
private:
typedef _Future_impl<void> _Base_type;
};
// now we can define the protected _Future_impl constructors
template<typename _Result>
_Future_impl<_Result>::_Future_impl(const shared_future<_Result>& __sf)
: _M_state(__sf._M_state)
{ }
template<typename _Result>
_Future_impl<_Result>::_Future_impl(unique_future<_Result>&& __uf)
: _M_state(std::move(__uf._M_state))
{ }
/// primary template for promise
template<typename _Result>
class promise
{
public:
promise()
: _M_future(std::make_shared<_Future_state>()),
_M_storage(new _Future_result<_Result>())
{ }
promise(promise&& __rhs)
: _M_future(std::move(__rhs._M_future)),
_M_storage(std::move(__rhs._M_storage))
{ }
// TODO: requires allocator concepts
/*
template<typename _Allocator>
promise(allocator_arg_t, const _Allocator& __a);
template<typename _Allocator>
promise(allocator_arg_t, const _Allocator&, promise&& __rhs);
*/
promise(const promise&) = delete;
~promise()
{
if (static_cast<bool>(_M_future) && !_M_future.unique())
_M_future->_M_break_promise(std::move(_M_storage));
}
// assignment
promise&
operator=(promise&& __rhs)
{
promise(std::move(__rhs)).swap(*this);
return *this;
}
promise& operator=(const promise&) = delete;
void
swap(promise& __rhs)
{
_M_future.swap(__rhs._M_future);
_M_storage.swap(__rhs._M_storage);
}
// retrieving the result
unique_future<_Result>
get_future()
{ return unique_future<_Result>(_M_future); }
// setting the result
void
set_value(const _Result& __r)
{
if (!_M_satisfied())
_M_storage->_M_set(__r);
_M_future->_M_set_result(std::move(_M_storage));
}
void
set_value(_Result&& __r)
{
if (!_M_satisfied())
_M_storage->_M_set(_Mover::_S_move(__r));
_M_future->_M_set_result(std::move(_M_storage));
}
void
set_exception(exception_ptr __p)
{
if (!_M_satisfied())
_M_storage->_M_error = __p;
_M_future->_M_set_result(std::move(_M_storage));
}
private:
template<typename> friend class packaged_task;
typedef _Move_future_result<_Result> _Mover;
bool _M_satisfied() { return !static_cast<bool>(_M_storage); }
shared_ptr<_Future_state> _M_future;
typename _Future_ptr<_Future_result<_Result>>::type _M_storage;
};
// partial specialization for promise<R&>
template<typename _Result>
class promise<_Result&>
{
public:
promise()
: _M_future(std::make_shared<_Future_state>()),
_M_storage(new _Future_result<_Result&>())
{ }
promise(promise&& __rhs)
: _M_future(std::move(__rhs._M_future)),
_M_storage(std::move(__rhs._M_storage))
{ }
// TODO: requires allocator concepts
/*
template<typename _Allocator>
promise(allocator_arg_t, const _Allocator& __a);
template<typename _Allocator>
promise(allocator_arg_t, const _Allocator&, promise&& __rhs);
*/
promise(const promise&) = delete;
~promise()
{
if (static_cast<bool>(_M_future) && !_M_future.unique())
_M_future->_M_break_promise(std::move(_M_storage));
}
// assignment
promise&
operator=(promise&& __rhs)
{
promise(std::move(__rhs)).swap(*this);
return *this;
}
promise& operator=(const promise&) = delete;
void
swap(promise& __rhs)
{
_M_future.swap(__rhs._M_future);
_M_storage.swap(__rhs._M_storage);
}
// retrieving the result
unique_future<_Result&>
get_future()
{ return unique_future<_Result&>(_M_future); }
// setting the result
void
set_value(_Result& __r)
{
if (!_M_satisfied())
_M_storage->_M_value_ptr = &__r;
_M_future->_M_set_result(std::move(_M_storage));
}
void
set_exception(exception_ptr __p)
{
if (!_M_satisfied())
_M_storage->_M_error = __p;
_M_future->_M_set_result(std::move(_M_storage));
}
private:
template<typename> friend class packaged_task;
bool _M_satisfied() { return !static_cast<bool>(_M_storage); }
shared_ptr<_Future_state> _M_future;
typename _Future_ptr<_Future_result<_Result&>>::type _M_storage;
};
// specialization for promise<void>
template<>
class promise<void>
{
public:
promise()
: _M_future(std::make_shared<_Future_state>()),
_M_storage(new _Future_result<void>())
{ }
promise(promise&& __rhs)
: _M_future(std::move(__rhs._M_future)),
_M_storage(std::move(__rhs._M_storage))
{ }
// TODO: requires allocator concepts
/*
template<typename _Allocator>
promise(allocator_arg_t, const _Allocator& __a);
template<typename _Allocator>
promise(allocator_arg_t, const _Allocator&, promise&& __rhs);
*/
promise(const promise&) = delete;
~promise()
{
if (static_cast<bool>(_M_future) && !_M_future.unique())
_M_future->_M_break_promise(std::move(_M_storage));
}
// assignment
promise&
operator=(promise&& __rhs)
{
promise(std::move(__rhs)).swap(*this);
return *this;
}
promise& operator=(const promise&) = delete;
void
swap(promise& __rhs)
{
_M_future.swap(__rhs._M_future);
_M_storage.swap(__rhs._M_storage);
}
// retrieving the result
unique_future<void>
get_future()
{ return unique_future<void>(_M_future); }
// setting the result
void
set_value()
{
_M_future->_M_set_result(std::move(_M_storage));
}
void
set_exception(exception_ptr __p)
{
if (!_M_satisfied())
_M_storage->_M_error = __p;
_M_future->_M_set_result(std::move(_M_storage));
}
private:
template<typename> friend class packaged_task;
bool _M_satisfied() { return !static_cast<bool>(_M_storage); }
shared_ptr<_Future_state> _M_future;
_Future_ptr<_Future_result<void>>::type _M_storage;
};
// TODO: requires allocator concepts
/*
template<typename _Result, class Alloc>
concept_map UsesAllocator<promise<_Result>, Alloc>
{
typedef Alloc allocator_type;
}
*/
template<typename _Result, typename... _ArgTypes>
struct _Run_task
{
static void
_S_run(promise<_Result>& __p, function<_Result(_ArgTypes...)>& __f,
_ArgTypes... __args)
{
__p.set_value(__f(std::forward<_ArgTypes>(__args)...));
}
};
// specialization used by packaged_task<void(...)>
template<typename... _ArgTypes>
struct _Run_task<void, _ArgTypes...>
{
static void
_S_run(promise<void>& __p, function<void(_ArgTypes...)>& __f,
_ArgTypes... __args)
{
__f(std::forward<_ArgTypes>(__args)...);
__p.set_value();
}
};
/// packaged_task
template<typename _Result, typename... _ArgTypes>
class packaged_task<_Result(_ArgTypes...)>
{
public:
typedef _Result result_type;
// construction and destruction
packaged_task() { }
template<typename _Fn>
explicit
packaged_task(const _Fn& __fn) : _M_task(__fn) { }
template<typename _Fn>
explicit
packaged_task(_Fn&& __fn) : _M_task(std::move(__fn)) { }
explicit
packaged_task(_Result(*__fn)(_ArgTypes...)) : _M_task(__fn) { }
// TODO: requires allocator concepts
/*
template<typename _Fn, typename _Allocator>
explicit
packaged_task(allocator_arg_t __tag, const _Allocator& __a, _Fn __fn)
: _M_task(__tag, __a, __fn), _M_promise(__tag, __a)
{ }
template<typename _Fn, typename _Allocator>
explicit
packaged_task(allocator_arg_t __tag, const _Allocator& __a, _Fn&& __fn)
: _M_task(__tag, __a, std::move(__fn)), _M_promise(__tag, __a)
{ }
*/
~packaged_task() = default;
// no copy
packaged_task(packaged_task&) = delete;
packaged_task& operator=(packaged_task&) = delete;
// move support
packaged_task(packaged_task&& __other)
{ this->swap(__other); }
packaged_task& operator=(packaged_task&& __other)
{
packaged_task(std::move(__other)).swap(*this);
return *this;
}
void
swap(packaged_task& __other)
{
_M_task.swap(__other._M_task);
_M_promise.swap(__other._M_promise);
}
explicit operator bool() const { return static_cast<bool>(_M_task); }
// result retrieval
unique_future<_Result>
get_future()
{
__try
{
return _M_promise.get_future();
}
__catch (const future_error& __e)
{
#ifdef __EXCEPTIONS
if (__e.code() == future_errc::future_already_retrieved)
throw std::bad_function_call();
throw;
#endif
}
}
// execution
void
operator()(_ArgTypes... __args)
{
if (!static_cast<bool>(_M_task) || _M_promise._M_satisfied())
{
#ifdef __EXCEPTIONS
throw std::bad_function_call();
#else
__builtin_abort();
#endif
}
__try
{
_Run_task<_Result, _ArgTypes...>::_S_run(_M_promise, _M_task,
std::forward<_ArgTypes>(__args)...);
}
__catch (...)
{
_M_promise.set_exception(current_exception());
}
}
void reset() { promise<_Result>().swap(_M_promise); }
private:
function<_Result(_ArgTypes...)> _M_task;
promise<_Result> _M_promise;
};
#endif // _GLIBCXX_HAS_GTHREADS && _GLIBCXX_USE_C99_STDINT_TR1
// && _GLIBCXX_ATOMIC_BUILTINS_4
// @} group futures
}
#endif // __GXX_EXPERIMENTAL_CXX0X__
#endif // _GLIBCXX_FUTURE