b120c8b207
2018-03-01 Paul Thomas <pault@gcc.gnu.org> PR fortran/84538 * class.c (class_array_ref_detected): Remove the condition that there be no reference after the array reference. (find_intrinsic_vtab): Remove excess whitespace. * trans-array.c (gfc_conv_scalarized_array_ref): Rename 'tmp' as 'base and call build_class_array_ref earlier. 2018-03-01 Paul Thomas <pault@gcc.gnu.org> PR fortran/84538 * gfortran.dg/class_array_23.f03: New test. From-SVN: r258097
2993 lines
95 KiB
C
2993 lines
95 KiB
C
/* Implementation of Fortran 2003 Polymorphism.
|
|
Copyright (C) 2009-2018 Free Software Foundation, Inc.
|
|
Contributed by Paul Richard Thomas <pault@gcc.gnu.org>
|
|
and Janus Weil <janus@gcc.gnu.org>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
/* class.c -- This file contains the front end functions needed to service
|
|
the implementation of Fortran 2003 polymorphism and other
|
|
object-oriented features. */
|
|
|
|
|
|
/* Outline of the internal representation:
|
|
|
|
Each CLASS variable is encapsulated by a class container, which is a
|
|
structure with two fields:
|
|
* _data: A pointer to the actual data of the variable. This field has the
|
|
declared type of the class variable and its attributes
|
|
(pointer/allocatable/dimension/...).
|
|
* _vptr: A pointer to the vtable entry (see below) of the dynamic type.
|
|
|
|
Only for unlimited polymorphic classes:
|
|
* _len: An integer(C_SIZE_T) to store the string length when the unlimited
|
|
polymorphic pointer is used to point to a char array. The '_len'
|
|
component will be zero when no character array is stored in
|
|
'_data'.
|
|
|
|
For each derived type we set up a "vtable" entry, i.e. a structure with the
|
|
following fields:
|
|
* _hash: A hash value serving as a unique identifier for this type.
|
|
* _size: The size in bytes of the derived type.
|
|
* _extends: A pointer to the vtable entry of the parent derived type.
|
|
* _def_init: A pointer to a default initialized variable of this type.
|
|
* _copy: A procedure pointer to a copying procedure.
|
|
* _final: A procedure pointer to a wrapper function, which frees
|
|
allocatable components and calls FINAL subroutines.
|
|
|
|
After these follow procedure pointer components for the specific
|
|
type-bound procedures. */
|
|
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "gfortran.h"
|
|
#include "constructor.h"
|
|
#include "target-memory.h"
|
|
|
|
/* Inserts a derived type component reference in a data reference chain.
|
|
TS: base type of the ref chain so far, in which we will pick the component
|
|
REF: the address of the GFC_REF pointer to update
|
|
NAME: name of the component to insert
|
|
Note that component insertion makes sense only if we are at the end of
|
|
the chain (*REF == NULL) or if we are adding a missing "_data" component
|
|
to access the actual contents of a class object. */
|
|
|
|
static void
|
|
insert_component_ref (gfc_typespec *ts, gfc_ref **ref, const char * const name)
|
|
{
|
|
gfc_symbol *type_sym;
|
|
gfc_ref *new_ref;
|
|
|
|
gcc_assert (ts->type == BT_DERIVED || ts->type == BT_CLASS);
|
|
type_sym = ts->u.derived;
|
|
|
|
gfc_find_component (type_sym, name, true, true, &new_ref);
|
|
gcc_assert (new_ref->u.c.component);
|
|
while (new_ref->next)
|
|
new_ref = new_ref->next;
|
|
new_ref->next = *ref;
|
|
|
|
if (new_ref->next)
|
|
{
|
|
gfc_ref *next = NULL;
|
|
|
|
/* We need to update the base type in the trailing reference chain to
|
|
that of the new component. */
|
|
|
|
gcc_assert (strcmp (name, "_data") == 0);
|
|
|
|
if (new_ref->next->type == REF_COMPONENT)
|
|
next = new_ref->next;
|
|
else if (new_ref->next->type == REF_ARRAY
|
|
&& new_ref->next->next
|
|
&& new_ref->next->next->type == REF_COMPONENT)
|
|
next = new_ref->next->next;
|
|
|
|
if (next != NULL)
|
|
{
|
|
gcc_assert (new_ref->u.c.component->ts.type == BT_CLASS
|
|
|| new_ref->u.c.component->ts.type == BT_DERIVED);
|
|
next->u.c.sym = new_ref->u.c.component->ts.u.derived;
|
|
}
|
|
}
|
|
|
|
*ref = new_ref;
|
|
}
|
|
|
|
|
|
/* Tells whether we need to add a "_data" reference to access REF subobject
|
|
from an object of type TS. If FIRST_REF_IN_CHAIN is set, then the base
|
|
object accessed by REF is a variable; in other words it is a full object,
|
|
not a subobject. */
|
|
|
|
static bool
|
|
class_data_ref_missing (gfc_typespec *ts, gfc_ref *ref, bool first_ref_in_chain)
|
|
{
|
|
/* Only class containers may need the "_data" reference. */
|
|
if (ts->type != BT_CLASS)
|
|
return false;
|
|
|
|
/* Accessing a class container with an array reference is certainly wrong. */
|
|
if (ref->type != REF_COMPONENT)
|
|
return true;
|
|
|
|
/* Accessing the class container's fields is fine. */
|
|
if (ref->u.c.component->name[0] == '_')
|
|
return false;
|
|
|
|
/* At this point we have a class container with a non class container's field
|
|
component reference. We don't want to add the "_data" component if we are
|
|
at the first reference and the symbol's type is an extended derived type.
|
|
In that case, conv_parent_component_references will do the right thing so
|
|
it is not absolutely necessary. Omitting it prevents a regression (see
|
|
class_41.f03) in the interface mapping mechanism. When evaluating string
|
|
lengths depending on dummy arguments, we create a fake symbol with a type
|
|
equal to that of the dummy type. However, because of type extension,
|
|
the backend type (corresponding to the actual argument) can have a
|
|
different (extended) type. Adding the "_data" component explicitly, using
|
|
the base type, confuses the gfc_conv_component_ref code which deals with
|
|
the extended type. */
|
|
if (first_ref_in_chain && ts->u.derived->attr.extension)
|
|
return false;
|
|
|
|
/* We have a class container with a non class container's field component
|
|
reference that doesn't fall into the above. */
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Browse through a data reference chain and add the missing "_data" references
|
|
when a subobject of a class object is accessed without it.
|
|
Note that it doesn't add the "_data" reference when the class container
|
|
is the last element in the reference chain. */
|
|
|
|
void
|
|
gfc_fix_class_refs (gfc_expr *e)
|
|
{
|
|
gfc_typespec *ts;
|
|
gfc_ref **ref;
|
|
|
|
if ((e->expr_type != EXPR_VARIABLE
|
|
&& e->expr_type != EXPR_FUNCTION)
|
|
|| (e->expr_type == EXPR_FUNCTION
|
|
&& e->value.function.isym != NULL))
|
|
return;
|
|
|
|
if (e->expr_type == EXPR_VARIABLE)
|
|
ts = &e->symtree->n.sym->ts;
|
|
else
|
|
{
|
|
gfc_symbol *func;
|
|
|
|
gcc_assert (e->expr_type == EXPR_FUNCTION);
|
|
if (e->value.function.esym != NULL)
|
|
func = e->value.function.esym;
|
|
else
|
|
func = e->symtree->n.sym;
|
|
|
|
if (func->result != NULL)
|
|
ts = &func->result->ts;
|
|
else
|
|
ts = &func->ts;
|
|
}
|
|
|
|
for (ref = &e->ref; *ref != NULL; ref = &(*ref)->next)
|
|
{
|
|
if (class_data_ref_missing (ts, *ref, ref == &e->ref))
|
|
insert_component_ref (ts, ref, "_data");
|
|
|
|
if ((*ref)->type == REF_COMPONENT)
|
|
ts = &(*ref)->u.c.component->ts;
|
|
}
|
|
}
|
|
|
|
|
|
/* Insert a reference to the component of the given name.
|
|
Only to be used with CLASS containers and vtables. */
|
|
|
|
void
|
|
gfc_add_component_ref (gfc_expr *e, const char *name)
|
|
{
|
|
gfc_component *c;
|
|
gfc_ref **tail = &(e->ref);
|
|
gfc_ref *ref, *next = NULL;
|
|
gfc_symbol *derived = e->symtree->n.sym->ts.u.derived;
|
|
while (*tail != NULL)
|
|
{
|
|
if ((*tail)->type == REF_COMPONENT)
|
|
{
|
|
if (strcmp ((*tail)->u.c.component->name, "_data") == 0
|
|
&& (*tail)->next
|
|
&& (*tail)->next->type == REF_ARRAY
|
|
&& (*tail)->next->next == NULL)
|
|
return;
|
|
derived = (*tail)->u.c.component->ts.u.derived;
|
|
}
|
|
if ((*tail)->type == REF_ARRAY && (*tail)->next == NULL)
|
|
break;
|
|
tail = &((*tail)->next);
|
|
}
|
|
if (derived->components && derived->components->next &&
|
|
derived->components->next->ts.type == BT_DERIVED &&
|
|
derived->components->next->ts.u.derived == NULL)
|
|
{
|
|
/* Fix up missing vtype. */
|
|
gfc_symbol *vtab = gfc_find_derived_vtab (derived->components->ts.u.derived);
|
|
gcc_assert (vtab);
|
|
derived->components->next->ts.u.derived = vtab->ts.u.derived;
|
|
}
|
|
if (*tail != NULL && strcmp (name, "_data") == 0)
|
|
next = *tail;
|
|
else
|
|
/* Avoid losing memory. */
|
|
gfc_free_ref_list (*tail);
|
|
c = gfc_find_component (derived, name, true, true, tail);
|
|
|
|
if (c) {
|
|
for (ref = *tail; ref->next; ref = ref->next)
|
|
;
|
|
ref->next = next;
|
|
if (!next)
|
|
e->ts = c->ts;
|
|
}
|
|
}
|
|
|
|
|
|
/* This is used to add both the _data component reference and an array
|
|
reference to class expressions. Used in translation of intrinsic
|
|
array inquiry functions. */
|
|
|
|
void
|
|
gfc_add_class_array_ref (gfc_expr *e)
|
|
{
|
|
int rank = CLASS_DATA (e)->as->rank;
|
|
gfc_array_spec *as = CLASS_DATA (e)->as;
|
|
gfc_ref *ref = NULL;
|
|
gfc_add_data_component (e);
|
|
e->rank = rank;
|
|
for (ref = e->ref; ref; ref = ref->next)
|
|
if (!ref->next)
|
|
break;
|
|
if (ref->type != REF_ARRAY)
|
|
{
|
|
ref->next = gfc_get_ref ();
|
|
ref = ref->next;
|
|
ref->type = REF_ARRAY;
|
|
ref->u.ar.type = AR_FULL;
|
|
ref->u.ar.as = as;
|
|
}
|
|
}
|
|
|
|
|
|
/* Unfortunately, class array expressions can appear in various conditions;
|
|
with and without both _data component and an arrayspec. This function
|
|
deals with that variability. The previous reference to 'ref' is to a
|
|
class array. */
|
|
|
|
static bool
|
|
class_array_ref_detected (gfc_ref *ref, bool *full_array)
|
|
{
|
|
bool no_data = false;
|
|
bool with_data = false;
|
|
|
|
/* An array reference with no _data component. */
|
|
if (ref && ref->type == REF_ARRAY
|
|
&& !ref->next
|
|
&& ref->u.ar.type != AR_ELEMENT)
|
|
{
|
|
if (full_array)
|
|
*full_array = ref->u.ar.type == AR_FULL;
|
|
no_data = true;
|
|
}
|
|
|
|
/* Cover cases where _data appears, with or without an array ref. */
|
|
if (ref && ref->type == REF_COMPONENT
|
|
&& strcmp (ref->u.c.component->name, "_data") == 0)
|
|
{
|
|
if (!ref->next)
|
|
{
|
|
with_data = true;
|
|
if (full_array)
|
|
*full_array = true;
|
|
}
|
|
else if (ref->next && ref->next->type == REF_ARRAY
|
|
&& ref->type == REF_COMPONENT
|
|
&& ref->next->u.ar.type != AR_ELEMENT)
|
|
{
|
|
with_data = true;
|
|
if (full_array)
|
|
*full_array = ref->next->u.ar.type == AR_FULL;
|
|
}
|
|
}
|
|
|
|
return no_data || with_data;
|
|
}
|
|
|
|
|
|
/* Returns true if the expression contains a reference to a class
|
|
array. Notice that class array elements return false. */
|
|
|
|
bool
|
|
gfc_is_class_array_ref (gfc_expr *e, bool *full_array)
|
|
{
|
|
gfc_ref *ref;
|
|
|
|
if (!e->rank)
|
|
return false;
|
|
|
|
if (full_array)
|
|
*full_array= false;
|
|
|
|
/* Is this a class array object? ie. Is the symbol of type class? */
|
|
if (e->symtree
|
|
&& e->symtree->n.sym->ts.type == BT_CLASS
|
|
&& CLASS_DATA (e->symtree->n.sym)
|
|
&& CLASS_DATA (e->symtree->n.sym)->attr.dimension
|
|
&& class_array_ref_detected (e->ref, full_array))
|
|
return true;
|
|
|
|
/* Or is this a class array component reference? */
|
|
for (ref = e->ref; ref; ref = ref->next)
|
|
{
|
|
if (ref->type == REF_COMPONENT
|
|
&& ref->u.c.component->ts.type == BT_CLASS
|
|
&& CLASS_DATA (ref->u.c.component)->attr.dimension
|
|
&& class_array_ref_detected (ref->next, full_array))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Returns true if the expression is a reference to a class
|
|
scalar. This function is necessary because such expressions
|
|
can be dressed with a reference to the _data component and so
|
|
have a type other than BT_CLASS. */
|
|
|
|
bool
|
|
gfc_is_class_scalar_expr (gfc_expr *e)
|
|
{
|
|
gfc_ref *ref;
|
|
|
|
if (e->rank)
|
|
return false;
|
|
|
|
/* Is this a class object? */
|
|
if (e->symtree
|
|
&& e->symtree->n.sym->ts.type == BT_CLASS
|
|
&& CLASS_DATA (e->symtree->n.sym)
|
|
&& !CLASS_DATA (e->symtree->n.sym)->attr.dimension
|
|
&& (e->ref == NULL
|
|
|| (e->ref->type == REF_COMPONENT
|
|
&& strcmp (e->ref->u.c.component->name, "_data") == 0
|
|
&& e->ref->next == NULL)))
|
|
return true;
|
|
|
|
/* Or is the final reference BT_CLASS or _data? */
|
|
for (ref = e->ref; ref; ref = ref->next)
|
|
{
|
|
if (ref->type == REF_COMPONENT
|
|
&& ref->u.c.component->ts.type == BT_CLASS
|
|
&& CLASS_DATA (ref->u.c.component)
|
|
&& !CLASS_DATA (ref->u.c.component)->attr.dimension
|
|
&& (ref->next == NULL
|
|
|| (ref->next->type == REF_COMPONENT
|
|
&& strcmp (ref->next->u.c.component->name, "_data") == 0
|
|
&& ref->next->next == NULL)))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Tells whether the expression E is a reference to a (scalar) class container.
|
|
Scalar because array class containers usually have an array reference after
|
|
them, and gfc_fix_class_refs will add the missing "_data" component reference
|
|
in that case. */
|
|
|
|
bool
|
|
gfc_is_class_container_ref (gfc_expr *e)
|
|
{
|
|
gfc_ref *ref;
|
|
bool result;
|
|
|
|
if (e->expr_type != EXPR_VARIABLE)
|
|
return e->ts.type == BT_CLASS;
|
|
|
|
if (e->symtree->n.sym->ts.type == BT_CLASS)
|
|
result = true;
|
|
else
|
|
result = false;
|
|
|
|
for (ref = e->ref; ref; ref = ref->next)
|
|
{
|
|
if (ref->type != REF_COMPONENT)
|
|
result = false;
|
|
else if (ref->u.c.component->ts.type == BT_CLASS)
|
|
result = true;
|
|
else
|
|
result = false;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Build an initializer for CLASS pointers,
|
|
initializing the _data component to the init_expr (or NULL) and the _vptr
|
|
component to the corresponding type (or the declared type, given by ts). */
|
|
|
|
gfc_expr *
|
|
gfc_class_initializer (gfc_typespec *ts, gfc_expr *init_expr)
|
|
{
|
|
gfc_expr *init;
|
|
gfc_component *comp;
|
|
gfc_symbol *vtab = NULL;
|
|
|
|
if (init_expr && init_expr->expr_type != EXPR_NULL)
|
|
vtab = gfc_find_vtab (&init_expr->ts);
|
|
else
|
|
vtab = gfc_find_vtab (ts);
|
|
|
|
init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
|
|
&ts->u.derived->declared_at);
|
|
init->ts = *ts;
|
|
|
|
for (comp = ts->u.derived->components; comp; comp = comp->next)
|
|
{
|
|
gfc_constructor *ctor = gfc_constructor_get();
|
|
if (strcmp (comp->name, "_vptr") == 0 && vtab)
|
|
ctor->expr = gfc_lval_expr_from_sym (vtab);
|
|
else if (init_expr && init_expr->expr_type != EXPR_NULL)
|
|
ctor->expr = gfc_copy_expr (init_expr);
|
|
else
|
|
ctor->expr = gfc_get_null_expr (NULL);
|
|
gfc_constructor_append (&init->value.constructor, ctor);
|
|
}
|
|
|
|
return init;
|
|
}
|
|
|
|
|
|
/* Create a unique string identifier for a derived type, composed of its name
|
|
and module name. This is used to construct unique names for the class
|
|
containers and vtab symbols. */
|
|
|
|
static void
|
|
get_unique_type_string (char *string, gfc_symbol *derived)
|
|
{
|
|
char dt_name[GFC_MAX_SYMBOL_LEN+1];
|
|
if (derived->attr.unlimited_polymorphic)
|
|
strcpy (dt_name, "STAR");
|
|
else
|
|
strcpy (dt_name, gfc_dt_upper_string (derived->name));
|
|
if (derived->attr.unlimited_polymorphic)
|
|
sprintf (string, "_%s", dt_name);
|
|
else if (derived->module)
|
|
sprintf (string, "%s_%s", derived->module, dt_name);
|
|
else if (derived->ns->proc_name)
|
|
sprintf (string, "%s_%s", derived->ns->proc_name->name, dt_name);
|
|
else
|
|
sprintf (string, "_%s", dt_name);
|
|
}
|
|
|
|
|
|
/* A relative of 'get_unique_type_string' which makes sure the generated
|
|
string will not be too long (replacing it by a hash string if needed). */
|
|
|
|
static void
|
|
get_unique_hashed_string (char *string, gfc_symbol *derived)
|
|
{
|
|
char tmp[2*GFC_MAX_SYMBOL_LEN+2];
|
|
get_unique_type_string (&tmp[0], derived);
|
|
/* If string is too long, use hash value in hex representation (allow for
|
|
extra decoration, cf. gfc_build_class_symbol & gfc_find_derived_vtab).
|
|
We need space to for 15 characters "__class_" + symbol name + "_%d_%da",
|
|
where %d is the (co)rank which can be up to n = 15. */
|
|
if (strlen (tmp) > GFC_MAX_SYMBOL_LEN - 15)
|
|
{
|
|
int h = gfc_hash_value (derived);
|
|
sprintf (string, "%X", h);
|
|
}
|
|
else
|
|
strcpy (string, tmp);
|
|
}
|
|
|
|
|
|
/* Assign a hash value for a derived type. The algorithm is that of SDBM. */
|
|
|
|
unsigned int
|
|
gfc_hash_value (gfc_symbol *sym)
|
|
{
|
|
unsigned int hash = 0;
|
|
char c[2*(GFC_MAX_SYMBOL_LEN+1)];
|
|
int i, len;
|
|
|
|
get_unique_type_string (&c[0], sym);
|
|
len = strlen (c);
|
|
|
|
for (i = 0; i < len; i++)
|
|
hash = (hash << 6) + (hash << 16) - hash + c[i];
|
|
|
|
/* Return the hash but take the modulus for the sake of module read,
|
|
even though this slightly increases the chance of collision. */
|
|
return (hash % 100000000);
|
|
}
|
|
|
|
|
|
/* Assign a hash value for an intrinsic type. The algorithm is that of SDBM. */
|
|
|
|
unsigned int
|
|
gfc_intrinsic_hash_value (gfc_typespec *ts)
|
|
{
|
|
unsigned int hash = 0;
|
|
const char *c = gfc_typename (ts);
|
|
int i, len;
|
|
|
|
len = strlen (c);
|
|
|
|
for (i = 0; i < len; i++)
|
|
hash = (hash << 6) + (hash << 16) - hash + c[i];
|
|
|
|
/* Return the hash but take the modulus for the sake of module read,
|
|
even though this slightly increases the chance of collision. */
|
|
return (hash % 100000000);
|
|
}
|
|
|
|
|
|
/* Get the _len component from a class/derived object storing a string.
|
|
For unlimited polymorphic entities a ref to the _data component is available
|
|
while a ref to the _len component is needed. This routine traverese the
|
|
ref-chain and strips the last ref to a _data from it replacing it with a
|
|
ref to the _len component. */
|
|
|
|
gfc_expr *
|
|
gfc_get_len_component (gfc_expr *e)
|
|
{
|
|
gfc_expr *ptr;
|
|
gfc_ref *ref, **last;
|
|
|
|
ptr = gfc_copy_expr (e);
|
|
|
|
/* We need to remove the last _data component ref from ptr. */
|
|
last = &(ptr->ref);
|
|
ref = ptr->ref;
|
|
while (ref)
|
|
{
|
|
if (!ref->next
|
|
&& ref->type == REF_COMPONENT
|
|
&& strcmp ("_data", ref->u.c.component->name)== 0)
|
|
{
|
|
gfc_free_ref_list (ref);
|
|
*last = NULL;
|
|
break;
|
|
}
|
|
last = &(ref->next);
|
|
ref = ref->next;
|
|
}
|
|
/* And replace if with a ref to the _len component. */
|
|
gfc_add_len_component (ptr);
|
|
return ptr;
|
|
}
|
|
|
|
|
|
/* Build a polymorphic CLASS entity, using the symbol that comes from
|
|
build_sym. A CLASS entity is represented by an encapsulating type,
|
|
which contains the declared type as '_data' component, plus a pointer
|
|
component '_vptr' which determines the dynamic type. When this CLASS
|
|
entity is unlimited polymorphic, then also add a component '_len' to
|
|
store the length of string when that is stored in it. */
|
|
|
|
bool
|
|
gfc_build_class_symbol (gfc_typespec *ts, symbol_attribute *attr,
|
|
gfc_array_spec **as)
|
|
{
|
|
char tname[GFC_MAX_SYMBOL_LEN+1];
|
|
char *name;
|
|
gfc_symbol *fclass;
|
|
gfc_symbol *vtab;
|
|
gfc_component *c;
|
|
gfc_namespace *ns;
|
|
int rank;
|
|
|
|
gcc_assert (as);
|
|
|
|
if (*as && (*as)->type == AS_ASSUMED_SIZE)
|
|
{
|
|
gfc_error ("Assumed size polymorphic objects or components, such "
|
|
"as that at %C, have not yet been implemented");
|
|
return false;
|
|
}
|
|
|
|
if (attr->class_ok)
|
|
/* Class container has already been built. */
|
|
return true;
|
|
|
|
attr->class_ok = attr->dummy || attr->pointer || attr->allocatable
|
|
|| attr->select_type_temporary || attr->associate_var;
|
|
|
|
if (!attr->class_ok)
|
|
/* We can not build the class container yet. */
|
|
return true;
|
|
|
|
/* Determine the name of the encapsulating type. */
|
|
rank = !(*as) || (*as)->rank == -1 ? GFC_MAX_DIMENSIONS : (*as)->rank;
|
|
get_unique_hashed_string (tname, ts->u.derived);
|
|
if ((*as) && attr->allocatable)
|
|
name = xasprintf ("__class_%s_%d_%da", tname, rank, (*as)->corank);
|
|
else if ((*as) && attr->pointer)
|
|
name = xasprintf ("__class_%s_%d_%dp", tname, rank, (*as)->corank);
|
|
else if ((*as))
|
|
name = xasprintf ("__class_%s_%d_%dt", tname, rank, (*as)->corank);
|
|
else if (attr->pointer)
|
|
name = xasprintf ("__class_%s_p", tname);
|
|
else if (attr->allocatable)
|
|
name = xasprintf ("__class_%s_a", tname);
|
|
else
|
|
name = xasprintf ("__class_%s_t", tname);
|
|
|
|
if (ts->u.derived->attr.unlimited_polymorphic)
|
|
{
|
|
/* Find the top-level namespace. */
|
|
for (ns = gfc_current_ns; ns; ns = ns->parent)
|
|
if (!ns->parent)
|
|
break;
|
|
}
|
|
else
|
|
ns = ts->u.derived->ns;
|
|
|
|
gfc_find_symbol (name, ns, 0, &fclass);
|
|
if (fclass == NULL)
|
|
{
|
|
gfc_symtree *st;
|
|
/* If not there, create a new symbol. */
|
|
fclass = gfc_new_symbol (name, ns);
|
|
st = gfc_new_symtree (&ns->sym_root, name);
|
|
st->n.sym = fclass;
|
|
gfc_set_sym_referenced (fclass);
|
|
fclass->refs++;
|
|
fclass->ts.type = BT_UNKNOWN;
|
|
if (!ts->u.derived->attr.unlimited_polymorphic)
|
|
fclass->attr.abstract = ts->u.derived->attr.abstract;
|
|
fclass->f2k_derived = gfc_get_namespace (NULL, 0);
|
|
if (!gfc_add_flavor (&fclass->attr, FL_DERIVED, NULL,
|
|
&gfc_current_locus))
|
|
return false;
|
|
|
|
/* Add component '_data'. */
|
|
if (!gfc_add_component (fclass, "_data", &c))
|
|
return false;
|
|
c->ts = *ts;
|
|
c->ts.type = BT_DERIVED;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->ts.u.derived = ts->u.derived;
|
|
c->attr.class_pointer = attr->pointer;
|
|
c->attr.pointer = attr->pointer || (attr->dummy && !attr->allocatable)
|
|
|| attr->select_type_temporary;
|
|
c->attr.allocatable = attr->allocatable;
|
|
c->attr.dimension = attr->dimension;
|
|
c->attr.codimension = attr->codimension;
|
|
c->attr.abstract = fclass->attr.abstract;
|
|
c->as = (*as);
|
|
c->initializer = NULL;
|
|
|
|
/* Add component '_vptr'. */
|
|
if (!gfc_add_component (fclass, "_vptr", &c))
|
|
return false;
|
|
c->ts.type = BT_DERIVED;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->attr.pointer = 1;
|
|
|
|
if (ts->u.derived->attr.unlimited_polymorphic)
|
|
{
|
|
vtab = gfc_find_derived_vtab (ts->u.derived);
|
|
gcc_assert (vtab);
|
|
c->ts.u.derived = vtab->ts.u.derived;
|
|
|
|
/* Add component '_len'. Only unlimited polymorphic pointers may
|
|
have a string assigned to them, i.e., only those need the _len
|
|
component. */
|
|
if (!gfc_add_component (fclass, "_len", &c))
|
|
return false;
|
|
c->ts.type = BT_INTEGER;
|
|
c->ts.kind = gfc_charlen_int_kind;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->attr.artificial = 1;
|
|
}
|
|
else
|
|
/* Build vtab later. */
|
|
c->ts.u.derived = NULL;
|
|
}
|
|
|
|
if (!ts->u.derived->attr.unlimited_polymorphic)
|
|
{
|
|
/* Since the extension field is 8 bit wide, we can only have
|
|
up to 255 extension levels. */
|
|
if (ts->u.derived->attr.extension == 255)
|
|
{
|
|
gfc_error ("Maximum extension level reached with type %qs at %L",
|
|
ts->u.derived->name, &ts->u.derived->declared_at);
|
|
return false;
|
|
}
|
|
|
|
fclass->attr.extension = ts->u.derived->attr.extension + 1;
|
|
fclass->attr.alloc_comp = ts->u.derived->attr.alloc_comp;
|
|
fclass->attr.coarray_comp = ts->u.derived->attr.coarray_comp;
|
|
}
|
|
|
|
fclass->attr.is_class = 1;
|
|
ts->u.derived = fclass;
|
|
attr->allocatable = attr->pointer = attr->dimension = attr->codimension = 0;
|
|
(*as) = NULL;
|
|
free (name);
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Add a procedure pointer component to the vtype
|
|
to represent a specific type-bound procedure. */
|
|
|
|
static void
|
|
add_proc_comp (gfc_symbol *vtype, const char *name, gfc_typebound_proc *tb)
|
|
{
|
|
gfc_component *c;
|
|
|
|
if (tb->non_overridable && !tb->overridden)
|
|
return;
|
|
|
|
c = gfc_find_component (vtype, name, true, true, NULL);
|
|
|
|
if (c == NULL)
|
|
{
|
|
/* Add procedure component. */
|
|
if (!gfc_add_component (vtype, name, &c))
|
|
return;
|
|
|
|
if (!c->tb)
|
|
c->tb = XCNEW (gfc_typebound_proc);
|
|
*c->tb = *tb;
|
|
c->tb->ppc = 1;
|
|
c->attr.procedure = 1;
|
|
c->attr.proc_pointer = 1;
|
|
c->attr.flavor = FL_PROCEDURE;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->attr.external = 1;
|
|
c->attr.untyped = 1;
|
|
c->attr.if_source = IFSRC_IFBODY;
|
|
}
|
|
else if (c->attr.proc_pointer && c->tb)
|
|
{
|
|
*c->tb = *tb;
|
|
c->tb->ppc = 1;
|
|
}
|
|
|
|
if (tb->u.specific)
|
|
{
|
|
gfc_symbol *ifc = tb->u.specific->n.sym;
|
|
c->ts.interface = ifc;
|
|
if (!tb->deferred)
|
|
c->initializer = gfc_get_variable_expr (tb->u.specific);
|
|
c->attr.pure = ifc->attr.pure;
|
|
}
|
|
}
|
|
|
|
|
|
/* Add all specific type-bound procedures in the symtree 'st' to a vtype. */
|
|
|
|
static void
|
|
add_procs_to_declared_vtab1 (gfc_symtree *st, gfc_symbol *vtype)
|
|
{
|
|
if (!st)
|
|
return;
|
|
|
|
if (st->left)
|
|
add_procs_to_declared_vtab1 (st->left, vtype);
|
|
|
|
if (st->right)
|
|
add_procs_to_declared_vtab1 (st->right, vtype);
|
|
|
|
if (st->n.tb && !st->n.tb->error
|
|
&& !st->n.tb->is_generic && st->n.tb->u.specific)
|
|
add_proc_comp (vtype, st->name, st->n.tb);
|
|
}
|
|
|
|
|
|
/* Copy procedure pointers components from the parent type. */
|
|
|
|
static void
|
|
copy_vtab_proc_comps (gfc_symbol *declared, gfc_symbol *vtype)
|
|
{
|
|
gfc_component *cmp;
|
|
gfc_symbol *vtab;
|
|
|
|
vtab = gfc_find_derived_vtab (declared);
|
|
|
|
for (cmp = vtab->ts.u.derived->components; cmp; cmp = cmp->next)
|
|
{
|
|
if (gfc_find_component (vtype, cmp->name, true, true, NULL))
|
|
continue;
|
|
|
|
add_proc_comp (vtype, cmp->name, cmp->tb);
|
|
}
|
|
}
|
|
|
|
|
|
/* Returns true if any of its nonpointer nonallocatable components or
|
|
their nonpointer nonallocatable subcomponents has a finalization
|
|
subroutine. */
|
|
|
|
static bool
|
|
has_finalizer_component (gfc_symbol *derived)
|
|
{
|
|
gfc_component *c;
|
|
|
|
for (c = derived->components; c; c = c->next)
|
|
if (c->ts.type == BT_DERIVED && !c->attr.pointer && !c->attr.allocatable)
|
|
{
|
|
if (c->ts.u.derived->f2k_derived
|
|
&& c->ts.u.derived->f2k_derived->finalizers)
|
|
return true;
|
|
|
|
/* Stop infinite recursion through this function by inhibiting
|
|
calls when the derived type and that of the component are
|
|
the same. */
|
|
if (!gfc_compare_derived_types (derived, c->ts.u.derived)
|
|
&& has_finalizer_component (c->ts.u.derived))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
static bool
|
|
comp_is_finalizable (gfc_component *comp)
|
|
{
|
|
if (comp->attr.proc_pointer)
|
|
return false;
|
|
else if (comp->attr.allocatable && comp->ts.type != BT_CLASS)
|
|
return true;
|
|
else if (comp->ts.type == BT_DERIVED && !comp->attr.pointer
|
|
&& (comp->ts.u.derived->attr.alloc_comp
|
|
|| has_finalizer_component (comp->ts.u.derived)
|
|
|| (comp->ts.u.derived->f2k_derived
|
|
&& comp->ts.u.derived->f2k_derived->finalizers)))
|
|
return true;
|
|
else if (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
|
|
&& CLASS_DATA (comp)->attr.allocatable)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Call DEALLOCATE for the passed component if it is allocatable, if it is
|
|
neither allocatable nor a pointer but has a finalizer, call it. If it
|
|
is a nonpointer component with allocatable components or has finalizers, walk
|
|
them. Either of them is required; other nonallocatables and pointers aren't
|
|
handled gracefully.
|
|
Note: If the component is allocatable, the DEALLOCATE handling takes care
|
|
of calling the appropriate finalizers, coarray deregistering, and
|
|
deallocation of allocatable subcomponents. */
|
|
|
|
static void
|
|
finalize_component (gfc_expr *expr, gfc_symbol *derived, gfc_component *comp,
|
|
gfc_symbol *stat, gfc_symbol *fini_coarray, gfc_code **code,
|
|
gfc_namespace *sub_ns)
|
|
{
|
|
gfc_expr *e;
|
|
gfc_ref *ref;
|
|
|
|
if (!comp_is_finalizable (comp))
|
|
return;
|
|
|
|
e = gfc_copy_expr (expr);
|
|
if (!e->ref)
|
|
e->ref = ref = gfc_get_ref ();
|
|
else
|
|
{
|
|
for (ref = e->ref; ref->next; ref = ref->next)
|
|
;
|
|
ref->next = gfc_get_ref ();
|
|
ref = ref->next;
|
|
}
|
|
ref->type = REF_COMPONENT;
|
|
ref->u.c.sym = derived;
|
|
ref->u.c.component = comp;
|
|
e->ts = comp->ts;
|
|
|
|
if (comp->attr.dimension || comp->attr.codimension
|
|
|| (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
|
|
&& (CLASS_DATA (comp)->attr.dimension
|
|
|| CLASS_DATA (comp)->attr.codimension)))
|
|
{
|
|
ref->next = gfc_get_ref ();
|
|
ref->next->type = REF_ARRAY;
|
|
ref->next->u.ar.dimen = 0;
|
|
ref->next->u.ar.as = comp->ts.type == BT_CLASS ? CLASS_DATA (comp)->as
|
|
: comp->as;
|
|
e->rank = ref->next->u.ar.as->rank;
|
|
ref->next->u.ar.type = e->rank ? AR_FULL : AR_ELEMENT;
|
|
}
|
|
|
|
/* Call DEALLOCATE (comp, stat=ignore). */
|
|
if (comp->attr.allocatable
|
|
|| (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
|
|
&& CLASS_DATA (comp)->attr.allocatable))
|
|
{
|
|
gfc_code *dealloc, *block = NULL;
|
|
|
|
/* Add IF (fini_coarray). */
|
|
if (comp->attr.codimension
|
|
|| (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
|
|
&& CLASS_DATA (comp)->attr.codimension))
|
|
{
|
|
block = gfc_get_code (EXEC_IF);
|
|
if (*code)
|
|
{
|
|
(*code)->next = block;
|
|
(*code) = (*code)->next;
|
|
}
|
|
else
|
|
(*code) = block;
|
|
|
|
block->block = gfc_get_code (EXEC_IF);
|
|
block = block->block;
|
|
block->expr1 = gfc_lval_expr_from_sym (fini_coarray);
|
|
}
|
|
|
|
dealloc = gfc_get_code (EXEC_DEALLOCATE);
|
|
|
|
dealloc->ext.alloc.list = gfc_get_alloc ();
|
|
dealloc->ext.alloc.list->expr = e;
|
|
dealloc->expr1 = gfc_lval_expr_from_sym (stat);
|
|
|
|
gfc_code *cond = gfc_get_code (EXEC_IF);
|
|
cond->block = gfc_get_code (EXEC_IF);
|
|
cond->block->expr1 = gfc_get_expr ();
|
|
cond->block->expr1->expr_type = EXPR_FUNCTION;
|
|
cond->block->expr1->where = gfc_current_locus;
|
|
gfc_get_sym_tree ("associated", sub_ns, &cond->block->expr1->symtree, false);
|
|
cond->block->expr1->symtree->n.sym->attr.flavor = FL_PROCEDURE;
|
|
cond->block->expr1->symtree->n.sym->attr.intrinsic = 1;
|
|
cond->block->expr1->symtree->n.sym->result = cond->block->expr1->symtree->n.sym;
|
|
gfc_commit_symbol (cond->block->expr1->symtree->n.sym);
|
|
cond->block->expr1->ts.type = BT_LOGICAL;
|
|
cond->block->expr1->ts.kind = gfc_default_logical_kind;
|
|
cond->block->expr1->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_ASSOCIATED);
|
|
cond->block->expr1->value.function.actual = gfc_get_actual_arglist ();
|
|
cond->block->expr1->value.function.actual->expr = gfc_copy_expr (expr);
|
|
cond->block->expr1->value.function.actual->next = gfc_get_actual_arglist ();
|
|
cond->block->next = dealloc;
|
|
|
|
if (block)
|
|
block->next = cond;
|
|
else if (*code)
|
|
{
|
|
(*code)->next = cond;
|
|
(*code) = (*code)->next;
|
|
}
|
|
else
|
|
(*code) = cond;
|
|
}
|
|
else if (comp->ts.type == BT_DERIVED
|
|
&& comp->ts.u.derived->f2k_derived
|
|
&& comp->ts.u.derived->f2k_derived->finalizers)
|
|
{
|
|
/* Call FINAL_WRAPPER (comp); */
|
|
gfc_code *final_wrap;
|
|
gfc_symbol *vtab;
|
|
gfc_component *c;
|
|
|
|
vtab = gfc_find_derived_vtab (comp->ts.u.derived);
|
|
for (c = vtab->ts.u.derived->components; c; c = c->next)
|
|
if (strcmp (c->name, "_final") == 0)
|
|
break;
|
|
|
|
gcc_assert (c);
|
|
final_wrap = gfc_get_code (EXEC_CALL);
|
|
final_wrap->symtree = c->initializer->symtree;
|
|
final_wrap->resolved_sym = c->initializer->symtree->n.sym;
|
|
final_wrap->ext.actual = gfc_get_actual_arglist ();
|
|
final_wrap->ext.actual->expr = e;
|
|
|
|
if (*code)
|
|
{
|
|
(*code)->next = final_wrap;
|
|
(*code) = (*code)->next;
|
|
}
|
|
else
|
|
(*code) = final_wrap;
|
|
}
|
|
else
|
|
{
|
|
gfc_component *c;
|
|
|
|
for (c = comp->ts.u.derived->components; c; c = c->next)
|
|
finalize_component (e, comp->ts.u.derived, c, stat, fini_coarray, code,
|
|
sub_ns);
|
|
gfc_free_expr (e);
|
|
}
|
|
}
|
|
|
|
|
|
/* Generate code equivalent to
|
|
CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
|
|
+ offset, c_ptr), ptr). */
|
|
|
|
static gfc_code *
|
|
finalization_scalarizer (gfc_symbol *array, gfc_symbol *ptr,
|
|
gfc_expr *offset, gfc_namespace *sub_ns)
|
|
{
|
|
gfc_code *block;
|
|
gfc_expr *expr, *expr2;
|
|
|
|
/* C_F_POINTER(). */
|
|
block = gfc_get_code (EXEC_CALL);
|
|
gfc_get_sym_tree ("c_f_pointer", sub_ns, &block->symtree, true);
|
|
block->resolved_sym = block->symtree->n.sym;
|
|
block->resolved_sym->attr.flavor = FL_PROCEDURE;
|
|
block->resolved_sym->attr.intrinsic = 1;
|
|
block->resolved_sym->attr.subroutine = 1;
|
|
block->resolved_sym->from_intmod = INTMOD_ISO_C_BINDING;
|
|
block->resolved_sym->intmod_sym_id = ISOCBINDING_F_POINTER;
|
|
block->resolved_isym = gfc_intrinsic_subroutine_by_id (GFC_ISYM_C_F_POINTER);
|
|
gfc_commit_symbol (block->resolved_sym);
|
|
|
|
/* C_F_POINTER's first argument: TRANSFER ( <addr>, c_intptr_t). */
|
|
block->ext.actual = gfc_get_actual_arglist ();
|
|
block->ext.actual->next = gfc_get_actual_arglist ();
|
|
block->ext.actual->next->expr = gfc_get_int_expr (gfc_index_integer_kind,
|
|
NULL, 0);
|
|
block->ext.actual->next->next = gfc_get_actual_arglist (); /* SIZE. */
|
|
|
|
/* The <addr> part: TRANSFER (C_LOC (array), c_intptr_t). */
|
|
|
|
/* TRANSFER's first argument: C_LOC (array). */
|
|
expr = gfc_get_expr ();
|
|
expr->expr_type = EXPR_FUNCTION;
|
|
gfc_get_sym_tree ("c_loc", sub_ns, &expr->symtree, false);
|
|
expr->symtree->n.sym->attr.flavor = FL_PROCEDURE;
|
|
expr->symtree->n.sym->intmod_sym_id = ISOCBINDING_LOC;
|
|
expr->symtree->n.sym->attr.intrinsic = 1;
|
|
expr->symtree->n.sym->from_intmod = INTMOD_ISO_C_BINDING;
|
|
expr->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_C_LOC);
|
|
expr->value.function.actual = gfc_get_actual_arglist ();
|
|
expr->value.function.actual->expr
|
|
= gfc_lval_expr_from_sym (array);
|
|
expr->symtree->n.sym->result = expr->symtree->n.sym;
|
|
gfc_commit_symbol (expr->symtree->n.sym);
|
|
expr->ts.type = BT_INTEGER;
|
|
expr->ts.kind = gfc_index_integer_kind;
|
|
expr->where = gfc_current_locus;
|
|
|
|
/* TRANSFER. */
|
|
expr2 = gfc_build_intrinsic_call (sub_ns, GFC_ISYM_TRANSFER, "transfer",
|
|
gfc_current_locus, 3, expr,
|
|
gfc_get_int_expr (gfc_index_integer_kind,
|
|
NULL, 0), NULL);
|
|
expr2->ts.type = BT_INTEGER;
|
|
expr2->ts.kind = gfc_index_integer_kind;
|
|
|
|
/* <array addr> + <offset>. */
|
|
block->ext.actual->expr = gfc_get_expr ();
|
|
block->ext.actual->expr->expr_type = EXPR_OP;
|
|
block->ext.actual->expr->value.op.op = INTRINSIC_PLUS;
|
|
block->ext.actual->expr->value.op.op1 = expr2;
|
|
block->ext.actual->expr->value.op.op2 = offset;
|
|
block->ext.actual->expr->ts = expr->ts;
|
|
block->ext.actual->expr->where = gfc_current_locus;
|
|
|
|
/* C_F_POINTER's 2nd arg: ptr -- and its absent shape=. */
|
|
block->ext.actual->next = gfc_get_actual_arglist ();
|
|
block->ext.actual->next->expr = gfc_lval_expr_from_sym (ptr);
|
|
block->ext.actual->next->next = gfc_get_actual_arglist ();
|
|
|
|
return block;
|
|
}
|
|
|
|
|
|
/* Calculates the offset to the (idx+1)th element of an array, taking the
|
|
stride into account. It generates the code:
|
|
offset = 0
|
|
do idx2 = 1, rank
|
|
offset = offset + mod (idx, sizes(idx2)) / sizes(idx2-1) * strides(idx2)
|
|
end do
|
|
offset = offset * byte_stride. */
|
|
|
|
static gfc_code*
|
|
finalization_get_offset (gfc_symbol *idx, gfc_symbol *idx2, gfc_symbol *offset,
|
|
gfc_symbol *strides, gfc_symbol *sizes,
|
|
gfc_symbol *byte_stride, gfc_expr *rank,
|
|
gfc_code *block, gfc_namespace *sub_ns)
|
|
{
|
|
gfc_iterator *iter;
|
|
gfc_expr *expr, *expr2;
|
|
|
|
/* offset = 0. */
|
|
block->next = gfc_get_code (EXEC_ASSIGN);
|
|
block = block->next;
|
|
block->expr1 = gfc_lval_expr_from_sym (offset);
|
|
block->expr2 = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
|
|
/* Create loop. */
|
|
iter = gfc_get_iterator ();
|
|
iter->var = gfc_lval_expr_from_sym (idx2);
|
|
iter->start = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
iter->end = gfc_copy_expr (rank);
|
|
iter->step = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
block->next = gfc_get_code (EXEC_DO);
|
|
block = block->next;
|
|
block->ext.iterator = iter;
|
|
block->block = gfc_get_code (EXEC_DO);
|
|
|
|
/* Loop body: offset = offset + mod (idx, sizes(idx2)) / sizes(idx2-1)
|
|
* strides(idx2). */
|
|
|
|
/* mod (idx, sizes(idx2)). */
|
|
expr = gfc_lval_expr_from_sym (sizes);
|
|
expr->ref = gfc_get_ref ();
|
|
expr->ref->type = REF_ARRAY;
|
|
expr->ref->u.ar.as = sizes->as;
|
|
expr->ref->u.ar.type = AR_ELEMENT;
|
|
expr->ref->u.ar.dimen = 1;
|
|
expr->ref->u.ar.dimen_type[0] = DIMEN_ELEMENT;
|
|
expr->ref->u.ar.start[0] = gfc_lval_expr_from_sym (idx2);
|
|
expr->where = sizes->declared_at;
|
|
|
|
expr = gfc_build_intrinsic_call (sub_ns, GFC_ISYM_MOD, "mod",
|
|
gfc_current_locus, 2,
|
|
gfc_lval_expr_from_sym (idx), expr);
|
|
expr->ts = idx->ts;
|
|
|
|
/* (...) / sizes(idx2-1). */
|
|
expr2 = gfc_get_expr ();
|
|
expr2->expr_type = EXPR_OP;
|
|
expr2->value.op.op = INTRINSIC_DIVIDE;
|
|
expr2->value.op.op1 = expr;
|
|
expr2->value.op.op2 = gfc_lval_expr_from_sym (sizes);
|
|
expr2->value.op.op2->ref = gfc_get_ref ();
|
|
expr2->value.op.op2->ref->type = REF_ARRAY;
|
|
expr2->value.op.op2->ref->u.ar.as = sizes->as;
|
|
expr2->value.op.op2->ref->u.ar.type = AR_ELEMENT;
|
|
expr2->value.op.op2->ref->u.ar.dimen = 1;
|
|
expr2->value.op.op2->ref->u.ar.dimen_type[0] = DIMEN_ELEMENT;
|
|
expr2->value.op.op2->ref->u.ar.start[0] = gfc_get_expr ();
|
|
expr2->value.op.op2->ref->u.ar.start[0]->expr_type = EXPR_OP;
|
|
expr2->value.op.op2->ref->u.ar.start[0]->where = gfc_current_locus;
|
|
expr2->value.op.op2->ref->u.ar.start[0]->value.op.op = INTRINSIC_MINUS;
|
|
expr2->value.op.op2->ref->u.ar.start[0]->value.op.op1
|
|
= gfc_lval_expr_from_sym (idx2);
|
|
expr2->value.op.op2->ref->u.ar.start[0]->value.op.op2
|
|
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
expr2->value.op.op2->ref->u.ar.start[0]->ts
|
|
= expr2->value.op.op2->ref->u.ar.start[0]->value.op.op1->ts;
|
|
expr2->ts = idx->ts;
|
|
expr2->where = gfc_current_locus;
|
|
|
|
/* ... * strides(idx2). */
|
|
expr = gfc_get_expr ();
|
|
expr->expr_type = EXPR_OP;
|
|
expr->value.op.op = INTRINSIC_TIMES;
|
|
expr->value.op.op1 = expr2;
|
|
expr->value.op.op2 = gfc_lval_expr_from_sym (strides);
|
|
expr->value.op.op2->ref = gfc_get_ref ();
|
|
expr->value.op.op2->ref->type = REF_ARRAY;
|
|
expr->value.op.op2->ref->u.ar.type = AR_ELEMENT;
|
|
expr->value.op.op2->ref->u.ar.dimen = 1;
|
|
expr->value.op.op2->ref->u.ar.dimen_type[0] = DIMEN_ELEMENT;
|
|
expr->value.op.op2->ref->u.ar.start[0] = gfc_lval_expr_from_sym (idx2);
|
|
expr->value.op.op2->ref->u.ar.as = strides->as;
|
|
expr->ts = idx->ts;
|
|
expr->where = gfc_current_locus;
|
|
|
|
/* offset = offset + ... */
|
|
block->block->next = gfc_get_code (EXEC_ASSIGN);
|
|
block->block->next->expr1 = gfc_lval_expr_from_sym (offset);
|
|
block->block->next->expr2 = gfc_get_expr ();
|
|
block->block->next->expr2->expr_type = EXPR_OP;
|
|
block->block->next->expr2->value.op.op = INTRINSIC_PLUS;
|
|
block->block->next->expr2->value.op.op1 = gfc_lval_expr_from_sym (offset);
|
|
block->block->next->expr2->value.op.op2 = expr;
|
|
block->block->next->expr2->ts = idx->ts;
|
|
block->block->next->expr2->where = gfc_current_locus;
|
|
|
|
/* After the loop: offset = offset * byte_stride. */
|
|
block->next = gfc_get_code (EXEC_ASSIGN);
|
|
block = block->next;
|
|
block->expr1 = gfc_lval_expr_from_sym (offset);
|
|
block->expr2 = gfc_get_expr ();
|
|
block->expr2->expr_type = EXPR_OP;
|
|
block->expr2->value.op.op = INTRINSIC_TIMES;
|
|
block->expr2->value.op.op1 = gfc_lval_expr_from_sym (offset);
|
|
block->expr2->value.op.op2 = gfc_lval_expr_from_sym (byte_stride);
|
|
block->expr2->ts = block->expr2->value.op.op1->ts;
|
|
block->expr2->where = gfc_current_locus;
|
|
return block;
|
|
}
|
|
|
|
|
|
/* Insert code of the following form:
|
|
|
|
block
|
|
integer(c_intptr_t) :: i
|
|
|
|
if ((byte_stride == STORAGE_SIZE (array)/NUMERIC_STORAGE_SIZE
|
|
&& (is_contiguous || !final_rank3->attr.contiguous
|
|
|| final_rank3->as->type != AS_ASSUMED_SHAPE))
|
|
|| 0 == STORAGE_SIZE (array)) then
|
|
call final_rank3 (array)
|
|
else
|
|
block
|
|
integer(c_intptr_t) :: offset, j
|
|
type(t) :: tmp(shape (array))
|
|
|
|
do i = 0, size (array)-1
|
|
offset = obtain_offset(i, strides, sizes, byte_stride)
|
|
addr = transfer (c_loc (array), addr) + offset
|
|
call c_f_pointer (transfer (addr, cptr), ptr)
|
|
|
|
addr = transfer (c_loc (tmp), addr)
|
|
+ i * STORAGE_SIZE (array)/NUMERIC_STORAGE_SIZE
|
|
call c_f_pointer (transfer (addr, cptr), ptr2)
|
|
ptr2 = ptr
|
|
end do
|
|
call final_rank3 (tmp)
|
|
end block
|
|
end if
|
|
block */
|
|
|
|
static void
|
|
finalizer_insert_packed_call (gfc_code *block, gfc_finalizer *fini,
|
|
gfc_symbol *array, gfc_symbol *byte_stride,
|
|
gfc_symbol *idx, gfc_symbol *ptr,
|
|
gfc_symbol *nelem,
|
|
gfc_symbol *strides, gfc_symbol *sizes,
|
|
gfc_symbol *idx2, gfc_symbol *offset,
|
|
gfc_symbol *is_contiguous, gfc_expr *rank,
|
|
gfc_namespace *sub_ns)
|
|
{
|
|
gfc_symbol *tmp_array, *ptr2;
|
|
gfc_expr *size_expr, *offset2, *expr;
|
|
gfc_namespace *ns;
|
|
gfc_iterator *iter;
|
|
gfc_code *block2;
|
|
int i;
|
|
|
|
block->next = gfc_get_code (EXEC_IF);
|
|
block = block->next;
|
|
|
|
block->block = gfc_get_code (EXEC_IF);
|
|
block = block->block;
|
|
|
|
/* size_expr = STORAGE_SIZE (...) / NUMERIC_STORAGE_SIZE. */
|
|
size_expr = gfc_get_expr ();
|
|
size_expr->where = gfc_current_locus;
|
|
size_expr->expr_type = EXPR_OP;
|
|
size_expr->value.op.op = INTRINSIC_DIVIDE;
|
|
|
|
/* STORAGE_SIZE (array,kind=c_intptr_t). */
|
|
size_expr->value.op.op1
|
|
= gfc_build_intrinsic_call (sub_ns, GFC_ISYM_STORAGE_SIZE,
|
|
"storage_size", gfc_current_locus, 2,
|
|
gfc_lval_expr_from_sym (array),
|
|
gfc_get_int_expr (gfc_index_integer_kind,
|
|
NULL, 0));
|
|
|
|
/* NUMERIC_STORAGE_SIZE. */
|
|
size_expr->value.op.op2 = gfc_get_int_expr (gfc_index_integer_kind, NULL,
|
|
gfc_character_storage_size);
|
|
size_expr->value.op.op1->ts = size_expr->value.op.op2->ts;
|
|
size_expr->ts = size_expr->value.op.op1->ts;
|
|
|
|
/* IF condition: (stride == size_expr
|
|
&& ((fini's as->ASSUMED_SIZE && !fini's attr.contiguous)
|
|
|| is_contiguous)
|
|
|| 0 == size_expr. */
|
|
block->expr1 = gfc_get_expr ();
|
|
block->expr1->ts.type = BT_LOGICAL;
|
|
block->expr1->ts.kind = gfc_default_logical_kind;
|
|
block->expr1->expr_type = EXPR_OP;
|
|
block->expr1->where = gfc_current_locus;
|
|
|
|
block->expr1->value.op.op = INTRINSIC_OR;
|
|
|
|
/* byte_stride == size_expr */
|
|
expr = gfc_get_expr ();
|
|
expr->ts.type = BT_LOGICAL;
|
|
expr->ts.kind = gfc_default_logical_kind;
|
|
expr->expr_type = EXPR_OP;
|
|
expr->where = gfc_current_locus;
|
|
expr->value.op.op = INTRINSIC_EQ;
|
|
expr->value.op.op1
|
|
= gfc_lval_expr_from_sym (byte_stride);
|
|
expr->value.op.op2 = size_expr;
|
|
|
|
/* If strides aren't allowed (not assumed shape or CONTIGUOUS),
|
|
add is_contiguous check. */
|
|
|
|
if (fini->proc_tree->n.sym->formal->sym->as->type != AS_ASSUMED_SHAPE
|
|
|| fini->proc_tree->n.sym->formal->sym->attr.contiguous)
|
|
{
|
|
gfc_expr *expr2;
|
|
expr2 = gfc_get_expr ();
|
|
expr2->ts.type = BT_LOGICAL;
|
|
expr2->ts.kind = gfc_default_logical_kind;
|
|
expr2->expr_type = EXPR_OP;
|
|
expr2->where = gfc_current_locus;
|
|
expr2->value.op.op = INTRINSIC_AND;
|
|
expr2->value.op.op1 = expr;
|
|
expr2->value.op.op2 = gfc_lval_expr_from_sym (is_contiguous);
|
|
expr = expr2;
|
|
}
|
|
|
|
block->expr1->value.op.op1 = expr;
|
|
|
|
/* 0 == size_expr */
|
|
block->expr1->value.op.op2 = gfc_get_expr ();
|
|
block->expr1->value.op.op2->ts.type = BT_LOGICAL;
|
|
block->expr1->value.op.op2->ts.kind = gfc_default_logical_kind;
|
|
block->expr1->value.op.op2->expr_type = EXPR_OP;
|
|
block->expr1->value.op.op2->where = gfc_current_locus;
|
|
block->expr1->value.op.op2->value.op.op = INTRINSIC_EQ;
|
|
block->expr1->value.op.op2->value.op.op1 =
|
|
gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
block->expr1->value.op.op2->value.op.op2 = gfc_copy_expr (size_expr);
|
|
|
|
/* IF body: call final subroutine. */
|
|
block->next = gfc_get_code (EXEC_CALL);
|
|
block->next->symtree = fini->proc_tree;
|
|
block->next->resolved_sym = fini->proc_tree->n.sym;
|
|
block->next->ext.actual = gfc_get_actual_arglist ();
|
|
block->next->ext.actual->expr = gfc_lval_expr_from_sym (array);
|
|
block->next->ext.actual->next = gfc_get_actual_arglist ();
|
|
block->next->ext.actual->next->expr = gfc_copy_expr (size_expr);
|
|
|
|
/* ELSE. */
|
|
|
|
block->block = gfc_get_code (EXEC_IF);
|
|
block = block->block;
|
|
|
|
/* BLOCK ... END BLOCK. */
|
|
block->next = gfc_get_code (EXEC_BLOCK);
|
|
block = block->next;
|
|
|
|
ns = gfc_build_block_ns (sub_ns);
|
|
block->ext.block.ns = ns;
|
|
block->ext.block.assoc = NULL;
|
|
|
|
gfc_get_symbol ("ptr2", ns, &ptr2);
|
|
ptr2->ts.type = BT_DERIVED;
|
|
ptr2->ts.u.derived = array->ts.u.derived;
|
|
ptr2->attr.flavor = FL_VARIABLE;
|
|
ptr2->attr.pointer = 1;
|
|
ptr2->attr.artificial = 1;
|
|
gfc_set_sym_referenced (ptr2);
|
|
gfc_commit_symbol (ptr2);
|
|
|
|
gfc_get_symbol ("tmp_array", ns, &tmp_array);
|
|
tmp_array->ts.type = BT_DERIVED;
|
|
tmp_array->ts.u.derived = array->ts.u.derived;
|
|
tmp_array->attr.flavor = FL_VARIABLE;
|
|
tmp_array->attr.dimension = 1;
|
|
tmp_array->attr.artificial = 1;
|
|
tmp_array->as = gfc_get_array_spec();
|
|
tmp_array->attr.intent = INTENT_INOUT;
|
|
tmp_array->as->type = AS_EXPLICIT;
|
|
tmp_array->as->rank = fini->proc_tree->n.sym->formal->sym->as->rank;
|
|
|
|
for (i = 0; i < tmp_array->as->rank; i++)
|
|
{
|
|
gfc_expr *shape_expr;
|
|
tmp_array->as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind,
|
|
NULL, 1);
|
|
/* SIZE (array, dim=i+1, kind=gfc_index_integer_kind). */
|
|
shape_expr
|
|
= gfc_build_intrinsic_call (sub_ns, GFC_ISYM_SIZE, "size",
|
|
gfc_current_locus, 3,
|
|
gfc_lval_expr_from_sym (array),
|
|
gfc_get_int_expr (gfc_default_integer_kind,
|
|
NULL, i+1),
|
|
gfc_get_int_expr (gfc_default_integer_kind,
|
|
NULL,
|
|
gfc_index_integer_kind));
|
|
shape_expr->ts.kind = gfc_index_integer_kind;
|
|
tmp_array->as->upper[i] = shape_expr;
|
|
}
|
|
gfc_set_sym_referenced (tmp_array);
|
|
gfc_commit_symbol (tmp_array);
|
|
|
|
/* Create loop. */
|
|
iter = gfc_get_iterator ();
|
|
iter->var = gfc_lval_expr_from_sym (idx);
|
|
iter->start = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
iter->end = gfc_lval_expr_from_sym (nelem);
|
|
iter->step = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
|
|
block = gfc_get_code (EXEC_DO);
|
|
ns->code = block;
|
|
block->ext.iterator = iter;
|
|
block->block = gfc_get_code (EXEC_DO);
|
|
|
|
/* Offset calculation for the new array: idx * size of type (in bytes). */
|
|
offset2 = gfc_get_expr ();
|
|
offset2->expr_type = EXPR_OP;
|
|
offset2->where = gfc_current_locus;
|
|
offset2->value.op.op = INTRINSIC_TIMES;
|
|
offset2->value.op.op1 = gfc_lval_expr_from_sym (idx);
|
|
offset2->value.op.op2 = gfc_copy_expr (size_expr);
|
|
offset2->ts = byte_stride->ts;
|
|
|
|
/* Offset calculation of "array". */
|
|
block2 = finalization_get_offset (idx, idx2, offset, strides, sizes,
|
|
byte_stride, rank, block->block, sub_ns);
|
|
|
|
/* Create code for
|
|
CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
|
|
+ idx * stride, c_ptr), ptr). */
|
|
block2->next = finalization_scalarizer (array, ptr,
|
|
gfc_lval_expr_from_sym (offset),
|
|
sub_ns);
|
|
block2 = block2->next;
|
|
block2->next = finalization_scalarizer (tmp_array, ptr2, offset2, sub_ns);
|
|
block2 = block2->next;
|
|
|
|
/* ptr2 = ptr. */
|
|
block2->next = gfc_get_code (EXEC_ASSIGN);
|
|
block2 = block2->next;
|
|
block2->expr1 = gfc_lval_expr_from_sym (ptr2);
|
|
block2->expr2 = gfc_lval_expr_from_sym (ptr);
|
|
|
|
/* Call now the user's final subroutine. */
|
|
block->next = gfc_get_code (EXEC_CALL);
|
|
block = block->next;
|
|
block->symtree = fini->proc_tree;
|
|
block->resolved_sym = fini->proc_tree->n.sym;
|
|
block->ext.actual = gfc_get_actual_arglist ();
|
|
block->ext.actual->expr = gfc_lval_expr_from_sym (tmp_array);
|
|
|
|
if (fini->proc_tree->n.sym->formal->sym->attr.intent == INTENT_IN)
|
|
return;
|
|
|
|
/* Copy back. */
|
|
|
|
/* Loop. */
|
|
iter = gfc_get_iterator ();
|
|
iter->var = gfc_lval_expr_from_sym (idx);
|
|
iter->start = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
iter->end = gfc_lval_expr_from_sym (nelem);
|
|
iter->step = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
|
|
block->next = gfc_get_code (EXEC_DO);
|
|
block = block->next;
|
|
block->ext.iterator = iter;
|
|
block->block = gfc_get_code (EXEC_DO);
|
|
|
|
/* Offset calculation of "array". */
|
|
block2 = finalization_get_offset (idx, idx2, offset, strides, sizes,
|
|
byte_stride, rank, block->block, sub_ns);
|
|
|
|
/* Create code for
|
|
CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
|
|
+ offset, c_ptr), ptr). */
|
|
block2->next = finalization_scalarizer (array, ptr,
|
|
gfc_lval_expr_from_sym (offset),
|
|
sub_ns);
|
|
block2 = block2->next;
|
|
block2->next = finalization_scalarizer (tmp_array, ptr2,
|
|
gfc_copy_expr (offset2), sub_ns);
|
|
block2 = block2->next;
|
|
|
|
/* ptr = ptr2. */
|
|
block2->next = gfc_get_code (EXEC_ASSIGN);
|
|
block2->next->expr1 = gfc_lval_expr_from_sym (ptr);
|
|
block2->next->expr2 = gfc_lval_expr_from_sym (ptr2);
|
|
}
|
|
|
|
|
|
/* Generate the finalization/polymorphic freeing wrapper subroutine for the
|
|
derived type "derived". The function first calls the approriate FINAL
|
|
subroutine, then it DEALLOCATEs (finalizes/frees) the allocatable
|
|
components (but not the inherited ones). Last, it calls the wrapper
|
|
subroutine of the parent. The generated wrapper procedure takes as argument
|
|
an assumed-rank array.
|
|
If neither allocatable components nor FINAL subroutines exists, the vtab
|
|
will contain a NULL pointer.
|
|
The generated function has the form
|
|
_final(assumed-rank array, stride, skip_corarray)
|
|
where the array has to be contiguous (except of the lowest dimension). The
|
|
stride (in bytes) is used to allow different sizes for ancestor types by
|
|
skipping over the additionally added components in the scalarizer. If
|
|
"fini_coarray" is false, coarray components are not finalized to allow for
|
|
the correct semantic with intrinsic assignment. */
|
|
|
|
static void
|
|
generate_finalization_wrapper (gfc_symbol *derived, gfc_namespace *ns,
|
|
const char *tname, gfc_component *vtab_final)
|
|
{
|
|
gfc_symbol *final, *array, *fini_coarray, *byte_stride, *sizes, *strides;
|
|
gfc_symbol *ptr = NULL, *idx, *idx2, *is_contiguous, *offset, *nelem;
|
|
gfc_component *comp;
|
|
gfc_namespace *sub_ns;
|
|
gfc_code *last_code, *block;
|
|
char *name;
|
|
bool finalizable_comp = false;
|
|
bool expr_null_wrapper = false;
|
|
gfc_expr *ancestor_wrapper = NULL, *rank;
|
|
gfc_iterator *iter;
|
|
|
|
if (derived->attr.unlimited_polymorphic)
|
|
{
|
|
vtab_final->initializer = gfc_get_null_expr (NULL);
|
|
return;
|
|
}
|
|
|
|
/* Search for the ancestor's finalizers. */
|
|
if (derived->attr.extension && derived->components
|
|
&& (!derived->components->ts.u.derived->attr.abstract
|
|
|| has_finalizer_component (derived)))
|
|
{
|
|
gfc_symbol *vtab;
|
|
gfc_component *comp;
|
|
|
|
vtab = gfc_find_derived_vtab (derived->components->ts.u.derived);
|
|
for (comp = vtab->ts.u.derived->components; comp; comp = comp->next)
|
|
if (comp->name[0] == '_' && comp->name[1] == 'f')
|
|
{
|
|
ancestor_wrapper = comp->initializer;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* No wrapper of the ancestor and no own FINAL subroutines and allocatable
|
|
components: Return a NULL() expression; we defer this a bit to have have
|
|
an interface declaration. */
|
|
if ((!ancestor_wrapper || ancestor_wrapper->expr_type == EXPR_NULL)
|
|
&& !derived->attr.alloc_comp
|
|
&& (!derived->f2k_derived || !derived->f2k_derived->finalizers)
|
|
&& !has_finalizer_component (derived))
|
|
expr_null_wrapper = true;
|
|
else
|
|
/* Check whether there are new allocatable components. */
|
|
for (comp = derived->components; comp; comp = comp->next)
|
|
{
|
|
if (comp == derived->components && derived->attr.extension
|
|
&& ancestor_wrapper && ancestor_wrapper->expr_type != EXPR_NULL)
|
|
continue;
|
|
|
|
finalizable_comp |= comp_is_finalizable (comp);
|
|
}
|
|
|
|
/* If there is no new finalizer and no new allocatable, return with
|
|
an expr to the ancestor's one. */
|
|
if (!expr_null_wrapper && !finalizable_comp
|
|
&& (!derived->f2k_derived || !derived->f2k_derived->finalizers))
|
|
{
|
|
gcc_assert (ancestor_wrapper && ancestor_wrapper->ref == NULL
|
|
&& ancestor_wrapper->expr_type == EXPR_VARIABLE);
|
|
vtab_final->initializer = gfc_copy_expr (ancestor_wrapper);
|
|
vtab_final->ts.interface = vtab_final->initializer->symtree->n.sym;
|
|
return;
|
|
}
|
|
|
|
/* We now create a wrapper, which does the following:
|
|
1. Call the suitable finalization subroutine for this type
|
|
2. Loop over all noninherited allocatable components and noninherited
|
|
components with allocatable components and DEALLOCATE those; this will
|
|
take care of finalizers, coarray deregistering and allocatable
|
|
nested components.
|
|
3. Call the ancestor's finalizer. */
|
|
|
|
/* Declare the wrapper function; it takes an assumed-rank array
|
|
and a VALUE logical as arguments. */
|
|
|
|
/* Set up the namespace. */
|
|
sub_ns = gfc_get_namespace (ns, 0);
|
|
sub_ns->sibling = ns->contained;
|
|
if (!expr_null_wrapper)
|
|
ns->contained = sub_ns;
|
|
sub_ns->resolved = 1;
|
|
|
|
/* Set up the procedure symbol. */
|
|
name = xasprintf ("__final_%s", tname);
|
|
gfc_get_symbol (name, sub_ns, &final);
|
|
sub_ns->proc_name = final;
|
|
final->attr.flavor = FL_PROCEDURE;
|
|
final->attr.function = 1;
|
|
final->attr.pure = 0;
|
|
final->attr.recursive = 1;
|
|
final->result = final;
|
|
final->ts.type = BT_INTEGER;
|
|
final->ts.kind = 4;
|
|
final->attr.artificial = 1;
|
|
final->attr.always_explicit = 1;
|
|
final->attr.if_source = expr_null_wrapper ? IFSRC_IFBODY : IFSRC_DECL;
|
|
if (ns->proc_name->attr.flavor == FL_MODULE)
|
|
final->module = ns->proc_name->name;
|
|
gfc_set_sym_referenced (final);
|
|
gfc_commit_symbol (final);
|
|
|
|
/* Set up formal argument. */
|
|
gfc_get_symbol ("array", sub_ns, &array);
|
|
array->ts.type = BT_DERIVED;
|
|
array->ts.u.derived = derived;
|
|
array->attr.flavor = FL_VARIABLE;
|
|
array->attr.dummy = 1;
|
|
array->attr.contiguous = 1;
|
|
array->attr.dimension = 1;
|
|
array->attr.artificial = 1;
|
|
array->as = gfc_get_array_spec();
|
|
array->as->type = AS_ASSUMED_RANK;
|
|
array->as->rank = -1;
|
|
array->attr.intent = INTENT_INOUT;
|
|
gfc_set_sym_referenced (array);
|
|
final->formal = gfc_get_formal_arglist ();
|
|
final->formal->sym = array;
|
|
gfc_commit_symbol (array);
|
|
|
|
/* Set up formal argument. */
|
|
gfc_get_symbol ("byte_stride", sub_ns, &byte_stride);
|
|
byte_stride->ts.type = BT_INTEGER;
|
|
byte_stride->ts.kind = gfc_index_integer_kind;
|
|
byte_stride->attr.flavor = FL_VARIABLE;
|
|
byte_stride->attr.dummy = 1;
|
|
byte_stride->attr.value = 1;
|
|
byte_stride->attr.artificial = 1;
|
|
gfc_set_sym_referenced (byte_stride);
|
|
final->formal->next = gfc_get_formal_arglist ();
|
|
final->formal->next->sym = byte_stride;
|
|
gfc_commit_symbol (byte_stride);
|
|
|
|
/* Set up formal argument. */
|
|
gfc_get_symbol ("fini_coarray", sub_ns, &fini_coarray);
|
|
fini_coarray->ts.type = BT_LOGICAL;
|
|
fini_coarray->ts.kind = 1;
|
|
fini_coarray->attr.flavor = FL_VARIABLE;
|
|
fini_coarray->attr.dummy = 1;
|
|
fini_coarray->attr.value = 1;
|
|
fini_coarray->attr.artificial = 1;
|
|
gfc_set_sym_referenced (fini_coarray);
|
|
final->formal->next->next = gfc_get_formal_arglist ();
|
|
final->formal->next->next->sym = fini_coarray;
|
|
gfc_commit_symbol (fini_coarray);
|
|
|
|
/* Return with a NULL() expression but with an interface which has
|
|
the formal arguments. */
|
|
if (expr_null_wrapper)
|
|
{
|
|
vtab_final->initializer = gfc_get_null_expr (NULL);
|
|
vtab_final->ts.interface = final;
|
|
return;
|
|
}
|
|
|
|
/* Local variables. */
|
|
|
|
gfc_get_symbol ("idx", sub_ns, &idx);
|
|
idx->ts.type = BT_INTEGER;
|
|
idx->ts.kind = gfc_index_integer_kind;
|
|
idx->attr.flavor = FL_VARIABLE;
|
|
idx->attr.artificial = 1;
|
|
gfc_set_sym_referenced (idx);
|
|
gfc_commit_symbol (idx);
|
|
|
|
gfc_get_symbol ("idx2", sub_ns, &idx2);
|
|
idx2->ts.type = BT_INTEGER;
|
|
idx2->ts.kind = gfc_index_integer_kind;
|
|
idx2->attr.flavor = FL_VARIABLE;
|
|
idx2->attr.artificial = 1;
|
|
gfc_set_sym_referenced (idx2);
|
|
gfc_commit_symbol (idx2);
|
|
|
|
gfc_get_symbol ("offset", sub_ns, &offset);
|
|
offset->ts.type = BT_INTEGER;
|
|
offset->ts.kind = gfc_index_integer_kind;
|
|
offset->attr.flavor = FL_VARIABLE;
|
|
offset->attr.artificial = 1;
|
|
gfc_set_sym_referenced (offset);
|
|
gfc_commit_symbol (offset);
|
|
|
|
/* Create RANK expression. */
|
|
rank = gfc_build_intrinsic_call (sub_ns, GFC_ISYM_RANK, "rank",
|
|
gfc_current_locus, 1,
|
|
gfc_lval_expr_from_sym (array));
|
|
if (rank->ts.kind != idx->ts.kind)
|
|
gfc_convert_type_warn (rank, &idx->ts, 2, 0);
|
|
|
|
/* Create is_contiguous variable. */
|
|
gfc_get_symbol ("is_contiguous", sub_ns, &is_contiguous);
|
|
is_contiguous->ts.type = BT_LOGICAL;
|
|
is_contiguous->ts.kind = gfc_default_logical_kind;
|
|
is_contiguous->attr.flavor = FL_VARIABLE;
|
|
is_contiguous->attr.artificial = 1;
|
|
gfc_set_sym_referenced (is_contiguous);
|
|
gfc_commit_symbol (is_contiguous);
|
|
|
|
/* Create "sizes(0..rank)" variable, which contains the multiplied
|
|
up extent of the dimensions, i.e. sizes(0) = 1, sizes(1) = extent(dim=1),
|
|
sizes(2) = sizes(1) * extent(dim=2) etc. */
|
|
gfc_get_symbol ("sizes", sub_ns, &sizes);
|
|
sizes->ts.type = BT_INTEGER;
|
|
sizes->ts.kind = gfc_index_integer_kind;
|
|
sizes->attr.flavor = FL_VARIABLE;
|
|
sizes->attr.dimension = 1;
|
|
sizes->attr.artificial = 1;
|
|
sizes->as = gfc_get_array_spec();
|
|
sizes->attr.intent = INTENT_INOUT;
|
|
sizes->as->type = AS_EXPLICIT;
|
|
sizes->as->rank = 1;
|
|
sizes->as->lower[0] = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
sizes->as->upper[0] = gfc_copy_expr (rank);
|
|
gfc_set_sym_referenced (sizes);
|
|
gfc_commit_symbol (sizes);
|
|
|
|
/* Create "strides(1..rank)" variable, which contains the strides per
|
|
dimension. */
|
|
gfc_get_symbol ("strides", sub_ns, &strides);
|
|
strides->ts.type = BT_INTEGER;
|
|
strides->ts.kind = gfc_index_integer_kind;
|
|
strides->attr.flavor = FL_VARIABLE;
|
|
strides->attr.dimension = 1;
|
|
strides->attr.artificial = 1;
|
|
strides->as = gfc_get_array_spec();
|
|
strides->attr.intent = INTENT_INOUT;
|
|
strides->as->type = AS_EXPLICIT;
|
|
strides->as->rank = 1;
|
|
strides->as->lower[0] = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
strides->as->upper[0] = gfc_copy_expr (rank);
|
|
gfc_set_sym_referenced (strides);
|
|
gfc_commit_symbol (strides);
|
|
|
|
|
|
/* Set return value to 0. */
|
|
last_code = gfc_get_code (EXEC_ASSIGN);
|
|
last_code->expr1 = gfc_lval_expr_from_sym (final);
|
|
last_code->expr2 = gfc_get_int_expr (4, NULL, 0);
|
|
sub_ns->code = last_code;
|
|
|
|
/* Set: is_contiguous = .true. */
|
|
last_code->next = gfc_get_code (EXEC_ASSIGN);
|
|
last_code = last_code->next;
|
|
last_code->expr1 = gfc_lval_expr_from_sym (is_contiguous);
|
|
last_code->expr2 = gfc_get_logical_expr (gfc_default_logical_kind,
|
|
&gfc_current_locus, true);
|
|
|
|
/* Set: sizes(0) = 1. */
|
|
last_code->next = gfc_get_code (EXEC_ASSIGN);
|
|
last_code = last_code->next;
|
|
last_code->expr1 = gfc_lval_expr_from_sym (sizes);
|
|
last_code->expr1->ref = gfc_get_ref ();
|
|
last_code->expr1->ref->type = REF_ARRAY;
|
|
last_code->expr1->ref->u.ar.type = AR_ELEMENT;
|
|
last_code->expr1->ref->u.ar.dimen = 1;
|
|
last_code->expr1->ref->u.ar.dimen_type[0] = DIMEN_ELEMENT;
|
|
last_code->expr1->ref->u.ar.start[0]
|
|
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
last_code->expr1->ref->u.ar.as = sizes->as;
|
|
last_code->expr2 = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
|
|
|
|
/* Create:
|
|
DO idx = 1, rank
|
|
strides(idx) = _F._stride (array, dim=idx)
|
|
sizes(idx) = sizes(i-1) * size(array, dim=idx, kind=index_kind)
|
|
if (strides (idx) /= sizes(i-1)) is_contiguous = .false.
|
|
END DO. */
|
|
|
|
/* Create loop. */
|
|
iter = gfc_get_iterator ();
|
|
iter->var = gfc_lval_expr_from_sym (idx);
|
|
iter->start = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
iter->end = gfc_copy_expr (rank);
|
|
iter->step = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
last_code->next = gfc_get_code (EXEC_DO);
|
|
last_code = last_code->next;
|
|
last_code->ext.iterator = iter;
|
|
last_code->block = gfc_get_code (EXEC_DO);
|
|
|
|
/* strides(idx) = _F._stride(array,dim=idx). */
|
|
last_code->block->next = gfc_get_code (EXEC_ASSIGN);
|
|
block = last_code->block->next;
|
|
|
|
block->expr1 = gfc_lval_expr_from_sym (strides);
|
|
block->expr1->ref = gfc_get_ref ();
|
|
block->expr1->ref->type = REF_ARRAY;
|
|
block->expr1->ref->u.ar.type = AR_ELEMENT;
|
|
block->expr1->ref->u.ar.dimen = 1;
|
|
block->expr1->ref->u.ar.dimen_type[0] = DIMEN_ELEMENT;
|
|
block->expr1->ref->u.ar.start[0] = gfc_lval_expr_from_sym (idx);
|
|
block->expr1->ref->u.ar.as = strides->as;
|
|
|
|
block->expr2 = gfc_build_intrinsic_call (sub_ns, GFC_ISYM_STRIDE, "stride",
|
|
gfc_current_locus, 2,
|
|
gfc_lval_expr_from_sym (array),
|
|
gfc_lval_expr_from_sym (idx));
|
|
|
|
/* sizes(idx) = sizes(idx-1) * size(array,dim=idx, kind=index_kind). */
|
|
block->next = gfc_get_code (EXEC_ASSIGN);
|
|
block = block->next;
|
|
|
|
/* sizes(idx) = ... */
|
|
block->expr1 = gfc_lval_expr_from_sym (sizes);
|
|
block->expr1->ref = gfc_get_ref ();
|
|
block->expr1->ref->type = REF_ARRAY;
|
|
block->expr1->ref->u.ar.type = AR_ELEMENT;
|
|
block->expr1->ref->u.ar.dimen = 1;
|
|
block->expr1->ref->u.ar.dimen_type[0] = DIMEN_ELEMENT;
|
|
block->expr1->ref->u.ar.start[0] = gfc_lval_expr_from_sym (idx);
|
|
block->expr1->ref->u.ar.as = sizes->as;
|
|
|
|
block->expr2 = gfc_get_expr ();
|
|
block->expr2->expr_type = EXPR_OP;
|
|
block->expr2->value.op.op = INTRINSIC_TIMES;
|
|
block->expr2->where = gfc_current_locus;
|
|
|
|
/* sizes(idx-1). */
|
|
block->expr2->value.op.op1 = gfc_lval_expr_from_sym (sizes);
|
|
block->expr2->value.op.op1->ref = gfc_get_ref ();
|
|
block->expr2->value.op.op1->ref->type = REF_ARRAY;
|
|
block->expr2->value.op.op1->ref->u.ar.as = sizes->as;
|
|
block->expr2->value.op.op1->ref->u.ar.type = AR_ELEMENT;
|
|
block->expr2->value.op.op1->ref->u.ar.dimen = 1;
|
|
block->expr2->value.op.op1->ref->u.ar.dimen_type[0] = DIMEN_ELEMENT;
|
|
block->expr2->value.op.op1->ref->u.ar.start[0] = gfc_get_expr ();
|
|
block->expr2->value.op.op1->ref->u.ar.start[0]->expr_type = EXPR_OP;
|
|
block->expr2->value.op.op1->ref->u.ar.start[0]->where = gfc_current_locus;
|
|
block->expr2->value.op.op1->ref->u.ar.start[0]->value.op.op = INTRINSIC_MINUS;
|
|
block->expr2->value.op.op1->ref->u.ar.start[0]->value.op.op1
|
|
= gfc_lval_expr_from_sym (idx);
|
|
block->expr2->value.op.op1->ref->u.ar.start[0]->value.op.op2
|
|
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
block->expr2->value.op.op1->ref->u.ar.start[0]->ts
|
|
= block->expr2->value.op.op1->ref->u.ar.start[0]->value.op.op1->ts;
|
|
|
|
/* size(array, dim=idx, kind=index_kind). */
|
|
block->expr2->value.op.op2
|
|
= gfc_build_intrinsic_call (sub_ns, GFC_ISYM_SIZE, "size",
|
|
gfc_current_locus, 3,
|
|
gfc_lval_expr_from_sym (array),
|
|
gfc_lval_expr_from_sym (idx),
|
|
gfc_get_int_expr (gfc_index_integer_kind,
|
|
NULL,
|
|
gfc_index_integer_kind));
|
|
block->expr2->value.op.op2->ts.kind = gfc_index_integer_kind;
|
|
block->expr2->ts = idx->ts;
|
|
|
|
/* if (strides (idx) /= sizes(idx-1)) is_contiguous = .false. */
|
|
block->next = gfc_get_code (EXEC_IF);
|
|
block = block->next;
|
|
|
|
block->block = gfc_get_code (EXEC_IF);
|
|
block = block->block;
|
|
|
|
/* if condition: strides(idx) /= sizes(idx-1). */
|
|
block->expr1 = gfc_get_expr ();
|
|
block->expr1->ts.type = BT_LOGICAL;
|
|
block->expr1->ts.kind = gfc_default_logical_kind;
|
|
block->expr1->expr_type = EXPR_OP;
|
|
block->expr1->where = gfc_current_locus;
|
|
block->expr1->value.op.op = INTRINSIC_NE;
|
|
|
|
block->expr1->value.op.op1 = gfc_lval_expr_from_sym (strides);
|
|
block->expr1->value.op.op1->ref = gfc_get_ref ();
|
|
block->expr1->value.op.op1->ref->type = REF_ARRAY;
|
|
block->expr1->value.op.op1->ref->u.ar.type = AR_ELEMENT;
|
|
block->expr1->value.op.op1->ref->u.ar.dimen = 1;
|
|
block->expr1->value.op.op1->ref->u.ar.dimen_type[0] = DIMEN_ELEMENT;
|
|
block->expr1->value.op.op1->ref->u.ar.start[0] = gfc_lval_expr_from_sym (idx);
|
|
block->expr1->value.op.op1->ref->u.ar.as = strides->as;
|
|
|
|
block->expr1->value.op.op2 = gfc_lval_expr_from_sym (sizes);
|
|
block->expr1->value.op.op2->ref = gfc_get_ref ();
|
|
block->expr1->value.op.op2->ref->type = REF_ARRAY;
|
|
block->expr1->value.op.op2->ref->u.ar.as = sizes->as;
|
|
block->expr1->value.op.op2->ref->u.ar.type = AR_ELEMENT;
|
|
block->expr1->value.op.op2->ref->u.ar.dimen = 1;
|
|
block->expr1->value.op.op2->ref->u.ar.dimen_type[0] = DIMEN_ELEMENT;
|
|
block->expr1->value.op.op2->ref->u.ar.start[0] = gfc_get_expr ();
|
|
block->expr1->value.op.op2->ref->u.ar.start[0]->expr_type = EXPR_OP;
|
|
block->expr1->value.op.op2->ref->u.ar.start[0]->where = gfc_current_locus;
|
|
block->expr1->value.op.op2->ref->u.ar.start[0]->value.op.op = INTRINSIC_MINUS;
|
|
block->expr1->value.op.op2->ref->u.ar.start[0]->value.op.op1
|
|
= gfc_lval_expr_from_sym (idx);
|
|
block->expr1->value.op.op2->ref->u.ar.start[0]->value.op.op2
|
|
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
block->expr1->value.op.op2->ref->u.ar.start[0]->ts
|
|
= block->expr1->value.op.op2->ref->u.ar.start[0]->value.op.op1->ts;
|
|
|
|
/* if body: is_contiguous = .false. */
|
|
block->next = gfc_get_code (EXEC_ASSIGN);
|
|
block = block->next;
|
|
block->expr1 = gfc_lval_expr_from_sym (is_contiguous);
|
|
block->expr2 = gfc_get_logical_expr (gfc_default_logical_kind,
|
|
&gfc_current_locus, false);
|
|
|
|
/* Obtain the size (number of elements) of "array" MINUS ONE,
|
|
which is used in the scalarization. */
|
|
gfc_get_symbol ("nelem", sub_ns, &nelem);
|
|
nelem->ts.type = BT_INTEGER;
|
|
nelem->ts.kind = gfc_index_integer_kind;
|
|
nelem->attr.flavor = FL_VARIABLE;
|
|
nelem->attr.artificial = 1;
|
|
gfc_set_sym_referenced (nelem);
|
|
gfc_commit_symbol (nelem);
|
|
|
|
/* nelem = sizes (rank) - 1. */
|
|
last_code->next = gfc_get_code (EXEC_ASSIGN);
|
|
last_code = last_code->next;
|
|
|
|
last_code->expr1 = gfc_lval_expr_from_sym (nelem);
|
|
|
|
last_code->expr2 = gfc_get_expr ();
|
|
last_code->expr2->expr_type = EXPR_OP;
|
|
last_code->expr2->value.op.op = INTRINSIC_MINUS;
|
|
last_code->expr2->value.op.op2
|
|
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
last_code->expr2->ts = last_code->expr2->value.op.op2->ts;
|
|
last_code->expr2->where = gfc_current_locus;
|
|
|
|
last_code->expr2->value.op.op1 = gfc_lval_expr_from_sym (sizes);
|
|
last_code->expr2->value.op.op1->ref = gfc_get_ref ();
|
|
last_code->expr2->value.op.op1->ref->type = REF_ARRAY;
|
|
last_code->expr2->value.op.op1->ref->u.ar.type = AR_ELEMENT;
|
|
last_code->expr2->value.op.op1->ref->u.ar.dimen = 1;
|
|
last_code->expr2->value.op.op1->ref->u.ar.dimen_type[0] = DIMEN_ELEMENT;
|
|
last_code->expr2->value.op.op1->ref->u.ar.start[0] = gfc_copy_expr (rank);
|
|
last_code->expr2->value.op.op1->ref->u.ar.as = sizes->as;
|
|
|
|
/* Call final subroutines. We now generate code like:
|
|
use iso_c_binding
|
|
integer, pointer :: ptr
|
|
type(c_ptr) :: cptr
|
|
integer(c_intptr_t) :: i, addr
|
|
|
|
select case (rank (array))
|
|
case (3)
|
|
! If needed, the array is packed
|
|
call final_rank3 (array)
|
|
case default:
|
|
do i = 0, size (array)-1
|
|
addr = transfer (c_loc (array), addr) + i * stride
|
|
call c_f_pointer (transfer (addr, cptr), ptr)
|
|
call elemental_final (ptr)
|
|
end do
|
|
end select */
|
|
|
|
if (derived->f2k_derived && derived->f2k_derived->finalizers)
|
|
{
|
|
gfc_finalizer *fini, *fini_elem = NULL;
|
|
|
|
gfc_get_symbol ("ptr1", sub_ns, &ptr);
|
|
ptr->ts.type = BT_DERIVED;
|
|
ptr->ts.u.derived = derived;
|
|
ptr->attr.flavor = FL_VARIABLE;
|
|
ptr->attr.pointer = 1;
|
|
ptr->attr.artificial = 1;
|
|
gfc_set_sym_referenced (ptr);
|
|
gfc_commit_symbol (ptr);
|
|
|
|
/* SELECT CASE (RANK (array)). */
|
|
last_code->next = gfc_get_code (EXEC_SELECT);
|
|
last_code = last_code->next;
|
|
last_code->expr1 = gfc_copy_expr (rank);
|
|
block = NULL;
|
|
|
|
for (fini = derived->f2k_derived->finalizers; fini; fini = fini->next)
|
|
{
|
|
gcc_assert (fini->proc_tree); /* Should have been set in gfc_resolve_finalizers. */
|
|
if (fini->proc_tree->n.sym->attr.elemental)
|
|
{
|
|
fini_elem = fini;
|
|
continue;
|
|
}
|
|
|
|
/* CASE (fini_rank). */
|
|
if (block)
|
|
{
|
|
block->block = gfc_get_code (EXEC_SELECT);
|
|
block = block->block;
|
|
}
|
|
else
|
|
{
|
|
block = gfc_get_code (EXEC_SELECT);
|
|
last_code->block = block;
|
|
}
|
|
block->ext.block.case_list = gfc_get_case ();
|
|
block->ext.block.case_list->where = gfc_current_locus;
|
|
if (fini->proc_tree->n.sym->formal->sym->attr.dimension)
|
|
block->ext.block.case_list->low
|
|
= gfc_get_int_expr (gfc_default_integer_kind, NULL,
|
|
fini->proc_tree->n.sym->formal->sym->as->rank);
|
|
else
|
|
block->ext.block.case_list->low
|
|
= gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
|
|
block->ext.block.case_list->high
|
|
= gfc_copy_expr (block->ext.block.case_list->low);
|
|
|
|
/* CALL fini_rank (array) - possibly with packing. */
|
|
if (fini->proc_tree->n.sym->formal->sym->attr.dimension)
|
|
finalizer_insert_packed_call (block, fini, array, byte_stride,
|
|
idx, ptr, nelem, strides,
|
|
sizes, idx2, offset, is_contiguous,
|
|
rank, sub_ns);
|
|
else
|
|
{
|
|
block->next = gfc_get_code (EXEC_CALL);
|
|
block->next->symtree = fini->proc_tree;
|
|
block->next->resolved_sym = fini->proc_tree->n.sym;
|
|
block->next->ext.actual = gfc_get_actual_arglist ();
|
|
block->next->ext.actual->expr = gfc_lval_expr_from_sym (array);
|
|
}
|
|
}
|
|
|
|
/* Elemental call - scalarized. */
|
|
if (fini_elem)
|
|
{
|
|
/* CASE DEFAULT. */
|
|
if (block)
|
|
{
|
|
block->block = gfc_get_code (EXEC_SELECT);
|
|
block = block->block;
|
|
}
|
|
else
|
|
{
|
|
block = gfc_get_code (EXEC_SELECT);
|
|
last_code->block = block;
|
|
}
|
|
block->ext.block.case_list = gfc_get_case ();
|
|
|
|
/* Create loop. */
|
|
iter = gfc_get_iterator ();
|
|
iter->var = gfc_lval_expr_from_sym (idx);
|
|
iter->start = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
iter->end = gfc_lval_expr_from_sym (nelem);
|
|
iter->step = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
block->next = gfc_get_code (EXEC_DO);
|
|
block = block->next;
|
|
block->ext.iterator = iter;
|
|
block->block = gfc_get_code (EXEC_DO);
|
|
|
|
/* Offset calculation. */
|
|
block = finalization_get_offset (idx, idx2, offset, strides, sizes,
|
|
byte_stride, rank, block->block,
|
|
sub_ns);
|
|
|
|
/* Create code for
|
|
CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
|
|
+ offset, c_ptr), ptr). */
|
|
block->next
|
|
= finalization_scalarizer (array, ptr,
|
|
gfc_lval_expr_from_sym (offset),
|
|
sub_ns);
|
|
block = block->next;
|
|
|
|
/* CALL final_elemental (array). */
|
|
block->next = gfc_get_code (EXEC_CALL);
|
|
block = block->next;
|
|
block->symtree = fini_elem->proc_tree;
|
|
block->resolved_sym = fini_elem->proc_sym;
|
|
block->ext.actual = gfc_get_actual_arglist ();
|
|
block->ext.actual->expr = gfc_lval_expr_from_sym (ptr);
|
|
}
|
|
}
|
|
|
|
/* Finalize and deallocate allocatable components. The same manual
|
|
scalarization is used as above. */
|
|
|
|
if (finalizable_comp)
|
|
{
|
|
gfc_symbol *stat;
|
|
gfc_code *block = NULL;
|
|
|
|
if (!ptr)
|
|
{
|
|
gfc_get_symbol ("ptr2", sub_ns, &ptr);
|
|
ptr->ts.type = BT_DERIVED;
|
|
ptr->ts.u.derived = derived;
|
|
ptr->attr.flavor = FL_VARIABLE;
|
|
ptr->attr.pointer = 1;
|
|
ptr->attr.artificial = 1;
|
|
gfc_set_sym_referenced (ptr);
|
|
gfc_commit_symbol (ptr);
|
|
}
|
|
|
|
gfc_get_symbol ("ignore", sub_ns, &stat);
|
|
stat->attr.flavor = FL_VARIABLE;
|
|
stat->attr.artificial = 1;
|
|
stat->ts.type = BT_INTEGER;
|
|
stat->ts.kind = gfc_default_integer_kind;
|
|
gfc_set_sym_referenced (stat);
|
|
gfc_commit_symbol (stat);
|
|
|
|
/* Create loop. */
|
|
iter = gfc_get_iterator ();
|
|
iter->var = gfc_lval_expr_from_sym (idx);
|
|
iter->start = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
iter->end = gfc_lval_expr_from_sym (nelem);
|
|
iter->step = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
last_code->next = gfc_get_code (EXEC_DO);
|
|
last_code = last_code->next;
|
|
last_code->ext.iterator = iter;
|
|
last_code->block = gfc_get_code (EXEC_DO);
|
|
|
|
/* Offset calculation. */
|
|
block = finalization_get_offset (idx, idx2, offset, strides, sizes,
|
|
byte_stride, rank, last_code->block,
|
|
sub_ns);
|
|
|
|
/* Create code for
|
|
CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
|
|
+ idx * stride, c_ptr), ptr). */
|
|
block->next = finalization_scalarizer (array, ptr,
|
|
gfc_lval_expr_from_sym(offset),
|
|
sub_ns);
|
|
block = block->next;
|
|
|
|
for (comp = derived->components; comp; comp = comp->next)
|
|
{
|
|
if (comp == derived->components && derived->attr.extension
|
|
&& ancestor_wrapper && ancestor_wrapper->expr_type != EXPR_NULL)
|
|
continue;
|
|
|
|
finalize_component (gfc_lval_expr_from_sym (ptr), derived, comp,
|
|
stat, fini_coarray, &block, sub_ns);
|
|
if (!last_code->block->next)
|
|
last_code->block->next = block;
|
|
}
|
|
|
|
}
|
|
|
|
/* Call the finalizer of the ancestor. */
|
|
if (ancestor_wrapper && ancestor_wrapper->expr_type != EXPR_NULL)
|
|
{
|
|
last_code->next = gfc_get_code (EXEC_CALL);
|
|
last_code = last_code->next;
|
|
last_code->symtree = ancestor_wrapper->symtree;
|
|
last_code->resolved_sym = ancestor_wrapper->symtree->n.sym;
|
|
|
|
last_code->ext.actual = gfc_get_actual_arglist ();
|
|
last_code->ext.actual->expr = gfc_lval_expr_from_sym (array);
|
|
last_code->ext.actual->next = gfc_get_actual_arglist ();
|
|
last_code->ext.actual->next->expr = gfc_lval_expr_from_sym (byte_stride);
|
|
last_code->ext.actual->next->next = gfc_get_actual_arglist ();
|
|
last_code->ext.actual->next->next->expr
|
|
= gfc_lval_expr_from_sym (fini_coarray);
|
|
}
|
|
|
|
gfc_free_expr (rank);
|
|
vtab_final->initializer = gfc_lval_expr_from_sym (final);
|
|
vtab_final->ts.interface = final;
|
|
free (name);
|
|
}
|
|
|
|
|
|
/* Add procedure pointers for all type-bound procedures to a vtab. */
|
|
|
|
static void
|
|
add_procs_to_declared_vtab (gfc_symbol *derived, gfc_symbol *vtype)
|
|
{
|
|
gfc_symbol* super_type;
|
|
|
|
super_type = gfc_get_derived_super_type (derived);
|
|
|
|
if (super_type && (super_type != derived))
|
|
{
|
|
/* Make sure that the PPCs appear in the same order as in the parent. */
|
|
copy_vtab_proc_comps (super_type, vtype);
|
|
/* Only needed to get the PPC initializers right. */
|
|
add_procs_to_declared_vtab (super_type, vtype);
|
|
}
|
|
|
|
if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
|
|
add_procs_to_declared_vtab1 (derived->f2k_derived->tb_sym_root, vtype);
|
|
|
|
if (derived->f2k_derived && derived->f2k_derived->tb_uop_root)
|
|
add_procs_to_declared_vtab1 (derived->f2k_derived->tb_uop_root, vtype);
|
|
}
|
|
|
|
|
|
/* Find or generate the symbol for a derived type's vtab. */
|
|
|
|
gfc_symbol *
|
|
gfc_find_derived_vtab (gfc_symbol *derived)
|
|
{
|
|
gfc_namespace *ns;
|
|
gfc_symbol *vtab = NULL, *vtype = NULL, *found_sym = NULL, *def_init = NULL;
|
|
gfc_symbol *copy = NULL, *src = NULL, *dst = NULL;
|
|
gfc_gsymbol *gsym = NULL;
|
|
gfc_symbol *dealloc = NULL, *arg = NULL;
|
|
|
|
if (derived->attr.pdt_template)
|
|
return NULL;
|
|
|
|
/* Find the top-level namespace. */
|
|
for (ns = gfc_current_ns; ns; ns = ns->parent)
|
|
if (!ns->parent)
|
|
break;
|
|
|
|
/* If the type is a class container, use the underlying derived type. */
|
|
if (!derived->attr.unlimited_polymorphic && derived->attr.is_class)
|
|
derived = gfc_get_derived_super_type (derived);
|
|
|
|
/* Find the gsymbol for the module of use associated derived types. */
|
|
if ((derived->attr.use_assoc || derived->attr.used_in_submodule)
|
|
&& !derived->attr.vtype && !derived->attr.is_class)
|
|
gsym = gfc_find_gsymbol (gfc_gsym_root, derived->module);
|
|
else
|
|
gsym = NULL;
|
|
|
|
/* Work in the gsymbol namespace if the top-level namespace is a module.
|
|
This ensures that the vtable is unique, which is required since we use
|
|
its address in SELECT TYPE. */
|
|
if (gsym && gsym->ns && ns && ns->proc_name
|
|
&& ns->proc_name->attr.flavor == FL_MODULE)
|
|
ns = gsym->ns;
|
|
|
|
if (ns)
|
|
{
|
|
char tname[GFC_MAX_SYMBOL_LEN+1];
|
|
char *name;
|
|
|
|
get_unique_hashed_string (tname, derived);
|
|
name = xasprintf ("__vtab_%s", tname);
|
|
|
|
/* Look for the vtab symbol in various namespaces. */
|
|
if (gsym && gsym->ns)
|
|
{
|
|
gfc_find_symbol (name, gsym->ns, 0, &vtab);
|
|
if (vtab)
|
|
ns = gsym->ns;
|
|
}
|
|
if (vtab == NULL)
|
|
gfc_find_symbol (name, gfc_current_ns, 0, &vtab);
|
|
if (vtab == NULL)
|
|
gfc_find_symbol (name, ns, 0, &vtab);
|
|
if (vtab == NULL)
|
|
gfc_find_symbol (name, derived->ns, 0, &vtab);
|
|
|
|
if (vtab == NULL)
|
|
{
|
|
gfc_get_symbol (name, ns, &vtab);
|
|
vtab->ts.type = BT_DERIVED;
|
|
if (!gfc_add_flavor (&vtab->attr, FL_VARIABLE, NULL,
|
|
&gfc_current_locus))
|
|
goto cleanup;
|
|
vtab->attr.target = 1;
|
|
vtab->attr.save = SAVE_IMPLICIT;
|
|
vtab->attr.vtab = 1;
|
|
vtab->attr.access = ACCESS_PUBLIC;
|
|
gfc_set_sym_referenced (vtab);
|
|
name = xasprintf ("__vtype_%s", tname);
|
|
|
|
gfc_find_symbol (name, ns, 0, &vtype);
|
|
if (vtype == NULL)
|
|
{
|
|
gfc_component *c;
|
|
gfc_symbol *parent = NULL, *parent_vtab = NULL;
|
|
bool rdt = false;
|
|
|
|
/* Is this a derived type with recursive allocatable
|
|
components? */
|
|
c = (derived->attr.unlimited_polymorphic
|
|
|| derived->attr.abstract) ?
|
|
NULL : derived->components;
|
|
for (; c; c= c->next)
|
|
if (c->ts.type == BT_DERIVED
|
|
&& c->ts.u.derived == derived)
|
|
{
|
|
rdt = true;
|
|
break;
|
|
}
|
|
|
|
gfc_get_symbol (name, ns, &vtype);
|
|
if (!gfc_add_flavor (&vtype->attr, FL_DERIVED, NULL,
|
|
&gfc_current_locus))
|
|
goto cleanup;
|
|
vtype->attr.access = ACCESS_PUBLIC;
|
|
vtype->attr.vtype = 1;
|
|
gfc_set_sym_referenced (vtype);
|
|
|
|
/* Add component '_hash'. */
|
|
if (!gfc_add_component (vtype, "_hash", &c))
|
|
goto cleanup;
|
|
c->ts.type = BT_INTEGER;
|
|
c->ts.kind = 4;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
|
|
NULL, derived->hash_value);
|
|
|
|
/* Add component '_size'. */
|
|
if (!gfc_add_component (vtype, "_size", &c))
|
|
goto cleanup;
|
|
c->ts.type = BT_INTEGER;
|
|
c->ts.kind = gfc_size_kind;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
/* Remember the derived type in ts.u.derived,
|
|
so that the correct initializer can be set later on
|
|
(in gfc_conv_structure). */
|
|
c->ts.u.derived = derived;
|
|
c->initializer = gfc_get_int_expr (gfc_size_kind,
|
|
NULL, 0);
|
|
|
|
/* Add component _extends. */
|
|
if (!gfc_add_component (vtype, "_extends", &c))
|
|
goto cleanup;
|
|
c->attr.pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
if (!derived->attr.unlimited_polymorphic)
|
|
parent = gfc_get_derived_super_type (derived);
|
|
else
|
|
parent = NULL;
|
|
|
|
if (parent)
|
|
{
|
|
parent_vtab = gfc_find_derived_vtab (parent);
|
|
c->ts.type = BT_DERIVED;
|
|
c->ts.u.derived = parent_vtab->ts.u.derived;
|
|
c->initializer = gfc_get_expr ();
|
|
c->initializer->expr_type = EXPR_VARIABLE;
|
|
gfc_find_sym_tree (parent_vtab->name, parent_vtab->ns,
|
|
0, &c->initializer->symtree);
|
|
}
|
|
else
|
|
{
|
|
c->ts.type = BT_DERIVED;
|
|
c->ts.u.derived = vtype;
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
}
|
|
|
|
if (!derived->attr.unlimited_polymorphic
|
|
&& derived->components == NULL
|
|
&& !derived->attr.zero_comp)
|
|
{
|
|
/* At this point an error must have occurred.
|
|
Prevent further errors on the vtype components. */
|
|
found_sym = vtab;
|
|
goto have_vtype;
|
|
}
|
|
|
|
/* Add component _def_init. */
|
|
if (!gfc_add_component (vtype, "_def_init", &c))
|
|
goto cleanup;
|
|
c->attr.pointer = 1;
|
|
c->attr.artificial = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->ts.type = BT_DERIVED;
|
|
c->ts.u.derived = derived;
|
|
if (derived->attr.unlimited_polymorphic
|
|
|| derived->attr.abstract)
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
else
|
|
{
|
|
/* Construct default initialization variable. */
|
|
name = xasprintf ("__def_init_%s", tname);
|
|
gfc_get_symbol (name, ns, &def_init);
|
|
def_init->attr.target = 1;
|
|
def_init->attr.artificial = 1;
|
|
def_init->attr.save = SAVE_IMPLICIT;
|
|
def_init->attr.access = ACCESS_PUBLIC;
|
|
def_init->attr.flavor = FL_VARIABLE;
|
|
gfc_set_sym_referenced (def_init);
|
|
def_init->ts.type = BT_DERIVED;
|
|
def_init->ts.u.derived = derived;
|
|
def_init->value = gfc_default_initializer (&def_init->ts);
|
|
|
|
c->initializer = gfc_lval_expr_from_sym (def_init);
|
|
}
|
|
|
|
/* Add component _copy. */
|
|
if (!gfc_add_component (vtype, "_copy", &c))
|
|
goto cleanup;
|
|
c->attr.proc_pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->tb = XCNEW (gfc_typebound_proc);
|
|
c->tb->ppc = 1;
|
|
if (derived->attr.unlimited_polymorphic
|
|
|| derived->attr.abstract)
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
else
|
|
{
|
|
/* Set up namespace. */
|
|
gfc_namespace *sub_ns = gfc_get_namespace (ns, 0);
|
|
sub_ns->sibling = ns->contained;
|
|
ns->contained = sub_ns;
|
|
sub_ns->resolved = 1;
|
|
/* Set up procedure symbol. */
|
|
name = xasprintf ("__copy_%s", tname);
|
|
gfc_get_symbol (name, sub_ns, ©);
|
|
sub_ns->proc_name = copy;
|
|
copy->attr.flavor = FL_PROCEDURE;
|
|
copy->attr.subroutine = 1;
|
|
copy->attr.pure = 1;
|
|
copy->attr.artificial = 1;
|
|
copy->attr.if_source = IFSRC_DECL;
|
|
/* This is elemental so that arrays are automatically
|
|
treated correctly by the scalarizer. */
|
|
copy->attr.elemental = 1;
|
|
if (ns->proc_name->attr.flavor == FL_MODULE)
|
|
copy->module = ns->proc_name->name;
|
|
gfc_set_sym_referenced (copy);
|
|
/* Set up formal arguments. */
|
|
gfc_get_symbol ("src", sub_ns, &src);
|
|
src->ts.type = BT_DERIVED;
|
|
src->ts.u.derived = derived;
|
|
src->attr.flavor = FL_VARIABLE;
|
|
src->attr.dummy = 1;
|
|
src->attr.artificial = 1;
|
|
src->attr.intent = INTENT_IN;
|
|
gfc_set_sym_referenced (src);
|
|
copy->formal = gfc_get_formal_arglist ();
|
|
copy->formal->sym = src;
|
|
gfc_get_symbol ("dst", sub_ns, &dst);
|
|
dst->ts.type = BT_DERIVED;
|
|
dst->ts.u.derived = derived;
|
|
dst->attr.flavor = FL_VARIABLE;
|
|
dst->attr.dummy = 1;
|
|
dst->attr.artificial = 1;
|
|
dst->attr.intent = INTENT_INOUT;
|
|
gfc_set_sym_referenced (dst);
|
|
copy->formal->next = gfc_get_formal_arglist ();
|
|
copy->formal->next->sym = dst;
|
|
/* Set up code. */
|
|
sub_ns->code = gfc_get_code (EXEC_INIT_ASSIGN);
|
|
sub_ns->code->expr1 = gfc_lval_expr_from_sym (dst);
|
|
sub_ns->code->expr2 = gfc_lval_expr_from_sym (src);
|
|
/* Set initializer. */
|
|
c->initializer = gfc_lval_expr_from_sym (copy);
|
|
c->ts.interface = copy;
|
|
}
|
|
|
|
/* Add component _final, which contains a procedure pointer to
|
|
a wrapper which handles both the freeing of allocatable
|
|
components and the calls to finalization subroutines.
|
|
Note: The actual wrapper function can only be generated
|
|
at resolution time. */
|
|
if (!gfc_add_component (vtype, "_final", &c))
|
|
goto cleanup;
|
|
c->attr.proc_pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->tb = XCNEW (gfc_typebound_proc);
|
|
c->tb->ppc = 1;
|
|
generate_finalization_wrapper (derived, ns, tname, c);
|
|
|
|
/* Add component _deallocate. */
|
|
if (!gfc_add_component (vtype, "_deallocate", &c))
|
|
goto cleanup;
|
|
c->attr.proc_pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->tb = XCNEW (gfc_typebound_proc);
|
|
c->tb->ppc = 1;
|
|
if (derived->attr.unlimited_polymorphic
|
|
|| derived->attr.abstract
|
|
|| !rdt)
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
else
|
|
{
|
|
/* Set up namespace. */
|
|
gfc_namespace *sub_ns = gfc_get_namespace (ns, 0);
|
|
|
|
sub_ns->sibling = ns->contained;
|
|
ns->contained = sub_ns;
|
|
sub_ns->resolved = 1;
|
|
/* Set up procedure symbol. */
|
|
name = xasprintf ("__deallocate_%s", tname);
|
|
gfc_get_symbol (name, sub_ns, &dealloc);
|
|
sub_ns->proc_name = dealloc;
|
|
dealloc->attr.flavor = FL_PROCEDURE;
|
|
dealloc->attr.subroutine = 1;
|
|
dealloc->attr.pure = 1;
|
|
dealloc->attr.artificial = 1;
|
|
dealloc->attr.if_source = IFSRC_DECL;
|
|
|
|
if (ns->proc_name->attr.flavor == FL_MODULE)
|
|
dealloc->module = ns->proc_name->name;
|
|
gfc_set_sym_referenced (dealloc);
|
|
/* Set up formal argument. */
|
|
gfc_get_symbol ("arg", sub_ns, &arg);
|
|
arg->ts.type = BT_DERIVED;
|
|
arg->ts.u.derived = derived;
|
|
arg->attr.flavor = FL_VARIABLE;
|
|
arg->attr.dummy = 1;
|
|
arg->attr.artificial = 1;
|
|
arg->attr.intent = INTENT_INOUT;
|
|
arg->attr.dimension = 1;
|
|
arg->attr.allocatable = 1;
|
|
arg->as = gfc_get_array_spec();
|
|
arg->as->type = AS_ASSUMED_SHAPE;
|
|
arg->as->rank = 1;
|
|
arg->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind,
|
|
NULL, 1);
|
|
gfc_set_sym_referenced (arg);
|
|
dealloc->formal = gfc_get_formal_arglist ();
|
|
dealloc->formal->sym = arg;
|
|
/* Set up code. */
|
|
sub_ns->code = gfc_get_code (EXEC_DEALLOCATE);
|
|
sub_ns->code->ext.alloc.list = gfc_get_alloc ();
|
|
sub_ns->code->ext.alloc.list->expr
|
|
= gfc_lval_expr_from_sym (arg);
|
|
/* Set initializer. */
|
|
c->initializer = gfc_lval_expr_from_sym (dealloc);
|
|
c->ts.interface = dealloc;
|
|
}
|
|
|
|
/* Add procedure pointers for type-bound procedures. */
|
|
if (!derived->attr.unlimited_polymorphic)
|
|
add_procs_to_declared_vtab (derived, vtype);
|
|
}
|
|
|
|
have_vtype:
|
|
vtab->ts.u.derived = vtype;
|
|
vtab->value = gfc_default_initializer (&vtab->ts);
|
|
}
|
|
free (name);
|
|
}
|
|
|
|
found_sym = vtab;
|
|
|
|
cleanup:
|
|
/* It is unexpected to have some symbols added at resolution or code
|
|
generation time. We commit the changes in order to keep a clean state. */
|
|
if (found_sym)
|
|
{
|
|
gfc_commit_symbol (vtab);
|
|
if (vtype)
|
|
gfc_commit_symbol (vtype);
|
|
if (def_init)
|
|
gfc_commit_symbol (def_init);
|
|
if (copy)
|
|
gfc_commit_symbol (copy);
|
|
if (src)
|
|
gfc_commit_symbol (src);
|
|
if (dst)
|
|
gfc_commit_symbol (dst);
|
|
if (dealloc)
|
|
gfc_commit_symbol (dealloc);
|
|
if (arg)
|
|
gfc_commit_symbol (arg);
|
|
}
|
|
else
|
|
gfc_undo_symbols ();
|
|
|
|
return found_sym;
|
|
}
|
|
|
|
|
|
/* Check if a derived type is finalizable. That is the case if it
|
|
(1) has a FINAL subroutine or
|
|
(2) has a nonpointer nonallocatable component of finalizable type.
|
|
If it is finalizable, return an expression containing the
|
|
finalization wrapper. */
|
|
|
|
bool
|
|
gfc_is_finalizable (gfc_symbol *derived, gfc_expr **final_expr)
|
|
{
|
|
gfc_symbol *vtab;
|
|
gfc_component *c;
|
|
|
|
/* (1) Check for FINAL subroutines. */
|
|
if (derived->f2k_derived && derived->f2k_derived->finalizers)
|
|
goto yes;
|
|
|
|
/* (2) Check for components of finalizable type. */
|
|
for (c = derived->components; c; c = c->next)
|
|
if (c->ts.type == BT_DERIVED
|
|
&& !c->attr.pointer && !c->attr.proc_pointer && !c->attr.allocatable
|
|
&& gfc_is_finalizable (c->ts.u.derived, NULL))
|
|
goto yes;
|
|
|
|
return false;
|
|
|
|
yes:
|
|
/* Make sure vtab is generated. */
|
|
vtab = gfc_find_derived_vtab (derived);
|
|
if (final_expr)
|
|
{
|
|
/* Return finalizer expression. */
|
|
gfc_component *final;
|
|
final = vtab->ts.u.derived->components->next->next->next->next->next;
|
|
gcc_assert (strcmp (final->name, "_final") == 0);
|
|
gcc_assert (final->initializer
|
|
&& final->initializer->expr_type != EXPR_NULL);
|
|
*final_expr = final->initializer;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Find (or generate) the symbol for an intrinsic type's vtab. This is
|
|
needed to support unlimited polymorphism. */
|
|
|
|
static gfc_symbol *
|
|
find_intrinsic_vtab (gfc_typespec *ts)
|
|
{
|
|
gfc_namespace *ns;
|
|
gfc_symbol *vtab = NULL, *vtype = NULL, *found_sym = NULL;
|
|
gfc_symbol *copy = NULL, *src = NULL, *dst = NULL;
|
|
|
|
/* Find the top-level namespace. */
|
|
for (ns = gfc_current_ns; ns; ns = ns->parent)
|
|
if (!ns->parent)
|
|
break;
|
|
|
|
if (ns)
|
|
{
|
|
char tname[GFC_MAX_SYMBOL_LEN+1];
|
|
char *name;
|
|
|
|
/* Encode all types as TYPENAME_KIND_ including especially character
|
|
arrays, whose length is now consistently stored in the _len component
|
|
of the class-variable. */
|
|
sprintf (tname, "%s_%d_", gfc_basic_typename (ts->type), ts->kind);
|
|
name = xasprintf ("__vtab_%s", tname);
|
|
|
|
/* Look for the vtab symbol in the top-level namespace only. */
|
|
gfc_find_symbol (name, ns, 0, &vtab);
|
|
|
|
if (vtab == NULL)
|
|
{
|
|
gfc_get_symbol (name, ns, &vtab);
|
|
vtab->ts.type = BT_DERIVED;
|
|
if (!gfc_add_flavor (&vtab->attr, FL_VARIABLE, NULL,
|
|
&gfc_current_locus))
|
|
goto cleanup;
|
|
vtab->attr.target = 1;
|
|
vtab->attr.save = SAVE_IMPLICIT;
|
|
vtab->attr.vtab = 1;
|
|
vtab->attr.access = ACCESS_PUBLIC;
|
|
gfc_set_sym_referenced (vtab);
|
|
name = xasprintf ("__vtype_%s", tname);
|
|
|
|
gfc_find_symbol (name, ns, 0, &vtype);
|
|
if (vtype == NULL)
|
|
{
|
|
gfc_component *c;
|
|
int hash;
|
|
gfc_namespace *sub_ns;
|
|
gfc_namespace *contained;
|
|
gfc_expr *e;
|
|
|
|
gfc_get_symbol (name, ns, &vtype);
|
|
if (!gfc_add_flavor (&vtype->attr, FL_DERIVED, NULL,
|
|
&gfc_current_locus))
|
|
goto cleanup;
|
|
vtype->attr.access = ACCESS_PUBLIC;
|
|
vtype->attr.vtype = 1;
|
|
gfc_set_sym_referenced (vtype);
|
|
|
|
/* Add component '_hash'. */
|
|
if (!gfc_add_component (vtype, "_hash", &c))
|
|
goto cleanup;
|
|
c->ts.type = BT_INTEGER;
|
|
c->ts.kind = 4;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
hash = gfc_intrinsic_hash_value (ts);
|
|
c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
|
|
NULL, hash);
|
|
|
|
/* Add component '_size'. */
|
|
if (!gfc_add_component (vtype, "_size", &c))
|
|
goto cleanup;
|
|
c->ts.type = BT_INTEGER;
|
|
c->ts.kind = gfc_size_kind;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
|
|
/* Build a minimal expression to make use of
|
|
target-memory.c/gfc_element_size for 'size'. Special handling
|
|
for character arrays, that are not constant sized: to support
|
|
len (str) * kind, only the kind information is stored in the
|
|
vtab. */
|
|
e = gfc_get_expr ();
|
|
e->ts = *ts;
|
|
e->expr_type = EXPR_VARIABLE;
|
|
c->initializer = gfc_get_int_expr (gfc_size_kind,
|
|
NULL,
|
|
ts->type == BT_CHARACTER
|
|
? ts->kind
|
|
: gfc_element_size (e));
|
|
gfc_free_expr (e);
|
|
|
|
/* Add component _extends. */
|
|
if (!gfc_add_component (vtype, "_extends", &c))
|
|
goto cleanup;
|
|
c->attr.pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->ts.type = BT_VOID;
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
|
|
/* Add component _def_init. */
|
|
if (!gfc_add_component (vtype, "_def_init", &c))
|
|
goto cleanup;
|
|
c->attr.pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->ts.type = BT_VOID;
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
|
|
/* Add component _copy. */
|
|
if (!gfc_add_component (vtype, "_copy", &c))
|
|
goto cleanup;
|
|
c->attr.proc_pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->tb = XCNEW (gfc_typebound_proc);
|
|
c->tb->ppc = 1;
|
|
|
|
if (ts->type != BT_CHARACTER)
|
|
name = xasprintf ("__copy_%s", tname);
|
|
else
|
|
{
|
|
/* __copy is always the same for characters.
|
|
Check to see if copy function already exists. */
|
|
name = xasprintf ("__copy_character_%d", ts->kind);
|
|
contained = ns->contained;
|
|
for (; contained; contained = contained->sibling)
|
|
if (contained->proc_name
|
|
&& strcmp (name, contained->proc_name->name) == 0)
|
|
{
|
|
copy = contained->proc_name;
|
|
goto got_char_copy;
|
|
}
|
|
}
|
|
|
|
/* Set up namespace. */
|
|
sub_ns = gfc_get_namespace (ns, 0);
|
|
sub_ns->sibling = ns->contained;
|
|
ns->contained = sub_ns;
|
|
sub_ns->resolved = 1;
|
|
/* Set up procedure symbol. */
|
|
gfc_get_symbol (name, sub_ns, ©);
|
|
sub_ns->proc_name = copy;
|
|
copy->attr.flavor = FL_PROCEDURE;
|
|
copy->attr.subroutine = 1;
|
|
copy->attr.pure = 1;
|
|
copy->attr.if_source = IFSRC_DECL;
|
|
/* This is elemental so that arrays are automatically
|
|
treated correctly by the scalarizer. */
|
|
copy->attr.elemental = 1;
|
|
if (ns->proc_name->attr.flavor == FL_MODULE)
|
|
copy->module = ns->proc_name->name;
|
|
gfc_set_sym_referenced (copy);
|
|
/* Set up formal arguments. */
|
|
gfc_get_symbol ("src", sub_ns, &src);
|
|
src->ts.type = ts->type;
|
|
src->ts.kind = ts->kind;
|
|
src->attr.flavor = FL_VARIABLE;
|
|
src->attr.dummy = 1;
|
|
src->attr.intent = INTENT_IN;
|
|
gfc_set_sym_referenced (src);
|
|
copy->formal = gfc_get_formal_arglist ();
|
|
copy->formal->sym = src;
|
|
gfc_get_symbol ("dst", sub_ns, &dst);
|
|
dst->ts.type = ts->type;
|
|
dst->ts.kind = ts->kind;
|
|
dst->attr.flavor = FL_VARIABLE;
|
|
dst->attr.dummy = 1;
|
|
dst->attr.intent = INTENT_INOUT;
|
|
gfc_set_sym_referenced (dst);
|
|
copy->formal->next = gfc_get_formal_arglist ();
|
|
copy->formal->next->sym = dst;
|
|
/* Set up code. */
|
|
sub_ns->code = gfc_get_code (EXEC_INIT_ASSIGN);
|
|
sub_ns->code->expr1 = gfc_lval_expr_from_sym (dst);
|
|
sub_ns->code->expr2 = gfc_lval_expr_from_sym (src);
|
|
got_char_copy:
|
|
/* Set initializer. */
|
|
c->initializer = gfc_lval_expr_from_sym (copy);
|
|
c->ts.interface = copy;
|
|
|
|
/* Add component _final. */
|
|
if (!gfc_add_component (vtype, "_final", &c))
|
|
goto cleanup;
|
|
c->attr.proc_pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->tb = XCNEW (gfc_typebound_proc);
|
|
c->tb->ppc = 1;
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
}
|
|
vtab->ts.u.derived = vtype;
|
|
vtab->value = gfc_default_initializer (&vtab->ts);
|
|
}
|
|
free (name);
|
|
}
|
|
|
|
found_sym = vtab;
|
|
|
|
cleanup:
|
|
/* It is unexpected to have some symbols added at resolution or code
|
|
generation time. We commit the changes in order to keep a clean state. */
|
|
if (found_sym)
|
|
{
|
|
gfc_commit_symbol (vtab);
|
|
if (vtype)
|
|
gfc_commit_symbol (vtype);
|
|
if (copy)
|
|
gfc_commit_symbol (copy);
|
|
if (src)
|
|
gfc_commit_symbol (src);
|
|
if (dst)
|
|
gfc_commit_symbol (dst);
|
|
}
|
|
else
|
|
gfc_undo_symbols ();
|
|
|
|
return found_sym;
|
|
}
|
|
|
|
|
|
/* Find (or generate) a vtab for an arbitrary type (derived or intrinsic). */
|
|
|
|
gfc_symbol *
|
|
gfc_find_vtab (gfc_typespec *ts)
|
|
{
|
|
switch (ts->type)
|
|
{
|
|
case BT_UNKNOWN:
|
|
return NULL;
|
|
case BT_DERIVED:
|
|
return gfc_find_derived_vtab (ts->u.derived);
|
|
case BT_CLASS:
|
|
return gfc_find_derived_vtab (ts->u.derived->components->ts.u.derived);
|
|
default:
|
|
return find_intrinsic_vtab (ts);
|
|
}
|
|
}
|
|
|
|
|
|
/* General worker function to find either a type-bound procedure or a
|
|
type-bound user operator. */
|
|
|
|
static gfc_symtree*
|
|
find_typebound_proc_uop (gfc_symbol* derived, bool* t,
|
|
const char* name, bool noaccess, bool uop,
|
|
locus* where)
|
|
{
|
|
gfc_symtree* res;
|
|
gfc_symtree* root;
|
|
|
|
/* Set default to failure. */
|
|
if (t)
|
|
*t = false;
|
|
|
|
if (derived->f2k_derived)
|
|
/* Set correct symbol-root. */
|
|
root = (uop ? derived->f2k_derived->tb_uop_root
|
|
: derived->f2k_derived->tb_sym_root);
|
|
else
|
|
return NULL;
|
|
|
|
/* Try to find it in the current type's namespace. */
|
|
res = gfc_find_symtree (root, name);
|
|
if (res && res->n.tb && !res->n.tb->error)
|
|
{
|
|
/* We found one. */
|
|
if (t)
|
|
*t = true;
|
|
|
|
if (!noaccess && derived->attr.use_assoc
|
|
&& res->n.tb->access == ACCESS_PRIVATE)
|
|
{
|
|
if (where)
|
|
gfc_error ("%qs of %qs is PRIVATE at %L",
|
|
name, derived->name, where);
|
|
if (t)
|
|
*t = false;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Otherwise, recurse on parent type if derived is an extension. */
|
|
if (derived->attr.extension)
|
|
{
|
|
gfc_symbol* super_type;
|
|
super_type = gfc_get_derived_super_type (derived);
|
|
gcc_assert (super_type);
|
|
|
|
return find_typebound_proc_uop (super_type, t, name,
|
|
noaccess, uop, where);
|
|
}
|
|
|
|
/* Nothing found. */
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Find a type-bound procedure or user operator by name for a derived-type
|
|
(looking recursively through the super-types). */
|
|
|
|
gfc_symtree*
|
|
gfc_find_typebound_proc (gfc_symbol* derived, bool* t,
|
|
const char* name, bool noaccess, locus* where)
|
|
{
|
|
return find_typebound_proc_uop (derived, t, name, noaccess, false, where);
|
|
}
|
|
|
|
gfc_symtree*
|
|
gfc_find_typebound_user_op (gfc_symbol* derived, bool* t,
|
|
const char* name, bool noaccess, locus* where)
|
|
{
|
|
return find_typebound_proc_uop (derived, t, name, noaccess, true, where);
|
|
}
|
|
|
|
|
|
/* Find a type-bound intrinsic operator looking recursively through the
|
|
super-type hierarchy. */
|
|
|
|
gfc_typebound_proc*
|
|
gfc_find_typebound_intrinsic_op (gfc_symbol* derived, bool* t,
|
|
gfc_intrinsic_op op, bool noaccess,
|
|
locus* where)
|
|
{
|
|
gfc_typebound_proc* res;
|
|
|
|
/* Set default to failure. */
|
|
if (t)
|
|
*t = false;
|
|
|
|
/* Try to find it in the current type's namespace. */
|
|
if (derived->f2k_derived)
|
|
res = derived->f2k_derived->tb_op[op];
|
|
else
|
|
res = NULL;
|
|
|
|
/* Check access. */
|
|
if (res && !res->error)
|
|
{
|
|
/* We found one. */
|
|
if (t)
|
|
*t = true;
|
|
|
|
if (!noaccess && derived->attr.use_assoc
|
|
&& res->access == ACCESS_PRIVATE)
|
|
{
|
|
if (where)
|
|
gfc_error ("%qs of %qs is PRIVATE at %L",
|
|
gfc_op2string (op), derived->name, where);
|
|
if (t)
|
|
*t = false;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Otherwise, recurse on parent type if derived is an extension. */
|
|
if (derived->attr.extension)
|
|
{
|
|
gfc_symbol* super_type;
|
|
super_type = gfc_get_derived_super_type (derived);
|
|
gcc_assert (super_type);
|
|
|
|
return gfc_find_typebound_intrinsic_op (super_type, t, op,
|
|
noaccess, where);
|
|
}
|
|
|
|
/* Nothing found. */
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Get a typebound-procedure symtree or create and insert it if not yet
|
|
present. This is like a very simplified version of gfc_get_sym_tree for
|
|
tbp-symtrees rather than regular ones. */
|
|
|
|
gfc_symtree*
|
|
gfc_get_tbp_symtree (gfc_symtree **root, const char *name)
|
|
{
|
|
gfc_symtree *result = gfc_find_symtree (*root, name);
|
|
return result ? result : gfc_new_symtree (root, name);
|
|
}
|