75791bab05
Use the new -fgo-c-header option to build a header file for the Go runtime code in libgo/go/runtime, and use the new header file in the C runtime code in libgo/runtime. This will ensure that the Go code and C code share the same data structures as we convert the runtime from C to Go. The new file libgo/go/runtime/runtime2.go is copied from the Go 1.7 release, and then edited to remove unnecessary data structures and modify others for use with libgo. The new file libgo/go/runtime/mcache.go is an initial version of the same files in the Go 1.7 release, and will be replaced by the Go 1.7 file when we convert to the new memory allocator. The new file libgo/go/runtime/type.go describes the gccgo version of the reflection data structures, and replaces the Go 1.7 runtime file which describes the gc version of those structures. Using the new header file means changing a number of struct fields to use Go naming conventions (that is, no underscores) and to rename constants to have a leading underscore so that they are not exported from the Go package. These names were updated in the C code. The C code was also changed to drop the thread-local variable m, as was done some time ago in the gc sources. Now the m field is always accessed using g->m, where g is the single remaining thread-local variable. This in turn required some adjustments to set g->m correctly in all cases. Also pass the new -fgo-compiling-runtime option when compiling the runtime package, although that option doesn't do anything yet. Reviewed-on: https://go-review.googlesource.com/28051 From-SVN: r239872
232 lines
4.9 KiB
C
232 lines
4.9 KiB
C
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
#include "runtime.h"
|
|
#include "malloc.h"
|
|
#include "go-panic.h"
|
|
|
|
// Code related to defer, panic and recover.
|
|
|
|
uint32 runtime_panicking;
|
|
static Lock paniclk;
|
|
|
|
// Allocate a Defer, usually using per-P pool.
|
|
// Each defer must be released with freedefer.
|
|
Defer*
|
|
runtime_newdefer()
|
|
{
|
|
Defer *d;
|
|
P *p;
|
|
|
|
d = nil;
|
|
p = (P*)runtime_m()->p;
|
|
d = p->deferpool;
|
|
if(d)
|
|
p->deferpool = d->next;
|
|
if(d == nil) {
|
|
// deferpool is empty
|
|
d = runtime_malloc(sizeof(Defer));
|
|
}
|
|
return d;
|
|
}
|
|
|
|
// Free the given defer.
|
|
// The defer cannot be used after this call.
|
|
void
|
|
runtime_freedefer(Defer *d)
|
|
{
|
|
P *p;
|
|
|
|
if(d->special)
|
|
return;
|
|
p = (P*)runtime_m()->p;
|
|
d->next = p->deferpool;
|
|
p->deferpool = d;
|
|
// No need to wipe out pointers in argp/pc/fn/args,
|
|
// because we empty the pool before GC.
|
|
}
|
|
|
|
// Run all deferred functions for the current goroutine.
|
|
// This is noinline for go_can_recover.
|
|
static void __go_rundefer (void) __attribute__ ((noinline));
|
|
static void
|
|
__go_rundefer(void)
|
|
{
|
|
G *g;
|
|
Defer *d;
|
|
|
|
g = runtime_g();
|
|
while((d = g->_defer) != nil) {
|
|
void (*pfn)(void*);
|
|
|
|
g->_defer = d->next;
|
|
pfn = (void (*) (void *))d->pfn;
|
|
d->pfn = 0;
|
|
if (pfn != nil)
|
|
(*pfn)(d->arg);
|
|
runtime_freedefer(d);
|
|
}
|
|
}
|
|
|
|
void
|
|
runtime_startpanic(void)
|
|
{
|
|
M *m;
|
|
|
|
m = runtime_m();
|
|
if(runtime_mheap.cachealloc.size == 0) { // very early
|
|
runtime_printf("runtime: panic before malloc heap initialized\n");
|
|
m->mallocing = 1; // tell rest of panic not to try to malloc
|
|
} else if(m->mcache == nil) // can happen if called from signal handler or throw
|
|
m->mcache = runtime_allocmcache();
|
|
switch(m->dying) {
|
|
case 0:
|
|
m->dying = 1;
|
|
if(runtime_g() != nil)
|
|
runtime_g()->writebuf = nil;
|
|
runtime_xadd(&runtime_panicking, 1);
|
|
runtime_lock(&paniclk);
|
|
if(runtime_debug.schedtrace > 0 || runtime_debug.scheddetail > 0)
|
|
runtime_schedtrace(true);
|
|
runtime_freezetheworld();
|
|
return;
|
|
case 1:
|
|
// Something failed while panicing, probably the print of the
|
|
// argument to panic(). Just print a stack trace and exit.
|
|
m->dying = 2;
|
|
runtime_printf("panic during panic\n");
|
|
runtime_dopanic(0);
|
|
runtime_exit(3);
|
|
case 2:
|
|
// This is a genuine bug in the runtime, we couldn't even
|
|
// print the stack trace successfully.
|
|
m->dying = 3;
|
|
runtime_printf("stack trace unavailable\n");
|
|
runtime_exit(4);
|
|
default:
|
|
// Can't even print! Just exit.
|
|
runtime_exit(5);
|
|
}
|
|
}
|
|
|
|
void
|
|
runtime_dopanic(int32 unused __attribute__ ((unused)))
|
|
{
|
|
G *g;
|
|
static bool didothers;
|
|
bool crash;
|
|
int32 t;
|
|
|
|
g = runtime_g();
|
|
if(g->sig != 0)
|
|
runtime_printf("[signal %x code=%p addr=%p]\n",
|
|
g->sig, (void*)g->sigcode0, (void*)g->sigcode1);
|
|
|
|
if((t = runtime_gotraceback(&crash)) > 0){
|
|
if(g != runtime_m()->g0) {
|
|
runtime_printf("\n");
|
|
runtime_goroutineheader(g);
|
|
runtime_traceback();
|
|
runtime_printcreatedby(g);
|
|
} else if(t >= 2 || runtime_m()->throwing > 0) {
|
|
runtime_printf("\nruntime stack:\n");
|
|
runtime_traceback();
|
|
}
|
|
if(!didothers) {
|
|
didothers = true;
|
|
runtime_tracebackothers(g);
|
|
}
|
|
}
|
|
runtime_unlock(&paniclk);
|
|
if(runtime_xadd(&runtime_panicking, -1) != 0) {
|
|
// Some other m is panicking too.
|
|
// Let it print what it needs to print.
|
|
// Wait forever without chewing up cpu.
|
|
// It will exit when it's done.
|
|
static Lock deadlock;
|
|
runtime_lock(&deadlock);
|
|
runtime_lock(&deadlock);
|
|
}
|
|
|
|
if(crash)
|
|
runtime_crash();
|
|
|
|
runtime_exit(2);
|
|
}
|
|
|
|
bool
|
|
runtime_canpanic(G *gp)
|
|
{
|
|
M *m = runtime_m();
|
|
byte g;
|
|
|
|
USED(&g); // don't use global g, it points to gsignal
|
|
|
|
// Is it okay for gp to panic instead of crashing the program?
|
|
// Yes, as long as it is running Go code, not runtime code,
|
|
// and not stuck in a system call.
|
|
if(gp == nil || gp != m->curg)
|
|
return false;
|
|
if(m->locks-m->softfloat != 0 || m->mallocing != 0 || m->throwing != 0 || m->gcing != 0 || m->dying != 0)
|
|
return false;
|
|
if(gp->atomicstatus != _Grunning)
|
|
return false;
|
|
#ifdef GOOS_windows
|
|
if(m->libcallsp != 0)
|
|
return false;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
void
|
|
runtime_throw(const char *s)
|
|
{
|
|
M *mp;
|
|
|
|
mp = runtime_m();
|
|
if(mp->throwing == 0)
|
|
mp->throwing = 1;
|
|
runtime_startpanic();
|
|
runtime_printf("fatal error: %s\n", s);
|
|
runtime_dopanic(0);
|
|
*(int32*)0 = 0; // not reached
|
|
runtime_exit(1); // even more not reached
|
|
}
|
|
|
|
void
|
|
runtime_panicstring(const char *s)
|
|
{
|
|
Eface err;
|
|
|
|
if(runtime_m()->mallocing) {
|
|
runtime_printf("panic: %s\n", s);
|
|
runtime_throw("panic during malloc");
|
|
}
|
|
if(runtime_m()->gcing) {
|
|
runtime_printf("panic: %s\n", s);
|
|
runtime_throw("panic during gc");
|
|
}
|
|
if(runtime_m()->locks) {
|
|
runtime_printf("panic: %s\n", s);
|
|
runtime_throw("panic holding locks");
|
|
}
|
|
runtime_newErrorCString(s, &err);
|
|
runtime_panic(err);
|
|
}
|
|
|
|
void runtime_Goexit (void) __asm__ (GOSYM_PREFIX "runtime.Goexit");
|
|
|
|
void
|
|
runtime_Goexit(void)
|
|
{
|
|
__go_rundefer();
|
|
runtime_goexit();
|
|
}
|
|
|
|
void
|
|
runtime_panicdivide(void)
|
|
{
|
|
runtime_panicstring("integer divide by zero");
|
|
}
|