gcc/libstdc++-v3/include/bits/locale_facets.tcc
Paolo Carlini 3039874b15 locale_facets.tcc (money_put::do_put(long double)): Fix dimensioning of temporary buffers to avoid risk of overruns.
2002-03-18  Paolo Carlini  <pcarlini@unitus.it>

	* include/bits/locale_facets.tcc
	(money_put::do_put(long double)): Fix dimensioning of
	temporary buffers to avoid risk of overruns.
	(money_put::do_put(string)): Same for the buffer used to
	add the grouping chars.
	* testsuite/22_locale/money_put_members_char.cc: Add test06.
	* testsuite/22_locale/money_put_members_wchar_t.cc: Ditto.

	* include/bits/locale_facets.tcc
	(collate::do_transform): Simplify.

From-SVN: r51012
2002-03-18 23:11:57 +00:00

2329 lines
71 KiB
C++

// Locale support -*- C++ -*-
// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Warning: this file is not meant for user inclusion. Use <locale>.
#ifndef _CPP_BITS_LOCFACETS_TCC
#define _CPP_BITS_LOCFACETS_TCC 1
#pragma GCC system_header
#include <cerrno>
#include <clocale> // For localeconv
#include <cstdlib> // For strof, strtold
#include <cmath> // For ceil
#include <cctype> // For isspace
#include <limits> // For numeric_limits
#include <bits/streambuf_iterator.h>
#include <vector>
#include <typeinfo> // For bad_cast.
namespace std
{
template<typename _Facet>
locale
locale::combine(const locale& __other) const
{
_Impl* __tmp = new _Impl(*_M_impl, 1);
__tmp->_M_replace_facet(__other._M_impl, &_Facet::id);
return locale(__tmp);
}
template<typename _CharT, typename _Traits, typename _Alloc>
bool
locale::operator()(const basic_string<_CharT, _Traits, _Alloc>& __s1,
const basic_string<_CharT, _Traits, _Alloc>& __s2) const
{
typedef std::collate<_CharT> __collate_type;
const __collate_type& __collate = use_facet<__collate_type>(*this);
return (__collate.compare(__s1.data(), __s1.data() + __s1.length(),
__s2.data(), __s2.data() + __s2.length()) < 0);
}
template<typename _Facet>
const _Facet&
use_facet(const locale& __loc)
{
size_t __i = _Facet::id._M_index;
locale::_Impl::__vec_facet* __facet = __loc._M_impl->_M_facets;
const locale::facet* __fp = (*__facet)[__i];
if (__fp == 0 || __i >= __facet->size())
__throw_bad_cast();
return static_cast<const _Facet&>(*__fp);
}
template<typename _Facet>
bool
has_facet(const locale& __loc) throw()
{
size_t __i = _Facet::id._M_index;
locale::_Impl::__vec_facet* __facet = __loc._M_impl->_M_facets;
return (__i < __facet->size() && (*__facet)[__i] != 0);
}
// Stage 1: Determine a conversion specifier.
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
_M_extract_float(_InIter __beg, _InIter __end, ios_base& __io,
ios_base::iostate& __err, string& __xtrc) const
{
const locale __loc = __io.getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
// First check for sign.
const char_type __plus = __ctype.widen('+');
const char_type __minus = __ctype.widen('-');
int __pos = 0;
char_type __c = *__beg;
if ((__c == __plus || __c == __minus) && __beg != __end)
{
__xtrc += __ctype.narrow(__c, char());
++__pos;
__c = *(++__beg);
}
// Next, strip leading zeros.
const char_type __zero = __ctype.widen(_S_atoms[_M_zero]);
bool __found_zero = false;
while (__c == __zero && __beg != __end)
{
__c = *(++__beg);
__found_zero = true;
}
if (__found_zero)
{
__xtrc += _S_atoms[_M_zero];
++__pos;
}
// Only need acceptable digits for floating point numbers.
const size_t __len = _M_E - _M_zero + 1;
char_type __watoms[__len];
__ctype.widen(_S_atoms, _S_atoms + __len, __watoms);
bool __found_dec = false;
bool __found_sci = false;
const char_type __dec = __np.decimal_point();
string __found_grouping;
const string __grouping = __np.grouping();
bool __check_grouping = __grouping.size();
int __sep_pos = 0;
const char_type __sep = __np.thousands_sep();
while (__beg != __end)
{
// Only look in digits.
typedef char_traits<_CharT> __traits_type;
const char_type* __p = __traits_type::find(__watoms, 10, __c);
// NB: strchr returns true for __c == 0x0
if (__p && __c)
{
// Try first for acceptable digit; record it if found.
++__pos;
__xtrc += _S_atoms[__p - __watoms];
++__sep_pos;
__c = *(++__beg);
}
else if (__c == __sep && __check_grouping && !__found_dec)
{
// NB: Thousands separator at the beginning of a string
// is a no-no, as is two consecutive thousands separators.
if (__sep_pos)
{
__found_grouping += static_cast<char>(__sep_pos);
__sep_pos = 0;
__c = *(++__beg);
}
else
{
__err |= ios_base::failbit;
break;
}
}
else if (__c == __dec && !__found_dec)
{
// According to the standard, if no grouping chars are seen,
// no grouping check is applied. Therefore __found_grouping
// must be adjusted only if __dec comes after some __sep.
if (__found_grouping.size())
__found_grouping += static_cast<char>(__sep_pos);
++__pos;
__xtrc += '.';
__c = *(++__beg);
__found_dec = true;
}
else if ((__c == __watoms[_M_e] || __c == __watoms[_M_E])
&& !__found_sci && __pos)
{
// Scientific notation.
++__pos;
__xtrc += __ctype.narrow(__c, char());
__c = *(++__beg);
// Remove optional plus or minus sign, if they exist.
if (__c == __plus || __c == __minus)
{
++__pos;
__xtrc += __ctype.narrow(__c, char());
__c = *(++__beg);
}
__found_sci = true;
}
else
// Not a valid input item.
break;
}
// Digit grouping is checked. If grouping and found_grouping don't
// match, then get very very upset, and set failbit.
if (__check_grouping && __found_grouping.size())
{
// Add the ending grouping if a decimal wasn't found.
if (!__found_dec)
__found_grouping += static_cast<char>(__sep_pos);
if (!__verify_grouping(__grouping, __found_grouping))
__err |= ios_base::failbit;
}
// Finish up
__xtrc += char();
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
// Stage 1: Determine a conversion specifier.
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
_M_extract_int(_InIter __beg, _InIter __end, ios_base& __io,
ios_base::iostate& __err, string& __xtrc, int& __base) const
{
const locale __loc = __io.getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
// NB: Iff __basefield == 0, this can change based on contents.
ios_base::fmtflags __basefield = __io.flags() & ios_base::basefield;
if (__basefield == ios_base::oct)
__base = 8;
else if (__basefield == ios_base::hex)
__base = 16;
else
__base = 10;
// First check for sign.
int __pos = 0;
char_type __c = *__beg;
if ((__c == __ctype.widen('+') || __c == __ctype.widen('-'))
&& __beg != __end)
{
__xtrc += __ctype.narrow(__c, char());
++__pos;
__c = *(++__beg);
}
// Next, strip leading zeros and check required digits for base formats.
const char_type __zero = __ctype.widen(_S_atoms[_M_zero]);
const char_type __x = __ctype.widen('x');
const char_type __X = __ctype.widen('X');
if (__base == 10)
{
bool __found_zero = false;
while (__c == __zero && __beg != __end)
{
__c = *(++__beg);
__found_zero = true;
}
if (__found_zero)
{
__xtrc += _S_atoms[_M_zero];
++__pos;
if (__basefield == 0)
{
if ((__c == __x || __c == __X) && __beg != __end)
{
__xtrc += __ctype.narrow(__c, char());
++__pos;
__c = *(++__beg);
__base = 16;
}
else
__base = 8;
}
}
}
else if (__base == 16)
{
if (__c == __zero && __beg != __end)
{
__xtrc += _S_atoms[_M_zero];
++__pos;
__c = *(++__beg);
if ((__c == __x || __c == __X) && __beg != __end)
{
__xtrc += __ctype.narrow(__c, char());
++__pos;
__c = *(++__beg);
}
}
}
// At this point, base is determined. If not hex, only allow
// base digits as valid input.
size_t __len;
if (__base == 16)
__len = _M_size;
else
__len = __base;
// Extract.
char_type __watoms[_M_size];
__ctype.widen(_S_atoms, _S_atoms + __len, __watoms);
string __found_grouping;
const string __grouping = __np.grouping();
bool __check_grouping = __grouping.size();
int __sep_pos = 0;
const char_type __sep = __np.thousands_sep();
while (__beg != __end)
{
typedef char_traits<_CharT> __traits_type;
const char_type* __p = __traits_type::find(__watoms, __len, __c);
// NB: strchr returns true for __c == 0x0
if (__p && __c)
{
// Try first for acceptable digit; record it if found.
__xtrc += _S_atoms[__p - __watoms];
++__pos;
++__sep_pos;
__c = *(++__beg);
}
else if (__c == __sep && __check_grouping)
{
// NB: Thousands separator at the beginning of a string
// is a no-no, as is two consecutive thousands separators.
if (__sep_pos)
{
__found_grouping += static_cast<char>(__sep_pos);
__sep_pos = 0;
__c = *(++__beg);
}
else
{
__err |= ios_base::failbit;
break;
}
}
else
// Not a valid input item.
break;
}
// Digit grouping is checked. If grouping and found_grouping don't
// match, then get very very upset, and set failbit.
if (__check_grouping && __found_grouping.size())
{
// Add the ending grouping.
__found_grouping += static_cast<char>(__sep_pos);
if (!__verify_grouping(__grouping, __found_grouping))
__err |= ios_base::failbit;
}
// Finish up.
__xtrc += char();
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
#ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
//17. Bad bool parsing
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, bool& __v) const
{
// Parse bool values as unsigned long
if (!(__io.flags() & ios_base::boolalpha))
{
// NB: We can't just call do_get(long) here, as it might
// refer to a derived class.
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
unsigned long __ul;
__convert_to_v(__xtrc.c_str(), __ul, __err, _S_c_locale, __base);
if (!(__err & ios_base::failbit) && __ul <= 1)
__v = __ul;
else
__err |= ios_base::failbit;
}
// Parse bool values as alphanumeric
else
{
locale __loc = __io.getloc();
const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
const char_type* __true = __np.truename().c_str();
const char_type* __false = __np.falsename().c_str();
const size_t __truen = __np.truename().size() - 1;
const size_t __falsen = __np.falsename().size() - 1;
for (size_t __n = 0; __beg != __end; ++__n)
{
char_type __c = *__beg++;
bool __testf = __n <= __falsen ? __c == __false[__n] : false;
bool __testt = __n <= __truen ? __c == __true[__n] : false;
if (!(__testf || __testt))
{
__err |= ios_base::failbit;
break;
}
else if (__testf && __n == __falsen)
{
__v = 0;
break;
}
else if (__testt && __n == __truen)
{
__v = 1;
break;
}
}
if (__beg == __end)
__err |= ios_base::eofbit;
}
return __beg;
}
#endif
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long& __v) const
{
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
__convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale, __base);
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned short& __v) const
{
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
unsigned long __ul;
__convert_to_v(__xtrc.c_str(), __ul, __err, _S_c_locale, __base);
if (!(__err & ios_base::failbit)
&& __ul <= numeric_limits<unsigned short>::max())
__v = static_cast<unsigned short>(__ul);
else
__err |= ios_base::failbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned int& __v) const
{
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
unsigned long __ul;
__convert_to_v(__xtrc.c_str(), __ul, __err, _S_c_locale, __base);
if (!(__err & ios_base::failbit)
&& __ul <= numeric_limits<unsigned int>::max())
__v = static_cast<unsigned int>(__ul);
else
__err |= ios_base::failbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned long& __v) const
{
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
__convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale, __base);
return __beg;
}
#ifdef _GLIBCPP_USE_LONG_LONG
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long long& __v) const
{
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
__convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale, __base);
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, unsigned long long& __v) const
{
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
__convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale, __base);
return __beg;
}
#endif
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, float& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
__convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale);
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, double& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
__convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale);
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, long double& __v) const
{
string __xtrc;
__xtrc.reserve(32);
__beg = _M_extract_float(__beg, __end, __io, __err, __xtrc);
__convert_to_v(__xtrc.c_str(), __v, __err, _S_c_locale);
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
num_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, void*& __v) const
{
// Prepare for hex formatted input
typedef ios_base::fmtflags fmtflags;
fmtflags __fmt = __io.flags();
fmtflags __fmtmask = ~(ios_base::showpos | ios_base::basefield
| ios_base::uppercase | ios_base::internal);
__io.flags(__fmt & __fmtmask | (ios_base::hex | ios_base::showbase));
string __xtrc;
int __base;
__beg = _M_extract_int(__beg, __end, __io, __err, __xtrc, __base);
// Reset from hex formatted input
__io.flags(__fmt);
unsigned long __ul;
__convert_to_v(__xtrc.c_str(), __ul, __err, _S_c_locale, __base);
if (!(__err & ios_base::failbit))
__v = reinterpret_cast<void*>(__ul);
else
__err |= ios_base::failbit;
return __beg;
}
// The following code uses sprintf() to convert floating point
// values for insertion into a stream. An optimization would be to
// replace sprintf() with code that works directly on a wide buffer
// and then use __pad to do the padding. It would be good
// to replace sprintf() anyway to avoid accidental buffer overruns
// and to gain back the efficiency that C++ provides by knowing up
// front the type of the values to insert. This implementation
// follows the C++ standard fairly directly as outlined in 22.2.2.2
// [lib.locale.num.put]
template<typename _CharT, typename _OutIter>
template<typename _ValueT>
_OutIter
num_put<_CharT, _OutIter>::
_M_convert_float(_OutIter __s, ios_base& __io, _CharT __fill, char __mod,
_ValueT __v) const
{
// Note: digits10 is rounded down. We need to add 1 to ensure
// we get the full available precision.
const int __max_digits = numeric_limits<_ValueT>::digits10 + 1;
streamsize __prec = __io.precision();
// Protect against sprintf() buffer overflows.
if (__prec > static_cast<streamsize>(__max_digits))
__prec = static_cast<streamsize>(__max_digits);
// Long enough for the max format spec.
char __fbuf[16];
// Consider the possibility of long ios_base::fixed outputs
const bool __fixed = __io.flags() & ios_base::fixed;
const int __max_exp = numeric_limits<_ValueT>::max_exponent10;
// ios_base::fixed outputs may need up to __max_exp+1 chars
// for the integer part + up to __max_digits chars for the
// fractional part + 3 chars for sign, decimal point, '\0'. On
// the other hand, for non-fixed outputs __max_digits*3 chars
// are largely sufficient.
const int __cs_size = __fixed ? __max_exp + __max_digits + 4
: __max_digits * 3;
char* __cs = static_cast<char*>(__builtin_alloca(__cs_size));
int __len;
// [22.2.2.2.2] Stage 1, numeric conversion to character.
if (_S_format_float(__io, __fbuf, __mod, __prec))
__len = __convert_from_v(__cs, __fbuf, __v, _S_c_locale, __prec);
else
__len = __convert_from_v(__cs, __fbuf, __v, _S_c_locale);
return _M_widen_float(__s, __io, __fill, __cs, __len);
}
template<typename _CharT, typename _OutIter>
template<typename _ValueT>
_OutIter
num_put<_CharT, _OutIter>::
_M_convert_int(_OutIter __s, ios_base& __io, _CharT __fill, char __mod,
char __modl, _ValueT __v) const
{
// [22.2.2.2.2] Stage 1, numeric conversion to character.
// Leave room for "+/-," "0x," and commas. This size is
// arbitrary, but should work.
char __cs[64];
// Long enough for the max format spec.
char __fbuf[16];
_S_format_int(__io, __fbuf, __mod, __modl);
int __len = __convert_from_v(__cs, __fbuf, __v, _S_c_locale);
return _M_widen_int(__s, __io, __fill, __cs, __len);
}
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
_M_widen_float(_OutIter __s, ios_base& __io, _CharT __fill, char* __cs,
int __len) const
{
// [22.2.2.2.2] Stage 2, convert to char_type, using correct
// numpunct.decimal_point() values for '.' and adding grouping.
const locale __loc = __io.getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
_CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __len));
// Grouping can add (almost) as many separators as the number of
// digits, but no more.
_CharT* __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __len * 2));
__ctype.widen(__cs, __cs + __len, __ws);
// Replace decimal point.
const _CharT* __p;
const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
if (__p = char_traits<_CharT>::find(__ws, __len, __ctype.widen('.')))
__ws[__p - __ws] = __np.decimal_point();
#ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS
//282. What types does numpunct grouping refer to?
// Add grouping, if necessary.
const string __grouping = __np.grouping();
ios_base::fmtflags __basefield = __io.flags() & ios_base::basefield;
if (__grouping.size())
{
_CharT* __p2;
int __declen = __p ? __p - __ws : __len;
__p2 = __add_grouping(__ws2, __np.thousands_sep(),
__grouping.c_str(),
__grouping.c_str() + __grouping.size(),
__ws, __ws + __declen);
int __newlen = __p2 - __ws2;
// Tack on decimal part.
if (__p)
{
char_traits<_CharT>::copy(__p2, __p, __len - __declen);
__newlen += __len - __declen;
}
// Switch strings, establish correct new length.
__ws = __ws2;
__len = __newlen;
}
#endif
return _M_insert(__s, __io, __fill, __ws, __len);
}
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
_M_widen_int(_OutIter __s, ios_base& __io, _CharT __fill, char* __cs,
int __len) const
{
// [22.2.2.2.2] Stage 2, convert to char_type, using correct
// numpunct.decimal_point() values for '.' and adding grouping.
const locale __loc = __io.getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
_CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __len));
// Grouping can add (almost) as many separators as the number of
// digits, but no more.
_CharT* __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __len * 2));
__ctype.widen(__cs, __cs + __len, __ws);
// Add grouping, if necessary.
const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
const string __grouping = __np.grouping();
const ios_base::fmtflags __basefield = __io.flags() & ios_base::basefield;
if (__grouping.size())
{
// By itself __add_grouping cannot deal correctly with __ws when
// ios::showbase is set and ios_base::oct || ios_base::hex.
// Therefore we take care "by hand" of the initial 0, 0x or 0X.
streamsize __off = 0;
if (__io.flags() & ios_base::showbase)
if (__basefield == ios_base::oct)
{
__off = 1;
*__ws2 = *__ws;
}
else if (__basefield == ios_base::hex)
{
__off = 2;
*__ws2 = *__ws;
*(__ws2 + 1) = *(__ws + 1);
}
_CharT* __p;
__p = __add_grouping(__ws2 + __off, __np.thousands_sep(), __grouping.c_str(),
__grouping.c_str() + __grouping.size(),
__ws + __off, __ws + __len);
__len = __p - __ws2;
// Switch strings.
__ws = __ws2;
}
return _M_insert(__s, __io, __fill, __ws, __len);
}
// For use by integer and floating-point types after they have been
// converted into a char_type string.
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
_M_insert(_OutIter __s, ios_base& __io, _CharT __fill, const _CharT* __ws,
int __len) const
{
// [22.2.2.2.2] Stage 3.
streamsize __w = __io.width();
_CharT* __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT)
* __w));
if (__w > static_cast<streamsize>(__len))
{
__pad(__io, __fill, __ws2, __ws, __w, __len, true);
__len = static_cast<int>(__w);
// Switch strings.
__ws = __ws2;
}
__io.width(0);
// [22.2.2.2.2] Stage 4.
// Write resulting, fully-formatted string to output iterator.
for (int __j = 0; __j < __len; ++__j, ++__s)
*__s = __ws[__j];
return __s;
}
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const
{
ios_base::fmtflags __flags = __io.flags();
if ((__flags & ios_base::boolalpha) == 0)
{
unsigned long __uv = __v;
__s = _M_convert_int(__s, __io, __fill, 'u', char_type(), __uv);
}
else
{
locale __loc = __io.getloc();
const numpunct<_CharT>& __np = use_facet<numpunct<_CharT> >(__loc);
const char_type* __ws;
int __len;
if (__v)
{
__ws = __np.truename().c_str();
__len = __np.truename().size();
}
else
{
__ws = __np.falsename().c_str();
__len = __np.falsename().size();
}
__s = _M_insert(__s, __io, __fill, __ws, __len);
}
return __s;
}
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, long __v) const
{ return _M_convert_int(__s, __io, __fill, 'd', char_type(), __v); }
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
unsigned long __v) const
{ return _M_convert_int(__s, __io, __fill, 'u', char_type(), __v); }
#ifdef _GLIBCPP_USE_LONG_LONG
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __b, char_type __fill, long long __v) const
{ return _M_convert_int(__s, __b, __fill, 'd', 'l', __v); }
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
unsigned long long __v) const
{ return _M_convert_int(__s, __io, __fill, 'u', 'l', __v); }
#endif
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const
{ return _M_convert_float(__s, __io, __fill, char_type(), __v); }
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
long double __v) const
{ return _M_convert_float(__s, __io, __fill, 'L', __v); }
template<typename _CharT, typename _OutIter>
_OutIter
num_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type __fill,
const void* __v) const
{
ios_base::fmtflags __flags = __io.flags();
ios_base::fmtflags __fmt = ~(ios_base::showpos | ios_base::basefield
| ios_base::uppercase | ios_base::internal);
__io.flags(__flags & __fmt | (ios_base::hex | ios_base::showbase));
try
{
__s = _M_convert_int(__s, __io, __fill, 'u', char_type(),
reinterpret_cast<unsigned long>(__v));
__io.flags(__flags);
}
catch (...)
{
__io.flags(__flags);
__throw_exception_again;
}
return __s;
}
template<typename _CharT, typename _InIter>
_InIter
money_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
ios_base::iostate& __err, long double& __units) const
{
string_type __str;
__beg = this->do_get(__beg, __end, __intl, __io, __err, __str);
const int __n = numeric_limits<long double>::digits10;
char* __cs = static_cast<char*>(__builtin_alloca(sizeof(char) * __n));
const locale __loc = __io.getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const _CharT* __wcs = __str.c_str();
__ctype.narrow(__wcs, __wcs + __str.size() + 1, char(), __cs);
__convert_to_v(__cs, __units, __err, _S_c_locale);
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
money_get<_CharT, _InIter>::
do_get(iter_type __beg, iter_type __end, bool __intl, ios_base& __io,
ios_base::iostate& __err, string_type& __units) const
{
// These contortions are quite unfortunate.
typedef moneypunct<_CharT, true> __money_true;
typedef moneypunct<_CharT, false> __money_false;
typedef money_base::part part;
typedef typename string_type::size_type size_type;
const locale __loc = __io.getloc();
const __money_true& __mpt = use_facet<__money_true>(__loc);
const __money_false& __mpf = use_facet<__money_false>(__loc);
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const money_base::pattern __p = __intl ? __mpt.neg_format()
: __mpf.neg_format();
const string_type __pos_sign =__intl ? __mpt.positive_sign()
: __mpf.positive_sign();
const string_type __neg_sign =__intl ? __mpt.negative_sign()
: __mpf.negative_sign();
const char_type __d = __intl ? __mpt.decimal_point()
: __mpf.decimal_point();
const char_type __sep = __intl ? __mpt.thousands_sep()
: __mpf.thousands_sep();
const string __grouping = __intl ? __mpt.grouping() : __mpf.grouping();
// Set to deduced positive or negative sign, depending.
string_type __sign;
// String of grouping info from thousands_sep plucked from __units.
string __grouping_tmp;
// Marker for thousands_sep position.
int __sep_pos = 0;
// If input iterator is in a valid state.
bool __testvalid = true;
// Flag marking when a decimal point is found.
bool __testdecfound = false;
// The tentative returned string is stored here.
string_type __temp_units;
char_type __c = *__beg;
char_type __eof = static_cast<char_type>(char_traits<char_type>::eof());
for (int __i = 0; __beg != __end && __i < 4 && __testvalid; ++__i)
{
part __which = static_cast<part>(__p.field[__i]);
switch (__which)
{
case money_base::symbol:
if (__io.flags() & ios_base::showbase
|| __i < 2
|| (__i == 2 && static_cast<part>(__p.field[3]) != money_base::none)
|| __sign.size() > 1)
{
// According to 22.2.6.1.2.2, symbol is required if
// (__io.flags() & ios_base::showbase), otherwise is optional
// and consumed only if other characters are needed to complete
// the format.
const string_type __symbol = __intl ? __mpt.curr_symbol()
: __mpf.curr_symbol();
size_type __len = __symbol.size();
size_type __j = 0;
while (__beg != __end
&& __j < __len && __symbol[__j] == __c)
{
__c = *(++__beg);
++__j;
}
// When (__io.flags() & ios_base::showbase) symbol is required.
if (__j != __len && (__io.flags() & ios_base::showbase))
__testvalid = false;
}
break;
case money_base::sign:
// Sign might not exist, or be more than one character long.
if (__pos_sign.size() && __neg_sign.size())
{
// Sign is mandatory.
if (__c == __pos_sign[0])
{
__sign = __pos_sign;
__c = *(++__beg);
}
else if (__c == __neg_sign[0])
{
__sign = __neg_sign;
__c = *(++__beg);
}
else
__testvalid = false;
}
else if (__pos_sign.size() && __c == __pos_sign[0])
{
__sign = __pos_sign;
__c = *(++__beg);
}
else if (__neg_sign.size() && __c == __neg_sign[0])
{
__sign = __neg_sign;
__c = *(++__beg);
}
break;
case money_base::value:
// Extract digits, remove and stash away the
// grouping of found thousands separators.
while (__beg != __end
&& (__ctype.is(ctype_base::digit, __c)
|| (__c == __d && !__testdecfound)
|| __c == __sep))
{
if (__c == __d)
{
__grouping_tmp += static_cast<char>(__sep_pos);
__sep_pos = 0;
__testdecfound = true;
}
else if (__c == __sep)
{
if (__grouping.size())
{
// Mark position for later analysis.
__grouping_tmp += static_cast<char>(__sep_pos);
__sep_pos = 0;
}
else
{
__testvalid = false;
break;
}
}
else
{
__temp_units += __c;
++__sep_pos;
}
__c = *(++__beg);
}
break;
case money_base::space:
case money_base::none:
// Only if not at the end of the pattern.
if (__i != 3)
while (__beg != __end
&& __ctype.is(ctype_base::space, __c))
__c = *(++__beg);
break;
}
}
// Need to get the rest of the sign characters, if they exist.
if (__sign.size() > 1)
{
size_type __len = __sign.size();
size_type __i = 1;
for (; __c != __eof && __i < __len; ++__i)
while (__beg != __end && __c != __sign[__i])
__c = *(++__beg);
if (__i != __len)
__testvalid = false;
}
// Strip leading zeros.
while (__temp_units[0] == __ctype.widen('0'))
__temp_units.erase(__temp_units.begin());
if (__sign.size() && __sign == __neg_sign)
__temp_units.insert(__temp_units.begin(), __ctype.widen('-'));
// Test for grouping fidelity.
if (__grouping.size() && __grouping_tmp.size())
{
if (!__verify_grouping(__grouping, __grouping_tmp))
__testvalid = false;
}
// Iff no more characters are available.
if (__c == __eof)
__err |= ios_base::eofbit;
// Iff valid sequence is not recognized.
if (!__testvalid || !__temp_units.size())
__err |= ios_base::failbit;
else
// Use the "swap trick" to copy __temp_units into __units.
__temp_units.swap(__units);
return __beg;
}
template<typename _CharT, typename _OutIter>
_OutIter
money_put<_CharT, _OutIter>::
do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
long double __units) const
{
const locale __loc = __io.getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
// max_exponent10 + 1 for the integer part, + 4 for sign, decimal point,
// decimal digit, '\0'.
const int __n = numeric_limits<long double>::max_exponent10 + 5;
char* __cs = static_cast<char*>(__builtin_alloca(sizeof(char) * __n));
_CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __n));
int __len = __convert_from_v(__cs, "%.01Lf", __units, _S_c_locale);
__ctype.widen(__cs, __cs + __len, __ws);
string_type __digits(__ws);
return this->do_put(__s, __intl, __io, __fill, __digits);
}
template<typename _CharT, typename _OutIter>
_OutIter
money_put<_CharT, _OutIter>::
do_put(iter_type __s, bool __intl, ios_base& __io, char_type __fill,
const string_type& __digits) const
{
typedef typename string_type::size_type size_type;
typedef money_base::part part;
const locale __loc = __io.getloc();
const size_type __width = static_cast<size_type>(__io.width());
// These contortions are quite unfortunate.
typedef moneypunct<_CharT, true> __money_true;
typedef moneypunct<_CharT, false> __money_false;
const __money_true& __mpt = use_facet<__money_true>(__loc);
const __money_false& __mpf = use_facet<__money_false>(__loc);
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
// Determine if negative or positive formats are to be used, and
// discard leading negative_sign if it is present.
const char_type* __beg = __digits.data();
const char_type* __end = __beg + __digits.size();
money_base::pattern __p;
string_type __sign;
if (*__beg != __ctype.widen('-'))
{
__p = __intl ? __mpt.pos_format() : __mpf.pos_format();
__sign =__intl ? __mpt.positive_sign() : __mpf.positive_sign();
}
else
{
__p = __intl ? __mpt.neg_format() : __mpf.neg_format();
__sign =__intl ? __mpt.negative_sign() : __mpf.negative_sign();
++__beg;
}
// Look for valid numbers in the current ctype facet within input digits.
__end = __ctype.scan_not(ctype_base::digit, __beg, __end);
if (__beg != __end)
{
// Assume valid input, and attempt to format.
// Break down input numbers into base components, as follows:
// final_value = grouped units + (decimal point) + (digits)
string_type __res;
string_type __value;
const string_type __symbol = __intl ? __mpt.curr_symbol()
: __mpf.curr_symbol();
// Deal with decimal point, decimal digits.
const int __frac = __intl ? __mpt.frac_digits()
: __mpf.frac_digits();
if (__frac > 0)
{
const char_type __d = __intl ? __mpt.decimal_point()
: __mpf.decimal_point();
if (__end - __beg >= __frac)
{
__value = string_type(__end - __frac, __end);
__value.insert(__value.begin(), __d);
__end -= __frac;
}
else
{
// Have to pad zeros in the decimal position.
__value = string_type(__beg, __end);
int __paddec = __frac - (__end - __beg);
char_type __zero = __ctype.widen('0');
__value.insert(__value.begin(), __paddec, __zero);
__value.insert(__value.begin(), __d);
__beg = __end;
}
}
// Add thousands separators to non-decimal digits, per
// grouping rules.
if (__beg != __end)
{
const string __grouping = __intl ? __mpt.grouping()
: __mpf.grouping();
if (__grouping.size())
{
const char_type __sep = __intl ? __mpt.thousands_sep()
: __mpf.thousands_sep();
const char* __gbeg = __grouping.c_str();
const char* __gend = __gbeg + __grouping.size();
const int __n = (__end - __beg) * 2;
_CharT* __ws2 =
static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __n));
_CharT* __ws_end = __add_grouping(__ws2, __sep, __gbeg,
__gend, __beg, __end);
__value.insert(0, __ws2, __ws_end - __ws2);
}
else
__value.insert(0, string_type(__beg, __end));
}
// Calculate length of resulting string.
ios_base::fmtflags __f = __io.flags() & ios_base::adjustfield;
size_type __len = __value.size() + __sign.size();
__len += (__io.flags() & ios_base::showbase) ? __symbol.size() : 0;
bool __testipad = __f == ios_base::internal && __len < __width;
// Fit formatted digits into the required pattern.
for (int __i = 0; __i < 4; ++__i)
{
part __which = static_cast<part>(__p.field[__i]);
switch (__which)
{
case money_base::symbol:
if (__io.flags() & ios_base::showbase)
__res += __symbol;
break;
case money_base::sign:
// Sign might not exist, or be more than one
// charater long. In that case, add in the rest
// below.
if (__sign.size())
__res += __sign[0];
break;
case money_base::value:
__res += __value;
break;
case money_base::space:
// At least one space is required, but if internal
// formatting is required, an arbitrary number of
// fill spaces will be necessary.
if (__testipad)
__res += string_type(__width - __len, __fill);
else
__res += __ctype.widen(__fill);
break;
case money_base::none:
if (__testipad)
__res += string_type(__width - __len, __fill);
break;
}
}
// Special case of multi-part sign parts.
if (__sign.size() > 1)
__res += string_type(__sign.begin() + 1, __sign.end());
// Pad, if still necessary.
__len = __res.size();
if (__width > __len)
{
if (__f == ios_base::left)
// After.
__res.append(__width - __len, __fill);
else
// Before.
__res.insert(0, string_type(__width - __len, __fill));
__len = __width;
}
// Write resulting, fully-formatted string to output iterator.
for (size_type __j = 0; __j < __len; ++__j, ++__s)
*__s = __res[__j];
}
__io.width(0);
return __s;
}
// NB: Not especially useful. Without an ios_base object or some
// kind of locale reference, we are left clawing at the air where
// the side of the mountain used to be...
template<typename _CharT, typename _InIter>
time_base::dateorder
time_get<_CharT, _InIter>::do_date_order() const
{ return time_base::no_order; }
template<typename _CharT, typename _InIter>
void
time_get<_CharT, _InIter>::
_M_extract_via_format(iter_type& __beg, iter_type& __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm,
const _CharT* __format) const
{
locale __loc = __io.getloc();
__timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
size_t __len = char_traits<_CharT>::length(__format);
for (size_t __i = 0; __beg != __end && __i < __len && !__err; ++__i)
{
char __c = __format[__i];
if (__c == '%')
{
// Verify valid formatting code, attempt to extract.
__c = __format[++__i];
char __mod = 0;
int __mem = 0;
if (__c == 'E' || __c == 'O')
{
__mod = __c;
__c = __format[++__i];
}
switch (__c)
{
const char* __cs;
_CharT __wcs[10];
case 'a':
// Abbreviated weekday name [tm_wday]
const char_type* __days1[7];
__tp._M_days_abbreviated(__days1);
_M_extract_name(__beg, __end, __tm->tm_wday, __days1, 7,
__err);
break;
case 'A':
// Weekday name [tm_wday].
const char_type* __days2[7];
__tp._M_days(__days2);
_M_extract_name(__beg, __end, __tm->tm_wday, __days2, 7,
__err);
break;
case 'h':
case 'b':
// Abbreviated month name [tm_mon]
const char_type* __months1[12];
__tp._M_months_abbreviated(__months1);
_M_extract_name(__beg, __end, __tm->tm_mon, __months1, 12,
__err);
break;
case 'B':
// Month name [tm_mon].
const char_type* __months2[12];
__tp._M_months(__months2);
_M_extract_name(__beg, __end, __tm->tm_mon, __months2, 12,
__err);
break;
case 'c':
// Default time and date representation.
const char_type* __dt[2];
__tp._M_date_time_formats(__dt);
_M_extract_via_format(__beg, __end, __io, __err, __tm,
__dt[0]);
break;
case 'd':
// Day [01, 31]. [tm_mday]
_M_extract_num(__beg, __end, __tm->tm_mday, 1, 31, 2,
__ctype, __err);
break;
case 'D':
// Equivalent to %m/%d/%y.[tm_mon, tm_mday, tm_year]
__cs = "%m/%d/%y";
__ctype.widen(__cs, __cs + 9, __wcs);
_M_extract_via_format(__beg, __end, __io, __err, __tm,
__wcs);
break;
case 'H':
// Hour [00, 23]. [tm_hour]
_M_extract_num(__beg, __end, __tm->tm_hour, 0, 23, 2,
__ctype, __err);
break;
case 'I':
// Hour [01, 12]. [tm_hour]
_M_extract_num(__beg, __end, __tm->tm_hour, 1, 12, 2,
__ctype, __err);
break;
case 'm':
// Month [01, 12]. [tm_mon]
_M_extract_num(__beg, __end, __mem, 1, 12, 2, __ctype,
__err);
if (!__err)
__tm->tm_mon = __mem - 1;
break;
case 'M':
// Minute [00, 59]. [tm_min]
_M_extract_num(__beg, __end, __tm->tm_min, 0, 59, 2,
__ctype, __err);
break;
case 'n':
if (__ctype.narrow(*__beg, 0) == '\n')
++__beg;
else
__err |= ios_base::failbit;
break;
case 'R':
// Equivalent to (%H:%M).
__cs = "%H:%M";
__ctype.widen(__cs, __cs + 6, __wcs);
_M_extract_via_format(__beg, __end, __io, __err, __tm,
__wcs);
break;
case 'S':
// Seconds.
_M_extract_num(__beg, __end, __tm->tm_sec, 0, 59, 2,
__ctype, __err);
break;
case 't':
if (__ctype.narrow(*__beg, 0) == '\t')
++__beg;
else
__err |= ios_base::failbit;
break;
case 'T':
// Equivalent to (%H:%M:%S).
__cs = "%H:%M:%S";
__ctype.widen(__cs, __cs + 9, __wcs);
_M_extract_via_format(__beg, __end, __io, __err, __tm,
__wcs);
break;
case 'x':
// Locale's date.
const char_type* __dates[2];
__tp._M_date_formats(__dates);
_M_extract_via_format(__beg, __end, __io, __err, __tm,
__dates[0]);
break;
case 'X':
// Locale's time.
const char_type* __times[2];
__tp._M_time_formats(__times);
_M_extract_via_format(__beg, __end, __io, __err, __tm,
__times[0]);
break;
case 'y':
// Two digit year. [tm_year]
_M_extract_num(__beg, __end, __tm->tm_year, 0, 99, 2,
__ctype, __err);
break;
case 'Y':
// Year [1900). [tm_year]
_M_extract_num(__beg, __end, __mem, 0,
numeric_limits<int>::max(), 4,
__ctype, __err);
if (!__err)
__tm->tm_year = __mem - 1900;
break;
case 'Z':
// Timezone info.
if (__ctype.is(ctype_base::upper, *__beg))
{
int __tmp;
_M_extract_name(__beg, __end, __tmp,
__timepunct<_CharT>::_S_timezones,
14, __err);
// GMT requires special effort.
char_type __c = *__beg;
if (!__err && __tmp == 0
&& (__c == __ctype.widen('-')
|| __c == __ctype.widen('+')))
{
_M_extract_num(__beg, __end, __tmp, 0, 23, 2,
__ctype, __err);
_M_extract_num(__beg, __end, __tmp, 0, 59, 2,
__ctype, __err);
}
}
else
__err |= ios_base::failbit;
break;
default:
// Not recognized.
__err |= ios_base::failbit;
}
}
else
{
// Verify format and input match, extract and discard.
if (__c == __ctype.narrow(*__beg, 0))
++__beg;
else
__err |= ios_base::failbit;
}
}
}
template<typename _CharT, typename _InIter>
void
time_get<_CharT, _InIter>::
_M_extract_num(iter_type& __beg, iter_type& __end, int& __member,
int __min, int __max, size_t __len,
const ctype<_CharT>& __ctype,
ios_base::iostate& __err) const
{
size_t __i = 0;
string __digits;
bool __testvalid = true;
char_type __c = *__beg;
while (__beg != __end && __i < __len
&& __ctype.is(ctype_base::digit, __c))
{
__digits += __ctype.narrow(__c, 0);
__c = *(++__beg);
++__i;
}
if (__i == __len)
{
int __value = atoi(__digits.c_str());
if (__min <= __value && __value <= __max)
__member = __value;
else
__testvalid = false;
}
else
__testvalid = false;
if (!__testvalid)
__err |= ios_base::failbit;
}
// Assumptions:
// All elements in __names are unique.
template<typename _CharT, typename _InIter>
void
time_get<_CharT, _InIter>::
_M_extract_name(iter_type& __beg, iter_type& __end, int& __member,
const _CharT** __names, size_t __indexlen,
ios_base::iostate& __err) const
{
typedef char_traits<char_type> __traits_type;
int* __matches = static_cast<int*>(__builtin_alloca(sizeof(int) * __indexlen));
size_t __nmatches = 0;
size_t __pos = 0;
bool __testvalid = true;
const char_type* __name;
char_type __c = *__beg;
// Look for initial matches.
for (size_t __i1 = 0; __i1 < __indexlen; ++__i1)
if (__c == __names[__i1][0])
__matches[__nmatches++] = __i1;
while(__nmatches > 1)
{
// Find smallest matching string.
size_t __minlen = 10;
for (size_t __i2 = 0; __i2 < __nmatches; ++__i2)
__minlen = min(__minlen,
__traits_type::length(__names[__matches[__i2]]));
if (__pos < __minlen && __beg != __end)
{
++__pos;
__c = *(++__beg);
for (size_t __i3 = 0; __i3 < __nmatches; ++__i3)
{
__name = __names[__matches[__i3]];
if (__name[__pos] != __c)
__matches[__i3] = __matches[--__nmatches];
}
}
else
break;
}
if (__nmatches == 1)
{
// Make sure found name is completely extracted.
__name = __names[__matches[0]];
const size_t __len = __traits_type::length(__name);
while (__pos < __len && __beg != __end && __name[__pos] == *__beg)
++__beg, ++__pos;
if (__len == __pos)
__member = __matches[0];
else
__testvalid = false;
}
else
__testvalid = false;
if (!__testvalid)
__err |= ios_base::failbit;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_time(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm) const
{
_CharT __wcs[3];
const char* __cs = "%X";
locale __loc = __io.getloc();
ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
__ctype.widen(__cs, __cs + 3, __wcs);
_M_extract_via_format(__beg, __end, __io, __err, __tm, __wcs);
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_date(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm) const
{
_CharT __wcs[3];
const char* __cs = "%x";
locale __loc = __io.getloc();
ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
__ctype.widen(__cs, __cs + 3, __wcs);
_M_extract_via_format(__beg, __end, __io, __err, __tm, __wcs);
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_weekday(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm) const
{
typedef char_traits<char_type> __traits_type;
locale __loc = __io.getloc();
__timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
const char_type* __days[7];
__tp._M_days_abbreviated(__days);
int __tmpwday;
_M_extract_name(__beg, __end, __tmpwday, __days, 7, __err);
// Check to see if non-abbreviated name exists, and extract.
// NB: Assumes both _M_days and _M_days_abbreviated organized in
// exact same order, first to last, such that the resulting
// __days array with the same index points to a day, and that
// day's abbreviated form.
// NB: Also assumes that an abbreviated name is a subset of the name.
if (!__err)
{
size_t __pos = __traits_type::length(__days[__tmpwday]);
__tp._M_days(__days);
const char_type* __name = __days[__tmpwday];
if (__name[__pos] == *__beg)
{
// Extract the rest of it.
const size_t __len = __traits_type::length(__name);
while (__pos < __len && __beg != __end
&& __name[__pos] == *__beg)
++__beg, ++__pos;
if (__len != __pos)
__err |= ios_base::failbit;
}
if (!__err)
__tm->tm_wday = __tmpwday;
}
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_monthname(iter_type __beg, iter_type __end,
ios_base& __io, ios_base::iostate& __err, tm* __tm) const
{
typedef char_traits<char_type> __traits_type;
locale __loc = __io.getloc();
__timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
const char_type* __months[12];
__tp._M_months_abbreviated(__months);
int __tmpmon;
_M_extract_name(__beg, __end, __tmpmon, __months, 12, __err);
// Check to see if non-abbreviated name exists, and extract.
// NB: Assumes both _M_months and _M_months_abbreviated organized in
// exact same order, first to last, such that the resulting
// __months array with the same index points to a month, and that
// month's abbreviated form.
// NB: Also assumes that an abbreviated name is a subset of the name.
if (!__err)
{
size_t __pos = __traits_type::length(__months[__tmpmon]);
__tp._M_months(__months);
const char_type* __name = __months[__tmpmon];
if (__name[__pos] == *__beg)
{
// Extract the rest of it.
const size_t __len = __traits_type::length(__name);
while (__pos < __len && __beg != __end
&& __name[__pos] == *__beg)
++__beg, ++__pos;
if (__len != __pos)
__err |= ios_base::failbit;
}
if (!__err)
__tm->tm_mon = __tmpmon;
}
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _InIter>
_InIter
time_get<_CharT, _InIter>::
do_get_year(iter_type __beg, iter_type __end, ios_base& __io,
ios_base::iostate& __err, tm* __tm) const
{
locale __loc = __io.getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
char_type __c = *__beg;
size_t __i = 0;
string __digits;
while (__i < 4 && __beg != __end && __ctype.is(ctype_base::digit, __c))
{
__digits += __ctype.narrow(__c, 0);
__c = *(++__beg);
++__i;
}
if (__i == 2 || __i == 4)
{
long __l;
__convert_to_v(__digits.c_str(), __l, __err, _S_c_locale);
if (!(__err & ios_base::failbit) && __l <= INT_MAX)
{
__l = __i == 2 ? __l : __l - 1900;
__tm->tm_year = static_cast<int>(__l);
}
}
else
__err |= ios_base::failbit;
if (__beg == __end)
__err |= ios_base::eofbit;
return __beg;
}
template<typename _CharT, typename _OutIter>
_OutIter
time_put<_CharT, _OutIter>::
put(iter_type __s, ios_base& __io, char_type, const tm* __tm,
const _CharT* __beg, const _CharT* __end) const
{
locale __loc = __io.getloc();
ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
while (__beg != __end)
{
char __c = __ctype.narrow(*__beg, 0);
++__beg;
if (__c == '%')
{
char __format;
char __mod = 0;
size_t __len = 1;
__c = __ctype.narrow(*__beg, 0);
++__beg;
if (__c == 'E' || __c == 'O')
{
__mod = __c;
__format = __ctype.narrow(*__beg, 0);
++__beg;
}
else
__format = __c;
__s = this->do_put(__s, __io, char_type(), __tm, __format,
__mod);
}
else
{
*__s = __c;
++__s;
}
}
return __s;
}
template<typename _CharT, typename _OutIter>
_OutIter
time_put<_CharT, _OutIter>::
do_put(iter_type __s, ios_base& __io, char_type, const tm* __tm,
char __format, char __mod) const
{
locale __loc = __io.getloc();
ctype<_CharT> const& __ctype = use_facet<ctype<_CharT> >(__loc);
__timepunct<_CharT> const& __tp = use_facet<__timepunct<_CharT> >(__loc);
// NB: This size is arbitrary. Should this be a data member,
// initialized at construction?
const size_t __maxlen = 64;
char_type* __res =
static_cast<char_type*>(__builtin_alloca(sizeof(char_type) * __maxlen));
// NB: In IEE 1003.1-200x, and perhaps other locale models, it
// is possible that the format character will be longer than one
// character. Possibilities include 'E' or 'O' followed by a
// format character: if __mod is not the default argument, assume
// it's a valid modifier.
char_type __fmt[4];
__fmt[0] = __ctype.widen('%');
if (!__mod)
{
__fmt[1] = __format;
__fmt[2] = char_type();
}
else
{
__fmt[1] = __mod;
__fmt[2] = __format;
__fmt[3] = char_type();
}
__tp._M_put_helper(__res, __maxlen, __fmt, __tm);
// Write resulting, fully-formatted string to output iterator.
size_t __len = char_traits<char_type>::length(__res);
for (size_t __i = 0; __i < __len; ++__i, ++__s)
*__s = __res[__i];
return __s;
}
// Generic version does nothing.
template<typename _CharT>
int
collate<_CharT>::_M_compare_helper(const _CharT*, const _CharT*) const
{ return 0; }
// Generic version does nothing.
template<typename _CharT>
size_t
collate<_CharT>::_M_transform_helper(_CharT*, const _CharT*, size_t) const
{ return 0; }
template<typename _CharT>
int
collate<_CharT>::
do_compare(const _CharT* __lo1, const _CharT* __hi1,
const _CharT* __lo2, const _CharT* __hi2) const
{
const string_type __one(__lo1, __hi1);
const string_type __two(__lo2, __hi2);
return _M_compare_helper(__one.c_str(), __two.c_str());
}
template<typename _CharT>
typename collate<_CharT>::string_type
collate<_CharT>::
do_transform(const _CharT* __lo, const _CharT* __hi) const
{
size_t __len = (__hi - __lo) * 2;
// First try a buffer perhaps big enough.
_CharT* __c =
static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __len));
size_t __res = _M_transform_helper(__c, __lo, __len);
// If the buffer was not large enough, try again with the correct size.
if (__res >= __len)
{
__c =
static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * (__res + 1)));
_M_transform_helper(__c, __lo, __res + 1);
}
return string_type(__c);
}
template<typename _CharT>
long
collate<_CharT>::
do_hash(const _CharT* __lo, const _CharT* __hi) const
{
unsigned long __val = 0;
for (; __lo < __hi; ++__lo)
__val = *__lo + ((__val << 7) |
(__val >> (numeric_limits<unsigned long>::digits - 7)));
return static_cast<long>(__val);
}
// Convert string to numeric value of type _Tv and store results.
// NB: This is specialized for all required types, there is no
// generic definition.
template<typename _Tv>
void
__convert_to_v(const char* __in, _Tv& __out, ios_base::iostate& __err,
const __c_locale& __cloc, int __base = 10);
// Convert numeric value of type _Tv to string and return length of string.
template<typename _Tv>
int
__convert_from_v(char* __out, const char* __fmt, _Tv __v,
const __c_locale&, int __prec = -1)
{
int __ret;
const char* __old = setlocale(LC_ALL, "C");
if (__prec >= 0)
__ret = sprintf(__out, __fmt, __prec, __v);
else
__ret = sprintf(__out, __fmt, __v);
setlocale(LC_ALL, __old);
return __ret;
}
// Construct correctly padded string, as per 22.2.2.2.2
// Assumes
// __newlen > __oldlen
// __news is allocated for __newlen size
// Used by both num_put and ostream inserters: if __num,
// internal-adjusted objects are padded according to the rules below
// concerning 0[xX] and +-, otherwise, exactly as right-adjusted
// ones are.
template<typename _CharT, typename _Traits>
void
__pad(ios_base& __io, _CharT __fill, _CharT* __news, const _CharT* __olds,
const streamsize __newlen, const streamsize __oldlen,
const bool __num)
{
typedef _CharT char_type;
typedef _Traits traits_type;
typedef typename traits_type::int_type int_type;
int_type __plen = static_cast<size_t>(__newlen - __oldlen);
char_type* __pads = static_cast<char_type*>(__builtin_alloca(sizeof(char_type) * __plen));
traits_type::assign(__pads, __plen, __fill);
char_type* __beg;
char_type* __end;
size_t __mod = 0;
size_t __beglen; //either __plen or __oldlen
ios_base::fmtflags __adjust = __io.flags() & ios_base::adjustfield;
if (__adjust == ios_base::left)
{
// Padding last.
__beg = const_cast<char_type*>(__olds);
__beglen = __oldlen;
__end = __pads;
}
else if (__adjust == ios_base::internal && __num)
{
// Pad after the sign, if there is one.
// Pad after 0[xX], if there is one.
// Who came up with these rules, anyway? Jeeze.
locale __loc = __io.getloc();
const ctype<_CharT>& __ctype = use_facet<ctype<_CharT> >(__loc);
const char_type __minus = __ctype.widen('-');
const char_type __plus = __ctype.widen('+');
bool __testsign = __olds[0] == __minus || __olds[0] == __plus;
bool __testhex = __ctype.widen('0') == __olds[0]
&& (__ctype.widen('x') == __olds[1]
|| __ctype.widen('X') == __olds[1]);
if (__testhex)
{
__news[0] = __olds[0];
__news[1] = __olds[1];
__mod += 2;
__news += 2;
__beg = __pads;
__beglen = __plen;
__end = const_cast<char_type*>(__olds + __mod);
}
else if (__testsign)
{
__news[0] = __olds[0] == __plus ? __plus : __minus;
++__mod;
++__news;
__beg = __pads;
__beglen = __plen;
__end = const_cast<char_type*>(__olds + __mod);
}
else
{
// Padding first.
__beg = __pads;
__beglen = __plen;
__end = const_cast<char_type*>(__olds);
}
}
else
{
// Padding first.
__beg = __pads;
__beglen = __plen;
__end = const_cast<char_type*>(__olds);
}
traits_type::copy(__news, __beg, __beglen);
traits_type::copy(__news + __beglen, __end, __newlen - __beglen - __mod);
}
// NB: Can't have default argument on non-member template, and
// num_put doesn't have a _Traits template parameter, so this
// forwarding template adds in the default template argument.
template<typename _CharT>
void
__pad(ios_base& __io, _CharT __fill, _CharT* __news, const _CharT* __olds,
const streamsize __newlen, const streamsize __oldlen,
const bool __num)
{
return __pad<_CharT, char_traits<_CharT> >(__io, __fill, __news, __olds,
__newlen, __oldlen, __num);
}
// Used by both numeric and monetary facets.
// Check to make sure that the __grouping_tmp string constructed in
// money_get or num_get matches the canonical grouping for a given
// locale.
// __grouping_tmp is parsed L to R
// 1,222,444 == __grouping_tmp of "/1/3/3"
// __grouping is parsed R to L
// 1,222,444 == __grouping of "/3" == "/3/3/3"
template<typename _CharT>
bool
__verify_grouping(const basic_string<_CharT>& __grouping,
basic_string<_CharT>& __grouping_tmp)
{
int __i = 0;
int __j = 0;
const int __len = __grouping.size();
const int __n = __grouping_tmp.size();
bool __test = true;
// Parsed number groupings have to match the
// numpunct::grouping string exactly, starting at the
// right-most point of the parsed sequence of elements ...
while (__test && __i < __n - 1)
for (__j = 0; __test && __j < __len && __i < __n - 1; ++__j,++__i)
__test &= __grouping[__j] == __grouping_tmp[__n - __i - 1];
// ... but the last parsed grouping can be <= numpunct
// grouping.
__j == __len ? __j = 0 : __j;
__test &= __grouping[__j] >= __grouping_tmp[__n - __i - 1];
return __test;
}
// Used by both numeric and monetary facets.
// Inserts "group separator" characters into an array of characters.
// It's recursive, one iteration per group. It moves the characters
// in the buffer this way: "xxxx12345" -> "12,345xxx". Call this
// only with __gbeg != __gend.
template<typename _CharT>
_CharT*
__add_grouping(_CharT* __s, _CharT __sep,
const char* __gbeg, const char* __gend,
const _CharT* __first, const _CharT* __last)
{
if (__last - __first > *__gbeg)
{
__s = __add_grouping(__s, __sep,
(__gbeg + 1 == __gend ? __gbeg : __gbeg + 1),
__gend, __first, __last - *__gbeg);
__first = __last - *__gbeg;
*__s++ = __sep;
}
do
*__s++ = *__first++;
while (__first != __last);
return __s;
}
// Inhibit implicit instantiations for required instantiations,
// which are defined via explicit instantiations elsewhere.
// NB: This syntax is a GNU extension.
extern template class vector<locale::facet*>;
extern template class moneypunct<char, false>;
extern template class moneypunct<char, true>;
extern template class moneypunct_byname<char, false>;
extern template class moneypunct_byname<char, true>;
extern template class money_get<char>;
extern template class money_put<char>;
extern template class moneypunct<wchar_t, false>;
extern template class moneypunct<wchar_t, true>;
extern template class moneypunct_byname<wchar_t, false>;
extern template class moneypunct_byname<wchar_t, true>;
extern template class money_get<wchar_t>;
extern template class money_put<wchar_t>;
extern template class numpunct<char>;
extern template class numpunct_byname<char>;
extern template class num_get<char>;
extern template class num_put<char>;
extern template class numpunct<wchar_t>;
extern template class numpunct_byname<wchar_t>;
extern template class num_get<wchar_t>;
extern template class num_put<wchar_t>;
extern template class __timepunct<char>;
extern template class time_put<char>;
extern template class time_put_byname<char>;
extern template class time_get<char>;
extern template class time_get_byname<char>;
extern template class __timepunct<wchar_t>;
extern template class time_put<wchar_t>;
extern template class time_put_byname<wchar_t>;
extern template class time_get<wchar_t>;
extern template class time_get_byname<wchar_t>;
extern template class messages<char>;
extern template class messages_byname<char>;
extern template class messages<wchar_t>;
extern template class messages_byname<wchar_t>;
extern template class ctype_byname<char>;
extern template class ctype_byname<wchar_t>;
extern template class codecvt_byname<char, char, mbstate_t>;
extern template class codecvt_byname<wchar_t, char, mbstate_t>;
extern template class collate<char>;
extern template class collate_byname<char>;
extern template class collate<wchar_t>;
extern template class collate_byname<wchar_t>;
extern template
const codecvt<char, char, mbstate_t>&
use_facet<codecvt<char, char, mbstate_t> >(const locale&);
extern template
const collate<char>&
use_facet<collate<char> >(const locale&);
extern template
const numpunct<char>&
use_facet<numpunct<char> >(const locale&);
extern template
const num_put<char>&
use_facet<num_put<char> >(const locale&);
extern template
const num_get<char>&
use_facet<num_get<char> >(const locale&);
extern template
const moneypunct<char, true>&
use_facet<moneypunct<char, true> >(const locale&);
extern template
const moneypunct<char, false>&
use_facet<moneypunct<char, false> >(const locale&);
extern template
const money_put<char>&
use_facet<money_put<char> >(const locale&);
extern template
const money_get<char>&
use_facet<money_get<char> >(const locale&);
extern template
const __timepunct<char>&
use_facet<__timepunct<char> >(const locale&);
extern template
const time_put<char>&
use_facet<time_put<char> >(const locale&);
extern template
const time_get<char>&
use_facet<time_get<char> >(const locale&);
extern template
const messages<char>&
use_facet<messages<char> >(const locale&);
extern template
const codecvt<wchar_t, char, mbstate_t>&
use_facet<codecvt<wchar_t, char, mbstate_t> >(locale const&);
extern template
const collate<wchar_t>&
use_facet<collate<wchar_t> >(const locale&);
extern template
const numpunct<wchar_t>&
use_facet<numpunct<wchar_t> >(const locale&);
extern template
const num_put<wchar_t>&
use_facet<num_put<wchar_t> >(const locale&);
extern template
const num_get<wchar_t>&
use_facet<num_get<wchar_t> >(const locale&);
extern template
const moneypunct<wchar_t, true>&
use_facet<moneypunct<wchar_t, true> >(const locale&);
extern template
const moneypunct<wchar_t, false>&
use_facet<moneypunct<wchar_t, false> >(const locale&);
extern template
const money_put<wchar_t>&
use_facet<money_put<wchar_t> >(const locale&);
extern template
const money_get<wchar_t>&
use_facet<money_get<wchar_t> >(const locale&);
extern template
const __timepunct<wchar_t>&
use_facet<__timepunct<wchar_t> >(const locale&);
extern template
const time_put<wchar_t>&
use_facet<time_put<wchar_t> >(const locale&);
extern template
const time_get<wchar_t>&
use_facet<time_get<wchar_t> >(const locale&);
extern template
const messages<wchar_t>&
use_facet<messages<wchar_t> >(const locale&);
extern template
bool
has_facet<ctype<char> >(const locale&);
extern template
bool
has_facet<codecvt<char, char, mbstate_t> >(const locale&);
extern template
bool
has_facet<collate<char> >(const locale&);
extern template
bool
has_facet<numpunct<char> >(const locale&);
extern template
bool
has_facet<num_put<char> >(const locale&);
extern template
bool
has_facet<num_get<char> >(const locale&);
extern template
bool
has_facet<moneypunct<char> >(const locale&);
extern template
bool
has_facet<money_put<char> >(const locale&);
extern template
bool
has_facet<money_get<char> >(const locale&);
extern template
bool
has_facet<__timepunct<char> >(const locale&);
extern template
bool
has_facet<time_put<char> >(const locale&);
extern template
bool
has_facet<time_get<char> >(const locale&);
extern template
bool
has_facet<messages<char> >(const locale&);
extern template
bool
has_facet<ctype<wchar_t> >(const locale&);
extern template
bool
has_facet<codecvt<wchar_t, char, mbstate_t> >(const locale&);
extern template
bool
has_facet<collate<wchar_t> >(const locale&);
extern template
bool
has_facet<numpunct<wchar_t> >(const locale&);
extern template
bool
has_facet<num_put<wchar_t> >(const locale&);
extern template
bool
has_facet<num_get<wchar_t> >(const locale&);
extern template
bool
has_facet<moneypunct<wchar_t> >(const locale&);
extern template
bool
has_facet<money_put<wchar_t> >(const locale&);
extern template
bool
has_facet<money_get<wchar_t> >(const locale&);
extern template
bool
has_facet<__timepunct<wchar_t> >(const locale&);
extern template
bool
has_facet<time_put<wchar_t> >(const locale&);
extern template
bool
has_facet<time_get<wchar_t> >(const locale&);
extern template
bool
has_facet<messages<wchar_t> >(const locale&);
} // namespace std
#endif