06e28de223
gcc/ * basic-block.h (BASIC_BLOCK): Eliminate macro. * alias.c (init_alias_analysis): Eliminate BASIC_BLOCK macro in favor of uses of BASIC_BLOCK_FOR_FN, making uses of cfun explicit. * bt-load.c (compute_defs_uses_and_gen, compute_out, link_btr_uses, block_at_edge_of_live_range_p, migrate_btr_defs): Likewise. * caller-save.c (insert_one_insn): Likewise. * cfg.c (debug_bb, get_bb_original, get_bb_copy): Likewise. * cfgexpand.c (add_scope_conflicts): Likewise. * cfghooks.c (verify_flow_info): Likewise. * cfgloop.c (flow_loops_find): Likewise. * cfgrtl.c (rtl_flow_call_edges_add): Likewise. * config/mips/mips.c (r10k_insert_cache_barriers): Likewise. * config/s390/s390.c (s390_optimize_nonescaping_tx): Likewise. * config/spu/spu.c (spu_machine_dependent_reorg): Likewise. * cse.c (cse_main): Likewise. * dce.c (fast_dce): Likewise. * df-core.c (df_set_blocks, df_worklist_propagate_forward, df_worklist_propagate_backward, df_worklist_dataflow_doublequeue, df_bb_replace, df_dump_region): Likewise. * df-problems.c (df_rd_bb_local_compute, df_lr_bb_local_compute, df_live_bb_local_compute, df_chain_remove_problem) df_chain_create_bb, df_word_lr_bb_local_compute, df_note_bb_compute, df_md_bb_local_compute, df_md_local_compute, df_md_transfer_function): Likewise. * df-scan.c (df_scan_blocks, df_reorganize_refs_by_reg_by_insn, df_reorganize_refs_by_insn, df_bb_refs_collect, df_record_entry_block_defs, df_update_entry_block_defs, df_record_exit_block_uses): Likewise. * dominance.c (nearest_common_dominator_for_set): Likewise. * gcse.c (hoist_code): Likewise. * graph.c (draw_cfg_nodes_no_loops): Likewise. * ipa-inline-analysis.c (param_change_prob, estimate_function_body_sizes): Likewise. * ipa-split.c (dominated_by_forbidden): Likewise. * loop-unroll.c (apply_opt_in_copies): Likewise. * lower-subreg.c (decompose_multiword_subregs): Likewise. * lra-lives.c (lra_create_live_ranges): Likewise. * predict.c (propagate_freq): Likewise. * regrename.c (regrename_analyze): Likewise. * regstat.c (regstat_bb_compute_ri, regstat_bb_compute_calls_crossed): Likewise. * resource.c (mark_target_live_regs): Likewise. * sched-ebb.c (ebb_fix_recovery_cfg): Likewise. * sched-int.h (EBB_FIRST_BB, EBB_LAST_BB): Likewise. * sched-rgn.c (debug_region, dump_region_dot, too_large, haifa_find_rgns, extend_rgns, compute_dom_prob_ps, update_live, propagate_deps, sched_is_disabled_for_current_region_p): Likewise. * sched-vis.c (debug_bb_n_slim): Likewise. * sel-sched-ir.c (sel_finish_global_and_expr, verify_backedges, purge_empty_blocks, sel_remove_loop_preheader): Likewise. * sel-sched.c (remove_insns_that_need_bookkeeping) (current_region_empty_p, sel_region_init, simplify_changed_insns): Likewise. * trans-mem.c (execute_tm_mark, execute_tm_edges, tm_memopt_compute_antic, ipa_tm_scan_irr_function): Likewise. * tree-cfg.c (make_edges, end_recording_case_labels, label_to_block_fn, gimple_debug_bb, gimple_flow_call_edges_add, remove_edge_and_dominated_blocks, remove_edge_and_dominated_blocks, gimple_purge_all_dead_eh_edges, gimple_purge_all_dead_abnormal_call_edges): Likewise. * tree-cfgcleanup.c (fixup_noreturn_call, split_bbs_on_noreturn_calls, cleanup_tree_cfg_1): Likewise. * tree-inline.c (copy_cfg_body, fold_marked_statements): Likewise. * tree-into-ssa.c (set_livein_block, prune_unused_phi_nodes, insert_phi_nodes_for, insert_updated_phi_nodes_for): Likewise. * tree-ssa-dom.c (tree_ssa_dominator_optimize): Likewise. * tree-ssa-live.c (live_worklist): Likewise. * tree-ssa-loop-manip.c (compute_live_loop_exits, add_exit_phis_var, find_uses_to_rename, copy_phi_node_args): Likewise. * tree-ssa-pre.c (compute_antic): Likewise. * tree-ssa-reassoc.c (update_range_test, optimize_range_tests): Likewise. * tree-ssa-sink.c (nearest_common_dominator_of_uses): Likewise. * tree-ssa-tail-merge.c (same_succ_hash, same_succ_def::equal, same_succ_flush_bbs, update_worklist, set_cluster, same_phi_alternatives, find_clusters_1, apply_clusters, update_debug_stmts): Likewise. * tree-ssa-threadupdate.c (mark_threaded_blocks, thread_through_all_blocks): Likewise. * tree-ssa-uncprop.c (associate_equivalences_with_edges): Likewise. * tree-vrp.c (find_assert_locations): Likewise. From-SVN: r205822
1447 lines
45 KiB
C
1447 lines
45 KiB
C
/* Save and restore call-clobbered registers which are live across a call.
|
||
Copyright (C) 1989-2013 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "insn-config.h"
|
||
#include "flags.h"
|
||
#include "hard-reg-set.h"
|
||
#include "recog.h"
|
||
#include "basic-block.h"
|
||
#include "df.h"
|
||
#include "reload.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "diagnostic-core.h"
|
||
#include "tm_p.h"
|
||
#include "addresses.h"
|
||
#include "ggc.h"
|
||
#include "dumpfile.h"
|
||
|
||
#define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
|
||
|
||
#define regno_save_mode \
|
||
(this_target_reload->x_regno_save_mode)
|
||
#define cached_reg_save_code \
|
||
(this_target_reload->x_cached_reg_save_code)
|
||
#define cached_reg_restore_code \
|
||
(this_target_reload->x_cached_reg_restore_code)
|
||
|
||
/* For each hard register, a place on the stack where it can be saved,
|
||
if needed. */
|
||
|
||
static rtx
|
||
regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
|
||
|
||
/* The number of elements in the subsequent array. */
|
||
static int save_slots_num;
|
||
|
||
/* Allocated slots so far. */
|
||
static rtx save_slots[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Set of hard regs currently residing in save area (during insn scan). */
|
||
|
||
static HARD_REG_SET hard_regs_saved;
|
||
|
||
/* Number of registers currently in hard_regs_saved. */
|
||
|
||
static int n_regs_saved;
|
||
|
||
/* Computed by mark_referenced_regs, all regs referenced in a given
|
||
insn. */
|
||
static HARD_REG_SET referenced_regs;
|
||
|
||
|
||
typedef void refmarker_fn (rtx *loc, enum machine_mode mode, int hardregno,
|
||
void *mark_arg);
|
||
|
||
static int reg_save_code (int, enum machine_mode);
|
||
static int reg_restore_code (int, enum machine_mode);
|
||
|
||
struct saved_hard_reg;
|
||
static void initiate_saved_hard_regs (void);
|
||
static void new_saved_hard_reg (int, int);
|
||
static void finish_saved_hard_regs (void);
|
||
static int saved_hard_reg_compare_func (const void *, const void *);
|
||
|
||
static void mark_set_regs (rtx, const_rtx, void *);
|
||
static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
|
||
static refmarker_fn mark_reg_as_referenced;
|
||
static refmarker_fn replace_reg_with_saved_mem;
|
||
static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
|
||
enum machine_mode *);
|
||
static int insert_restore (struct insn_chain *, int, int, int,
|
||
enum machine_mode *);
|
||
static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
|
||
rtx);
|
||
static void add_stored_regs (rtx, const_rtx, void *);
|
||
|
||
|
||
|
||
static GTY(()) rtx savepat;
|
||
static GTY(()) rtx restpat;
|
||
static GTY(()) rtx test_reg;
|
||
static GTY(()) rtx test_mem;
|
||
static GTY(()) rtx saveinsn;
|
||
static GTY(()) rtx restinsn;
|
||
|
||
/* Return the INSN_CODE used to save register REG in mode MODE. */
|
||
static int
|
||
reg_save_code (int reg, enum machine_mode mode)
|
||
{
|
||
bool ok;
|
||
if (cached_reg_save_code[reg][mode])
|
||
return cached_reg_save_code[reg][mode];
|
||
if (!HARD_REGNO_MODE_OK (reg, mode))
|
||
{
|
||
/* Depending on how HARD_REGNO_MODE_OK is defined, range propagation
|
||
might deduce here that reg >= FIRST_PSEUDO_REGISTER. So the assert
|
||
below silences a warning. */
|
||
gcc_assert (reg < FIRST_PSEUDO_REGISTER);
|
||
cached_reg_save_code[reg][mode] = -1;
|
||
cached_reg_restore_code[reg][mode] = -1;
|
||
return -1;
|
||
}
|
||
|
||
/* Update the register number and modes of the register
|
||
and memory operand. */
|
||
SET_REGNO_RAW (test_reg, reg);
|
||
PUT_MODE (test_reg, mode);
|
||
PUT_MODE (test_mem, mode);
|
||
|
||
/* Force re-recognition of the modified insns. */
|
||
INSN_CODE (saveinsn) = -1;
|
||
INSN_CODE (restinsn) = -1;
|
||
|
||
cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
|
||
cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
|
||
|
||
/* Now extract both insns and see if we can meet their
|
||
constraints. */
|
||
ok = (cached_reg_save_code[reg][mode] != -1
|
||
&& cached_reg_restore_code[reg][mode] != -1);
|
||
if (ok)
|
||
{
|
||
extract_insn (saveinsn);
|
||
ok = constrain_operands (1);
|
||
extract_insn (restinsn);
|
||
ok &= constrain_operands (1);
|
||
}
|
||
|
||
if (! ok)
|
||
{
|
||
cached_reg_save_code[reg][mode] = -1;
|
||
cached_reg_restore_code[reg][mode] = -1;
|
||
}
|
||
gcc_assert (cached_reg_save_code[reg][mode]);
|
||
return cached_reg_save_code[reg][mode];
|
||
}
|
||
|
||
/* Return the INSN_CODE used to restore register REG in mode MODE. */
|
||
static int
|
||
reg_restore_code (int reg, enum machine_mode mode)
|
||
{
|
||
if (cached_reg_restore_code[reg][mode])
|
||
return cached_reg_restore_code[reg][mode];
|
||
/* Populate our cache. */
|
||
reg_save_code (reg, mode);
|
||
return cached_reg_restore_code[reg][mode];
|
||
}
|
||
|
||
/* Initialize for caller-save.
|
||
|
||
Look at all the hard registers that are used by a call and for which
|
||
reginfo.c has not already excluded from being used across a call.
|
||
|
||
Ensure that we can find a mode to save the register and that there is a
|
||
simple insn to save and restore the register. This latter check avoids
|
||
problems that would occur if we tried to save the MQ register of some
|
||
machines directly into memory. */
|
||
|
||
void
|
||
init_caller_save (void)
|
||
{
|
||
rtx addr_reg;
|
||
int offset;
|
||
rtx address;
|
||
int i, j;
|
||
|
||
if (caller_save_initialized_p)
|
||
return;
|
||
|
||
caller_save_initialized_p = true;
|
||
|
||
CLEAR_HARD_REG_SET (no_caller_save_reg_set);
|
||
/* First find all the registers that we need to deal with and all
|
||
the modes that they can have. If we can't find a mode to use,
|
||
we can't have the register live over calls. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (call_used_regs[i]
|
||
&& !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
|
||
{
|
||
for (j = 1; j <= MOVE_MAX_WORDS; j++)
|
||
{
|
||
regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
|
||
VOIDmode);
|
||
if (regno_save_mode[i][j] == VOIDmode && j == 1)
|
||
{
|
||
SET_HARD_REG_BIT (call_fixed_reg_set, i);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
regno_save_mode[i][1] = VOIDmode;
|
||
}
|
||
|
||
/* The following code tries to approximate the conditions under which
|
||
we can easily save and restore a register without scratch registers or
|
||
other complexities. It will usually work, except under conditions where
|
||
the validity of an insn operand is dependent on the address offset.
|
||
No such cases are currently known.
|
||
|
||
We first find a typical offset from some BASE_REG_CLASS register.
|
||
This address is chosen by finding the first register in the class
|
||
and by finding the smallest power of two that is a valid offset from
|
||
that register in every mode we will use to save registers. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT
|
||
(reg_class_contents
|
||
[(int) base_reg_class (regno_save_mode[i][1], ADDR_SPACE_GENERIC,
|
||
PLUS, CONST_INT)], i))
|
||
break;
|
||
|
||
gcc_assert (i < FIRST_PSEUDO_REGISTER);
|
||
|
||
addr_reg = gen_rtx_REG (Pmode, i);
|
||
|
||
for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
|
||
{
|
||
address = gen_rtx_PLUS (Pmode, addr_reg, gen_int_mode (offset, Pmode));
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (regno_save_mode[i][1] != VOIDmode
|
||
&& ! strict_memory_address_p (regno_save_mode[i][1], address))
|
||
break;
|
||
|
||
if (i == FIRST_PSEUDO_REGISTER)
|
||
break;
|
||
}
|
||
|
||
/* If we didn't find a valid address, we must use register indirect. */
|
||
if (offset == 0)
|
||
address = addr_reg;
|
||
|
||
/* Next we try to form an insn to save and restore the register. We
|
||
see if such an insn is recognized and meets its constraints.
|
||
|
||
To avoid lots of unnecessary RTL allocation, we construct all the RTL
|
||
once, then modify the memory and register operands in-place. */
|
||
|
||
test_reg = gen_rtx_REG (VOIDmode, 0);
|
||
test_mem = gen_rtx_MEM (VOIDmode, address);
|
||
savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg);
|
||
restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem);
|
||
|
||
saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, savepat, 0, -1, 0);
|
||
restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, restpat, 0, -1, 0);
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
for (j = 1; j <= MOVE_MAX_WORDS; j++)
|
||
if (reg_save_code (i,regno_save_mode[i][j]) == -1)
|
||
{
|
||
regno_save_mode[i][j] = VOIDmode;
|
||
if (j == 1)
|
||
{
|
||
SET_HARD_REG_BIT (call_fixed_reg_set, i);
|
||
if (call_used_regs[i])
|
||
SET_HARD_REG_BIT (no_caller_save_reg_set, i);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Initialize save areas by showing that we haven't allocated any yet. */
|
||
|
||
void
|
||
init_save_areas (void)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
for (j = 1; j <= MOVE_MAX_WORDS; j++)
|
||
regno_save_mem[i][j] = 0;
|
||
save_slots_num = 0;
|
||
|
||
}
|
||
|
||
/* The structure represents a hard register which should be saved
|
||
through the call. It is used when the integrated register
|
||
allocator (IRA) is used and sharing save slots is on. */
|
||
struct saved_hard_reg
|
||
{
|
||
/* Order number starting with 0. */
|
||
int num;
|
||
/* The hard regno. */
|
||
int hard_regno;
|
||
/* Execution frequency of all calls through which given hard
|
||
register should be saved. */
|
||
int call_freq;
|
||
/* Stack slot reserved to save the hard register through calls. */
|
||
rtx slot;
|
||
/* True if it is first hard register in the chain of hard registers
|
||
sharing the same stack slot. */
|
||
int first_p;
|
||
/* Order number of the next hard register structure with the same
|
||
slot in the chain. -1 represents end of the chain. */
|
||
int next;
|
||
};
|
||
|
||
/* Map: hard register number to the corresponding structure. */
|
||
static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* The number of all structures representing hard registers should be
|
||
saved, in order words, the number of used elements in the following
|
||
array. */
|
||
static int saved_regs_num;
|
||
|
||
/* Pointers to all the structures. Index is the order number of the
|
||
corresponding structure. */
|
||
static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* First called function for work with saved hard registers. */
|
||
static void
|
||
initiate_saved_hard_regs (void)
|
||
{
|
||
int i;
|
||
|
||
saved_regs_num = 0;
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
hard_reg_map[i] = NULL;
|
||
}
|
||
|
||
/* Allocate and return new saved hard register with given REGNO and
|
||
CALL_FREQ. */
|
||
static void
|
||
new_saved_hard_reg (int regno, int call_freq)
|
||
{
|
||
struct saved_hard_reg *saved_reg;
|
||
|
||
saved_reg
|
||
= (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
|
||
hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
|
||
saved_reg->num = saved_regs_num++;
|
||
saved_reg->hard_regno = regno;
|
||
saved_reg->call_freq = call_freq;
|
||
saved_reg->first_p = FALSE;
|
||
saved_reg->next = -1;
|
||
}
|
||
|
||
/* Free memory allocated for the saved hard registers. */
|
||
static void
|
||
finish_saved_hard_regs (void)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < saved_regs_num; i++)
|
||
free (all_saved_regs[i]);
|
||
}
|
||
|
||
/* The function is used to sort the saved hard register structures
|
||
according their frequency. */
|
||
static int
|
||
saved_hard_reg_compare_func (const void *v1p, const void *v2p)
|
||
{
|
||
const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
|
||
const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
|
||
|
||
if (flag_omit_frame_pointer)
|
||
{
|
||
if (p1->call_freq - p2->call_freq != 0)
|
||
return p1->call_freq - p2->call_freq;
|
||
}
|
||
else if (p2->call_freq - p1->call_freq != 0)
|
||
return p2->call_freq - p1->call_freq;
|
||
|
||
return p1->num - p2->num;
|
||
}
|
||
|
||
/* Allocate save areas for any hard registers that might need saving.
|
||
We take a conservative approach here and look for call-clobbered hard
|
||
registers that are assigned to pseudos that cross calls. This may
|
||
overestimate slightly (especially if some of these registers are later
|
||
used as spill registers), but it should not be significant.
|
||
|
||
For IRA we use priority coloring to decrease stack slots needed for
|
||
saving hard registers through calls. We build conflicts for them
|
||
to do coloring.
|
||
|
||
Future work:
|
||
|
||
In the fallback case we should iterate backwards across all possible
|
||
modes for the save, choosing the largest available one instead of
|
||
falling back to the smallest mode immediately. (eg TF -> DF -> SF).
|
||
|
||
We do not try to use "move multiple" instructions that exist
|
||
on some machines (such as the 68k moveml). It could be a win to try
|
||
and use them when possible. The hard part is doing it in a way that is
|
||
machine independent since they might be saving non-consecutive
|
||
registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
|
||
|
||
void
|
||
setup_save_areas (void)
|
||
{
|
||
int i, j, k, freq;
|
||
HARD_REG_SET hard_regs_used;
|
||
struct saved_hard_reg *saved_reg;
|
||
rtx insn;
|
||
struct insn_chain *chain, *next;
|
||
unsigned int regno;
|
||
HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
|
||
reg_set_iterator rsi;
|
||
|
||
CLEAR_HARD_REG_SET (hard_regs_used);
|
||
|
||
/* Find every CALL_INSN and record which hard regs are live across the
|
||
call into HARD_REG_MAP and HARD_REGS_USED. */
|
||
initiate_saved_hard_regs ();
|
||
/* Create hard reg saved regs. */
|
||
for (chain = reload_insn_chain; chain != 0; chain = next)
|
||
{
|
||
rtx cheap;
|
||
|
||
insn = chain->insn;
|
||
next = chain->next;
|
||
if (!CALL_P (insn)
|
||
|| find_reg_note (insn, REG_NORETURN, NULL))
|
||
continue;
|
||
freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
|
||
REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
|
||
&chain->live_throughout);
|
||
COPY_HARD_REG_SET (used_regs, call_used_reg_set);
|
||
|
||
/* Record all registers set in this call insn. These don't
|
||
need to be saved. N.B. the call insn might set a subreg
|
||
of a multi-hard-reg pseudo; then the pseudo is considered
|
||
live during the call, but the subreg that is set
|
||
isn't. */
|
||
CLEAR_HARD_REG_SET (this_insn_sets);
|
||
note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
|
||
/* Sibcalls are considered to set the return value. */
|
||
if (SIBLING_CALL_P (insn) && crtl->return_rtx)
|
||
mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
|
||
|
||
AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
|
||
AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
|
||
AND_HARD_REG_SET (hard_regs_to_save, used_regs);
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
|
||
{
|
||
if (hard_reg_map[regno] != NULL)
|
||
hard_reg_map[regno]->call_freq += freq;
|
||
else
|
||
new_saved_hard_reg (regno, freq);
|
||
SET_HARD_REG_BIT (hard_regs_used, regno);
|
||
}
|
||
cheap = find_reg_note (insn, REG_RETURNED, NULL);
|
||
if (cheap)
|
||
cheap = XEXP (cheap, 0);
|
||
/* Look through all live pseudos, mark their hard registers. */
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
|
||
{
|
||
int r = reg_renumber[regno];
|
||
int bound;
|
||
|
||
if (r < 0 || regno_reg_rtx[regno] == cheap)
|
||
continue;
|
||
|
||
bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
|
||
for (; r < bound; r++)
|
||
if (TEST_HARD_REG_BIT (used_regs, r))
|
||
{
|
||
if (hard_reg_map[r] != NULL)
|
||
hard_reg_map[r]->call_freq += freq;
|
||
else
|
||
new_saved_hard_reg (r, freq);
|
||
SET_HARD_REG_BIT (hard_regs_to_save, r);
|
||
SET_HARD_REG_BIT (hard_regs_used, r);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If requested, figure out which hard regs can share save slots. */
|
||
if (optimize && flag_ira_share_save_slots)
|
||
{
|
||
rtx slot;
|
||
char *saved_reg_conflicts;
|
||
int next_k;
|
||
struct saved_hard_reg *saved_reg2, *saved_reg3;
|
||
int call_saved_regs_num;
|
||
struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
|
||
int best_slot_num;
|
||
int prev_save_slots_num;
|
||
rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Find saved hard register conflicts. */
|
||
saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
|
||
memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
|
||
for (chain = reload_insn_chain; chain != 0; chain = next)
|
||
{
|
||
rtx cheap;
|
||
call_saved_regs_num = 0;
|
||
insn = chain->insn;
|
||
next = chain->next;
|
||
if (!CALL_P (insn)
|
||
|| find_reg_note (insn, REG_NORETURN, NULL))
|
||
continue;
|
||
|
||
cheap = find_reg_note (insn, REG_RETURNED, NULL);
|
||
if (cheap)
|
||
cheap = XEXP (cheap, 0);
|
||
|
||
REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
|
||
&chain->live_throughout);
|
||
COPY_HARD_REG_SET (used_regs, call_used_reg_set);
|
||
|
||
/* Record all registers set in this call insn. These don't
|
||
need to be saved. N.B. the call insn might set a subreg
|
||
of a multi-hard-reg pseudo; then the pseudo is considered
|
||
live during the call, but the subreg that is set
|
||
isn't. */
|
||
CLEAR_HARD_REG_SET (this_insn_sets);
|
||
note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
|
||
/* Sibcalls are considered to set the return value,
|
||
compare df-scan.c:df_get_call_refs. */
|
||
if (SIBLING_CALL_P (insn) && crtl->return_rtx)
|
||
mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
|
||
|
||
AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
|
||
AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
|
||
AND_HARD_REG_SET (hard_regs_to_save, used_regs);
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
|
||
{
|
||
gcc_assert (hard_reg_map[regno] != NULL);
|
||
call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
|
||
}
|
||
/* Look through all live pseudos, mark their hard registers. */
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
|
||
{
|
||
int r = reg_renumber[regno];
|
||
int bound;
|
||
|
||
if (r < 0 || regno_reg_rtx[regno] == cheap)
|
||
continue;
|
||
|
||
bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
|
||
for (; r < bound; r++)
|
||
if (TEST_HARD_REG_BIT (used_regs, r))
|
||
call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
|
||
}
|
||
for (i = 0; i < call_saved_regs_num; i++)
|
||
{
|
||
saved_reg = call_saved_regs[i];
|
||
for (j = 0; j < call_saved_regs_num; j++)
|
||
if (i != j)
|
||
{
|
||
saved_reg2 = call_saved_regs[j];
|
||
saved_reg_conflicts[saved_reg->num * saved_regs_num
|
||
+ saved_reg2->num]
|
||
= saved_reg_conflicts[saved_reg2->num * saved_regs_num
|
||
+ saved_reg->num]
|
||
= TRUE;
|
||
}
|
||
}
|
||
}
|
||
/* Sort saved hard regs. */
|
||
qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
|
||
saved_hard_reg_compare_func);
|
||
/* Initiate slots available from the previous reload
|
||
iteration. */
|
||
prev_save_slots_num = save_slots_num;
|
||
memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
|
||
save_slots_num = 0;
|
||
/* Allocate stack slots for the saved hard registers. */
|
||
for (i = 0; i < saved_regs_num; i++)
|
||
{
|
||
saved_reg = all_saved_regs[i];
|
||
regno = saved_reg->hard_regno;
|
||
for (j = 0; j < i; j++)
|
||
{
|
||
saved_reg2 = all_saved_regs[j];
|
||
if (! saved_reg2->first_p)
|
||
continue;
|
||
slot = saved_reg2->slot;
|
||
for (k = j; k >= 0; k = next_k)
|
||
{
|
||
saved_reg3 = all_saved_regs[k];
|
||
next_k = saved_reg3->next;
|
||
if (saved_reg_conflicts[saved_reg->num * saved_regs_num
|
||
+ saved_reg3->num])
|
||
break;
|
||
}
|
||
if (k < 0
|
||
&& (GET_MODE_SIZE (regno_save_mode[regno][1])
|
||
<= GET_MODE_SIZE (regno_save_mode
|
||
[saved_reg2->hard_regno][1])))
|
||
{
|
||
saved_reg->slot
|
||
= adjust_address_nv
|
||
(slot, regno_save_mode[saved_reg->hard_regno][1], 0);
|
||
regno_save_mem[regno][1] = saved_reg->slot;
|
||
saved_reg->next = saved_reg2->next;
|
||
saved_reg2->next = i;
|
||
if (dump_file != NULL)
|
||
fprintf (dump_file, "%d uses slot of %d\n",
|
||
regno, saved_reg2->hard_regno);
|
||
break;
|
||
}
|
||
}
|
||
if (j == i)
|
||
{
|
||
saved_reg->first_p = TRUE;
|
||
for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
|
||
{
|
||
slot = prev_save_slots[j];
|
||
if (slot == NULL_RTX)
|
||
continue;
|
||
if (GET_MODE_SIZE (regno_save_mode[regno][1])
|
||
<= GET_MODE_SIZE (GET_MODE (slot))
|
||
&& best_slot_num < 0)
|
||
best_slot_num = j;
|
||
if (GET_MODE (slot) == regno_save_mode[regno][1])
|
||
break;
|
||
}
|
||
if (best_slot_num >= 0)
|
||
{
|
||
saved_reg->slot = prev_save_slots[best_slot_num];
|
||
saved_reg->slot
|
||
= adjust_address_nv
|
||
(saved_reg->slot,
|
||
regno_save_mode[saved_reg->hard_regno][1], 0);
|
||
if (dump_file != NULL)
|
||
fprintf (dump_file,
|
||
"%d uses a slot from prev iteration\n", regno);
|
||
prev_save_slots[best_slot_num] = NULL_RTX;
|
||
if (best_slot_num + 1 == prev_save_slots_num)
|
||
prev_save_slots_num--;
|
||
}
|
||
else
|
||
{
|
||
saved_reg->slot
|
||
= assign_stack_local_1
|
||
(regno_save_mode[regno][1],
|
||
GET_MODE_SIZE (regno_save_mode[regno][1]), 0,
|
||
ASLK_REDUCE_ALIGN);
|
||
if (dump_file != NULL)
|
||
fprintf (dump_file, "%d uses a new slot\n", regno);
|
||
}
|
||
regno_save_mem[regno][1] = saved_reg->slot;
|
||
save_slots[save_slots_num++] = saved_reg->slot;
|
||
}
|
||
}
|
||
free (saved_reg_conflicts);
|
||
finish_saved_hard_regs ();
|
||
}
|
||
else
|
||
{
|
||
/* We are not sharing slots.
|
||
|
||
Run through all the call-used hard-registers and allocate
|
||
space for each in the caller-save area. Try to allocate space
|
||
in a manner which allows multi-register saves/restores to be done. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
for (j = MOVE_MAX_WORDS; j > 0; j--)
|
||
{
|
||
int do_save = 1;
|
||
|
||
/* If no mode exists for this size, try another. Also break out
|
||
if we have already saved this hard register. */
|
||
if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
|
||
continue;
|
||
|
||
/* See if any register in this group has been saved. */
|
||
for (k = 0; k < j; k++)
|
||
if (regno_save_mem[i + k][1])
|
||
{
|
||
do_save = 0;
|
||
break;
|
||
}
|
||
if (! do_save)
|
||
continue;
|
||
|
||
for (k = 0; k < j; k++)
|
||
if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
|
||
{
|
||
do_save = 0;
|
||
break;
|
||
}
|
||
if (! do_save)
|
||
continue;
|
||
|
||
/* We have found an acceptable mode to store in. Since
|
||
hard register is always saved in the widest mode
|
||
available, the mode may be wider than necessary, it is
|
||
OK to reduce the alignment of spill space. We will
|
||
verify that it is equal to or greater than required
|
||
when we restore and save the hard register in
|
||
insert_restore and insert_save. */
|
||
regno_save_mem[i][j]
|
||
= assign_stack_local_1 (regno_save_mode[i][j],
|
||
GET_MODE_SIZE (regno_save_mode[i][j]),
|
||
0, ASLK_REDUCE_ALIGN);
|
||
|
||
/* Setup single word save area just in case... */
|
||
for (k = 0; k < j; k++)
|
||
/* This should not depend on WORDS_BIG_ENDIAN.
|
||
The order of words in regs is the same as in memory. */
|
||
regno_save_mem[i + k][1]
|
||
= adjust_address_nv (regno_save_mem[i][j],
|
||
regno_save_mode[i + k][1],
|
||
k * UNITS_PER_WORD);
|
||
}
|
||
}
|
||
|
||
/* Now loop again and set the alias set of any save areas we made to
|
||
the alias set used to represent frame objects. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
for (j = MOVE_MAX_WORDS; j > 0; j--)
|
||
if (regno_save_mem[i][j] != 0)
|
||
set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
|
||
}
|
||
|
||
|
||
|
||
/* Find the places where hard regs are live across calls and save them. */
|
||
|
||
void
|
||
save_call_clobbered_regs (void)
|
||
{
|
||
struct insn_chain *chain, *next, *last = NULL;
|
||
enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Computed in mark_set_regs, holds all registers set by the current
|
||
instruction. */
|
||
HARD_REG_SET this_insn_sets;
|
||
|
||
CLEAR_HARD_REG_SET (hard_regs_saved);
|
||
n_regs_saved = 0;
|
||
|
||
for (chain = reload_insn_chain; chain != 0; chain = next)
|
||
{
|
||
rtx insn = chain->insn;
|
||
enum rtx_code code = GET_CODE (insn);
|
||
|
||
next = chain->next;
|
||
|
||
gcc_assert (!chain->is_caller_save_insn);
|
||
|
||
if (NONDEBUG_INSN_P (insn))
|
||
{
|
||
/* If some registers have been saved, see if INSN references
|
||
any of them. We must restore them before the insn if so. */
|
||
|
||
if (n_regs_saved)
|
||
{
|
||
int regno;
|
||
HARD_REG_SET this_insn_sets;
|
||
|
||
if (code == JUMP_INSN)
|
||
/* Restore all registers if this is a JUMP_INSN. */
|
||
COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
|
||
else
|
||
{
|
||
CLEAR_HARD_REG_SET (referenced_regs);
|
||
mark_referenced_regs (&PATTERN (insn),
|
||
mark_reg_as_referenced, NULL);
|
||
AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
|
||
}
|
||
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (TEST_HARD_REG_BIT (referenced_regs, regno))
|
||
regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
|
||
save_mode);
|
||
/* If a saved register is set after the call, this means we no
|
||
longer should restore it. This can happen when parts of a
|
||
multi-word pseudo do not conflict with other pseudos, so
|
||
IRA may allocate the same hard register for both. One may
|
||
be live across the call, while the other is set
|
||
afterwards. */
|
||
CLEAR_HARD_REG_SET (this_insn_sets);
|
||
note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
|
||
AND_COMPL_HARD_REG_SET (hard_regs_saved, this_insn_sets);
|
||
}
|
||
|
||
if (code == CALL_INSN
|
||
&& ! SIBLING_CALL_P (insn)
|
||
&& ! find_reg_note (insn, REG_NORETURN, NULL))
|
||
{
|
||
unsigned regno;
|
||
HARD_REG_SET hard_regs_to_save;
|
||
reg_set_iterator rsi;
|
||
rtx cheap;
|
||
|
||
cheap = find_reg_note (insn, REG_RETURNED, NULL);
|
||
if (cheap)
|
||
cheap = XEXP (cheap, 0);
|
||
|
||
/* Use the register life information in CHAIN to compute which
|
||
regs are live during the call. */
|
||
REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
|
||
&chain->live_throughout);
|
||
/* Save hard registers always in the widest mode available. */
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
|
||
save_mode [regno] = regno_save_mode [regno][1];
|
||
else
|
||
save_mode [regno] = VOIDmode;
|
||
|
||
/* Look through all live pseudos, mark their hard registers
|
||
and choose proper mode for saving. */
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
|
||
{
|
||
int r = reg_renumber[regno];
|
||
int nregs;
|
||
enum machine_mode mode;
|
||
|
||
if (r < 0 || regno_reg_rtx[regno] == cheap)
|
||
continue;
|
||
nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
|
||
mode = HARD_REGNO_CALLER_SAVE_MODE
|
||
(r, nregs, PSEUDO_REGNO_MODE (regno));
|
||
if (GET_MODE_BITSIZE (mode)
|
||
> GET_MODE_BITSIZE (save_mode[r]))
|
||
save_mode[r] = mode;
|
||
while (nregs-- > 0)
|
||
SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
|
||
}
|
||
|
||
/* Record all registers set in this call insn. These don't need
|
||
to be saved. N.B. the call insn might set a subreg of a
|
||
multi-hard-reg pseudo; then the pseudo is considered live
|
||
during the call, but the subreg that is set isn't. */
|
||
CLEAR_HARD_REG_SET (this_insn_sets);
|
||
note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
|
||
|
||
/* Compute which hard regs must be saved before this call. */
|
||
AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
|
||
AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
|
||
AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
|
||
AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
|
||
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
|
||
regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
|
||
|
||
/* Must recompute n_regs_saved. */
|
||
n_regs_saved = 0;
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
|
||
n_regs_saved++;
|
||
|
||
if (cheap
|
||
&& HARD_REGISTER_P (cheap)
|
||
&& TEST_HARD_REG_BIT (call_used_reg_set, REGNO (cheap)))
|
||
{
|
||
rtx dest, newpat;
|
||
rtx pat = PATTERN (insn);
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
pat = XVECEXP (pat, 0, 0);
|
||
dest = SET_DEST (pat);
|
||
newpat = gen_rtx_SET (VOIDmode, cheap, copy_rtx (dest));
|
||
chain = insert_one_insn (chain, 0, -1, newpat);
|
||
}
|
||
}
|
||
last = chain;
|
||
}
|
||
else if (DEBUG_INSN_P (insn) && n_regs_saved)
|
||
mark_referenced_regs (&PATTERN (insn),
|
||
replace_reg_with_saved_mem,
|
||
save_mode);
|
||
|
||
if (chain->next == 0 || chain->next->block != chain->block)
|
||
{
|
||
int regno;
|
||
/* At the end of the basic block, we must restore any registers that
|
||
remain saved. If the last insn in the block is a JUMP_INSN, put
|
||
the restore before the insn, otherwise, put it after the insn. */
|
||
|
||
if (n_regs_saved
|
||
&& DEBUG_INSN_P (insn)
|
||
&& last
|
||
&& last->block == chain->block)
|
||
{
|
||
rtx ins, prev;
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
|
||
/* When adding hard reg restores after a DEBUG_INSN, move
|
||
all notes between last real insn and this DEBUG_INSN after
|
||
the DEBUG_INSN, otherwise we could get code
|
||
-g/-g0 differences. */
|
||
for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
|
||
{
|
||
prev = PREV_INSN (ins);
|
||
if (NOTE_P (ins))
|
||
{
|
||
NEXT_INSN (prev) = NEXT_INSN (ins);
|
||
PREV_INSN (NEXT_INSN (ins)) = prev;
|
||
PREV_INSN (ins) = insn;
|
||
NEXT_INSN (ins) = NEXT_INSN (insn);
|
||
NEXT_INSN (insn) = ins;
|
||
if (NEXT_INSN (ins))
|
||
PREV_INSN (NEXT_INSN (ins)) = ins;
|
||
if (BB_END (bb) == insn)
|
||
BB_END (bb) = ins;
|
||
}
|
||
else
|
||
gcc_assert (DEBUG_INSN_P (ins));
|
||
}
|
||
}
|
||
last = NULL;
|
||
|
||
if (n_regs_saved)
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
|
||
regno += insert_restore (chain, JUMP_P (insn),
|
||
regno, MOVE_MAX_WORDS, save_mode);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Here from note_stores, or directly from save_call_clobbered_regs, when
|
||
an insn stores a value in a register.
|
||
Set the proper bit or bits in this_insn_sets. All pseudos that have
|
||
been assigned hard regs have had their register number changed already,
|
||
so we can ignore pseudos. */
|
||
static void
|
||
mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
|
||
{
|
||
int regno, endregno, i;
|
||
HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
{
|
||
rtx inner = SUBREG_REG (reg);
|
||
if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
|
||
return;
|
||
regno = subreg_regno (reg);
|
||
endregno = regno + subreg_nregs (reg);
|
||
}
|
||
else if (REG_P (reg)
|
||
&& REGNO (reg) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
regno = REGNO (reg);
|
||
endregno = END_HARD_REGNO (reg);
|
||
}
|
||
else
|
||
return;
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
SET_HARD_REG_BIT (*this_insn_sets, i);
|
||
}
|
||
|
||
/* Here from note_stores when an insn stores a value in a register.
|
||
Set the proper bit or bits in the passed regset. All pseudos that have
|
||
been assigned hard regs have had their register number changed already,
|
||
so we can ignore pseudos. */
|
||
static void
|
||
add_stored_regs (rtx reg, const_rtx setter, void *data)
|
||
{
|
||
int regno, endregno, i;
|
||
enum machine_mode mode = GET_MODE (reg);
|
||
int offset = 0;
|
||
|
||
if (GET_CODE (setter) == CLOBBER)
|
||
return;
|
||
|
||
if (GET_CODE (reg) == SUBREG
|
||
&& REG_P (SUBREG_REG (reg))
|
||
&& REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
|
||
GET_MODE (SUBREG_REG (reg)),
|
||
SUBREG_BYTE (reg),
|
||
GET_MODE (reg));
|
||
regno = REGNO (SUBREG_REG (reg)) + offset;
|
||
endregno = regno + subreg_nregs (reg);
|
||
}
|
||
else
|
||
{
|
||
if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
|
||
return;
|
||
|
||
regno = REGNO (reg) + offset;
|
||
endregno = end_hard_regno (mode, regno);
|
||
}
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
SET_REGNO_REG_SET ((regset) data, i);
|
||
}
|
||
|
||
/* Walk X and record all referenced registers in REFERENCED_REGS. */
|
||
static void
|
||
mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
|
||
{
|
||
enum rtx_code code = GET_CODE (*loc);
|
||
const char *fmt;
|
||
int i, j;
|
||
|
||
if (code == SET)
|
||
mark_referenced_regs (&SET_SRC (*loc), mark, arg);
|
||
if (code == SET || code == CLOBBER)
|
||
{
|
||
loc = &SET_DEST (*loc);
|
||
code = GET_CODE (*loc);
|
||
if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
|
||
|| code == PC || code == CC0
|
||
|| (code == SUBREG && REG_P (SUBREG_REG (*loc))
|
||
&& REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
|
||
/* If we're setting only part of a multi-word register,
|
||
we shall mark it as referenced, because the words
|
||
that are not being set should be restored. */
|
||
&& ((GET_MODE_SIZE (GET_MODE (*loc))
|
||
>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))))
|
||
|| (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))
|
||
<= UNITS_PER_WORD))))
|
||
return;
|
||
}
|
||
if (code == MEM || code == SUBREG)
|
||
{
|
||
loc = &XEXP (*loc, 0);
|
||
code = GET_CODE (*loc);
|
||
}
|
||
|
||
if (code == REG)
|
||
{
|
||
int regno = REGNO (*loc);
|
||
int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
|
||
: reg_renumber[regno]);
|
||
|
||
if (hardregno >= 0)
|
||
mark (loc, GET_MODE (*loc), hardregno, arg);
|
||
else if (arg)
|
||
/* ??? Will we ever end up with an equiv expression in a debug
|
||
insn, that would have required restoring a reg, or will
|
||
reload take care of it for us? */
|
||
return;
|
||
/* If this is a pseudo that did not get a hard register, scan its
|
||
memory location, since it might involve the use of another
|
||
register, which might be saved. */
|
||
else if (reg_equiv_mem (regno) != 0)
|
||
mark_referenced_regs (&XEXP (reg_equiv_mem (regno), 0), mark, arg);
|
||
else if (reg_equiv_address (regno) != 0)
|
||
mark_referenced_regs (®_equiv_address (regno), mark, arg);
|
||
return;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
mark_referenced_regs (&XEXP (*loc, i), mark, arg);
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
|
||
mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
|
||
}
|
||
}
|
||
|
||
/* Parameter function for mark_referenced_regs() that adds registers
|
||
present in the insn and in equivalent mems and addresses to
|
||
referenced_regs. */
|
||
|
||
static void
|
||
mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
|
||
enum machine_mode mode,
|
||
int hardregno,
|
||
void *arg ATTRIBUTE_UNUSED)
|
||
{
|
||
add_to_hard_reg_set (&referenced_regs, mode, hardregno);
|
||
}
|
||
|
||
/* Parameter function for mark_referenced_regs() that replaces
|
||
registers referenced in a debug_insn that would have been restored,
|
||
should it be a non-debug_insn, with their save locations. */
|
||
|
||
static void
|
||
replace_reg_with_saved_mem (rtx *loc,
|
||
enum machine_mode mode,
|
||
int regno,
|
||
void *arg)
|
||
{
|
||
unsigned int i, nregs = hard_regno_nregs [regno][mode];
|
||
rtx mem;
|
||
enum machine_mode *save_mode = (enum machine_mode *)arg;
|
||
|
||
for (i = 0; i < nregs; i++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
|
||
break;
|
||
|
||
/* If none of the registers in the range would need restoring, we're
|
||
all set. */
|
||
if (i == nregs)
|
||
return;
|
||
|
||
while (++i < nregs)
|
||
if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
|
||
break;
|
||
|
||
if (i == nregs
|
||
&& regno_save_mem[regno][nregs])
|
||
{
|
||
mem = copy_rtx (regno_save_mem[regno][nregs]);
|
||
|
||
if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]])
|
||
mem = adjust_address_nv (mem, save_mode[regno], 0);
|
||
|
||
if (GET_MODE (mem) != mode)
|
||
{
|
||
/* This is gen_lowpart_if_possible(), but without validating
|
||
the newly-formed address. */
|
||
int offset = 0;
|
||
|
||
if (WORDS_BIG_ENDIAN)
|
||
offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD)
|
||
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
|
||
if (BYTES_BIG_ENDIAN)
|
||
/* Adjust the address so that the address-after-the-data is
|
||
unchanged. */
|
||
offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
|
||
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem))));
|
||
|
||
mem = adjust_address_nv (mem, mode, offset);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
|
||
for (i = 0; i < nregs; i++)
|
||
if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
|
||
{
|
||
gcc_assert (regno_save_mem[regno + i][1]);
|
||
XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (save_mode[regno] != VOIDmode);
|
||
XVECEXP (mem, 0, i) = gen_rtx_REG (save_mode [regno],
|
||
regno + i);
|
||
}
|
||
}
|
||
|
||
gcc_assert (GET_MODE (mem) == mode);
|
||
*loc = mem;
|
||
}
|
||
|
||
|
||
/* Insert a sequence of insns to restore. Place these insns in front of
|
||
CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
|
||
the maximum number of registers which should be restored during this call.
|
||
It should never be less than 1 since we only work with entire registers.
|
||
|
||
Note that we have verified in init_caller_save that we can do this
|
||
with a simple SET, so use it. Set INSN_CODE to what we save there
|
||
since the address might not be valid so the insn might not be recognized.
|
||
These insns will be reloaded and have register elimination done by
|
||
find_reload, so we need not worry about that here.
|
||
|
||
Return the extra number of registers saved. */
|
||
|
||
static int
|
||
insert_restore (struct insn_chain *chain, int before_p, int regno,
|
||
int maxrestore, enum machine_mode *save_mode)
|
||
{
|
||
int i, k;
|
||
rtx pat = NULL_RTX;
|
||
int code;
|
||
unsigned int numregs = 0;
|
||
struct insn_chain *new_chain;
|
||
rtx mem;
|
||
|
||
/* A common failure mode if register status is not correct in the
|
||
RTL is for this routine to be called with a REGNO we didn't
|
||
expect to save. That will cause us to write an insn with a (nil)
|
||
SET_DEST or SET_SRC. Instead of doing so and causing a crash
|
||
later, check for this common case here instead. This will remove
|
||
one step in debugging such problems. */
|
||
gcc_assert (regno_save_mem[regno][1]);
|
||
|
||
/* Get the pattern to emit and update our status.
|
||
|
||
See if we can restore `maxrestore' registers at once. Work
|
||
backwards to the single register case. */
|
||
for (i = maxrestore; i > 0; i--)
|
||
{
|
||
int j;
|
||
int ok = 1;
|
||
|
||
if (regno_save_mem[regno][i] == 0)
|
||
continue;
|
||
|
||
for (j = 0; j < i; j++)
|
||
if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
|
||
{
|
||
ok = 0;
|
||
break;
|
||
}
|
||
/* Must do this one restore at a time. */
|
||
if (! ok)
|
||
continue;
|
||
|
||
numregs = i;
|
||
break;
|
||
}
|
||
|
||
mem = regno_save_mem [regno][numregs];
|
||
if (save_mode [regno] != VOIDmode
|
||
&& save_mode [regno] != GET_MODE (mem)
|
||
&& numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
|
||
/* Check that insn to restore REGNO in save_mode[regno] is
|
||
correct. */
|
||
&& reg_save_code (regno, save_mode[regno]) >= 0)
|
||
mem = adjust_address_nv (mem, save_mode[regno], 0);
|
||
else
|
||
mem = copy_rtx (mem);
|
||
|
||
/* Verify that the alignment of spill space is equal to or greater
|
||
than required. */
|
||
gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
|
||
GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
|
||
|
||
pat = gen_rtx_SET (VOIDmode,
|
||
gen_rtx_REG (GET_MODE (mem),
|
||
regno), mem);
|
||
code = reg_restore_code (regno, GET_MODE (mem));
|
||
new_chain = insert_one_insn (chain, before_p, code, pat);
|
||
|
||
/* Clear status for all registers we restored. */
|
||
for (k = 0; k < i; k++)
|
||
{
|
||
CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
|
||
SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
|
||
n_regs_saved--;
|
||
}
|
||
|
||
/* Tell our callers how many extra registers we saved/restored. */
|
||
return numregs - 1;
|
||
}
|
||
|
||
/* Like insert_restore above, but save registers instead. */
|
||
|
||
static int
|
||
insert_save (struct insn_chain *chain, int before_p, int regno,
|
||
HARD_REG_SET (*to_save), enum machine_mode *save_mode)
|
||
{
|
||
int i;
|
||
unsigned int k;
|
||
rtx pat = NULL_RTX;
|
||
int code;
|
||
unsigned int numregs = 0;
|
||
struct insn_chain *new_chain;
|
||
rtx mem;
|
||
|
||
/* A common failure mode if register status is not correct in the
|
||
RTL is for this routine to be called with a REGNO we didn't
|
||
expect to save. That will cause us to write an insn with a (nil)
|
||
SET_DEST or SET_SRC. Instead of doing so and causing a crash
|
||
later, check for this common case here. This will remove one
|
||
step in debugging such problems. */
|
||
gcc_assert (regno_save_mem[regno][1]);
|
||
|
||
/* Get the pattern to emit and update our status.
|
||
|
||
See if we can save several registers with a single instruction.
|
||
Work backwards to the single register case. */
|
||
for (i = MOVE_MAX_WORDS; i > 0; i--)
|
||
{
|
||
int j;
|
||
int ok = 1;
|
||
if (regno_save_mem[regno][i] == 0)
|
||
continue;
|
||
|
||
for (j = 0; j < i; j++)
|
||
if (! TEST_HARD_REG_BIT (*to_save, regno + j))
|
||
{
|
||
ok = 0;
|
||
break;
|
||
}
|
||
/* Must do this one save at a time. */
|
||
if (! ok)
|
||
continue;
|
||
|
||
numregs = i;
|
||
break;
|
||
}
|
||
|
||
mem = regno_save_mem [regno][numregs];
|
||
if (save_mode [regno] != VOIDmode
|
||
&& save_mode [regno] != GET_MODE (mem)
|
||
&& numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
|
||
/* Check that insn to save REGNO in save_mode[regno] is
|
||
correct. */
|
||
&& reg_save_code (regno, save_mode[regno]) >= 0)
|
||
mem = adjust_address_nv (mem, save_mode[regno], 0);
|
||
else
|
||
mem = copy_rtx (mem);
|
||
|
||
/* Verify that the alignment of spill space is equal to or greater
|
||
than required. */
|
||
gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
|
||
GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
|
||
|
||
pat = gen_rtx_SET (VOIDmode, mem,
|
||
gen_rtx_REG (GET_MODE (mem),
|
||
regno));
|
||
code = reg_save_code (regno, GET_MODE (mem));
|
||
new_chain = insert_one_insn (chain, before_p, code, pat);
|
||
|
||
/* Set hard_regs_saved and dead_or_set for all the registers we saved. */
|
||
for (k = 0; k < numregs; k++)
|
||
{
|
||
SET_HARD_REG_BIT (hard_regs_saved, regno + k);
|
||
SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
|
||
n_regs_saved++;
|
||
}
|
||
|
||
/* Tell our callers how many extra registers we saved/restored. */
|
||
return numregs - 1;
|
||
}
|
||
|
||
/* A for_each_rtx callback used by add_used_regs. Add the hard-register
|
||
equivalent of each REG to regset DATA. */
|
||
|
||
static int
|
||
add_used_regs_1 (rtx *loc, void *data)
|
||
{
|
||
unsigned int regno;
|
||
regset live;
|
||
rtx x;
|
||
|
||
x = *loc;
|
||
live = (regset) data;
|
||
if (REG_P (x))
|
||
{
|
||
regno = REGNO (x);
|
||
if (HARD_REGISTER_NUM_P (regno))
|
||
bitmap_set_range (live, regno, hard_regno_nregs[regno][GET_MODE (x)]);
|
||
else
|
||
regno = reg_renumber[regno];
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* A note_uses callback used by insert_one_insn. Add the hard-register
|
||
equivalent of each REG to regset DATA. */
|
||
|
||
static void
|
||
add_used_regs (rtx *loc, void *data)
|
||
{
|
||
for_each_rtx (loc, add_used_regs_1, data);
|
||
}
|
||
|
||
/* Emit a new caller-save insn and set the code. */
|
||
static struct insn_chain *
|
||
insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
|
||
{
|
||
rtx insn = chain->insn;
|
||
struct insn_chain *new_chain;
|
||
|
||
#ifdef HAVE_cc0
|
||
/* If INSN references CC0, put our insns in front of the insn that sets
|
||
CC0. This is always safe, since the only way we could be passed an
|
||
insn that references CC0 is for a restore, and doing a restore earlier
|
||
isn't a problem. We do, however, assume here that CALL_INSNs don't
|
||
reference CC0. Guard against non-INSN's like CODE_LABEL. */
|
||
|
||
if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
|
||
&& before_p
|
||
&& reg_referenced_p (cc0_rtx, PATTERN (insn)))
|
||
chain = chain->prev, insn = chain->insn;
|
||
#endif
|
||
|
||
new_chain = new_insn_chain ();
|
||
if (before_p)
|
||
{
|
||
rtx link;
|
||
|
||
new_chain->prev = chain->prev;
|
||
if (new_chain->prev != 0)
|
||
new_chain->prev->next = new_chain;
|
||
else
|
||
reload_insn_chain = new_chain;
|
||
|
||
chain->prev = new_chain;
|
||
new_chain->next = chain;
|
||
new_chain->insn = emit_insn_before (pat, insn);
|
||
/* ??? It would be nice if we could exclude the already / still saved
|
||
registers from the live sets. */
|
||
COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
|
||
note_uses (&PATTERN (chain->insn), add_used_regs,
|
||
&new_chain->live_throughout);
|
||
/* If CHAIN->INSN is a call, then the registers which contain
|
||
the arguments to the function are live in the new insn. */
|
||
if (CALL_P (chain->insn))
|
||
for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
|
||
link != NULL_RTX;
|
||
link = XEXP (link, 1))
|
||
note_uses (&XEXP (link, 0), add_used_regs,
|
||
&new_chain->live_throughout);
|
||
|
||
CLEAR_REG_SET (&new_chain->dead_or_set);
|
||
if (chain->insn == BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
|
||
BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
|
||
}
|
||
else
|
||
{
|
||
new_chain->next = chain->next;
|
||
if (new_chain->next != 0)
|
||
new_chain->next->prev = new_chain;
|
||
chain->next = new_chain;
|
||
new_chain->prev = chain;
|
||
new_chain->insn = emit_insn_after (pat, insn);
|
||
/* ??? It would be nice if we could exclude the already / still saved
|
||
registers from the live sets, and observe REG_UNUSED notes. */
|
||
COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
|
||
/* Registers that are set in CHAIN->INSN live in the new insn.
|
||
(Unless there is a REG_UNUSED note for them, but we don't
|
||
look for them here.) */
|
||
note_stores (PATTERN (chain->insn), add_stored_regs,
|
||
&new_chain->live_throughout);
|
||
CLEAR_REG_SET (&new_chain->dead_or_set);
|
||
if (chain->insn == BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
|
||
BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
|
||
}
|
||
new_chain->block = chain->block;
|
||
new_chain->is_caller_save_insn = 1;
|
||
|
||
INSN_CODE (new_chain->insn) = code;
|
||
return new_chain;
|
||
}
|
||
#include "gt-caller-save.h"
|