31905f3498
2006-01-03 Paolo Carlini <pcarlini@suse.de> * include/bits/stl_list.h (_List_base<>::_M_get_Node_allocator): Add. (_M_get_Tp_allocator, get_allocator): Tidy. (list<>::list(const list&), insert(iterator, size_type, const value_type&), insert(iterator, _InputIterator, _InputIterator)): Use _M_get_Node_allocator. * include/bits/stl_tree.h (_Rb_tree<>::_M_get_Node_allocator()): Add. (_Rb_tree(const _Rb_tree<>&): Use it. * include/bits/stl_deque.h (_Deque_base<>::_M_get_map_allocator, get_allocator): Tidy. * include/bits/stl_vector.h (_Vector_base<>::get_allocator): Tidy. * testsuite/23_containers/map/operators/1_neg.cc: Adjust dg-error line numbers. * testsuite/23_containers/set/operators/1_neg.cc: Likewise. * testsuite/testsuite_allocator.h (uneq_allocator<>::swap): Fix. * testsuite/testsuite_allocator.h (class uneq_allocator): A simple non-empty testing allocator which can be endowed of a "personality" at construction time. From-SVN: r109280
1233 lines
40 KiB
C++
1233 lines
40 KiB
C++
// List implementation -*- C++ -*-
|
|
|
|
// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
|
|
// Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 1994
|
|
* Hewlett-Packard Company
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Hewlett-Packard Company makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*
|
|
*
|
|
* Copyright (c) 1996,1997
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
/** @file stl_list.h
|
|
* This is an internal header file, included by other library headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
#ifndef _LIST_H
|
|
#define _LIST_H 1
|
|
|
|
#include <bits/concept_check.h>
|
|
|
|
_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
|
|
|
|
// Supporting structures are split into common and templated types; the
|
|
// latter publicly inherits from the former in an effort to reduce code
|
|
// duplication. This results in some "needless" static_cast'ing later on,
|
|
// but it's all safe downcasting.
|
|
|
|
/// @if maint Common part of a node in the %list. @endif
|
|
struct _List_node_base
|
|
{
|
|
_List_node_base* _M_next; ///< Self-explanatory
|
|
_List_node_base* _M_prev; ///< Self-explanatory
|
|
|
|
static void
|
|
swap(_List_node_base& __x, _List_node_base& __y);
|
|
|
|
void
|
|
transfer(_List_node_base * const __first,
|
|
_List_node_base * const __last);
|
|
|
|
void
|
|
reverse();
|
|
|
|
void
|
|
hook(_List_node_base * const __position);
|
|
|
|
void
|
|
unhook();
|
|
};
|
|
|
|
/// @if maint An actual node in the %list. @endif
|
|
template<typename _Tp>
|
|
struct _List_node : public _List_node_base
|
|
{
|
|
_Tp _M_data; ///< User's data.
|
|
};
|
|
|
|
/**
|
|
* @brief A list::iterator.
|
|
*
|
|
* @if maint
|
|
* All the functions are op overloads.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp>
|
|
struct _List_iterator
|
|
{
|
|
typedef _List_iterator<_Tp> _Self;
|
|
typedef _List_node<_Tp> _Node;
|
|
|
|
typedef ptrdiff_t difference_type;
|
|
typedef std::bidirectional_iterator_tag iterator_category;
|
|
typedef _Tp value_type;
|
|
typedef _Tp* pointer;
|
|
typedef _Tp& reference;
|
|
|
|
_List_iterator()
|
|
: _M_node() { }
|
|
|
|
explicit
|
|
_List_iterator(_List_node_base* __x)
|
|
: _M_node(__x) { }
|
|
|
|
// Must downcast from List_node_base to _List_node to get to _M_data.
|
|
reference
|
|
operator*() const
|
|
{ return static_cast<_Node*>(_M_node)->_M_data; }
|
|
|
|
pointer
|
|
operator->() const
|
|
{ return &static_cast<_Node*>(_M_node)->_M_data; }
|
|
|
|
_Self&
|
|
operator++()
|
|
{
|
|
_M_node = _M_node->_M_next;
|
|
return *this;
|
|
}
|
|
|
|
_Self
|
|
operator++(int)
|
|
{
|
|
_Self __tmp = *this;
|
|
_M_node = _M_node->_M_next;
|
|
return __tmp;
|
|
}
|
|
|
|
_Self&
|
|
operator--()
|
|
{
|
|
_M_node = _M_node->_M_prev;
|
|
return *this;
|
|
}
|
|
|
|
_Self
|
|
operator--(int)
|
|
{
|
|
_Self __tmp = *this;
|
|
_M_node = _M_node->_M_prev;
|
|
return __tmp;
|
|
}
|
|
|
|
bool
|
|
operator==(const _Self& __x) const
|
|
{ return _M_node == __x._M_node; }
|
|
|
|
bool
|
|
operator!=(const _Self& __x) const
|
|
{ return _M_node != __x._M_node; }
|
|
|
|
// The only member points to the %list element.
|
|
_List_node_base* _M_node;
|
|
};
|
|
|
|
/**
|
|
* @brief A list::const_iterator.
|
|
*
|
|
* @if maint
|
|
* All the functions are op overloads.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp>
|
|
struct _List_const_iterator
|
|
{
|
|
typedef _List_const_iterator<_Tp> _Self;
|
|
typedef const _List_node<_Tp> _Node;
|
|
typedef _List_iterator<_Tp> iterator;
|
|
|
|
typedef ptrdiff_t difference_type;
|
|
typedef std::bidirectional_iterator_tag iterator_category;
|
|
typedef _Tp value_type;
|
|
typedef const _Tp* pointer;
|
|
typedef const _Tp& reference;
|
|
|
|
_List_const_iterator()
|
|
: _M_node() { }
|
|
|
|
explicit
|
|
_List_const_iterator(const _List_node_base* __x)
|
|
: _M_node(__x) { }
|
|
|
|
_List_const_iterator(const iterator& __x)
|
|
: _M_node(__x._M_node) { }
|
|
|
|
// Must downcast from List_node_base to _List_node to get to
|
|
// _M_data.
|
|
reference
|
|
operator*() const
|
|
{ return static_cast<_Node*>(_M_node)->_M_data; }
|
|
|
|
pointer
|
|
operator->() const
|
|
{ return &static_cast<_Node*>(_M_node)->_M_data; }
|
|
|
|
_Self&
|
|
operator++()
|
|
{
|
|
_M_node = _M_node->_M_next;
|
|
return *this;
|
|
}
|
|
|
|
_Self
|
|
operator++(int)
|
|
{
|
|
_Self __tmp = *this;
|
|
_M_node = _M_node->_M_next;
|
|
return __tmp;
|
|
}
|
|
|
|
_Self&
|
|
operator--()
|
|
{
|
|
_M_node = _M_node->_M_prev;
|
|
return *this;
|
|
}
|
|
|
|
_Self
|
|
operator--(int)
|
|
{
|
|
_Self __tmp = *this;
|
|
_M_node = _M_node->_M_prev;
|
|
return __tmp;
|
|
}
|
|
|
|
bool
|
|
operator==(const _Self& __x) const
|
|
{ return _M_node == __x._M_node; }
|
|
|
|
bool
|
|
operator!=(const _Self& __x) const
|
|
{ return _M_node != __x._M_node; }
|
|
|
|
// The only member points to the %list element.
|
|
const _List_node_base* _M_node;
|
|
};
|
|
|
|
template<typename _Val>
|
|
inline bool
|
|
operator==(const _List_iterator<_Val>& __x,
|
|
const _List_const_iterator<_Val>& __y)
|
|
{ return __x._M_node == __y._M_node; }
|
|
|
|
template<typename _Val>
|
|
inline bool
|
|
operator!=(const _List_iterator<_Val>& __x,
|
|
const _List_const_iterator<_Val>& __y)
|
|
{ return __x._M_node != __y._M_node; }
|
|
|
|
|
|
/**
|
|
* @if maint
|
|
* See bits/stl_deque.h's _Deque_base for an explanation.
|
|
* @endif
|
|
*/
|
|
template<typename _Tp, typename _Alloc>
|
|
class _List_base
|
|
{
|
|
protected:
|
|
// NOTA BENE
|
|
// The stored instance is not actually of "allocator_type"'s
|
|
// type. Instead we rebind the type to
|
|
// Allocator<List_node<Tp>>, which according to [20.1.5]/4
|
|
// should probably be the same. List_node<Tp> is not the same
|
|
// size as Tp (it's two pointers larger), and specializations on
|
|
// Tp may go unused because List_node<Tp> is being bound
|
|
// instead.
|
|
//
|
|
// We put this to the test in the constructors and in
|
|
// get_allocator, where we use conversions between
|
|
// allocator_type and _Node_alloc_type. The conversion is
|
|
// required by table 32 in [20.1.5].
|
|
typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
|
|
_Node_alloc_type;
|
|
|
|
typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
|
|
|
|
struct _List_impl
|
|
: public _Node_alloc_type
|
|
{
|
|
_List_node_base _M_node;
|
|
|
|
_List_impl(const _Node_alloc_type& __a)
|
|
: _Node_alloc_type(__a), _M_node()
|
|
{ }
|
|
};
|
|
|
|
_List_impl _M_impl;
|
|
|
|
_List_node<_Tp>*
|
|
_M_get_node()
|
|
{ return _M_impl._Node_alloc_type::allocate(1); }
|
|
|
|
void
|
|
_M_put_node(_List_node<_Tp>* __p)
|
|
{ _M_impl._Node_alloc_type::deallocate(__p, 1); }
|
|
|
|
public:
|
|
typedef _Alloc allocator_type;
|
|
|
|
_Node_alloc_type&
|
|
_M_get_Node_allocator()
|
|
{ return *static_cast<_Node_alloc_type*>(&this->_M_impl); }
|
|
|
|
const _Node_alloc_type&
|
|
_M_get_Node_allocator() const
|
|
{ return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
|
|
|
|
_Tp_alloc_type
|
|
_M_get_Tp_allocator() const
|
|
{ return _Tp_alloc_type(_M_get_Node_allocator()); }
|
|
|
|
allocator_type
|
|
get_allocator() const
|
|
{ return allocator_type(_M_get_Node_allocator()); }
|
|
|
|
_List_base(const allocator_type& __a)
|
|
: _M_impl(__a)
|
|
{ _M_init(); }
|
|
|
|
// This is what actually destroys the list.
|
|
~_List_base()
|
|
{ _M_clear(); }
|
|
|
|
void
|
|
_M_clear();
|
|
|
|
void
|
|
_M_init()
|
|
{
|
|
this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
|
|
this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* @brief A standard container with linear time access to elements,
|
|
* and fixed time insertion/deletion at any point in the sequence.
|
|
*
|
|
* @ingroup Containers
|
|
* @ingroup Sequences
|
|
*
|
|
* Meets the requirements of a <a href="tables.html#65">container</a>, a
|
|
* <a href="tables.html#66">reversible container</a>, and a
|
|
* <a href="tables.html#67">sequence</a>, including the
|
|
* <a href="tables.html#68">optional sequence requirements</a> with the
|
|
* %exception of @c at and @c operator[].
|
|
*
|
|
* This is a @e doubly @e linked %list. Traversal up and down the
|
|
* %list requires linear time, but adding and removing elements (or
|
|
* @e nodes) is done in constant time, regardless of where the
|
|
* change takes place. Unlike std::vector and std::deque,
|
|
* random-access iterators are not provided, so subscripting ( @c
|
|
* [] ) access is not allowed. For algorithms which only need
|
|
* sequential access, this lack makes no difference.
|
|
*
|
|
* Also unlike the other standard containers, std::list provides
|
|
* specialized algorithms %unique to linked lists, such as
|
|
* splicing, sorting, and in-place reversal.
|
|
*
|
|
* @if maint
|
|
* A couple points on memory allocation for list<Tp>:
|
|
*
|
|
* First, we never actually allocate a Tp, we allocate
|
|
* List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
|
|
* that after elements from %list<X,Alloc1> are spliced into
|
|
* %list<X,Alloc2>, destroying the memory of the second %list is a
|
|
* valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
|
|
*
|
|
* Second, a %list conceptually represented as
|
|
* @code
|
|
* A <---> B <---> C <---> D
|
|
* @endcode
|
|
* is actually circular; a link exists between A and D. The %list
|
|
* class holds (as its only data member) a private list::iterator
|
|
* pointing to @e D, not to @e A! To get to the head of the %list,
|
|
* we start at the tail and move forward by one. When this member
|
|
* iterator's next/previous pointers refer to itself, the %list is
|
|
* %empty. @endif
|
|
*/
|
|
template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
|
|
class list : protected _List_base<_Tp, _Alloc>
|
|
{
|
|
// concept requirements
|
|
typedef typename _Alloc::value_type _Alloc_value_type;
|
|
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
|
|
__glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
|
|
|
|
typedef _List_base<_Tp, _Alloc> _Base;
|
|
typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
|
|
|
|
public:
|
|
typedef _Tp value_type;
|
|
typedef typename _Tp_alloc_type::pointer pointer;
|
|
typedef typename _Tp_alloc_type::const_pointer const_pointer;
|
|
typedef typename _Tp_alloc_type::reference reference;
|
|
typedef typename _Tp_alloc_type::const_reference const_reference;
|
|
typedef _List_iterator<_Tp> iterator;
|
|
typedef _List_const_iterator<_Tp> const_iterator;
|
|
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
|
typedef std::reverse_iterator<iterator> reverse_iterator;
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef _Alloc allocator_type;
|
|
|
|
protected:
|
|
// Note that pointers-to-_Node's can be ctor-converted to
|
|
// iterator types.
|
|
typedef _List_node<_Tp> _Node;
|
|
|
|
using _Base::_M_impl;
|
|
using _Base::_M_put_node;
|
|
using _Base::_M_get_node;
|
|
using _Base::_M_get_Tp_allocator;
|
|
using _Base::_M_get_Node_allocator;
|
|
|
|
/**
|
|
* @if maint
|
|
* @param x An instance of user data.
|
|
*
|
|
* Allocates space for a new node and constructs a copy of @a x in it.
|
|
* @endif
|
|
*/
|
|
_Node*
|
|
_M_create_node(const value_type& __x)
|
|
{
|
|
_Node* __p = this->_M_get_node();
|
|
try
|
|
{
|
|
_M_get_Tp_allocator().construct(&__p->_M_data, __x);
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_put_node(__p);
|
|
__throw_exception_again;
|
|
}
|
|
return __p;
|
|
}
|
|
|
|
public:
|
|
// [23.2.2.1] construct/copy/destroy
|
|
// (assign() and get_allocator() are also listed in this section)
|
|
/**
|
|
* @brief Default constructor creates no elements.
|
|
*/
|
|
explicit
|
|
list(const allocator_type& __a = allocator_type())
|
|
: _Base(__a) { }
|
|
|
|
/**
|
|
* @brief Create a %list with copies of an exemplar element.
|
|
* @param n The number of elements to initially create.
|
|
* @param value An element to copy.
|
|
*
|
|
* This constructor fills the %list with @a n copies of @a value.
|
|
*/
|
|
explicit
|
|
list(size_type __n, const value_type& __value = value_type(),
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__a)
|
|
{ _M_fill_initialize(__n, __value); }
|
|
|
|
/**
|
|
* @brief %List copy constructor.
|
|
* @param x A %list of identical element and allocator types.
|
|
*
|
|
* The newly-created %list uses a copy of the allocation object used
|
|
* by @a x.
|
|
*/
|
|
list(const list& __x)
|
|
: _Base(__x._M_get_Node_allocator())
|
|
{ _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
|
|
|
|
/**
|
|
* @brief Builds a %list from a range.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* Create a %list consisting of copies of the elements from
|
|
* [@a first,@a last). This is linear in N (where N is
|
|
* distance(@a first,@a last)).
|
|
*/
|
|
template<typename _InputIterator>
|
|
list(_InputIterator __first, _InputIterator __last,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__a)
|
|
{
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
|
|
_M_initialize_dispatch(__first, __last, _Integral());
|
|
}
|
|
|
|
/**
|
|
* No explicit dtor needed as the _Base dtor takes care of
|
|
* things. The _Base dtor only erases the elements, and note
|
|
* that if the elements themselves are pointers, the pointed-to
|
|
* memory is not touched in any way. Managing the pointer is
|
|
* the user's responsibilty.
|
|
*/
|
|
|
|
/**
|
|
* @brief %List assignment operator.
|
|
* @param x A %list of identical element and allocator types.
|
|
*
|
|
* All the elements of @a x are copied, but unlike the copy
|
|
* constructor, the allocator object is not copied.
|
|
*/
|
|
list&
|
|
operator=(const list& __x);
|
|
|
|
/**
|
|
* @brief Assigns a given value to a %list.
|
|
* @param n Number of elements to be assigned.
|
|
* @param val Value to be assigned.
|
|
*
|
|
* This function fills a %list with @a n copies of the given
|
|
* value. Note that the assignment completely changes the %list
|
|
* and that the resulting %list's size is the same as the number
|
|
* of elements assigned. Old data may be lost.
|
|
*/
|
|
void
|
|
assign(size_type __n, const value_type& __val)
|
|
{ _M_fill_assign(__n, __val); }
|
|
|
|
/**
|
|
* @brief Assigns a range to a %list.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* This function fills a %list with copies of the elements in the
|
|
* range [@a first,@a last).
|
|
*
|
|
* Note that the assignment completely changes the %list and
|
|
* that the resulting %list's size is the same as the number of
|
|
* elements assigned. Old data may be lost.
|
|
*/
|
|
template<typename _InputIterator>
|
|
void
|
|
assign(_InputIterator __first, _InputIterator __last)
|
|
{
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
|
|
_M_assign_dispatch(__first, __last, _Integral());
|
|
}
|
|
|
|
/// Get a copy of the memory allocation object.
|
|
allocator_type
|
|
get_allocator() const
|
|
{ return _Base::get_allocator(); }
|
|
|
|
// iterators
|
|
/**
|
|
* Returns a read/write iterator that points to the first element in the
|
|
* %list. Iteration is done in ordinary element order.
|
|
*/
|
|
iterator
|
|
begin()
|
|
{ return iterator(this->_M_impl._M_node._M_next); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) iterator that points to the
|
|
* first element in the %list. Iteration is done in ordinary
|
|
* element order.
|
|
*/
|
|
const_iterator
|
|
begin() const
|
|
{ return const_iterator(this->_M_impl._M_node._M_next); }
|
|
|
|
/**
|
|
* Returns a read/write iterator that points one past the last
|
|
* element in the %list. Iteration is done in ordinary element
|
|
* order.
|
|
*/
|
|
iterator
|
|
end()
|
|
{ return iterator(&this->_M_impl._M_node); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) iterator that points one past
|
|
* the last element in the %list. Iteration is done in ordinary
|
|
* element order.
|
|
*/
|
|
const_iterator
|
|
end() const
|
|
{ return const_iterator(&this->_M_impl._M_node); }
|
|
|
|
/**
|
|
* Returns a read/write reverse iterator that points to the last
|
|
* element in the %list. Iteration is done in reverse element
|
|
* order.
|
|
*/
|
|
reverse_iterator
|
|
rbegin()
|
|
{ return reverse_iterator(end()); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reverse iterator that points to
|
|
* the last element in the %list. Iteration is done in reverse
|
|
* element order.
|
|
*/
|
|
const_reverse_iterator
|
|
rbegin() const
|
|
{ return const_reverse_iterator(end()); }
|
|
|
|
/**
|
|
* Returns a read/write reverse iterator that points to one
|
|
* before the first element in the %list. Iteration is done in
|
|
* reverse element order.
|
|
*/
|
|
reverse_iterator
|
|
rend()
|
|
{ return reverse_iterator(begin()); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reverse iterator that points to one
|
|
* before the first element in the %list. Iteration is done in reverse
|
|
* element order.
|
|
*/
|
|
const_reverse_iterator
|
|
rend() const
|
|
{ return const_reverse_iterator(begin()); }
|
|
|
|
// [23.2.2.2] capacity
|
|
/**
|
|
* Returns true if the %list is empty. (Thus begin() would equal
|
|
* end().)
|
|
*/
|
|
bool
|
|
empty() const
|
|
{ return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
|
|
|
|
/** Returns the number of elements in the %list. */
|
|
size_type
|
|
size() const
|
|
{ return std::distance(begin(), end()); }
|
|
|
|
/** Returns the size() of the largest possible %list. */
|
|
size_type
|
|
max_size() const
|
|
{ return size_type(-1); }
|
|
|
|
/**
|
|
* @brief Resizes the %list to the specified number of elements.
|
|
* @param new_size Number of elements the %list should contain.
|
|
* @param x Data with which new elements should be populated.
|
|
*
|
|
* This function will %resize the %list to the specified number
|
|
* of elements. If the number is smaller than the %list's
|
|
* current size the %list is truncated, otherwise the %list is
|
|
* extended and new elements are populated with given data.
|
|
*/
|
|
void
|
|
resize(size_type __new_size, value_type __x = value_type());
|
|
|
|
// element access
|
|
/**
|
|
* Returns a read/write reference to the data at the first
|
|
* element of the %list.
|
|
*/
|
|
reference
|
|
front()
|
|
{ return *begin(); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reference to the data at the first
|
|
* element of the %list.
|
|
*/
|
|
const_reference
|
|
front() const
|
|
{ return *begin(); }
|
|
|
|
/**
|
|
* Returns a read/write reference to the data at the last element
|
|
* of the %list.
|
|
*/
|
|
reference
|
|
back()
|
|
{
|
|
iterator __tmp = end();
|
|
--__tmp;
|
|
return *__tmp;
|
|
}
|
|
|
|
/**
|
|
* Returns a read-only (constant) reference to the data at the last
|
|
* element of the %list.
|
|
*/
|
|
const_reference
|
|
back() const
|
|
{
|
|
const_iterator __tmp = end();
|
|
--__tmp;
|
|
return *__tmp;
|
|
}
|
|
|
|
// [23.2.2.3] modifiers
|
|
/**
|
|
* @brief Add data to the front of the %list.
|
|
* @param x Data to be added.
|
|
*
|
|
* This is a typical stack operation. The function creates an
|
|
* element at the front of the %list and assigns the given data
|
|
* to it. Due to the nature of a %list this operation can be
|
|
* done in constant time, and does not invalidate iterators and
|
|
* references.
|
|
*/
|
|
void
|
|
push_front(const value_type& __x)
|
|
{ this->_M_insert(begin(), __x); }
|
|
|
|
/**
|
|
* @brief Removes first element.
|
|
*
|
|
* This is a typical stack operation. It shrinks the %list by
|
|
* one. Due to the nature of a %list this operation can be done
|
|
* in constant time, and only invalidates iterators/references to
|
|
* the element being removed.
|
|
*
|
|
* Note that no data is returned, and if the first element's data
|
|
* is needed, it should be retrieved before pop_front() is
|
|
* called.
|
|
*/
|
|
void
|
|
pop_front()
|
|
{ this->_M_erase(begin()); }
|
|
|
|
/**
|
|
* @brief Add data to the end of the %list.
|
|
* @param x Data to be added.
|
|
*
|
|
* This is a typical stack operation. The function creates an
|
|
* element at the end of the %list and assigns the given data to
|
|
* it. Due to the nature of a %list this operation can be done
|
|
* in constant time, and does not invalidate iterators and
|
|
* references.
|
|
*/
|
|
void
|
|
push_back(const value_type& __x)
|
|
{ this->_M_insert(end(), __x); }
|
|
|
|
/**
|
|
* @brief Removes last element.
|
|
*
|
|
* This is a typical stack operation. It shrinks the %list by
|
|
* one. Due to the nature of a %list this operation can be done
|
|
* in constant time, and only invalidates iterators/references to
|
|
* the element being removed.
|
|
*
|
|
* Note that no data is returned, and if the last element's data
|
|
* is needed, it should be retrieved before pop_back() is called.
|
|
*/
|
|
void
|
|
pop_back()
|
|
{ this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
|
|
|
|
/**
|
|
* @brief Inserts given value into %list before specified iterator.
|
|
* @param position An iterator into the %list.
|
|
* @param x Data to be inserted.
|
|
* @return An iterator that points to the inserted data.
|
|
*
|
|
* This function will insert a copy of the given value before
|
|
* the specified location. Due to the nature of a %list this
|
|
* operation can be done in constant time, and does not
|
|
* invalidate iterators and references.
|
|
*/
|
|
iterator
|
|
insert(iterator __position, const value_type& __x);
|
|
|
|
/**
|
|
* @brief Inserts a number of copies of given data into the %list.
|
|
* @param position An iterator into the %list.
|
|
* @param n Number of elements to be inserted.
|
|
* @param x Data to be inserted.
|
|
*
|
|
* This function will insert a specified number of copies of the
|
|
* given data before the location specified by @a position.
|
|
*
|
|
* This operation is linear in the number of elements inserted and
|
|
* does not invalidate iterators and references.
|
|
*/
|
|
void
|
|
insert(iterator __position, size_type __n, const value_type& __x)
|
|
{
|
|
list __tmp(__n, __x, _M_get_Node_allocator());
|
|
splice(__position, __tmp);
|
|
}
|
|
|
|
/**
|
|
* @brief Inserts a range into the %list.
|
|
* @param position An iterator into the %list.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* This function will insert copies of the data in the range [@a
|
|
* first,@a last) into the %list before the location specified by
|
|
* @a position.
|
|
*
|
|
* This operation is linear in the number of elements inserted and
|
|
* does not invalidate iterators and references.
|
|
*/
|
|
template<typename _InputIterator>
|
|
void
|
|
insert(iterator __position, _InputIterator __first,
|
|
_InputIterator __last)
|
|
{
|
|
list __tmp(__first, __last, _M_get_Node_allocator());
|
|
splice(__position, __tmp);
|
|
}
|
|
|
|
/**
|
|
* @brief Remove element at given position.
|
|
* @param position Iterator pointing to element to be erased.
|
|
* @return An iterator pointing to the next element (or end()).
|
|
*
|
|
* This function will erase the element at the given position and thus
|
|
* shorten the %list by one.
|
|
*
|
|
* Due to the nature of a %list this operation can be done in
|
|
* constant time, and only invalidates iterators/references to
|
|
* the element being removed. The user is also cautioned that
|
|
* this function only erases the element, and that if the element
|
|
* is itself a pointer, the pointed-to memory is not touched in
|
|
* any way. Managing the pointer is the user's responsibilty.
|
|
*/
|
|
iterator
|
|
erase(iterator __position);
|
|
|
|
/**
|
|
* @brief Remove a range of elements.
|
|
* @param first Iterator pointing to the first element to be erased.
|
|
* @param last Iterator pointing to one past the last element to be
|
|
* erased.
|
|
* @return An iterator pointing to the element pointed to by @a last
|
|
* prior to erasing (or end()).
|
|
*
|
|
* This function will erase the elements in the range @a
|
|
* [first,last) and shorten the %list accordingly.
|
|
*
|
|
* This operation is linear time in the size of the range and only
|
|
* invalidates iterators/references to the element being removed.
|
|
* The user is also cautioned that this function only erases the
|
|
* elements, and that if the elements themselves are pointers, the
|
|
* pointed-to memory is not touched in any way. Managing the pointer
|
|
* is the user's responsibilty.
|
|
*/
|
|
iterator
|
|
erase(iterator __first, iterator __last)
|
|
{
|
|
while (__first != __last)
|
|
__first = erase(__first);
|
|
return __last;
|
|
}
|
|
|
|
/**
|
|
* @brief Swaps data with another %list.
|
|
* @param x A %list of the same element and allocator types.
|
|
*
|
|
* This exchanges the elements between two lists in constant
|
|
* time. Note that the global std::swap() function is
|
|
* specialized such that std::swap(l1,l2) will feed to this
|
|
* function.
|
|
*/
|
|
void
|
|
swap(list& __x)
|
|
{ _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node); }
|
|
|
|
/**
|
|
* Erases all the elements. Note that this function only erases
|
|
* the elements, and that if the elements themselves are
|
|
* pointers, the pointed-to memory is not touched in any way.
|
|
* Managing the pointer is the user's responsibilty.
|
|
*/
|
|
void
|
|
clear()
|
|
{
|
|
_Base::_M_clear();
|
|
_Base::_M_init();
|
|
}
|
|
|
|
// [23.2.2.4] list operations
|
|
/**
|
|
* @brief Insert contents of another %list.
|
|
* @param position Iterator referencing the element to insert before.
|
|
* @param x Source list.
|
|
*
|
|
* The elements of @a x are inserted in constant time in front of
|
|
* the element referenced by @a position. @a x becomes an empty
|
|
* list.
|
|
*/
|
|
void
|
|
splice(iterator __position, list& __x)
|
|
{
|
|
if (!__x.empty())
|
|
this->_M_transfer(__position, __x.begin(), __x.end());
|
|
}
|
|
|
|
/**
|
|
* @brief Insert element from another %list.
|
|
* @param position Iterator referencing the element to insert before.
|
|
* @param x Source list.
|
|
* @param i Iterator referencing the element to move.
|
|
*
|
|
* Removes the element in list @a x referenced by @a i and
|
|
* inserts it into the current list before @a position.
|
|
*/
|
|
void
|
|
splice(iterator __position, list&, iterator __i)
|
|
{
|
|
iterator __j = __i;
|
|
++__j;
|
|
if (__position == __i || __position == __j)
|
|
return;
|
|
this->_M_transfer(__position, __i, __j);
|
|
}
|
|
|
|
/**
|
|
* @brief Insert range from another %list.
|
|
* @param position Iterator referencing the element to insert before.
|
|
* @param x Source list.
|
|
* @param first Iterator referencing the start of range in x.
|
|
* @param last Iterator referencing the end of range in x.
|
|
*
|
|
* Removes elements in the range [first,last) and inserts them
|
|
* before @a position in constant time.
|
|
*
|
|
* Undefined if @a position is in [first,last).
|
|
*/
|
|
void
|
|
splice(iterator __position, list&, iterator __first, iterator __last)
|
|
{
|
|
if (__first != __last)
|
|
this->_M_transfer(__position, __first, __last);
|
|
}
|
|
|
|
/**
|
|
* @brief Remove all elements equal to value.
|
|
* @param value The value to remove.
|
|
*
|
|
* Removes every element in the list equal to @a value.
|
|
* Remaining elements stay in list order. Note that this
|
|
* function only erases the elements, and that if the elements
|
|
* themselves are pointers, the pointed-to memory is not
|
|
* touched in any way. Managing the pointer is the user's
|
|
* responsibilty.
|
|
*/
|
|
void
|
|
remove(const _Tp& __value);
|
|
|
|
/**
|
|
* @brief Remove all elements satisfying a predicate.
|
|
* @param Predicate Unary predicate function or object.
|
|
*
|
|
* Removes every element in the list for which the predicate
|
|
* returns true. Remaining elements stay in list order. Note
|
|
* that this function only erases the elements, and that if the
|
|
* elements themselves are pointers, the pointed-to memory is
|
|
* not touched in any way. Managing the pointer is the user's
|
|
* responsibilty.
|
|
*/
|
|
template<typename _Predicate>
|
|
void
|
|
remove_if(_Predicate);
|
|
|
|
/**
|
|
* @brief Remove consecutive duplicate elements.
|
|
*
|
|
* For each consecutive set of elements with the same value,
|
|
* remove all but the first one. Remaining elements stay in
|
|
* list order. Note that this function only erases the
|
|
* elements, and that if the elements themselves are pointers,
|
|
* the pointed-to memory is not touched in any way. Managing
|
|
* the pointer is the user's responsibilty.
|
|
*/
|
|
void
|
|
unique();
|
|
|
|
/**
|
|
* @brief Remove consecutive elements satisfying a predicate.
|
|
* @param BinaryPredicate Binary predicate function or object.
|
|
*
|
|
* For each consecutive set of elements [first,last) that
|
|
* satisfy predicate(first,i) where i is an iterator in
|
|
* [first,last), remove all but the first one. Remaining
|
|
* elements stay in list order. Note that this function only
|
|
* erases the elements, and that if the elements themselves are
|
|
* pointers, the pointed-to memory is not touched in any way.
|
|
* Managing the pointer is the user's responsibilty.
|
|
*/
|
|
template<typename _BinaryPredicate>
|
|
void
|
|
unique(_BinaryPredicate);
|
|
|
|
/**
|
|
* @brief Merge sorted lists.
|
|
* @param x Sorted list to merge.
|
|
*
|
|
* Assumes that both @a x and this list are sorted according to
|
|
* operator<(). Merges elements of @a x into this list in
|
|
* sorted order, leaving @a x empty when complete. Elements in
|
|
* this list precede elements in @a x that are equal.
|
|
*/
|
|
void
|
|
merge(list& __x);
|
|
|
|
/**
|
|
* @brief Merge sorted lists according to comparison function.
|
|
* @param x Sorted list to merge.
|
|
* @param StrictWeakOrdering Comparison function definining
|
|
* sort order.
|
|
*
|
|
* Assumes that both @a x and this list are sorted according to
|
|
* StrictWeakOrdering. Merges elements of @a x into this list
|
|
* in sorted order, leaving @a x empty when complete. Elements
|
|
* in this list precede elements in @a x that are equivalent
|
|
* according to StrictWeakOrdering().
|
|
*/
|
|
template<typename _StrictWeakOrdering>
|
|
void
|
|
merge(list&, _StrictWeakOrdering);
|
|
|
|
/**
|
|
* @brief Reverse the elements in list.
|
|
*
|
|
* Reverse the order of elements in the list in linear time.
|
|
*/
|
|
void
|
|
reverse()
|
|
{ this->_M_impl._M_node.reverse(); }
|
|
|
|
/**
|
|
* @brief Sort the elements.
|
|
*
|
|
* Sorts the elements of this list in NlogN time. Equivalent
|
|
* elements remain in list order.
|
|
*/
|
|
void
|
|
sort();
|
|
|
|
/**
|
|
* @brief Sort the elements according to comparison function.
|
|
*
|
|
* Sorts the elements of this list in NlogN time. Equivalent
|
|
* elements remain in list order.
|
|
*/
|
|
template<typename _StrictWeakOrdering>
|
|
void
|
|
sort(_StrictWeakOrdering);
|
|
|
|
protected:
|
|
// Internal constructor functions follow.
|
|
|
|
// Called by the range constructor to implement [23.1.1]/9
|
|
template<typename _Integer>
|
|
void
|
|
_M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
|
|
{
|
|
_M_fill_initialize(static_cast<size_type>(__n),
|
|
static_cast<value_type>(__x));
|
|
}
|
|
|
|
// Called by the range constructor to implement [23.1.1]/9
|
|
template<typename _InputIterator>
|
|
void
|
|
_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
|
|
__false_type)
|
|
{
|
|
for (; __first != __last; ++__first)
|
|
push_back(*__first);
|
|
}
|
|
|
|
// Called by list(n,v,a), and the range constructor when it turns out
|
|
// to be the same thing.
|
|
void
|
|
_M_fill_initialize(size_type __n, const value_type& __x)
|
|
{
|
|
for (; __n > 0; --__n)
|
|
push_back(__x);
|
|
}
|
|
|
|
|
|
// Internal assign functions follow.
|
|
|
|
// Called by the range assign to implement [23.1.1]/9
|
|
template<typename _Integer>
|
|
void
|
|
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
|
|
{
|
|
_M_fill_assign(static_cast<size_type>(__n),
|
|
static_cast<value_type>(__val));
|
|
}
|
|
|
|
// Called by the range assign to implement [23.1.1]/9
|
|
template<typename _InputIterator>
|
|
void
|
|
_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
|
|
__false_type);
|
|
|
|
// Called by assign(n,t), and the range assign when it turns out
|
|
// to be the same thing.
|
|
void
|
|
_M_fill_assign(size_type __n, const value_type& __val);
|
|
|
|
|
|
// Moves the elements from [first,last) before position.
|
|
void
|
|
_M_transfer(iterator __position, iterator __first, iterator __last)
|
|
{ __position._M_node->transfer(__first._M_node, __last._M_node); }
|
|
|
|
// Inserts new element at position given and with value given.
|
|
void
|
|
_M_insert(iterator __position, const value_type& __x)
|
|
{
|
|
_Node* __tmp = _M_create_node(__x);
|
|
__tmp->hook(__position._M_node);
|
|
}
|
|
|
|
// Erases element at position given.
|
|
void
|
|
_M_erase(iterator __position)
|
|
{
|
|
__position._M_node->unhook();
|
|
_Node* __n = static_cast<_Node*>(__position._M_node);
|
|
_M_get_Tp_allocator().destroy(&__n->_M_data);
|
|
_M_put_node(__n);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* @brief List equality comparison.
|
|
* @param x A %list.
|
|
* @param y A %list of the same type as @a x.
|
|
* @return True iff the size and elements of the lists are equal.
|
|
*
|
|
* This is an equivalence relation. It is linear in the size of
|
|
* the lists. Lists are considered equivalent if their sizes are
|
|
* equal, and if corresponding elements compare equal.
|
|
*/
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
|
|
{
|
|
typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
|
|
const_iterator __end1 = __x.end();
|
|
const_iterator __end2 = __y.end();
|
|
|
|
const_iterator __i1 = __x.begin();
|
|
const_iterator __i2 = __y.begin();
|
|
while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
|
|
{
|
|
++__i1;
|
|
++__i2;
|
|
}
|
|
return __i1 == __end1 && __i2 == __end2;
|
|
}
|
|
|
|
/**
|
|
* @brief List ordering relation.
|
|
* @param x A %list.
|
|
* @param y A %list of the same type as @a x.
|
|
* @return True iff @a x is lexicographically less than @a y.
|
|
*
|
|
* This is a total ordering relation. It is linear in the size of the
|
|
* lists. The elements must be comparable with @c <.
|
|
*
|
|
* See std::lexicographical_compare() for how the determination is made.
|
|
*/
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
|
|
{ return std::lexicographical_compare(__x.begin(), __x.end(),
|
|
__y.begin(), __y.end()); }
|
|
|
|
/// Based on operator==
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
|
|
{ return !(__x == __y); }
|
|
|
|
/// Based on operator<
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
|
|
{ return __y < __x; }
|
|
|
|
/// Based on operator<
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
|
|
{ return !(__y < __x); }
|
|
|
|
/// Based on operator<
|
|
template<typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
|
|
{ return !(__x < __y); }
|
|
|
|
/// See std::list::swap().
|
|
template<typename _Tp, typename _Alloc>
|
|
inline void
|
|
swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
|
|
{ __x.swap(__y); }
|
|
|
|
_GLIBCXX_END_NESTED_NAMESPACE
|
|
|
|
#endif /* _LIST_H */
|
|
|