gcc/libgo/go/gob/decode.go
Ian Lance Taylor 7a9389330e Add Go frontend, libgo library, and Go testsuite.
gcc/:
	* gcc.c (default_compilers): Add entry for ".go".
	* common.opt: Add -static-libgo as a driver option.
	* doc/install.texi (Configuration): Mention libgo as an option for
	--enable-shared.  Mention go as an option for --enable-languages.
	* doc/invoke.texi (Overall Options): Mention .go as a file name
	suffix.  Mention go as a -x option.
	* doc/frontends.texi (G++ and GCC): Mention Go as a supported
	language.
	* doc/sourcebuild.texi (Top Level): Mention libgo.
	* doc/standards.texi (Standards): Add section on Go language.
	Move references for other languages into their own section.
	* doc/contrib.texi (Contributors): Mention that I contributed the
	Go frontend.
gcc/testsuite/:
	* lib/go.exp: New file.
	* lib/go-dg.exp: New file.
	* lib/go-torture.exp: New file.
	* lib/target-supports.exp (check_compile): Match // Go.

From-SVN: r167407
2010-12-03 04:34:57 +00:00

1014 lines
29 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gob
// TODO(rsc): When garbage collector changes, revisit
// the allocations in this file that use unsafe.Pointer.
import (
"bytes"
"io"
"math"
"os"
"reflect"
"unsafe"
)
var (
errBadUint = os.ErrorString("gob: encoded unsigned integer out of range")
errBadType = os.ErrorString("gob: unknown type id or corrupted data")
errRange = os.ErrorString("gob: internal error: field numbers out of bounds")
)
// The execution state of an instance of the decoder. A new state
// is created for nested objects.
type decodeState struct {
dec *Decoder
// The buffer is stored with an extra indirection because it may be replaced
// if we load a type during decode (when reading an interface value).
b **bytes.Buffer
fieldnum int // the last field number read.
buf []byte
}
func newDecodeState(dec *Decoder, b **bytes.Buffer) *decodeState {
d := new(decodeState)
d.dec = dec
d.b = b
d.buf = make([]byte, uint64Size)
return d
}
func overflow(name string) os.ErrorString {
return os.ErrorString(`value for "` + name + `" out of range`)
}
// decodeUintReader reads an encoded unsigned integer from an io.Reader.
// Used only by the Decoder to read the message length.
func decodeUintReader(r io.Reader, buf []byte) (x uint64, err os.Error) {
_, err = r.Read(buf[0:1])
if err != nil {
return
}
b := buf[0]
if b <= 0x7f {
return uint64(b), nil
}
nb := -int(int8(b))
if nb > uint64Size {
err = errBadUint
return
}
var n int
n, err = io.ReadFull(r, buf[0:nb])
if err != nil {
if err == os.EOF {
err = io.ErrUnexpectedEOF
}
return
}
// Could check that the high byte is zero but it's not worth it.
for i := 0; i < n; i++ {
x <<= 8
x |= uint64(buf[i])
}
return
}
// decodeUint reads an encoded unsigned integer from state.r.
// Does not check for overflow.
func decodeUint(state *decodeState) (x uint64) {
b, err := state.b.ReadByte()
if err != nil {
error(err)
}
if b <= 0x7f {
return uint64(b)
}
nb := -int(int8(b))
if nb > uint64Size {
error(errBadUint)
}
n, err := state.b.Read(state.buf[0:nb])
if err != nil {
error(err)
}
// Don't need to check error; it's safe to loop regardless.
// Could check that the high byte is zero but it's not worth it.
for i := 0; i < n; i++ {
x <<= 8
x |= uint64(state.buf[i])
}
return x
}
// decodeInt reads an encoded signed integer from state.r.
// Does not check for overflow.
func decodeInt(state *decodeState) int64 {
x := decodeUint(state)
if x&1 != 0 {
return ^int64(x >> 1)
}
return int64(x >> 1)
}
type decOp func(i *decInstr, state *decodeState, p unsafe.Pointer)
// The 'instructions' of the decoding machine
type decInstr struct {
op decOp
field int // field number of the wire type
indir int // how many pointer indirections to reach the value in the struct
offset uintptr // offset in the structure of the field to encode
ovfl os.ErrorString // error message for overflow/underflow (for arrays, of the elements)
}
// Since the encoder writes no zeros, if we arrive at a decoder we have
// a value to extract and store. The field number has already been read
// (it's how we knew to call this decoder).
// Each decoder is responsible for handling any indirections associated
// with the data structure. If any pointer so reached is nil, allocation must
// be done.
// Walk the pointer hierarchy, allocating if we find a nil. Stop one before the end.
func decIndirect(p unsafe.Pointer, indir int) unsafe.Pointer {
for ; indir > 1; indir-- {
if *(*unsafe.Pointer)(p) == nil {
// Allocation required
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(unsafe.Pointer))
}
p = *(*unsafe.Pointer)(p)
}
return p
}
func ignoreUint(i *decInstr, state *decodeState, p unsafe.Pointer) {
decodeUint(state)
}
func ignoreTwoUints(i *decInstr, state *decodeState, p unsafe.Pointer) {
decodeUint(state)
decodeUint(state)
}
func decBool(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(bool))
}
p = *(*unsafe.Pointer)(p)
}
*(*bool)(p) = decodeInt(state) != 0
}
func decInt8(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int8))
}
p = *(*unsafe.Pointer)(p)
}
v := decodeInt(state)
if v < math.MinInt8 || math.MaxInt8 < v {
error(i.ovfl)
} else {
*(*int8)(p) = int8(v)
}
}
func decUint8(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint8))
}
p = *(*unsafe.Pointer)(p)
}
v := decodeUint(state)
if math.MaxUint8 < v {
error(i.ovfl)
} else {
*(*uint8)(p) = uint8(v)
}
}
func decInt16(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int16))
}
p = *(*unsafe.Pointer)(p)
}
v := decodeInt(state)
if v < math.MinInt16 || math.MaxInt16 < v {
error(i.ovfl)
} else {
*(*int16)(p) = int16(v)
}
}
func decUint16(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint16))
}
p = *(*unsafe.Pointer)(p)
}
v := decodeUint(state)
if math.MaxUint16 < v {
error(i.ovfl)
} else {
*(*uint16)(p) = uint16(v)
}
}
func decInt32(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int32))
}
p = *(*unsafe.Pointer)(p)
}
v := decodeInt(state)
if v < math.MinInt32 || math.MaxInt32 < v {
error(i.ovfl)
} else {
*(*int32)(p) = int32(v)
}
}
func decUint32(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint32))
}
p = *(*unsafe.Pointer)(p)
}
v := decodeUint(state)
if math.MaxUint32 < v {
error(i.ovfl)
} else {
*(*uint32)(p) = uint32(v)
}
}
func decInt64(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int64))
}
p = *(*unsafe.Pointer)(p)
}
*(*int64)(p) = int64(decodeInt(state))
}
func decUint64(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint64))
}
p = *(*unsafe.Pointer)(p)
}
*(*uint64)(p) = uint64(decodeUint(state))
}
// Floating-point numbers are transmitted as uint64s holding the bits
// of the underlying representation. They are sent byte-reversed, with
// the exponent end coming out first, so integer floating point numbers
// (for example) transmit more compactly. This routine does the
// unswizzling.
func floatFromBits(u uint64) float64 {
var v uint64
for i := 0; i < 8; i++ {
v <<= 8
v |= u & 0xFF
u >>= 8
}
return math.Float64frombits(v)
}
func storeFloat32(i *decInstr, state *decodeState, p unsafe.Pointer) {
v := floatFromBits(decodeUint(state))
av := v
if av < 0 {
av = -av
}
// +Inf is OK in both 32- and 64-bit floats. Underflow is always OK.
if math.MaxFloat32 < av && av <= math.MaxFloat64 {
error(i.ovfl)
} else {
*(*float32)(p) = float32(v)
}
}
func decFloat32(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(float32))
}
p = *(*unsafe.Pointer)(p)
}
storeFloat32(i, state, p)
}
func decFloat64(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(float64))
}
p = *(*unsafe.Pointer)(p)
}
*(*float64)(p) = floatFromBits(uint64(decodeUint(state)))
}
// Complex numbers are just a pair of floating-point numbers, real part first.
func decComplex64(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex64))
}
p = *(*unsafe.Pointer)(p)
}
storeFloat32(i, state, p)
storeFloat32(i, state, unsafe.Pointer(uintptr(p)+uintptr(unsafe.Sizeof(float(0)))))
}
func decComplex128(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex128))
}
p = *(*unsafe.Pointer)(p)
}
real := floatFromBits(uint64(decodeUint(state)))
imag := floatFromBits(uint64(decodeUint(state)))
*(*complex128)(p) = cmplx(real, imag)
}
// uint8 arrays are encoded as an unsigned count followed by the raw bytes.
func decUint8Array(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new([]uint8))
}
p = *(*unsafe.Pointer)(p)
}
b := make([]uint8, decodeUint(state))
state.b.Read(b)
*(*[]uint8)(p) = b
}
// Strings are encoded as an unsigned count followed by the raw bytes.
func decString(i *decInstr, state *decodeState, p unsafe.Pointer) {
if i.indir > 0 {
if *(*unsafe.Pointer)(p) == nil {
*(*unsafe.Pointer)(p) = unsafe.Pointer(new([]byte))
}
p = *(*unsafe.Pointer)(p)
}
b := make([]byte, decodeUint(state))
state.b.Read(b)
*(*string)(p) = string(b)
}
func ignoreUint8Array(i *decInstr, state *decodeState, p unsafe.Pointer) {
b := make([]byte, decodeUint(state))
state.b.Read(b)
}
// Execution engine
// The encoder engine is an array of instructions indexed by field number of the incoming
// decoder. It is executed with random access according to field number.
type decEngine struct {
instr []decInstr
numInstr int // the number of active instructions
}
// allocate makes sure storage is available for an object of underlying type rtyp
// that is indir levels of indirection through p.
func allocate(rtyp reflect.Type, p uintptr, indir int) uintptr {
if indir == 0 {
return p
}
up := unsafe.Pointer(p)
if indir > 1 {
up = decIndirect(up, indir)
}
if *(*unsafe.Pointer)(up) == nil {
// Allocate object.
*(*unsafe.Pointer)(up) = unsafe.New(rtyp)
}
return *(*uintptr)(up)
}
func (dec *Decoder) decodeSingle(engine *decEngine, rtyp reflect.Type, b **bytes.Buffer, p uintptr, indir int) (err os.Error) {
defer catchError(&err)
p = allocate(rtyp, p, indir)
state := newDecodeState(dec, b)
state.fieldnum = singletonField
basep := p
delta := int(decodeUint(state))
if delta != 0 {
errorf("gob decode: corrupted data: non-zero delta for singleton")
}
instr := &engine.instr[singletonField]
ptr := unsafe.Pointer(basep) // offset will be zero
if instr.indir > 1 {
ptr = decIndirect(ptr, instr.indir)
}
instr.op(instr, state, ptr)
return nil
}
func (dec *Decoder) decodeStruct(engine *decEngine, rtyp *reflect.StructType, b **bytes.Buffer, p uintptr, indir int) (err os.Error) {
defer catchError(&err)
p = allocate(rtyp, p, indir)
state := newDecodeState(dec, b)
state.fieldnum = -1
basep := p
for state.b.Len() > 0 {
delta := int(decodeUint(state))
if delta < 0 {
errorf("gob decode: corrupted data: negative delta")
}
if delta == 0 { // struct terminator is zero delta fieldnum
break
}
fieldnum := state.fieldnum + delta
if fieldnum >= len(engine.instr) {
error(errRange)
break
}
instr := &engine.instr[fieldnum]
p := unsafe.Pointer(basep + instr.offset)
if instr.indir > 1 {
p = decIndirect(p, instr.indir)
}
instr.op(instr, state, p)
state.fieldnum = fieldnum
}
return nil
}
func (dec *Decoder) ignoreStruct(engine *decEngine, b **bytes.Buffer) (err os.Error) {
defer catchError(&err)
state := newDecodeState(dec, b)
state.fieldnum = -1
for state.b.Len() > 0 {
delta := int(decodeUint(state))
if delta < 0 {
errorf("gob ignore decode: corrupted data: negative delta")
}
if delta == 0 { // struct terminator is zero delta fieldnum
break
}
fieldnum := state.fieldnum + delta
if fieldnum >= len(engine.instr) {
error(errRange)
}
instr := &engine.instr[fieldnum]
instr.op(instr, state, unsafe.Pointer(nil))
state.fieldnum = fieldnum
}
return nil
}
func (dec *Decoder) decodeArrayHelper(state *decodeState, p uintptr, elemOp decOp, elemWid uintptr, length, elemIndir int, ovfl os.ErrorString) {
instr := &decInstr{elemOp, 0, elemIndir, 0, ovfl}
for i := 0; i < length; i++ {
up := unsafe.Pointer(p)
if elemIndir > 1 {
up = decIndirect(up, elemIndir)
}
elemOp(instr, state, up)
p += uintptr(elemWid)
}
}
func (dec *Decoder) decodeArray(atyp *reflect.ArrayType, state *decodeState, p uintptr, elemOp decOp, elemWid uintptr, length, indir, elemIndir int, ovfl os.ErrorString) {
if indir > 0 {
p = allocate(atyp, p, 1) // All but the last level has been allocated by dec.Indirect
}
if n := decodeUint(state); n != uint64(length) {
errorf("gob: length mismatch in decodeArray")
}
dec.decodeArrayHelper(state, p, elemOp, elemWid, length, elemIndir, ovfl)
}
func decodeIntoValue(state *decodeState, op decOp, indir int, v reflect.Value, ovfl os.ErrorString) reflect.Value {
instr := &decInstr{op, 0, indir, 0, ovfl}
up := unsafe.Pointer(v.Addr())
if indir > 1 {
up = decIndirect(up, indir)
}
op(instr, state, up)
return v
}
func (dec *Decoder) decodeMap(mtyp *reflect.MapType, state *decodeState, p uintptr, keyOp, elemOp decOp, indir, keyIndir, elemIndir int, ovfl os.ErrorString) {
if indir > 0 {
p = allocate(mtyp, p, 1) // All but the last level has been allocated by dec.Indirect
}
up := unsafe.Pointer(p)
if *(*unsafe.Pointer)(up) == nil { // maps are represented as a pointer in the runtime
// Allocate map.
*(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.MakeMap(mtyp).Get())
}
// Maps cannot be accessed by moving addresses around the way
// that slices etc. can. We must recover a full reflection value for
// the iteration.
v := reflect.NewValue(unsafe.Unreflect(mtyp, unsafe.Pointer((p)))).(*reflect.MapValue)
n := int(decodeUint(state))
for i := 0; i < n; i++ {
key := decodeIntoValue(state, keyOp, keyIndir, reflect.MakeZero(mtyp.Key()), ovfl)
elem := decodeIntoValue(state, elemOp, elemIndir, reflect.MakeZero(mtyp.Elem()), ovfl)
v.SetElem(key, elem)
}
}
func (dec *Decoder) ignoreArrayHelper(state *decodeState, elemOp decOp, length int) {
instr := &decInstr{elemOp, 0, 0, 0, os.ErrorString("no error")}
for i := 0; i < length; i++ {
elemOp(instr, state, nil)
}
}
func (dec *Decoder) ignoreArray(state *decodeState, elemOp decOp, length int) {
if n := decodeUint(state); n != uint64(length) {
errorf("gob: length mismatch in ignoreArray")
}
dec.ignoreArrayHelper(state, elemOp, length)
}
func (dec *Decoder) ignoreMap(state *decodeState, keyOp, elemOp decOp) {
n := int(decodeUint(state))
keyInstr := &decInstr{keyOp, 0, 0, 0, os.ErrorString("no error")}
elemInstr := &decInstr{elemOp, 0, 0, 0, os.ErrorString("no error")}
for i := 0; i < n; i++ {
keyOp(keyInstr, state, nil)
elemOp(elemInstr, state, nil)
}
}
func (dec *Decoder) decodeSlice(atyp *reflect.SliceType, state *decodeState, p uintptr, elemOp decOp, elemWid uintptr, indir, elemIndir int, ovfl os.ErrorString) {
n := int(uintptr(decodeUint(state)))
if indir > 0 {
up := unsafe.Pointer(p)
if *(*unsafe.Pointer)(up) == nil {
// Allocate the slice header.
*(*unsafe.Pointer)(up) = unsafe.Pointer(new([]unsafe.Pointer))
}
p = *(*uintptr)(up)
}
// Allocate storage for the slice elements, that is, the underlying array.
// Always write a header at p.
hdrp := (*reflect.SliceHeader)(unsafe.Pointer(p))
hdrp.Data = uintptr(unsafe.NewArray(atyp.Elem(), n))
hdrp.Len = n
hdrp.Cap = n
dec.decodeArrayHelper(state, hdrp.Data, elemOp, elemWid, n, elemIndir, ovfl)
}
func (dec *Decoder) ignoreSlice(state *decodeState, elemOp decOp) {
dec.ignoreArrayHelper(state, elemOp, int(decodeUint(state)))
}
// setInterfaceValue sets an interface value to a concrete value through
// reflection. If the concrete value does not implement the interface, the
// setting will panic. This routine turns the panic into an error return.
// This dance avoids manually checking that the value satisfies the
// interface.
// TODO(rsc): avoid panic+recover after fixing issue 327.
func setInterfaceValue(ivalue *reflect.InterfaceValue, value reflect.Value) {
defer func() {
if e := recover(); e != nil {
error(e.(os.Error))
}
}()
ivalue.Set(value)
}
// decodeInterface receives the name of a concrete type followed by its value.
// If the name is empty, the value is nil and no value is sent.
func (dec *Decoder) decodeInterface(ityp *reflect.InterfaceType, state *decodeState, p uintptr, indir int) {
// Create an interface reflect.Value. We need one even for the nil case.
ivalue := reflect.MakeZero(ityp).(*reflect.InterfaceValue)
// Read the name of the concrete type.
b := make([]byte, decodeUint(state))
state.b.Read(b)
name := string(b)
if name == "" {
// Copy the representation of the nil interface value to the target.
// This is horribly unsafe and special.
*(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.Get()
return
}
// The concrete type must be registered.
typ, ok := nameToConcreteType[name]
if !ok {
errorf("gob: name not registered for interface: %q", name)
}
// Read the concrete value.
value := reflect.MakeZero(typ)
dec.decodeValueFromBuffer(value, false, true)
if dec.err != nil {
error(dec.err)
}
// Allocate the destination interface value.
if indir > 0 {
p = allocate(ityp, p, 1) // All but the last level has been allocated by dec.Indirect
}
// Assign the concrete value to the interface.
// Tread carefully; it might not satisfy the interface.
setInterfaceValue(ivalue, value)
// Copy the representation of the interface value to the target.
// This is horribly unsafe and special.
*(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.Get()
}
func (dec *Decoder) ignoreInterface(state *decodeState) {
// Read the name of the concrete type.
b := make([]byte, decodeUint(state))
_, err := state.b.Read(b)
if err != nil {
error(err)
}
dec.decodeValueFromBuffer(nil, true, true)
if dec.err != nil {
error(err)
}
}
// Index by Go types.
var decOpMap = []decOp{
reflect.Bool: decBool,
reflect.Int8: decInt8,
reflect.Int16: decInt16,
reflect.Int32: decInt32,
reflect.Int64: decInt64,
reflect.Uint8: decUint8,
reflect.Uint16: decUint16,
reflect.Uint32: decUint32,
reflect.Uint64: decUint64,
reflect.Float32: decFloat32,
reflect.Float64: decFloat64,
reflect.Complex64: decComplex64,
reflect.Complex128: decComplex128,
reflect.String: decString,
}
// Indexed by gob types. tComplex will be added during type.init().
var decIgnoreOpMap = map[typeId]decOp{
tBool: ignoreUint,
tInt: ignoreUint,
tUint: ignoreUint,
tFloat: ignoreUint,
tBytes: ignoreUint8Array,
tString: ignoreUint8Array,
tComplex: ignoreTwoUints,
}
// Return the decoding op for the base type under rt and
// the indirection count to reach it.
func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string) (decOp, int) {
typ, indir := indirect(rt)
var op decOp
k := typ.Kind()
if int(k) < len(decOpMap) {
op = decOpMap[k]
}
if op == nil {
// Special cases
switch t := typ.(type) {
case *reflect.ArrayType:
name = "element of " + name
elemId := dec.wireType[wireId].arrayT.Elem
elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name)
ovfl := overflow(name)
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
state.dec.decodeArray(t, state, uintptr(p), elemOp, t.Elem().Size(), t.Len(), i.indir, elemIndir, ovfl)
}
case *reflect.MapType:
name = "element of " + name
keyId := dec.wireType[wireId].mapT.Key
elemId := dec.wireType[wireId].mapT.Elem
keyOp, keyIndir := dec.decOpFor(keyId, t.Key(), name)
elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name)
ovfl := overflow(name)
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
up := unsafe.Pointer(p)
state.dec.decodeMap(t, state, uintptr(up), keyOp, elemOp, i.indir, keyIndir, elemIndir, ovfl)
}
case *reflect.SliceType:
name = "element of " + name
if t.Elem().Kind() == reflect.Uint8 {
op = decUint8Array
break
}
var elemId typeId
if tt, ok := builtinIdToType[wireId]; ok {
elemId = tt.(*sliceType).Elem
} else {
elemId = dec.wireType[wireId].sliceT.Elem
}
elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name)
ovfl := overflow(name)
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
state.dec.decodeSlice(t, state, uintptr(p), elemOp, t.Elem().Size(), i.indir, elemIndir, ovfl)
}
case *reflect.StructType:
// Generate a closure that calls out to the engine for the nested type.
enginePtr, err := dec.getDecEnginePtr(wireId, typ)
if err != nil {
error(err)
}
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
// indirect through enginePtr to delay evaluation for recursive structs
err = dec.decodeStruct(*enginePtr, t, state.b, uintptr(p), i.indir)
if err != nil {
error(err)
}
}
case *reflect.InterfaceType:
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
dec.decodeInterface(t, state, uintptr(p), i.indir)
}
}
}
if op == nil {
errorf("gob: decode can't handle type %s", rt.String())
}
return op, indir
}
// Return the decoding op for a field that has no destination.
func (dec *Decoder) decIgnoreOpFor(wireId typeId) decOp {
op, ok := decIgnoreOpMap[wireId]
if !ok {
if wireId == tInterface {
// Special case because it's a method: the ignored item might
// define types and we need to record their state in the decoder.
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
dec.ignoreInterface(state)
}
return op
}
// Special cases
wire := dec.wireType[wireId]
switch {
case wire == nil:
panic("internal error: can't find ignore op for type " + wireId.string())
case wire.arrayT != nil:
elemId := wire.arrayT.Elem
elemOp := dec.decIgnoreOpFor(elemId)
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
state.dec.ignoreArray(state, elemOp, wire.arrayT.Len)
}
case wire.mapT != nil:
keyId := dec.wireType[wireId].mapT.Key
elemId := dec.wireType[wireId].mapT.Elem
keyOp := dec.decIgnoreOpFor(keyId)
elemOp := dec.decIgnoreOpFor(elemId)
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
state.dec.ignoreMap(state, keyOp, elemOp)
}
case wire.sliceT != nil:
elemId := wire.sliceT.Elem
elemOp := dec.decIgnoreOpFor(elemId)
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
state.dec.ignoreSlice(state, elemOp)
}
case wire.structT != nil:
// Generate a closure that calls out to the engine for the nested type.
enginePtr, err := dec.getIgnoreEnginePtr(wireId)
if err != nil {
error(err)
}
op = func(i *decInstr, state *decodeState, p unsafe.Pointer) {
// indirect through enginePtr to delay evaluation for recursive structs
state.dec.ignoreStruct(*enginePtr, state.b)
}
}
}
if op == nil {
errorf("ignore can't handle type %s", wireId.string())
}
return op
}
// Are these two gob Types compatible?
// Answers the question for basic types, arrays, and slices.
// Structs are considered ok; fields will be checked later.
func (dec *Decoder) compatibleType(fr reflect.Type, fw typeId) bool {
fr, _ = indirect(fr)
switch t := fr.(type) {
default:
// map, chan, etc: cannot handle.
return false
case *reflect.BoolType:
return fw == tBool
case *reflect.IntType:
return fw == tInt
case *reflect.UintType:
return fw == tUint
case *reflect.FloatType:
return fw == tFloat
case *reflect.ComplexType:
return fw == tComplex
case *reflect.StringType:
return fw == tString
case *reflect.InterfaceType:
return fw == tInterface
case *reflect.ArrayType:
wire, ok := dec.wireType[fw]
if !ok || wire.arrayT == nil {
return false
}
array := wire.arrayT
return t.Len() == array.Len && dec.compatibleType(t.Elem(), array.Elem)
case *reflect.MapType:
wire, ok := dec.wireType[fw]
if !ok || wire.mapT == nil {
return false
}
mapType := wire.mapT
return dec.compatibleType(t.Key(), mapType.Key) && dec.compatibleType(t.Elem(), mapType.Elem)
case *reflect.SliceType:
// Is it an array of bytes?
if t.Elem().Kind() == reflect.Uint8 {
return fw == tBytes
}
// Extract and compare element types.
var sw *sliceType
if tt, ok := builtinIdToType[fw]; ok {
sw = tt.(*sliceType)
} else {
sw = dec.wireType[fw].sliceT
}
elem, _ := indirect(t.Elem())
return sw != nil && dec.compatibleType(elem, sw.Elem)
case *reflect.StructType:
return true
}
return true
}
func (dec *Decoder) compileSingle(remoteId typeId, rt reflect.Type) (engine *decEngine, err os.Error) {
engine = new(decEngine)
engine.instr = make([]decInstr, 1) // one item
name := rt.String() // best we can do
if !dec.compatibleType(rt, remoteId) {
return nil, os.ErrorString("gob: wrong type received for local value " + name)
}
op, indir := dec.decOpFor(remoteId, rt, name)
ovfl := os.ErrorString(`value for "` + name + `" out of range`)
engine.instr[singletonField] = decInstr{op, singletonField, indir, 0, ovfl}
engine.numInstr = 1
return
}
func (dec *Decoder) compileDec(remoteId typeId, rt reflect.Type) (engine *decEngine, err os.Error) {
defer catchError(&err)
srt, ok := rt.(*reflect.StructType)
if !ok {
return dec.compileSingle(remoteId, rt)
}
var wireStruct *structType
// Builtin types can come from global pool; the rest must be defined by the decoder.
// Also we know we're decoding a struct now, so the client must have sent one.
if t, ok := builtinIdToType[remoteId]; ok {
wireStruct, _ = t.(*structType)
} else {
wireStruct = dec.wireType[remoteId].structT
}
if wireStruct == nil {
errorf("gob: type mismatch in decoder: want struct type %s; got non-struct", rt.String())
}
engine = new(decEngine)
engine.instr = make([]decInstr, len(wireStruct.field))
// Loop over the fields of the wire type.
for fieldnum := 0; fieldnum < len(wireStruct.field); fieldnum++ {
wireField := wireStruct.field[fieldnum]
// Find the field of the local type with the same name.
localField, present := srt.FieldByName(wireField.name)
ovfl := overflow(wireField.name)
// TODO(r): anonymous names
if !present {
op := dec.decIgnoreOpFor(wireField.id)
engine.instr[fieldnum] = decInstr{op, fieldnum, 0, 0, ovfl}
continue
}
if !dec.compatibleType(localField.Type, wireField.id) {
errorf("gob: wrong type (%s) for received field %s.%s", localField.Type, wireStruct.name, wireField.name)
}
op, indir := dec.decOpFor(wireField.id, localField.Type, localField.Name)
engine.instr[fieldnum] = decInstr{op, fieldnum, indir, uintptr(localField.Offset), ovfl}
engine.numInstr++
}
return
}
func (dec *Decoder) getDecEnginePtr(remoteId typeId, rt reflect.Type) (enginePtr **decEngine, err os.Error) {
decoderMap, ok := dec.decoderCache[rt]
if !ok {
decoderMap = make(map[typeId]**decEngine)
dec.decoderCache[rt] = decoderMap
}
if enginePtr, ok = decoderMap[remoteId]; !ok {
// To handle recursive types, mark this engine as underway before compiling.
enginePtr = new(*decEngine)
decoderMap[remoteId] = enginePtr
*enginePtr, err = dec.compileDec(remoteId, rt)
if err != nil {
decoderMap[remoteId] = nil, false
}
}
return
}
// When ignoring struct data, in effect we compile it into this type
type emptyStruct struct{}
var emptyStructType = reflect.Typeof(emptyStruct{})
func (dec *Decoder) getIgnoreEnginePtr(wireId typeId) (enginePtr **decEngine, err os.Error) {
var ok bool
if enginePtr, ok = dec.ignorerCache[wireId]; !ok {
// To handle recursive types, mark this engine as underway before compiling.
enginePtr = new(*decEngine)
dec.ignorerCache[wireId] = enginePtr
*enginePtr, err = dec.compileDec(wireId, emptyStructType)
if err != nil {
dec.ignorerCache[wireId] = nil, false
}
}
return
}
func (dec *Decoder) decode(wireId typeId, val reflect.Value) os.Error {
// Dereference down to the underlying struct type.
rt, indir := indirect(val.Type())
enginePtr, err := dec.getDecEnginePtr(wireId, rt)
if err != nil {
return err
}
engine := *enginePtr
if st, ok := rt.(*reflect.StructType); ok {
if engine.numInstr == 0 && st.NumField() > 0 && len(dec.wireType[wireId].structT.field) > 0 {
name := rt.Name()
return os.ErrorString("gob: type mismatch: no fields matched compiling decoder for " + name)
}
return dec.decodeStruct(engine, st, dec.state.b, uintptr(val.Addr()), indir)
}
return dec.decodeSingle(engine, rt, dec.state.b, uintptr(val.Addr()), indir)
}
func init() {
var fop, cop decOp
switch reflect.Typeof(float(0)).Bits() {
case 32:
fop = decFloat32
cop = decComplex64
case 64:
fop = decFloat64
cop = decComplex128
default:
panic("gob: unknown size of float")
}
decOpMap[reflect.Float] = fop
decOpMap[reflect.Complex] = cop
var iop, uop decOp
switch reflect.Typeof(int(0)).Bits() {
case 32:
iop = decInt32
uop = decUint32
case 64:
iop = decInt64
uop = decUint64
default:
panic("gob: unknown size of int/uint")
}
decOpMap[reflect.Int] = iop
decOpMap[reflect.Uint] = uop
// Finally uintptr
switch reflect.Typeof(uintptr(0)).Bits() {
case 32:
uop = decUint32
case 64:
uop = decUint64
default:
panic("gob: unknown size of uintptr")
}
decOpMap[reflect.Uintptr] = uop
}