eeead3a6f1
2016-08-18 Richard Biener <rguenther@suse.de> * ssa-iterators.h (ssa_vuse_operand): New inline. * tree-if-conv.c (ifc_temp_var): Update virtual operand. (predicate_all_scalar_phis): Use remove_phi_node to remove phi nodes predicated. Delay removing virtual PHIs. (predicate_mem_writes): Update virtual operands. (combine_blocks): Likewise. Propagate out remaining virtual PHIs. (tree_if_conversion): Do not rewrite virtual SSA form. * tree-phinodes.c (release_phi_node): Make static. * tree-phinodes.h (release_phi_node): Remove. From-SVN: r239560
2843 lines
76 KiB
C
2843 lines
76 KiB
C
/* If-conversion for vectorizer.
|
|
Copyright (C) 2004-2016 Free Software Foundation, Inc.
|
|
Contributed by Devang Patel <dpatel@apple.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* This pass implements a tree level if-conversion of loops. Its
|
|
initial goal is to help the vectorizer to vectorize loops with
|
|
conditions.
|
|
|
|
A short description of if-conversion:
|
|
|
|
o Decide if a loop is if-convertible or not.
|
|
o Walk all loop basic blocks in breadth first order (BFS order).
|
|
o Remove conditional statements (at the end of basic block)
|
|
and propagate condition into destination basic blocks'
|
|
predicate list.
|
|
o Replace modify expression with conditional modify expression
|
|
using current basic block's condition.
|
|
o Merge all basic blocks
|
|
o Replace phi nodes with conditional modify expr
|
|
o Merge all basic blocks into header
|
|
|
|
Sample transformation:
|
|
|
|
INPUT
|
|
-----
|
|
|
|
# i_23 = PHI <0(0), i_18(10)>;
|
|
<L0>:;
|
|
j_15 = A[i_23];
|
|
if (j_15 > 41) goto <L1>; else goto <L17>;
|
|
|
|
<L17>:;
|
|
goto <bb 3> (<L3>);
|
|
|
|
<L1>:;
|
|
|
|
# iftmp.2_4 = PHI <0(8), 42(2)>;
|
|
<L3>:;
|
|
A[i_23] = iftmp.2_4;
|
|
i_18 = i_23 + 1;
|
|
if (i_18 <= 15) goto <L19>; else goto <L18>;
|
|
|
|
<L19>:;
|
|
goto <bb 1> (<L0>);
|
|
|
|
<L18>:;
|
|
|
|
OUTPUT
|
|
------
|
|
|
|
# i_23 = PHI <0(0), i_18(10)>;
|
|
<L0>:;
|
|
j_15 = A[i_23];
|
|
|
|
<L3>:;
|
|
iftmp.2_4 = j_15 > 41 ? 42 : 0;
|
|
A[i_23] = iftmp.2_4;
|
|
i_18 = i_23 + 1;
|
|
if (i_18 <= 15) goto <L19>; else goto <L18>;
|
|
|
|
<L19>:;
|
|
goto <bb 1> (<L0>);
|
|
|
|
<L18>:;
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "cfghooks.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "expmed.h"
|
|
#include "optabs-query.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "alias.h"
|
|
#include "fold-const.h"
|
|
#include "stor-layout.h"
|
|
#include "gimple-fold.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimplify-me.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "tree-ssa.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-data-ref.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "tree-ssa-loop.h"
|
|
#include "tree-ssa-loop-niter.h"
|
|
#include "tree-ssa-loop-ivopts.h"
|
|
#include "tree-ssa-address.h"
|
|
#include "dbgcnt.h"
|
|
#include "tree-hash-traits.h"
|
|
#include "varasm.h"
|
|
#include "builtins.h"
|
|
#include "params.h"
|
|
#include "cfganal.h"
|
|
|
|
/* Only handle PHIs with no more arguments unless we are asked to by
|
|
simd pragma. */
|
|
#define MAX_PHI_ARG_NUM \
|
|
((unsigned) PARAM_VALUE (PARAM_MAX_TREE_IF_CONVERSION_PHI_ARGS))
|
|
|
|
/* Indicate if new load/store that needs to be predicated is introduced
|
|
during if conversion. */
|
|
static bool any_pred_load_store;
|
|
|
|
/* Indicate if there are any complicated PHIs that need to be handled in
|
|
if-conversion. Complicated PHI has more than two arguments and can't
|
|
be degenerated to two arguments PHI. See more information in comment
|
|
before phi_convertible_by_degenerating_args. */
|
|
static bool any_complicated_phi;
|
|
|
|
/* Hash for struct innermost_loop_behavior. It depends on the user to
|
|
free the memory. */
|
|
|
|
struct innermost_loop_behavior_hash : nofree_ptr_hash <innermost_loop_behavior>
|
|
{
|
|
static inline hashval_t hash (const value_type &);
|
|
static inline bool equal (const value_type &,
|
|
const compare_type &);
|
|
};
|
|
|
|
inline hashval_t
|
|
innermost_loop_behavior_hash::hash (const value_type &e)
|
|
{
|
|
hashval_t hash;
|
|
|
|
hash = iterative_hash_expr (e->base_address, 0);
|
|
hash = iterative_hash_expr (e->offset, hash);
|
|
hash = iterative_hash_expr (e->init, hash);
|
|
return iterative_hash_expr (e->step, hash);
|
|
}
|
|
|
|
inline bool
|
|
innermost_loop_behavior_hash::equal (const value_type &e1,
|
|
const compare_type &e2)
|
|
{
|
|
if ((e1->base_address && !e2->base_address)
|
|
|| (!e1->base_address && e2->base_address)
|
|
|| (!e1->offset && e2->offset)
|
|
|| (e1->offset && !e2->offset)
|
|
|| (!e1->init && e2->init)
|
|
|| (e1->init && !e2->init)
|
|
|| (!e1->step && e2->step)
|
|
|| (e1->step && !e2->step))
|
|
return false;
|
|
|
|
if (e1->base_address && e2->base_address
|
|
&& !operand_equal_p (e1->base_address, e2->base_address, 0))
|
|
return false;
|
|
if (e1->offset && e2->offset
|
|
&& !operand_equal_p (e1->offset, e2->offset, 0))
|
|
return false;
|
|
if (e1->init && e2->init
|
|
&& !operand_equal_p (e1->init, e2->init, 0))
|
|
return false;
|
|
if (e1->step && e2->step
|
|
&& !operand_equal_p (e1->step, e2->step, 0))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* List of basic blocks in if-conversion-suitable order. */
|
|
static basic_block *ifc_bbs;
|
|
|
|
/* Hash table to store <DR's innermost loop behavior, DR> pairs. */
|
|
static hash_map<innermost_loop_behavior_hash,
|
|
data_reference_p> *innermost_DR_map;
|
|
|
|
/* Hash table to store <base reference, DR> pairs. */
|
|
static hash_map<tree_operand_hash, data_reference_p> *baseref_DR_map;
|
|
|
|
/* Structure used to predicate basic blocks. This is attached to the
|
|
->aux field of the BBs in the loop to be if-converted. */
|
|
struct bb_predicate {
|
|
|
|
/* The condition under which this basic block is executed. */
|
|
tree predicate;
|
|
|
|
/* PREDICATE is gimplified, and the sequence of statements is
|
|
recorded here, in order to avoid the duplication of computations
|
|
that occur in previous conditions. See PR44483. */
|
|
gimple_seq predicate_gimplified_stmts;
|
|
};
|
|
|
|
/* Returns true when the basic block BB has a predicate. */
|
|
|
|
static inline bool
|
|
bb_has_predicate (basic_block bb)
|
|
{
|
|
return bb->aux != NULL;
|
|
}
|
|
|
|
/* Returns the gimplified predicate for basic block BB. */
|
|
|
|
static inline tree
|
|
bb_predicate (basic_block bb)
|
|
{
|
|
return ((struct bb_predicate *) bb->aux)->predicate;
|
|
}
|
|
|
|
/* Sets the gimplified predicate COND for basic block BB. */
|
|
|
|
static inline void
|
|
set_bb_predicate (basic_block bb, tree cond)
|
|
{
|
|
gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
|
|
&& is_gimple_condexpr (TREE_OPERAND (cond, 0)))
|
|
|| is_gimple_condexpr (cond));
|
|
((struct bb_predicate *) bb->aux)->predicate = cond;
|
|
}
|
|
|
|
/* Returns the sequence of statements of the gimplification of the
|
|
predicate for basic block BB. */
|
|
|
|
static inline gimple_seq
|
|
bb_predicate_gimplified_stmts (basic_block bb)
|
|
{
|
|
return ((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts;
|
|
}
|
|
|
|
/* Sets the sequence of statements STMTS of the gimplification of the
|
|
predicate for basic block BB. */
|
|
|
|
static inline void
|
|
set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
|
|
{
|
|
((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts = stmts;
|
|
}
|
|
|
|
/* Adds the sequence of statements STMTS to the sequence of statements
|
|
of the predicate for basic block BB. */
|
|
|
|
static inline void
|
|
add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
|
|
{
|
|
gimple_seq_add_seq_without_update
|
|
(&(((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts), stmts);
|
|
}
|
|
|
|
/* Initializes to TRUE the predicate of basic block BB. */
|
|
|
|
static inline void
|
|
init_bb_predicate (basic_block bb)
|
|
{
|
|
bb->aux = XNEW (struct bb_predicate);
|
|
set_bb_predicate_gimplified_stmts (bb, NULL);
|
|
set_bb_predicate (bb, boolean_true_node);
|
|
}
|
|
|
|
/* Release the SSA_NAMEs associated with the predicate of basic block BB,
|
|
but don't actually free it. */
|
|
|
|
static inline void
|
|
release_bb_predicate (basic_block bb)
|
|
{
|
|
gimple_seq stmts = bb_predicate_gimplified_stmts (bb);
|
|
if (stmts)
|
|
{
|
|
if (flag_checking)
|
|
for (gimple_stmt_iterator i = gsi_start (stmts);
|
|
!gsi_end_p (i); gsi_next (&i))
|
|
gcc_assert (! gimple_use_ops (gsi_stmt (i)));
|
|
|
|
set_bb_predicate_gimplified_stmts (bb, NULL);
|
|
}
|
|
}
|
|
|
|
/* Free the predicate of basic block BB. */
|
|
|
|
static inline void
|
|
free_bb_predicate (basic_block bb)
|
|
{
|
|
if (!bb_has_predicate (bb))
|
|
return;
|
|
|
|
release_bb_predicate (bb);
|
|
free (bb->aux);
|
|
bb->aux = NULL;
|
|
}
|
|
|
|
/* Reinitialize predicate of BB with the true predicate. */
|
|
|
|
static inline void
|
|
reset_bb_predicate (basic_block bb)
|
|
{
|
|
if (!bb_has_predicate (bb))
|
|
init_bb_predicate (bb);
|
|
else
|
|
{
|
|
release_bb_predicate (bb);
|
|
set_bb_predicate (bb, boolean_true_node);
|
|
}
|
|
}
|
|
|
|
/* Returns a new SSA_NAME of type TYPE that is assigned the value of
|
|
the expression EXPR. Inserts the statement created for this
|
|
computation before GSI and leaves the iterator GSI at the same
|
|
statement. */
|
|
|
|
static tree
|
|
ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
|
|
{
|
|
tree new_name = make_temp_ssa_name (type, NULL, "_ifc_");
|
|
gimple *stmt = gimple_build_assign (new_name, expr);
|
|
gimple_set_vuse (stmt, gimple_vuse (gsi_stmt (*gsi)));
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
|
return new_name;
|
|
}
|
|
|
|
/* Return true when COND is a false predicate. */
|
|
|
|
static inline bool
|
|
is_false_predicate (tree cond)
|
|
{
|
|
return (cond != NULL_TREE
|
|
&& (cond == boolean_false_node
|
|
|| integer_zerop (cond)));
|
|
}
|
|
|
|
/* Return true when COND is a true predicate. */
|
|
|
|
static inline bool
|
|
is_true_predicate (tree cond)
|
|
{
|
|
return (cond == NULL_TREE
|
|
|| cond == boolean_true_node
|
|
|| integer_onep (cond));
|
|
}
|
|
|
|
/* Returns true when BB has a predicate that is not trivial: true or
|
|
NULL_TREE. */
|
|
|
|
static inline bool
|
|
is_predicated (basic_block bb)
|
|
{
|
|
return !is_true_predicate (bb_predicate (bb));
|
|
}
|
|
|
|
/* Parses the predicate COND and returns its comparison code and
|
|
operands OP0 and OP1. */
|
|
|
|
static enum tree_code
|
|
parse_predicate (tree cond, tree *op0, tree *op1)
|
|
{
|
|
gimple *s;
|
|
|
|
if (TREE_CODE (cond) == SSA_NAME
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
|
|
{
|
|
if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
|
|
{
|
|
*op0 = gimple_assign_rhs1 (s);
|
|
*op1 = gimple_assign_rhs2 (s);
|
|
return gimple_assign_rhs_code (s);
|
|
}
|
|
|
|
else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
|
|
{
|
|
tree op = gimple_assign_rhs1 (s);
|
|
tree type = TREE_TYPE (op);
|
|
enum tree_code code = parse_predicate (op, op0, op1);
|
|
|
|
return code == ERROR_MARK ? ERROR_MARK
|
|
: invert_tree_comparison (code, HONOR_NANS (type));
|
|
}
|
|
|
|
return ERROR_MARK;
|
|
}
|
|
|
|
if (COMPARISON_CLASS_P (cond))
|
|
{
|
|
*op0 = TREE_OPERAND (cond, 0);
|
|
*op1 = TREE_OPERAND (cond, 1);
|
|
return TREE_CODE (cond);
|
|
}
|
|
|
|
return ERROR_MARK;
|
|
}
|
|
|
|
/* Returns the fold of predicate C1 OR C2 at location LOC. */
|
|
|
|
static tree
|
|
fold_or_predicates (location_t loc, tree c1, tree c2)
|
|
{
|
|
tree op1a, op1b, op2a, op2b;
|
|
enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
|
|
enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
|
|
|
|
if (code1 != ERROR_MARK && code2 != ERROR_MARK)
|
|
{
|
|
tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
|
|
code2, op2a, op2b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
|
|
}
|
|
|
|
/* Returns either a COND_EXPR or the folded expression if the folded
|
|
expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
|
|
a constant or a SSA_NAME. */
|
|
|
|
static tree
|
|
fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs)
|
|
{
|
|
tree rhs1, lhs1, cond_expr;
|
|
|
|
/* If COND is comparison r != 0 and r has boolean type, convert COND
|
|
to SSA_NAME to accept by vect bool pattern. */
|
|
if (TREE_CODE (cond) == NE_EXPR)
|
|
{
|
|
tree op0 = TREE_OPERAND (cond, 0);
|
|
tree op1 = TREE_OPERAND (cond, 1);
|
|
if (TREE_CODE (op0) == SSA_NAME
|
|
&& TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
|
|
&& (integer_zerop (op1)))
|
|
cond = op0;
|
|
}
|
|
cond_expr = fold_ternary (COND_EXPR, type, cond, rhs, lhs);
|
|
|
|
if (cond_expr == NULL_TREE)
|
|
return build3 (COND_EXPR, type, cond, rhs, lhs);
|
|
|
|
STRIP_USELESS_TYPE_CONVERSION (cond_expr);
|
|
|
|
if (is_gimple_val (cond_expr))
|
|
return cond_expr;
|
|
|
|
if (TREE_CODE (cond_expr) == ABS_EXPR)
|
|
{
|
|
rhs1 = TREE_OPERAND (cond_expr, 1);
|
|
STRIP_USELESS_TYPE_CONVERSION (rhs1);
|
|
if (is_gimple_val (rhs1))
|
|
return build1 (ABS_EXPR, type, rhs1);
|
|
}
|
|
|
|
if (TREE_CODE (cond_expr) == MIN_EXPR
|
|
|| TREE_CODE (cond_expr) == MAX_EXPR)
|
|
{
|
|
lhs1 = TREE_OPERAND (cond_expr, 0);
|
|
STRIP_USELESS_TYPE_CONVERSION (lhs1);
|
|
rhs1 = TREE_OPERAND (cond_expr, 1);
|
|
STRIP_USELESS_TYPE_CONVERSION (rhs1);
|
|
if (is_gimple_val (rhs1) && is_gimple_val (lhs1))
|
|
return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1);
|
|
}
|
|
return build3 (COND_EXPR, type, cond, rhs, lhs);
|
|
}
|
|
|
|
/* Add condition NC to the predicate list of basic block BB. LOOP is
|
|
the loop to be if-converted. Use predicate of cd-equivalent block
|
|
for join bb if it exists: we call basic blocks bb1 and bb2
|
|
cd-equivalent if they are executed under the same condition. */
|
|
|
|
static inline void
|
|
add_to_predicate_list (struct loop *loop, basic_block bb, tree nc)
|
|
{
|
|
tree bc, *tp;
|
|
basic_block dom_bb;
|
|
|
|
if (is_true_predicate (nc))
|
|
return;
|
|
|
|
/* If dominance tells us this basic block is always executed,
|
|
don't record any predicates for it. */
|
|
if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
|
|
return;
|
|
|
|
dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
|
|
/* We use notion of cd equivalence to get simpler predicate for
|
|
join block, e.g. if join block has 2 predecessors with predicates
|
|
p1 & p2 and p1 & !p2, we'd like to get p1 for it instead of
|
|
p1 & p2 | p1 & !p2. */
|
|
if (dom_bb != loop->header
|
|
&& get_immediate_dominator (CDI_POST_DOMINATORS, dom_bb) == bb)
|
|
{
|
|
gcc_assert (flow_bb_inside_loop_p (loop, dom_bb));
|
|
bc = bb_predicate (dom_bb);
|
|
if (!is_true_predicate (bc))
|
|
set_bb_predicate (bb, bc);
|
|
else
|
|
gcc_assert (is_true_predicate (bb_predicate (bb)));
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Use predicate of bb#%d for bb#%d\n",
|
|
dom_bb->index, bb->index);
|
|
return;
|
|
}
|
|
|
|
if (!is_predicated (bb))
|
|
bc = nc;
|
|
else
|
|
{
|
|
bc = bb_predicate (bb);
|
|
bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
|
|
if (is_true_predicate (bc))
|
|
{
|
|
reset_bb_predicate (bb);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Allow a TRUTH_NOT_EXPR around the main predicate. */
|
|
if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
|
|
tp = &TREE_OPERAND (bc, 0);
|
|
else
|
|
tp = &bc;
|
|
if (!is_gimple_condexpr (*tp))
|
|
{
|
|
gimple_seq stmts;
|
|
*tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
|
|
add_bb_predicate_gimplified_stmts (bb, stmts);
|
|
}
|
|
set_bb_predicate (bb, bc);
|
|
}
|
|
|
|
/* Add the condition COND to the previous condition PREV_COND, and add
|
|
this to the predicate list of the destination of edge E. LOOP is
|
|
the loop to be if-converted. */
|
|
|
|
static void
|
|
add_to_dst_predicate_list (struct loop *loop, edge e,
|
|
tree prev_cond, tree cond)
|
|
{
|
|
if (!flow_bb_inside_loop_p (loop, e->dest))
|
|
return;
|
|
|
|
if (!is_true_predicate (prev_cond))
|
|
cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
|
prev_cond, cond);
|
|
|
|
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, e->dest))
|
|
add_to_predicate_list (loop, e->dest, cond);
|
|
}
|
|
|
|
/* Return true if one of the successor edges of BB exits LOOP. */
|
|
|
|
static bool
|
|
bb_with_exit_edge_p (struct loop *loop, basic_block bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if (loop_exit_edge_p (loop, e))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Given PHI which has more than two arguments, this function checks if
|
|
it's if-convertible by degenerating its arguments. Specifically, if
|
|
below two conditions are satisfied:
|
|
|
|
1) Number of PHI arguments with different values equals to 2 and one
|
|
argument has the only occurrence.
|
|
2) The edge corresponding to the unique argument isn't critical edge.
|
|
|
|
Such PHI can be handled as PHIs have only two arguments. For example,
|
|
below PHI:
|
|
|
|
res = PHI <A_1(e1), A_1(e2), A_2(e3)>;
|
|
|
|
can be transformed into:
|
|
|
|
res = (predicate of e3) ? A_2 : A_1;
|
|
|
|
Return TRUE if it is the case, FALSE otherwise. */
|
|
|
|
static bool
|
|
phi_convertible_by_degenerating_args (gphi *phi)
|
|
{
|
|
edge e;
|
|
tree arg, t1 = NULL, t2 = NULL;
|
|
unsigned int i, i1 = 0, i2 = 0, n1 = 0, n2 = 0;
|
|
unsigned int num_args = gimple_phi_num_args (phi);
|
|
|
|
gcc_assert (num_args > 2);
|
|
|
|
for (i = 0; i < num_args; i++)
|
|
{
|
|
arg = gimple_phi_arg_def (phi, i);
|
|
if (t1 == NULL || operand_equal_p (t1, arg, 0))
|
|
{
|
|
n1++;
|
|
i1 = i;
|
|
t1 = arg;
|
|
}
|
|
else if (t2 == NULL || operand_equal_p (t2, arg, 0))
|
|
{
|
|
n2++;
|
|
i2 = i;
|
|
t2 = arg;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
if (n1 != 1 && n2 != 1)
|
|
return false;
|
|
|
|
/* Check if the edge corresponding to the unique arg is critical. */
|
|
e = gimple_phi_arg_edge (phi, (n1 == 1) ? i1 : i2);
|
|
if (EDGE_COUNT (e->src->succs) > 1)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when PHI is if-convertible. PHI is part of loop LOOP
|
|
and it belongs to basic block BB. Note at this point, it is sure
|
|
that PHI is if-convertible. This function updates global variable
|
|
ANY_COMPLICATED_PHI if PHI is complicated. */
|
|
|
|
static bool
|
|
if_convertible_phi_p (struct loop *loop, basic_block bb, gphi *phi)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "-------------------------\n");
|
|
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
|
|
}
|
|
|
|
if (bb != loop->header
|
|
&& gimple_phi_num_args (phi) > 2
|
|
&& !phi_convertible_by_degenerating_args (phi))
|
|
any_complicated_phi = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Records the status of a data reference. This struct is attached to
|
|
each DR->aux field. */
|
|
|
|
struct ifc_dr {
|
|
bool rw_unconditionally;
|
|
bool w_unconditionally;
|
|
bool written_at_least_once;
|
|
|
|
tree rw_predicate;
|
|
tree w_predicate;
|
|
tree base_w_predicate;
|
|
};
|
|
|
|
#define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
|
|
#define DR_BASE_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->written_at_least_once)
|
|
#define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
|
|
#define DR_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->w_unconditionally)
|
|
|
|
/* Iterates over DR's and stores refs, DR and base refs, DR pairs in
|
|
HASH tables. While storing them in HASH table, it checks if the
|
|
reference is unconditionally read or written and stores that as a flag
|
|
information. For base reference it checks if it is written atlest once
|
|
unconditionally and stores it as flag information along with DR.
|
|
In other words for every data reference A in STMT there exist other
|
|
accesses to a data reference with the same base with predicates that
|
|
add up (OR-up) to the true predicate: this ensures that the data
|
|
reference A is touched (read or written) on every iteration of the
|
|
if-converted loop. */
|
|
static void
|
|
hash_memrefs_baserefs_and_store_DRs_read_written_info (data_reference_p a)
|
|
{
|
|
|
|
data_reference_p *master_dr, *base_master_dr;
|
|
tree base_ref = DR_BASE_OBJECT (a);
|
|
innermost_loop_behavior *innermost = &DR_INNERMOST (a);
|
|
tree ca = bb_predicate (gimple_bb (DR_STMT (a)));
|
|
bool exist1, exist2;
|
|
|
|
master_dr = &innermost_DR_map->get_or_insert (innermost, &exist1);
|
|
if (!exist1)
|
|
*master_dr = a;
|
|
|
|
if (DR_IS_WRITE (a))
|
|
{
|
|
IFC_DR (*master_dr)->w_predicate
|
|
= fold_or_predicates (UNKNOWN_LOCATION, ca,
|
|
IFC_DR (*master_dr)->w_predicate);
|
|
if (is_true_predicate (IFC_DR (*master_dr)->w_predicate))
|
|
DR_W_UNCONDITIONALLY (*master_dr) = true;
|
|
}
|
|
IFC_DR (*master_dr)->rw_predicate
|
|
= fold_or_predicates (UNKNOWN_LOCATION, ca,
|
|
IFC_DR (*master_dr)->rw_predicate);
|
|
if (is_true_predicate (IFC_DR (*master_dr)->rw_predicate))
|
|
DR_RW_UNCONDITIONALLY (*master_dr) = true;
|
|
|
|
if (DR_IS_WRITE (a))
|
|
{
|
|
base_master_dr = &baseref_DR_map->get_or_insert (base_ref, &exist2);
|
|
if (!exist2)
|
|
*base_master_dr = a;
|
|
IFC_DR (*base_master_dr)->base_w_predicate
|
|
= fold_or_predicates (UNKNOWN_LOCATION, ca,
|
|
IFC_DR (*base_master_dr)->base_w_predicate);
|
|
if (is_true_predicate (IFC_DR (*base_master_dr)->base_w_predicate))
|
|
DR_BASE_W_UNCONDITIONALLY (*base_master_dr) = true;
|
|
}
|
|
}
|
|
|
|
/* Return TRUE if can prove the index IDX of an array reference REF is
|
|
within array bound. Return false otherwise. */
|
|
|
|
static bool
|
|
idx_within_array_bound (tree ref, tree *idx, void *dta)
|
|
{
|
|
bool overflow;
|
|
widest_int niter, valid_niter, delta, wi_step;
|
|
tree ev, init, step;
|
|
tree low, high;
|
|
struct loop *loop = (struct loop*) dta;
|
|
|
|
/* Only support within-bound access for array references. */
|
|
if (TREE_CODE (ref) != ARRAY_REF)
|
|
return false;
|
|
|
|
/* For arrays at the end of the structure, we are not guaranteed that they
|
|
do not really extend over their declared size. However, for arrays of
|
|
size greater than one, this is unlikely to be intended. */
|
|
if (array_at_struct_end_p (ref))
|
|
return false;
|
|
|
|
ev = analyze_scalar_evolution (loop, *idx);
|
|
ev = instantiate_parameters (loop, ev);
|
|
init = initial_condition (ev);
|
|
step = evolution_part_in_loop_num (ev, loop->num);
|
|
|
|
if (!init || TREE_CODE (init) != INTEGER_CST
|
|
|| (step && TREE_CODE (step) != INTEGER_CST))
|
|
return false;
|
|
|
|
low = array_ref_low_bound (ref);
|
|
high = array_ref_up_bound (ref);
|
|
|
|
/* The case of nonconstant bounds could be handled, but it would be
|
|
complicated. */
|
|
if (TREE_CODE (low) != INTEGER_CST
|
|
|| !high || TREE_CODE (high) != INTEGER_CST)
|
|
return false;
|
|
|
|
/* Check if the intial idx is within bound. */
|
|
if (wi::to_widest (init) < wi::to_widest (low)
|
|
|| wi::to_widest (init) > wi::to_widest (high))
|
|
return false;
|
|
|
|
/* The idx is always within bound. */
|
|
if (!step || integer_zerop (step))
|
|
return true;
|
|
|
|
if (!max_loop_iterations (loop, &niter))
|
|
return false;
|
|
|
|
if (wi::to_widest (step) < 0)
|
|
{
|
|
delta = wi::to_widest (init) - wi::to_widest (low);
|
|
wi_step = -wi::to_widest (step);
|
|
}
|
|
else
|
|
{
|
|
delta = wi::to_widest (high) - wi::to_widest (init);
|
|
wi_step = wi::to_widest (step);
|
|
}
|
|
|
|
valid_niter = wi::div_floor (delta, wi_step, SIGNED, &overflow);
|
|
/* The iteration space of idx is within array bound. */
|
|
if (!overflow && niter <= valid_niter)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return TRUE if ref is a within bound array reference. */
|
|
|
|
static bool
|
|
ref_within_array_bound (gimple *stmt, tree ref)
|
|
{
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
|
|
|
gcc_assert (loop != NULL);
|
|
return for_each_index (&ref, idx_within_array_bound, loop);
|
|
}
|
|
|
|
|
|
/* Given a memory reference expression T, return TRUE if base object
|
|
it refers to is writable. The base object of a memory reference
|
|
is the main object being referenced, which is returned by function
|
|
get_base_address. */
|
|
|
|
static bool
|
|
base_object_writable (tree ref)
|
|
{
|
|
tree base_tree = get_base_address (ref);
|
|
|
|
return (base_tree
|
|
&& DECL_P (base_tree)
|
|
&& decl_binds_to_current_def_p (base_tree)
|
|
&& !TREE_READONLY (base_tree));
|
|
}
|
|
|
|
/* Return true when the memory references of STMT won't trap in the
|
|
if-converted code. There are two things that we have to check for:
|
|
|
|
- writes to memory occur to writable memory: if-conversion of
|
|
memory writes transforms the conditional memory writes into
|
|
unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
|
|
into "A[i] = cond ? foo : A[i]", and as the write to memory may not
|
|
be executed at all in the original code, it may be a readonly
|
|
memory. To check that A is not const-qualified, we check that
|
|
there exists at least an unconditional write to A in the current
|
|
function.
|
|
|
|
- reads or writes to memory are valid memory accesses for every
|
|
iteration. To check that the memory accesses are correctly formed
|
|
and that we are allowed to read and write in these locations, we
|
|
check that the memory accesses to be if-converted occur at every
|
|
iteration unconditionally.
|
|
|
|
Returns true for the memory reference in STMT, same memory reference
|
|
is read or written unconditionally atleast once and the base memory
|
|
reference is written unconditionally once. This is to check reference
|
|
will not write fault. Also retuns true if the memory reference is
|
|
unconditionally read once then we are conditionally writing to memory
|
|
which is defined as read and write and is bound to the definition
|
|
we are seeing. */
|
|
static bool
|
|
ifcvt_memrefs_wont_trap (gimple *stmt, vec<data_reference_p> drs)
|
|
{
|
|
data_reference_p *master_dr, *base_master_dr;
|
|
data_reference_p a = drs[gimple_uid (stmt) - 1];
|
|
|
|
tree base = DR_BASE_OBJECT (a);
|
|
innermost_loop_behavior *innermost = &DR_INNERMOST (a);
|
|
|
|
gcc_assert (DR_STMT (a) == stmt);
|
|
gcc_assert (DR_BASE_ADDRESS (a) || DR_OFFSET (a)
|
|
|| DR_INIT (a) || DR_STEP (a));
|
|
|
|
master_dr = innermost_DR_map->get (innermost);
|
|
gcc_assert (master_dr != NULL);
|
|
|
|
base_master_dr = baseref_DR_map->get (base);
|
|
|
|
/* If a is unconditionally written to it doesn't trap. */
|
|
if (DR_W_UNCONDITIONALLY (*master_dr))
|
|
return true;
|
|
|
|
/* If a is unconditionally accessed then ...
|
|
|
|
Even a is conditional access, we can treat it as an unconditional
|
|
one if it's an array reference and all its index are within array
|
|
bound. */
|
|
if (DR_RW_UNCONDITIONALLY (*master_dr)
|
|
|| ref_within_array_bound (stmt, DR_REF (a)))
|
|
{
|
|
/* an unconditional read won't trap. */
|
|
if (DR_IS_READ (a))
|
|
return true;
|
|
|
|
/* an unconditionaly write won't trap if the base is written
|
|
to unconditionally. */
|
|
if (base_master_dr
|
|
&& DR_BASE_W_UNCONDITIONALLY (*base_master_dr))
|
|
return PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES);
|
|
/* or the base is known to be not readonly. */
|
|
else if (base_object_writable (DR_REF (a)))
|
|
return PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true if STMT could be converted into a masked load or store
|
|
(conditional load or store based on a mask computed from bb predicate). */
|
|
|
|
static bool
|
|
ifcvt_can_use_mask_load_store (gimple *stmt)
|
|
{
|
|
tree lhs, ref;
|
|
machine_mode mode;
|
|
basic_block bb = gimple_bb (stmt);
|
|
bool is_load;
|
|
|
|
if (!(flag_tree_loop_vectorize || bb->loop_father->force_vectorize)
|
|
|| bb->loop_father->dont_vectorize
|
|
|| !gimple_assign_single_p (stmt)
|
|
|| gimple_has_volatile_ops (stmt))
|
|
return false;
|
|
|
|
/* Check whether this is a load or store. */
|
|
lhs = gimple_assign_lhs (stmt);
|
|
if (gimple_store_p (stmt))
|
|
{
|
|
if (!is_gimple_val (gimple_assign_rhs1 (stmt)))
|
|
return false;
|
|
is_load = false;
|
|
ref = lhs;
|
|
}
|
|
else if (gimple_assign_load_p (stmt))
|
|
{
|
|
is_load = true;
|
|
ref = gimple_assign_rhs1 (stmt);
|
|
}
|
|
else
|
|
return false;
|
|
|
|
if (may_be_nonaddressable_p (ref))
|
|
return false;
|
|
|
|
/* Mask should be integer mode of the same size as the load/store
|
|
mode. */
|
|
mode = TYPE_MODE (TREE_TYPE (lhs));
|
|
if (int_mode_for_mode (mode) == BLKmode
|
|
|| VECTOR_MODE_P (mode))
|
|
return false;
|
|
|
|
if (can_vec_mask_load_store_p (mode, VOIDmode, is_load))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true when STMT is if-convertible.
|
|
|
|
GIMPLE_ASSIGN statement is not if-convertible if,
|
|
- it is not movable,
|
|
- it could trap,
|
|
- LHS is not var decl. */
|
|
|
|
static bool
|
|
if_convertible_gimple_assign_stmt_p (gimple *stmt,
|
|
vec<data_reference_p> refs)
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "-------------------------\n");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
if (!is_gimple_reg_type (TREE_TYPE (lhs)))
|
|
return false;
|
|
|
|
/* Some of these constrains might be too conservative. */
|
|
if (stmt_ends_bb_p (stmt)
|
|
|| gimple_has_volatile_ops (stmt)
|
|
|| (TREE_CODE (lhs) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
|
|
|| gimple_has_side_effects (stmt))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "stmt not suitable for ifcvt\n");
|
|
return false;
|
|
}
|
|
|
|
/* tree-into-ssa.c uses GF_PLF_1, so avoid it, because
|
|
in between if_convertible_loop_p and combine_blocks
|
|
we can perform loop versioning. */
|
|
gimple_set_plf (stmt, GF_PLF_2, false);
|
|
|
|
if ((! gimple_vuse (stmt)
|
|
|| gimple_could_trap_p_1 (stmt, false, false)
|
|
|| ! ifcvt_memrefs_wont_trap (stmt, refs))
|
|
&& gimple_could_trap_p (stmt))
|
|
{
|
|
if (ifcvt_can_use_mask_load_store (stmt))
|
|
{
|
|
gimple_set_plf (stmt, GF_PLF_2, true);
|
|
any_pred_load_store = true;
|
|
return true;
|
|
}
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "tree could trap...\n");
|
|
return false;
|
|
}
|
|
|
|
/* When if-converting stores force versioning, likewise if we
|
|
ended up generating store data races. */
|
|
if (gimple_vdef (stmt))
|
|
any_pred_load_store = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when STMT is if-convertible.
|
|
|
|
A statement is if-convertible if:
|
|
- it is an if-convertible GIMPLE_ASSIGN,
|
|
- it is a GIMPLE_LABEL or a GIMPLE_COND,
|
|
- it is builtins call. */
|
|
|
|
static bool
|
|
if_convertible_stmt_p (gimple *stmt, vec<data_reference_p> refs)
|
|
{
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_LABEL:
|
|
case GIMPLE_DEBUG:
|
|
case GIMPLE_COND:
|
|
return true;
|
|
|
|
case GIMPLE_ASSIGN:
|
|
return if_convertible_gimple_assign_stmt_p (stmt, refs);
|
|
|
|
case GIMPLE_CALL:
|
|
{
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
|
if (fndecl)
|
|
{
|
|
int flags = gimple_call_flags (stmt);
|
|
if ((flags & ECF_CONST)
|
|
&& !(flags & ECF_LOOPING_CONST_OR_PURE)
|
|
/* We can only vectorize some builtins at the moment,
|
|
so restrict if-conversion to those. */
|
|
&& DECL_BUILT_IN (fndecl))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
default:
|
|
/* Don't know what to do with 'em so don't do anything. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "don't know what to do\n");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
}
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Assumes that BB has more than 1 predecessors.
|
|
Returns false if at least one successor is not on critical edge
|
|
and true otherwise. */
|
|
|
|
static inline bool
|
|
all_preds_critical_p (basic_block bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
if (EDGE_COUNT (e->src->succs) == 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Returns true if at least one successor in on critical edge. */
|
|
static inline bool
|
|
has_pred_critical_p (basic_block bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
if (EDGE_COUNT (e->src->succs) > 1)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Return true when BB is if-convertible. This routine does not check
|
|
basic block's statements and phis.
|
|
|
|
A basic block is not if-convertible if:
|
|
- it is non-empty and it is after the exit block (in BFS order),
|
|
- it is after the exit block but before the latch,
|
|
- its edges are not normal.
|
|
|
|
EXIT_BB is the basic block containing the exit of the LOOP. BB is
|
|
inside LOOP. */
|
|
|
|
static bool
|
|
if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "----------[%d]-------------\n", bb->index);
|
|
|
|
if (EDGE_COUNT (bb->succs) > 2)
|
|
return false;
|
|
|
|
if (exit_bb)
|
|
{
|
|
if (bb != loop->latch)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "basic block after exit bb but before latch\n");
|
|
return false;
|
|
}
|
|
else if (!empty_block_p (bb))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "non empty basic block after exit bb\n");
|
|
return false;
|
|
}
|
|
else if (bb == loop->latch
|
|
&& bb != exit_bb
|
|
&& !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "latch is not dominated by exit_block\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Be less adventurous and handle only normal edges. */
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Difficult to handle edges\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when all predecessor blocks of BB are visited. The
|
|
VISITED bitmap keeps track of the visited blocks. */
|
|
|
|
static bool
|
|
pred_blocks_visited_p (basic_block bb, bitmap *visited)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
if (!bitmap_bit_p (*visited, e->src->index))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Get body of a LOOP in suitable order for if-conversion. It is
|
|
caller's responsibility to deallocate basic block list.
|
|
If-conversion suitable order is, breadth first sort (BFS) order
|
|
with an additional constraint: select a block only if all its
|
|
predecessors are already selected. */
|
|
|
|
static basic_block *
|
|
get_loop_body_in_if_conv_order (const struct loop *loop)
|
|
{
|
|
basic_block *blocks, *blocks_in_bfs_order;
|
|
basic_block bb;
|
|
bitmap visited;
|
|
unsigned int index = 0;
|
|
unsigned int visited_count = 0;
|
|
|
|
gcc_assert (loop->num_nodes);
|
|
gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
|
|
|
blocks = XCNEWVEC (basic_block, loop->num_nodes);
|
|
visited = BITMAP_ALLOC (NULL);
|
|
|
|
blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
|
|
|
|
index = 0;
|
|
while (index < loop->num_nodes)
|
|
{
|
|
bb = blocks_in_bfs_order [index];
|
|
|
|
if (bb->flags & BB_IRREDUCIBLE_LOOP)
|
|
{
|
|
free (blocks_in_bfs_order);
|
|
BITMAP_FREE (visited);
|
|
free (blocks);
|
|
return NULL;
|
|
}
|
|
|
|
if (!bitmap_bit_p (visited, bb->index))
|
|
{
|
|
if (pred_blocks_visited_p (bb, &visited)
|
|
|| bb == loop->header)
|
|
{
|
|
/* This block is now visited. */
|
|
bitmap_set_bit (visited, bb->index);
|
|
blocks[visited_count++] = bb;
|
|
}
|
|
}
|
|
|
|
index++;
|
|
|
|
if (index == loop->num_nodes
|
|
&& visited_count != loop->num_nodes)
|
|
/* Not done yet. */
|
|
index = 0;
|
|
}
|
|
free (blocks_in_bfs_order);
|
|
BITMAP_FREE (visited);
|
|
return blocks;
|
|
}
|
|
|
|
/* Returns true when the analysis of the predicates for all the basic
|
|
blocks in LOOP succeeded.
|
|
|
|
predicate_bbs first allocates the predicates of the basic blocks.
|
|
These fields are then initialized with the tree expressions
|
|
representing the predicates under which a basic block is executed
|
|
in the LOOP. As the loop->header is executed at each iteration, it
|
|
has the "true" predicate. Other statements executed under a
|
|
condition are predicated with that condition, for example
|
|
|
|
| if (x)
|
|
| S1;
|
|
| else
|
|
| S2;
|
|
|
|
S1 will be predicated with "x", and
|
|
S2 will be predicated with "!x". */
|
|
|
|
static void
|
|
predicate_bbs (loop_p loop)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
init_bb_predicate (ifc_bbs[i]);
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = ifc_bbs[i];
|
|
tree cond;
|
|
gimple *stmt;
|
|
|
|
/* The loop latch and loop exit block are always executed and
|
|
have no extra conditions to be processed: skip them. */
|
|
if (bb == loop->latch
|
|
|| bb_with_exit_edge_p (loop, bb))
|
|
{
|
|
reset_bb_predicate (bb);
|
|
continue;
|
|
}
|
|
|
|
cond = bb_predicate (bb);
|
|
stmt = last_stmt (bb);
|
|
if (stmt && gimple_code (stmt) == GIMPLE_COND)
|
|
{
|
|
tree c2;
|
|
edge true_edge, false_edge;
|
|
location_t loc = gimple_location (stmt);
|
|
tree c = build2_loc (loc, gimple_cond_code (stmt),
|
|
boolean_type_node,
|
|
gimple_cond_lhs (stmt),
|
|
gimple_cond_rhs (stmt));
|
|
|
|
/* Add new condition into destination's predicate list. */
|
|
extract_true_false_edges_from_block (gimple_bb (stmt),
|
|
&true_edge, &false_edge);
|
|
|
|
/* If C is true, then TRUE_EDGE is taken. */
|
|
add_to_dst_predicate_list (loop, true_edge, unshare_expr (cond),
|
|
unshare_expr (c));
|
|
|
|
/* If C is false, then FALSE_EDGE is taken. */
|
|
c2 = build1_loc (loc, TRUTH_NOT_EXPR, boolean_type_node,
|
|
unshare_expr (c));
|
|
add_to_dst_predicate_list (loop, false_edge,
|
|
unshare_expr (cond), c2);
|
|
|
|
cond = NULL_TREE;
|
|
}
|
|
|
|
/* If current bb has only one successor, then consider it as an
|
|
unconditional goto. */
|
|
if (single_succ_p (bb))
|
|
{
|
|
basic_block bb_n = single_succ (bb);
|
|
|
|
/* The successor bb inherits the predicate of its
|
|
predecessor. If there is no predicate in the predecessor
|
|
bb, then consider the successor bb as always executed. */
|
|
if (cond == NULL_TREE)
|
|
cond = boolean_true_node;
|
|
|
|
add_to_predicate_list (loop, bb_n, cond);
|
|
}
|
|
}
|
|
|
|
/* The loop header is always executed. */
|
|
reset_bb_predicate (loop->header);
|
|
gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
|
|
&& bb_predicate_gimplified_stmts (loop->latch) == NULL);
|
|
}
|
|
|
|
/* Return true when LOOP is if-convertible. This is a helper function
|
|
for if_convertible_loop_p. REFS and DDRS are initialized and freed
|
|
in if_convertible_loop_p. */
|
|
|
|
static bool
|
|
if_convertible_loop_p_1 (struct loop *loop, vec<data_reference_p> *refs)
|
|
{
|
|
unsigned int i;
|
|
basic_block exit_bb = NULL;
|
|
|
|
if (find_data_references_in_loop (loop, refs) == chrec_dont_know)
|
|
return false;
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
|
|
/* Allow statements that can be handled during if-conversion. */
|
|
ifc_bbs = get_loop_body_in_if_conv_order (loop);
|
|
if (!ifc_bbs)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Irreducible loop\n");
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = ifc_bbs[i];
|
|
|
|
if (!if_convertible_bb_p (loop, bb, exit_bb))
|
|
return false;
|
|
|
|
if (bb_with_exit_edge_p (loop, bb))
|
|
exit_bb = bb;
|
|
}
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = ifc_bbs[i];
|
|
gimple_stmt_iterator gsi;
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
switch (gimple_code (gsi_stmt (gsi)))
|
|
{
|
|
case GIMPLE_LABEL:
|
|
case GIMPLE_ASSIGN:
|
|
case GIMPLE_CALL:
|
|
case GIMPLE_DEBUG:
|
|
case GIMPLE_COND:
|
|
gimple_set_uid (gsi_stmt (gsi), 0);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
data_reference_p dr;
|
|
|
|
innermost_DR_map
|
|
= new hash_map<innermost_loop_behavior_hash, data_reference_p>;
|
|
baseref_DR_map = new hash_map<tree_operand_hash, data_reference_p>;
|
|
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
|
predicate_bbs (loop);
|
|
|
|
for (i = 0; refs->iterate (i, &dr); i++)
|
|
{
|
|
tree ref = DR_REF (dr);
|
|
|
|
dr->aux = XNEW (struct ifc_dr);
|
|
DR_BASE_W_UNCONDITIONALLY (dr) = false;
|
|
DR_RW_UNCONDITIONALLY (dr) = false;
|
|
DR_W_UNCONDITIONALLY (dr) = false;
|
|
IFC_DR (dr)->rw_predicate = boolean_false_node;
|
|
IFC_DR (dr)->w_predicate = boolean_false_node;
|
|
IFC_DR (dr)->base_w_predicate = boolean_false_node;
|
|
if (gimple_uid (DR_STMT (dr)) == 0)
|
|
gimple_set_uid (DR_STMT (dr), i + 1);
|
|
|
|
/* If DR doesn't have innermost loop behavior or it's a compound
|
|
memory reference, we synthesize its innermost loop behavior
|
|
for hashing. */
|
|
if (TREE_CODE (ref) == COMPONENT_REF
|
|
|| TREE_CODE (ref) == IMAGPART_EXPR
|
|
|| TREE_CODE (ref) == REALPART_EXPR
|
|
|| !(DR_BASE_ADDRESS (dr) || DR_OFFSET (dr)
|
|
|| DR_INIT (dr) || DR_STEP (dr)))
|
|
{
|
|
while (TREE_CODE (ref) == COMPONENT_REF
|
|
|| TREE_CODE (ref) == IMAGPART_EXPR
|
|
|| TREE_CODE (ref) == REALPART_EXPR)
|
|
ref = TREE_OPERAND (ref, 0);
|
|
|
|
DR_BASE_ADDRESS (dr) = ref;
|
|
DR_OFFSET (dr) = NULL;
|
|
DR_INIT (dr) = NULL;
|
|
DR_STEP (dr) = NULL;
|
|
DR_ALIGNED_TO (dr) = NULL;
|
|
}
|
|
hash_memrefs_baserefs_and_store_DRs_read_written_info (dr);
|
|
}
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = ifc_bbs[i];
|
|
gimple_stmt_iterator itr;
|
|
|
|
/* Check the if-convertibility of statements in predicated BBs. */
|
|
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
|
|
for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
|
|
if (!if_convertible_stmt_p (gsi_stmt (itr), *refs))
|
|
return false;
|
|
}
|
|
|
|
/* Checking PHIs needs to be done after stmts, as the fact whether there
|
|
are any masked loads or stores affects the tests. */
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = ifc_bbs[i];
|
|
gphi_iterator itr;
|
|
|
|
for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
|
|
if (!if_convertible_phi_p (loop, bb, itr.phi ()))
|
|
return false;
|
|
}
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "Applying if-conversion\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when LOOP is if-convertible.
|
|
LOOP is if-convertible if:
|
|
- it is innermost,
|
|
- it has two or more basic blocks,
|
|
- it has only one exit,
|
|
- loop header is not the exit edge,
|
|
- if its basic blocks and phi nodes are if convertible. */
|
|
|
|
static bool
|
|
if_convertible_loop_p (struct loop *loop)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
bool res = false;
|
|
vec<data_reference_p> refs;
|
|
|
|
/* Handle only innermost loop. */
|
|
if (!loop || loop->inner)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "not innermost loop\n");
|
|
return false;
|
|
}
|
|
|
|
/* If only one block, no need for if-conversion. */
|
|
if (loop->num_nodes <= 2)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "less than 2 basic blocks\n");
|
|
return false;
|
|
}
|
|
|
|
/* More than one loop exit is too much to handle. */
|
|
if (!single_exit (loop))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "multiple exits\n");
|
|
return false;
|
|
}
|
|
|
|
/* If one of the loop header's edge is an exit edge then do not
|
|
apply if-conversion. */
|
|
FOR_EACH_EDGE (e, ei, loop->header->succs)
|
|
if (loop_exit_edge_p (loop, e))
|
|
return false;
|
|
|
|
refs.create (5);
|
|
res = if_convertible_loop_p_1 (loop, &refs);
|
|
|
|
data_reference_p dr;
|
|
unsigned int i;
|
|
for (i = 0; refs.iterate (i, &dr); i++)
|
|
free (dr->aux);
|
|
|
|
free_data_refs (refs);
|
|
|
|
delete innermost_DR_map;
|
|
innermost_DR_map = NULL;
|
|
|
|
delete baseref_DR_map;
|
|
baseref_DR_map = NULL;
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Returns true if def-stmt for phi argument ARG is simple increment/decrement
|
|
which is in predicated basic block.
|
|
In fact, the following PHI pattern is searching:
|
|
loop-header:
|
|
reduc_1 = PHI <..., reduc_2>
|
|
...
|
|
if (...)
|
|
reduc_3 = ...
|
|
reduc_2 = PHI <reduc_1, reduc_3>
|
|
|
|
ARG_0 and ARG_1 are correspondent PHI arguments.
|
|
REDUC, OP0 and OP1 contain reduction stmt and its operands.
|
|
EXTENDED is true if PHI has > 2 arguments. */
|
|
|
|
static bool
|
|
is_cond_scalar_reduction (gimple *phi, gimple **reduc, tree arg_0, tree arg_1,
|
|
tree *op0, tree *op1, bool extended)
|
|
{
|
|
tree lhs, r_op1, r_op2;
|
|
gimple *stmt;
|
|
gimple *header_phi = NULL;
|
|
enum tree_code reduction_op;
|
|
basic_block bb = gimple_bb (phi);
|
|
struct loop *loop = bb->loop_father;
|
|
edge latch_e = loop_latch_edge (loop);
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
edge e;
|
|
edge_iterator ei;
|
|
bool result = false;
|
|
if (TREE_CODE (arg_0) != SSA_NAME || TREE_CODE (arg_1) != SSA_NAME)
|
|
return false;
|
|
|
|
if (!extended && gimple_code (SSA_NAME_DEF_STMT (arg_0)) == GIMPLE_PHI)
|
|
{
|
|
lhs = arg_1;
|
|
header_phi = SSA_NAME_DEF_STMT (arg_0);
|
|
stmt = SSA_NAME_DEF_STMT (arg_1);
|
|
}
|
|
else if (gimple_code (SSA_NAME_DEF_STMT (arg_1)) == GIMPLE_PHI)
|
|
{
|
|
lhs = arg_0;
|
|
header_phi = SSA_NAME_DEF_STMT (arg_1);
|
|
stmt = SSA_NAME_DEF_STMT (arg_0);
|
|
}
|
|
else
|
|
return false;
|
|
if (gimple_bb (header_phi) != loop->header)
|
|
return false;
|
|
|
|
if (PHI_ARG_DEF_FROM_EDGE (header_phi, latch_e) != PHI_RESULT (phi))
|
|
return false;
|
|
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN
|
|
|| gimple_has_volatile_ops (stmt))
|
|
return false;
|
|
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
|
|
return false;
|
|
|
|
if (!is_predicated (gimple_bb (stmt)))
|
|
return false;
|
|
|
|
/* Check that stmt-block is predecessor of phi-block. */
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
|
|
if (e->dest == bb)
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
if (!result)
|
|
return false;
|
|
|
|
if (!has_single_use (lhs))
|
|
return false;
|
|
|
|
reduction_op = gimple_assign_rhs_code (stmt);
|
|
if (reduction_op != PLUS_EXPR && reduction_op != MINUS_EXPR)
|
|
return false;
|
|
r_op1 = gimple_assign_rhs1 (stmt);
|
|
r_op2 = gimple_assign_rhs2 (stmt);
|
|
|
|
/* Make R_OP1 to hold reduction variable. */
|
|
if (r_op2 == PHI_RESULT (header_phi)
|
|
&& reduction_op == PLUS_EXPR)
|
|
std::swap (r_op1, r_op2);
|
|
else if (r_op1 != PHI_RESULT (header_phi))
|
|
return false;
|
|
|
|
/* Check that R_OP1 is used in reduction stmt or in PHI only. */
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, r_op1)
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
if (use_stmt == stmt)
|
|
continue;
|
|
if (gimple_code (use_stmt) != GIMPLE_PHI)
|
|
return false;
|
|
}
|
|
|
|
*op0 = r_op1; *op1 = r_op2;
|
|
*reduc = stmt;
|
|
return true;
|
|
}
|
|
|
|
/* Converts conditional scalar reduction into unconditional form, e.g.
|
|
bb_4
|
|
if (_5 != 0) goto bb_5 else goto bb_6
|
|
end_bb_4
|
|
bb_5
|
|
res_6 = res_13 + 1;
|
|
end_bb_5
|
|
bb_6
|
|
# res_2 = PHI <res_13(4), res_6(5)>
|
|
end_bb_6
|
|
|
|
will be converted into sequence
|
|
_ifc__1 = _5 != 0 ? 1 : 0;
|
|
res_2 = res_13 + _ifc__1;
|
|
Argument SWAP tells that arguments of conditional expression should be
|
|
swapped.
|
|
Returns rhs of resulting PHI assignment. */
|
|
|
|
static tree
|
|
convert_scalar_cond_reduction (gimple *reduc, gimple_stmt_iterator *gsi,
|
|
tree cond, tree op0, tree op1, bool swap)
|
|
{
|
|
gimple_stmt_iterator stmt_it;
|
|
gimple *new_assign;
|
|
tree rhs;
|
|
tree rhs1 = gimple_assign_rhs1 (reduc);
|
|
tree tmp = make_temp_ssa_name (TREE_TYPE (rhs1), NULL, "_ifc_");
|
|
tree c;
|
|
tree zero = build_zero_cst (TREE_TYPE (rhs1));
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Found cond scalar reduction.\n");
|
|
print_gimple_stmt (dump_file, reduc, 0, TDF_SLIM);
|
|
}
|
|
|
|
/* Build cond expression using COND and constant operand
|
|
of reduction rhs. */
|
|
c = fold_build_cond_expr (TREE_TYPE (rhs1),
|
|
unshare_expr (cond),
|
|
swap ? zero : op1,
|
|
swap ? op1 : zero);
|
|
|
|
/* Create assignment stmt and insert it at GSI. */
|
|
new_assign = gimple_build_assign (tmp, c);
|
|
gsi_insert_before (gsi, new_assign, GSI_SAME_STMT);
|
|
/* Build rhs for unconditional increment/decrement. */
|
|
rhs = fold_build2 (gimple_assign_rhs_code (reduc),
|
|
TREE_TYPE (rhs1), op0, tmp);
|
|
|
|
/* Delete original reduction stmt. */
|
|
stmt_it = gsi_for_stmt (reduc);
|
|
gsi_remove (&stmt_it, true);
|
|
release_defs (reduc);
|
|
return rhs;
|
|
}
|
|
|
|
/* Produce condition for all occurrences of ARG in PHI node. */
|
|
|
|
static tree
|
|
gen_phi_arg_condition (gphi *phi, vec<int> *occur,
|
|
gimple_stmt_iterator *gsi)
|
|
{
|
|
int len;
|
|
int i;
|
|
tree cond = NULL_TREE;
|
|
tree c;
|
|
edge e;
|
|
|
|
len = occur->length ();
|
|
gcc_assert (len > 0);
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
e = gimple_phi_arg_edge (phi, (*occur)[i]);
|
|
c = bb_predicate (e->src);
|
|
if (is_true_predicate (c))
|
|
{
|
|
cond = c;
|
|
break;
|
|
}
|
|
c = force_gimple_operand_gsi_1 (gsi, unshare_expr (c),
|
|
is_gimple_condexpr, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
if (cond != NULL_TREE)
|
|
{
|
|
/* Must build OR expression. */
|
|
cond = fold_or_predicates (EXPR_LOCATION (c), c, cond);
|
|
cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
|
|
is_gimple_condexpr, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
}
|
|
else
|
|
cond = c;
|
|
}
|
|
gcc_assert (cond != NULL_TREE);
|
|
return cond;
|
|
}
|
|
|
|
/* Replace a scalar PHI node with a COND_EXPR using COND as condition.
|
|
This routine can handle PHI nodes with more than two arguments.
|
|
|
|
For example,
|
|
S1: A = PHI <x1(1), x2(5)>
|
|
is converted into,
|
|
S2: A = cond ? x1 : x2;
|
|
|
|
The generated code is inserted at GSI that points to the top of
|
|
basic block's statement list.
|
|
If PHI node has more than two arguments a chain of conditional
|
|
expression is produced. */
|
|
|
|
|
|
static void
|
|
predicate_scalar_phi (gphi *phi, gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *new_stmt = NULL, *reduc;
|
|
tree rhs, res, arg0, arg1, op0, op1, scev;
|
|
tree cond;
|
|
unsigned int index0;
|
|
unsigned int max, args_len;
|
|
edge e;
|
|
basic_block bb;
|
|
unsigned int i;
|
|
|
|
res = gimple_phi_result (phi);
|
|
if (virtual_operand_p (res))
|
|
return;
|
|
|
|
if ((rhs = degenerate_phi_result (phi))
|
|
|| ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
|
|
res))
|
|
&& !chrec_contains_undetermined (scev)
|
|
&& scev != res
|
|
&& (rhs = gimple_phi_arg_def (phi, 0))))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Degenerate phi!\n");
|
|
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
|
|
}
|
|
new_stmt = gimple_build_assign (res, rhs);
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
update_stmt (new_stmt);
|
|
return;
|
|
}
|
|
|
|
bb = gimple_bb (phi);
|
|
if (EDGE_COUNT (bb->preds) == 2)
|
|
{
|
|
/* Predicate ordinary PHI node with 2 arguments. */
|
|
edge first_edge, second_edge;
|
|
basic_block true_bb;
|
|
first_edge = EDGE_PRED (bb, 0);
|
|
second_edge = EDGE_PRED (bb, 1);
|
|
cond = bb_predicate (first_edge->src);
|
|
if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
|
|
std::swap (first_edge, second_edge);
|
|
if (EDGE_COUNT (first_edge->src->succs) > 1)
|
|
{
|
|
cond = bb_predicate (second_edge->src);
|
|
if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
|
|
cond = TREE_OPERAND (cond, 0);
|
|
else
|
|
first_edge = second_edge;
|
|
}
|
|
else
|
|
cond = bb_predicate (first_edge->src);
|
|
/* Gimplify the condition to a valid cond-expr conditonal operand. */
|
|
cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
|
|
is_gimple_condexpr, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
true_bb = first_edge->src;
|
|
if (EDGE_PRED (bb, 1)->src == true_bb)
|
|
{
|
|
arg0 = gimple_phi_arg_def (phi, 1);
|
|
arg1 = gimple_phi_arg_def (phi, 0);
|
|
}
|
|
else
|
|
{
|
|
arg0 = gimple_phi_arg_def (phi, 0);
|
|
arg1 = gimple_phi_arg_def (phi, 1);
|
|
}
|
|
if (is_cond_scalar_reduction (phi, &reduc, arg0, arg1,
|
|
&op0, &op1, false))
|
|
/* Convert reduction stmt into vectorizable form. */
|
|
rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
|
|
true_bb != gimple_bb (reduc));
|
|
else
|
|
/* Build new RHS using selected condition and arguments. */
|
|
rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
|
|
arg0, arg1);
|
|
new_stmt = gimple_build_assign (res, rhs);
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
update_stmt (new_stmt);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "new phi replacement stmt\n");
|
|
print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Create hashmap for PHI node which contain vector of argument indexes
|
|
having the same value. */
|
|
bool swap = false;
|
|
hash_map<tree_operand_hash, auto_vec<int> > phi_arg_map;
|
|
unsigned int num_args = gimple_phi_num_args (phi);
|
|
int max_ind = -1;
|
|
/* Vector of different PHI argument values. */
|
|
auto_vec<tree> args (num_args);
|
|
|
|
/* Compute phi_arg_map. */
|
|
for (i = 0; i < num_args; i++)
|
|
{
|
|
tree arg;
|
|
|
|
arg = gimple_phi_arg_def (phi, i);
|
|
if (!phi_arg_map.get (arg))
|
|
args.quick_push (arg);
|
|
phi_arg_map.get_or_insert (arg).safe_push (i);
|
|
}
|
|
|
|
/* Determine element with max number of occurrences. */
|
|
max_ind = -1;
|
|
max = 1;
|
|
args_len = args.length ();
|
|
for (i = 0; i < args_len; i++)
|
|
{
|
|
unsigned int len;
|
|
if ((len = phi_arg_map.get (args[i])->length ()) > max)
|
|
{
|
|
max_ind = (int) i;
|
|
max = len;
|
|
}
|
|
}
|
|
|
|
/* Put element with max number of occurences to the end of ARGS. */
|
|
if (max_ind != -1 && max_ind +1 != (int) args_len)
|
|
std::swap (args[args_len - 1], args[max_ind]);
|
|
|
|
/* Handle one special case when number of arguments with different values
|
|
is equal 2 and one argument has the only occurrence. Such PHI can be
|
|
handled as if would have only 2 arguments. */
|
|
if (args_len == 2 && phi_arg_map.get (args[0])->length () == 1)
|
|
{
|
|
vec<int> *indexes;
|
|
indexes = phi_arg_map.get (args[0]);
|
|
index0 = (*indexes)[0];
|
|
arg0 = args[0];
|
|
arg1 = args[1];
|
|
e = gimple_phi_arg_edge (phi, index0);
|
|
cond = bb_predicate (e->src);
|
|
if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
|
|
{
|
|
swap = true;
|
|
cond = TREE_OPERAND (cond, 0);
|
|
}
|
|
/* Gimplify the condition to a valid cond-expr conditonal operand. */
|
|
cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
|
|
is_gimple_condexpr, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
if (!(is_cond_scalar_reduction (phi, &reduc, arg0 , arg1,
|
|
&op0, &op1, true)))
|
|
rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
|
|
swap? arg1 : arg0,
|
|
swap? arg0 : arg1);
|
|
else
|
|
/* Convert reduction stmt into vectorizable form. */
|
|
rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
|
|
swap);
|
|
new_stmt = gimple_build_assign (res, rhs);
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
update_stmt (new_stmt);
|
|
}
|
|
else
|
|
{
|
|
/* Common case. */
|
|
vec<int> *indexes;
|
|
tree type = TREE_TYPE (gimple_phi_result (phi));
|
|
tree lhs;
|
|
arg1 = args[1];
|
|
for (i = 0; i < args_len; i++)
|
|
{
|
|
arg0 = args[i];
|
|
indexes = phi_arg_map.get (args[i]);
|
|
if (i != args_len - 1)
|
|
lhs = make_temp_ssa_name (type, NULL, "_ifc_");
|
|
else
|
|
lhs = res;
|
|
cond = gen_phi_arg_condition (phi, indexes, gsi);
|
|
rhs = fold_build_cond_expr (type, unshare_expr (cond),
|
|
arg0, arg1);
|
|
new_stmt = gimple_build_assign (lhs, rhs);
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
update_stmt (new_stmt);
|
|
arg1 = lhs;
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "new extended phi replacement stmt\n");
|
|
print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
|
|
}
|
|
}
|
|
|
|
/* Replaces in LOOP all the scalar phi nodes other than those in the
|
|
LOOP->header block with conditional modify expressions. */
|
|
|
|
static void
|
|
predicate_all_scalar_phis (struct loop *loop)
|
|
{
|
|
basic_block bb;
|
|
unsigned int orig_loop_num_nodes = loop->num_nodes;
|
|
unsigned int i;
|
|
|
|
for (i = 1; i < orig_loop_num_nodes; i++)
|
|
{
|
|
gphi *phi;
|
|
gimple_stmt_iterator gsi;
|
|
gphi_iterator phi_gsi;
|
|
bb = ifc_bbs[i];
|
|
|
|
if (bb == loop->header)
|
|
continue;
|
|
|
|
phi_gsi = gsi_start_phis (bb);
|
|
if (gsi_end_p (phi_gsi))
|
|
continue;
|
|
|
|
gsi = gsi_after_labels (bb);
|
|
while (!gsi_end_p (phi_gsi))
|
|
{
|
|
phi = phi_gsi.phi ();
|
|
if (virtual_operand_p (gimple_phi_result (phi)))
|
|
gsi_next (&phi_gsi);
|
|
else
|
|
{
|
|
predicate_scalar_phi (phi, &gsi);
|
|
remove_phi_node (&phi_gsi, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Insert in each basic block of LOOP the statements produced by the
|
|
gimplification of the predicates. */
|
|
|
|
static void
|
|
insert_gimplified_predicates (loop_p loop)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = ifc_bbs[i];
|
|
gimple_seq stmts;
|
|
if (!is_predicated (bb))
|
|
gcc_assert (bb_predicate_gimplified_stmts (bb) == NULL);
|
|
if (!is_predicated (bb))
|
|
{
|
|
/* Do not insert statements for a basic block that is not
|
|
predicated. Also make sure that the predicate of the
|
|
basic block is set to true. */
|
|
reset_bb_predicate (bb);
|
|
continue;
|
|
}
|
|
|
|
stmts = bb_predicate_gimplified_stmts (bb);
|
|
if (stmts)
|
|
{
|
|
if (any_pred_load_store)
|
|
{
|
|
/* Insert the predicate of the BB just after the label,
|
|
as the if-conversion of memory writes will use this
|
|
predicate. */
|
|
gimple_stmt_iterator gsi = gsi_after_labels (bb);
|
|
gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
|
|
}
|
|
else
|
|
{
|
|
/* Insert the predicate of the BB at the end of the BB
|
|
as this would reduce the register pressure: the only
|
|
use of this predicate will be in successor BBs. */
|
|
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
|
|
|
if (gsi_end_p (gsi)
|
|
|| stmt_ends_bb_p (gsi_stmt (gsi)))
|
|
gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
|
|
else
|
|
gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
|
|
}
|
|
|
|
/* Once the sequence is code generated, set it to NULL. */
|
|
set_bb_predicate_gimplified_stmts (bb, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Helper function for predicate_mem_writes. Returns index of existent
|
|
mask if it was created for given SIZE and -1 otherwise. */
|
|
|
|
static int
|
|
mask_exists (int size, vec<int> vec)
|
|
{
|
|
unsigned int ix;
|
|
int v;
|
|
FOR_EACH_VEC_ELT (vec, ix, v)
|
|
if (v == size)
|
|
return (int) ix;
|
|
return -1;
|
|
}
|
|
|
|
/* Predicate each write to memory in LOOP.
|
|
|
|
This function transforms control flow constructs containing memory
|
|
writes of the form:
|
|
|
|
| for (i = 0; i < N; i++)
|
|
| if (cond)
|
|
| A[i] = expr;
|
|
|
|
into the following form that does not contain control flow:
|
|
|
|
| for (i = 0; i < N; i++)
|
|
| A[i] = cond ? expr : A[i];
|
|
|
|
The original CFG looks like this:
|
|
|
|
| bb_0
|
|
| i = 0
|
|
| end_bb_0
|
|
|
|
|
| bb_1
|
|
| if (i < N) goto bb_5 else goto bb_2
|
|
| end_bb_1
|
|
|
|
|
| bb_2
|
|
| cond = some_computation;
|
|
| if (cond) goto bb_3 else goto bb_4
|
|
| end_bb_2
|
|
|
|
|
| bb_3
|
|
| A[i] = expr;
|
|
| goto bb_4
|
|
| end_bb_3
|
|
|
|
|
| bb_4
|
|
| goto bb_1
|
|
| end_bb_4
|
|
|
|
insert_gimplified_predicates inserts the computation of the COND
|
|
expression at the beginning of the destination basic block:
|
|
|
|
| bb_0
|
|
| i = 0
|
|
| end_bb_0
|
|
|
|
|
| bb_1
|
|
| if (i < N) goto bb_5 else goto bb_2
|
|
| end_bb_1
|
|
|
|
|
| bb_2
|
|
| cond = some_computation;
|
|
| if (cond) goto bb_3 else goto bb_4
|
|
| end_bb_2
|
|
|
|
|
| bb_3
|
|
| cond = some_computation;
|
|
| A[i] = expr;
|
|
| goto bb_4
|
|
| end_bb_3
|
|
|
|
|
| bb_4
|
|
| goto bb_1
|
|
| end_bb_4
|
|
|
|
predicate_mem_writes is then predicating the memory write as follows:
|
|
|
|
| bb_0
|
|
| i = 0
|
|
| end_bb_0
|
|
|
|
|
| bb_1
|
|
| if (i < N) goto bb_5 else goto bb_2
|
|
| end_bb_1
|
|
|
|
|
| bb_2
|
|
| if (cond) goto bb_3 else goto bb_4
|
|
| end_bb_2
|
|
|
|
|
| bb_3
|
|
| cond = some_computation;
|
|
| A[i] = cond ? expr : A[i];
|
|
| goto bb_4
|
|
| end_bb_3
|
|
|
|
|
| bb_4
|
|
| goto bb_1
|
|
| end_bb_4
|
|
|
|
and finally combine_blocks removes the basic block boundaries making
|
|
the loop vectorizable:
|
|
|
|
| bb_0
|
|
| i = 0
|
|
| if (i < N) goto bb_5 else goto bb_1
|
|
| end_bb_0
|
|
|
|
|
| bb_1
|
|
| cond = some_computation;
|
|
| A[i] = cond ? expr : A[i];
|
|
| if (i < N) goto bb_5 else goto bb_4
|
|
| end_bb_1
|
|
|
|
|
| bb_4
|
|
| goto bb_1
|
|
| end_bb_4
|
|
*/
|
|
|
|
static void
|
|
predicate_mem_writes (loop_p loop)
|
|
{
|
|
unsigned int i, orig_loop_num_nodes = loop->num_nodes;
|
|
auto_vec<int, 1> vect_sizes;
|
|
auto_vec<tree, 1> vect_masks;
|
|
|
|
for (i = 1; i < orig_loop_num_nodes; i++)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
basic_block bb = ifc_bbs[i];
|
|
tree cond = bb_predicate (bb);
|
|
bool swap;
|
|
gimple *stmt;
|
|
int index;
|
|
|
|
if (is_true_predicate (cond) || is_false_predicate (cond))
|
|
continue;
|
|
|
|
swap = false;
|
|
if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
|
|
{
|
|
swap = true;
|
|
cond = TREE_OPERAND (cond, 0);
|
|
}
|
|
|
|
vect_sizes.truncate (0);
|
|
vect_masks.truncate (0);
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
if (!gimple_assign_single_p (stmt = gsi_stmt (gsi)))
|
|
continue;
|
|
else if (gimple_plf (stmt, GF_PLF_2))
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
tree ref, addr, ptr, mask;
|
|
gimple *new_stmt;
|
|
gimple_seq stmts = NULL;
|
|
int bitsize = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (lhs)));
|
|
ref = TREE_CODE (lhs) == SSA_NAME ? rhs : lhs;
|
|
mark_addressable (ref);
|
|
addr = force_gimple_operand_gsi (&gsi, build_fold_addr_expr (ref),
|
|
true, NULL_TREE, true,
|
|
GSI_SAME_STMT);
|
|
if (!vect_sizes.is_empty ()
|
|
&& (index = mask_exists (bitsize, vect_sizes)) != -1)
|
|
/* Use created mask. */
|
|
mask = vect_masks[index];
|
|
else
|
|
{
|
|
if (COMPARISON_CLASS_P (cond))
|
|
mask = gimple_build (&stmts, TREE_CODE (cond),
|
|
boolean_type_node,
|
|
TREE_OPERAND (cond, 0),
|
|
TREE_OPERAND (cond, 1));
|
|
else
|
|
{
|
|
gcc_assert (TREE_CODE (cond) == SSA_NAME);
|
|
mask = cond;
|
|
}
|
|
|
|
if (swap)
|
|
{
|
|
tree true_val
|
|
= constant_boolean_node (true, TREE_TYPE (mask));
|
|
mask = gimple_build (&stmts, BIT_XOR_EXPR,
|
|
TREE_TYPE (mask), mask, true_val);
|
|
}
|
|
gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
|
|
|
|
mask = ifc_temp_var (TREE_TYPE (mask), mask, &gsi);
|
|
/* Save mask and its size for further use. */
|
|
vect_sizes.safe_push (bitsize);
|
|
vect_masks.safe_push (mask);
|
|
}
|
|
ptr = build_int_cst (reference_alias_ptr_type (ref),
|
|
get_object_alignment (ref));
|
|
/* Copy points-to info if possible. */
|
|
if (TREE_CODE (addr) == SSA_NAME && !SSA_NAME_PTR_INFO (addr))
|
|
copy_ref_info (build2 (MEM_REF, TREE_TYPE (ref), addr, ptr),
|
|
ref);
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
new_stmt
|
|
= gimple_build_call_internal (IFN_MASK_LOAD, 3, addr,
|
|
ptr, mask);
|
|
gimple_call_set_lhs (new_stmt, lhs);
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
}
|
|
else
|
|
{
|
|
new_stmt
|
|
= gimple_build_call_internal (IFN_MASK_STORE, 4, addr, ptr,
|
|
mask, rhs);
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
|
|
SSA_NAME_DEF_STMT (gimple_vdef (new_stmt)) = new_stmt;
|
|
}
|
|
|
|
gsi_replace (&gsi, new_stmt, true);
|
|
}
|
|
else if (gimple_vdef (stmt))
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
tree type = TREE_TYPE (lhs);
|
|
|
|
lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
|
|
rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
|
|
if (swap)
|
|
std::swap (lhs, rhs);
|
|
cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
|
|
is_gimple_condexpr, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs);
|
|
gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
|
|
update_stmt (stmt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
|
|
other than the exit and latch of the LOOP. Also resets the
|
|
GIMPLE_DEBUG information. */
|
|
|
|
static void
|
|
remove_conditions_and_labels (loop_p loop)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = ifc_bbs[i];
|
|
|
|
if (bb_with_exit_edge_p (loop, bb)
|
|
|| bb == loop->latch)
|
|
continue;
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
|
|
switch (gimple_code (gsi_stmt (gsi)))
|
|
{
|
|
case GIMPLE_COND:
|
|
case GIMPLE_LABEL:
|
|
gsi_remove (&gsi, true);
|
|
break;
|
|
|
|
case GIMPLE_DEBUG:
|
|
/* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
|
|
if (gimple_debug_bind_p (gsi_stmt (gsi)))
|
|
{
|
|
gimple_debug_bind_reset_value (gsi_stmt (gsi));
|
|
update_stmt (gsi_stmt (gsi));
|
|
}
|
|
gsi_next (&gsi);
|
|
break;
|
|
|
|
default:
|
|
gsi_next (&gsi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Combine all the basic blocks from LOOP into one or two super basic
|
|
blocks. Replace PHI nodes with conditional modify expressions. */
|
|
|
|
static void
|
|
combine_blocks (struct loop *loop)
|
|
{
|
|
basic_block bb, exit_bb, merge_target_bb;
|
|
unsigned int orig_loop_num_nodes = loop->num_nodes;
|
|
unsigned int i;
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
remove_conditions_and_labels (loop);
|
|
insert_gimplified_predicates (loop);
|
|
predicate_all_scalar_phis (loop);
|
|
|
|
if (any_pred_load_store)
|
|
predicate_mem_writes (loop);
|
|
|
|
/* Merge basic blocks: first remove all the edges in the loop,
|
|
except for those from the exit block. */
|
|
exit_bb = NULL;
|
|
bool *predicated = XNEWVEC (bool, orig_loop_num_nodes);
|
|
for (i = 0; i < orig_loop_num_nodes; i++)
|
|
{
|
|
bb = ifc_bbs[i];
|
|
predicated[i] = !is_true_predicate (bb_predicate (bb));
|
|
free_bb_predicate (bb);
|
|
if (bb_with_exit_edge_p (loop, bb))
|
|
{
|
|
gcc_assert (exit_bb == NULL);
|
|
exit_bb = bb;
|
|
}
|
|
}
|
|
gcc_assert (exit_bb != loop->latch);
|
|
|
|
for (i = 1; i < orig_loop_num_nodes; i++)
|
|
{
|
|
bb = ifc_bbs[i];
|
|
|
|
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
|
|
{
|
|
if (e->src == exit_bb)
|
|
ei_next (&ei);
|
|
else
|
|
remove_edge (e);
|
|
}
|
|
}
|
|
|
|
if (exit_bb != NULL)
|
|
{
|
|
if (exit_bb != loop->header)
|
|
{
|
|
/* Connect this node to loop header. */
|
|
make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
|
|
set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
|
|
}
|
|
|
|
/* Redirect non-exit edges to loop->latch. */
|
|
FOR_EACH_EDGE (e, ei, exit_bb->succs)
|
|
{
|
|
if (!loop_exit_edge_p (loop, e))
|
|
redirect_edge_and_branch (e, loop->latch);
|
|
}
|
|
set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
|
|
}
|
|
else
|
|
{
|
|
/* If the loop does not have an exit, reconnect header and latch. */
|
|
make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
|
|
set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
|
|
}
|
|
|
|
merge_target_bb = loop->header;
|
|
|
|
/* Get at the virtual def valid for uses starting at the first block
|
|
we merge into the header. Without a virtual PHI the loop has the
|
|
same virtual use on all stmts. */
|
|
gphi *vphi = get_virtual_phi (loop->header);
|
|
tree last_vdef = NULL_TREE;
|
|
if (vphi)
|
|
{
|
|
last_vdef = gimple_phi_result (vphi);
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (loop->header);
|
|
! gsi_end_p (gsi); gsi_next (&gsi))
|
|
if (gimple_vdef (gsi_stmt (gsi)))
|
|
last_vdef = gimple_vdef (gsi_stmt (gsi));
|
|
}
|
|
for (i = 1; i < orig_loop_num_nodes; i++)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
gimple_stmt_iterator last;
|
|
|
|
bb = ifc_bbs[i];
|
|
|
|
if (bb == exit_bb || bb == loop->latch)
|
|
continue;
|
|
|
|
/* We release virtual PHIs late because we have to propagate them
|
|
out using the current VUSE. The def might be the one used
|
|
after the loop. */
|
|
vphi = get_virtual_phi (bb);
|
|
if (vphi)
|
|
{
|
|
imm_use_iterator iter;
|
|
use_operand_p use_p;
|
|
gimple *use_stmt;
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, gimple_phi_result (vphi))
|
|
{
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
|
SET_USE (use_p, last_vdef);
|
|
}
|
|
gsi = gsi_for_stmt (vphi);
|
|
remove_phi_node (&gsi, true);
|
|
}
|
|
|
|
/* Make stmts member of loop->header and clear range info from all stmts
|
|
in BB which is now no longer executed conditional on a predicate we
|
|
could have derived it from. */
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
gimple_set_bb (stmt, merge_target_bb);
|
|
/* Update virtual operands. */
|
|
if (last_vdef)
|
|
{
|
|
use_operand_p use_p = ssa_vuse_operand (stmt);
|
|
if (use_p
|
|
&& USE_FROM_PTR (use_p) != last_vdef)
|
|
SET_USE (use_p, last_vdef);
|
|
if (gimple_vdef (stmt))
|
|
last_vdef = gimple_vdef (stmt);
|
|
}
|
|
if (predicated[i])
|
|
{
|
|
ssa_op_iter i;
|
|
tree op;
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
|
|
reset_flow_sensitive_info (op);
|
|
}
|
|
}
|
|
|
|
/* Update stmt list. */
|
|
last = gsi_last_bb (merge_target_bb);
|
|
gsi_insert_seq_after_without_update (&last, bb_seq (bb), GSI_NEW_STMT);
|
|
set_bb_seq (bb, NULL);
|
|
|
|
delete_basic_block (bb);
|
|
}
|
|
|
|
/* If possible, merge loop header to the block with the exit edge.
|
|
This reduces the number of basic blocks to two, to please the
|
|
vectorizer that handles only loops with two nodes. */
|
|
if (exit_bb
|
|
&& exit_bb != loop->header)
|
|
{
|
|
/* We release virtual PHIs late because we have to propagate them
|
|
out using the current VUSE. The def might be the one used
|
|
after the loop. */
|
|
vphi = get_virtual_phi (exit_bb);
|
|
if (vphi)
|
|
{
|
|
imm_use_iterator iter;
|
|
use_operand_p use_p;
|
|
gimple *use_stmt;
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, gimple_phi_result (vphi))
|
|
{
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
|
SET_USE (use_p, last_vdef);
|
|
}
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (vphi);
|
|
remove_phi_node (&gsi, true);
|
|
}
|
|
|
|
if (can_merge_blocks_p (loop->header, exit_bb))
|
|
merge_blocks (loop->header, exit_bb);
|
|
}
|
|
|
|
free (ifc_bbs);
|
|
ifc_bbs = NULL;
|
|
free (predicated);
|
|
}
|
|
|
|
/* Version LOOP before if-converting it; the original loop
|
|
will be if-converted, the new copy of the loop will not,
|
|
and the LOOP_VECTORIZED internal call will be guarding which
|
|
loop to execute. The vectorizer pass will fold this
|
|
internal call into either true or false. */
|
|
|
|
static bool
|
|
version_loop_for_if_conversion (struct loop *loop)
|
|
{
|
|
basic_block cond_bb;
|
|
tree cond = make_ssa_name (boolean_type_node);
|
|
struct loop *new_loop;
|
|
gimple *g;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
g = gimple_build_call_internal (IFN_LOOP_VECTORIZED, 2,
|
|
build_int_cst (integer_type_node, loop->num),
|
|
integer_zero_node);
|
|
gimple_call_set_lhs (g, cond);
|
|
|
|
/* Save BB->aux around loop_version as that uses the same field. */
|
|
void **saved_preds = XALLOCAVEC (void *, loop->num_nodes);
|
|
for (unsigned i = 0; i < loop->num_nodes; i++)
|
|
saved_preds[i] = ifc_bbs[i]->aux;
|
|
|
|
initialize_original_copy_tables ();
|
|
new_loop = loop_version (loop, cond, &cond_bb,
|
|
REG_BR_PROB_BASE, REG_BR_PROB_BASE,
|
|
REG_BR_PROB_BASE, true);
|
|
free_original_copy_tables ();
|
|
|
|
for (unsigned i = 0; i < loop->num_nodes; i++)
|
|
ifc_bbs[i]->aux = saved_preds[i];
|
|
|
|
if (new_loop == NULL)
|
|
return false;
|
|
|
|
new_loop->dont_vectorize = true;
|
|
new_loop->force_vectorize = false;
|
|
gsi = gsi_last_bb (cond_bb);
|
|
gimple_call_set_arg (g, 1, build_int_cst (integer_type_node, new_loop->num));
|
|
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
|
|
update_ssa (TODO_update_ssa);
|
|
return true;
|
|
}
|
|
|
|
/* Performs splitting of critical edges. Skip splitting and return false
|
|
if LOOP will not be converted because:
|
|
|
|
- LOOP is not well formed.
|
|
- LOOP has PHI with more than MAX_PHI_ARG_NUM arguments.
|
|
|
|
Last restriction is valid only if AGGRESSIVE_IF_CONV is false. */
|
|
|
|
static bool
|
|
ifcvt_split_critical_edges (struct loop *loop, bool aggressive_if_conv)
|
|
{
|
|
basic_block *body;
|
|
basic_block bb;
|
|
unsigned int num = loop->num_nodes;
|
|
unsigned int i;
|
|
gimple *stmt;
|
|
edge e;
|
|
edge_iterator ei;
|
|
auto_vec<edge> critical_edges;
|
|
|
|
/* Loop is not well formed. */
|
|
if (num <= 2 || loop->inner || !single_exit (loop))
|
|
return false;
|
|
|
|
body = get_loop_body (loop);
|
|
for (i = 0; i < num; i++)
|
|
{
|
|
bb = body[i];
|
|
if (!aggressive_if_conv
|
|
&& phi_nodes (bb)
|
|
&& EDGE_COUNT (bb->preds) > MAX_PHI_ARG_NUM)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"BB %d has complicated PHI with more than %u args.\n",
|
|
bb->index, MAX_PHI_ARG_NUM);
|
|
|
|
free (body);
|
|
return false;
|
|
}
|
|
if (bb == loop->latch || bb_with_exit_edge_p (loop, bb))
|
|
continue;
|
|
|
|
stmt = last_stmt (bb);
|
|
/* Skip basic blocks not ending with conditional branch. */
|
|
if (!stmt || gimple_code (stmt) != GIMPLE_COND)
|
|
continue;
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if (EDGE_CRITICAL_P (e) && e->dest->loop_father == loop)
|
|
critical_edges.safe_push (e);
|
|
}
|
|
free (body);
|
|
|
|
while (critical_edges.length () > 0)
|
|
{
|
|
e = critical_edges.pop ();
|
|
/* Don't split if bb can be predicated along non-critical edge. */
|
|
if (EDGE_COUNT (e->dest->preds) > 2 || all_preds_critical_p (e->dest))
|
|
split_edge (e);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Delete redundant statements produced by predication which prevents
|
|
loop vectorization. */
|
|
|
|
static void
|
|
ifcvt_local_dce (basic_block bb)
|
|
{
|
|
gimple *stmt;
|
|
gimple *stmt1;
|
|
gimple *phi;
|
|
gimple_stmt_iterator gsi;
|
|
auto_vec<gimple *> worklist;
|
|
enum gimple_code code;
|
|
use_operand_p use_p;
|
|
imm_use_iterator imm_iter;
|
|
|
|
worklist.create (64);
|
|
/* Consider all phi as live statements. */
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
phi = gsi_stmt (gsi);
|
|
gimple_set_plf (phi, GF_PLF_2, true);
|
|
worklist.safe_push (phi);
|
|
}
|
|
/* Consider load/store statements, CALL and COND as live. */
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
if (gimple_store_p (stmt)
|
|
|| gimple_assign_load_p (stmt)
|
|
|| is_gimple_debug (stmt))
|
|
{
|
|
gimple_set_plf (stmt, GF_PLF_2, true);
|
|
worklist.safe_push (stmt);
|
|
continue;
|
|
}
|
|
code = gimple_code (stmt);
|
|
if (code == GIMPLE_COND || code == GIMPLE_CALL)
|
|
{
|
|
gimple_set_plf (stmt, GF_PLF_2, true);
|
|
worklist.safe_push (stmt);
|
|
continue;
|
|
}
|
|
gimple_set_plf (stmt, GF_PLF_2, false);
|
|
|
|
if (code == GIMPLE_ASSIGN)
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
|
|
{
|
|
stmt1 = USE_STMT (use_p);
|
|
if (gimple_bb (stmt1) != bb)
|
|
{
|
|
gimple_set_plf (stmt, GF_PLF_2, true);
|
|
worklist.safe_push (stmt);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Propagate liveness through arguments of live stmt. */
|
|
while (worklist.length () > 0)
|
|
{
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
tree use;
|
|
|
|
stmt = worklist.pop ();
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
|
|
{
|
|
use = USE_FROM_PTR (use_p);
|
|
if (TREE_CODE (use) != SSA_NAME)
|
|
continue;
|
|
stmt1 = SSA_NAME_DEF_STMT (use);
|
|
if (gimple_bb (stmt1) != bb
|
|
|| gimple_plf (stmt1, GF_PLF_2))
|
|
continue;
|
|
gimple_set_plf (stmt1, GF_PLF_2, true);
|
|
worklist.safe_push (stmt1);
|
|
}
|
|
}
|
|
/* Delete dead statements. */
|
|
gsi = gsi_start_bb (bb);
|
|
while (!gsi_end_p (gsi))
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
if (gimple_plf (stmt, GF_PLF_2))
|
|
{
|
|
gsi_next (&gsi);
|
|
continue;
|
|
}
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Delete dead stmt in bb#%d\n", bb->index);
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
}
|
|
gsi_remove (&gsi, true);
|
|
release_defs (stmt);
|
|
}
|
|
}
|
|
|
|
/* If-convert LOOP when it is legal. For the moment this pass has no
|
|
profitability analysis. Returns non-zero todo flags when something
|
|
changed. */
|
|
|
|
static unsigned int
|
|
tree_if_conversion (struct loop *loop)
|
|
{
|
|
unsigned int todo = 0;
|
|
bool aggressive_if_conv;
|
|
|
|
ifc_bbs = NULL;
|
|
any_pred_load_store = false;
|
|
any_complicated_phi = false;
|
|
|
|
/* Apply more aggressive if-conversion when loop or its outer loop were
|
|
marked with simd pragma. When that's the case, we try to if-convert
|
|
loop containing PHIs with more than MAX_PHI_ARG_NUM arguments. */
|
|
aggressive_if_conv = loop->force_vectorize;
|
|
if (!aggressive_if_conv)
|
|
{
|
|
struct loop *outer_loop = loop_outer (loop);
|
|
if (outer_loop && outer_loop->force_vectorize)
|
|
aggressive_if_conv = true;
|
|
}
|
|
|
|
if (!ifcvt_split_critical_edges (loop, aggressive_if_conv))
|
|
goto cleanup;
|
|
|
|
if (!if_convertible_loop_p (loop)
|
|
|| !dbg_cnt (if_conversion_tree))
|
|
goto cleanup;
|
|
|
|
if ((any_pred_load_store || any_complicated_phi)
|
|
&& ((!flag_tree_loop_vectorize && !loop->force_vectorize)
|
|
|| loop->dont_vectorize))
|
|
goto cleanup;
|
|
|
|
if ((any_pred_load_store || any_complicated_phi)
|
|
&& !version_loop_for_if_conversion (loop))
|
|
goto cleanup;
|
|
|
|
/* Now all statements are if-convertible. Combine all the basic
|
|
blocks into one huge basic block doing the if-conversion
|
|
on-the-fly. */
|
|
combine_blocks (loop);
|
|
|
|
/* Delete dead predicate computations. */
|
|
ifcvt_local_dce (loop->header);
|
|
|
|
todo |= TODO_cleanup_cfg;
|
|
|
|
cleanup:
|
|
if (ifc_bbs)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
free_bb_predicate (ifc_bbs[i]);
|
|
|
|
free (ifc_bbs);
|
|
ifc_bbs = NULL;
|
|
}
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
|
|
|
return todo;
|
|
}
|
|
|
|
/* Tree if-conversion pass management. */
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_if_conversion =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"ifcvt", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_TREE_LOOP_IFCVT, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_if_conversion : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_if_conversion (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_if_conversion, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
virtual bool gate (function *);
|
|
virtual unsigned int execute (function *);
|
|
|
|
}; // class pass_if_conversion
|
|
|
|
bool
|
|
pass_if_conversion::gate (function *fun)
|
|
{
|
|
return (((flag_tree_loop_vectorize || fun->has_force_vectorize_loops)
|
|
&& flag_tree_loop_if_convert != 0)
|
|
|| flag_tree_loop_if_convert == 1
|
|
|| flag_tree_loop_if_convert_stores == 1);
|
|
}
|
|
|
|
unsigned int
|
|
pass_if_conversion::execute (function *fun)
|
|
{
|
|
struct loop *loop;
|
|
unsigned todo = 0;
|
|
|
|
if (number_of_loops (fun) <= 1)
|
|
return 0;
|
|
|
|
/* If there are infinite loops, during CDI_POST_DOMINATORS computation
|
|
we can pick pretty much random bb inside of the infinite loop that
|
|
has the fake edge. If we are unlucky enough, this can confuse the
|
|
add_to_predicate_list post-dominator check to optimize as if that
|
|
bb or some other one is a join block when it actually is not.
|
|
See PR70916. */
|
|
connect_infinite_loops_to_exit ();
|
|
|
|
FOR_EACH_LOOP (loop, 0)
|
|
if (flag_tree_loop_if_convert == 1
|
|
|| flag_tree_loop_if_convert_stores == 1
|
|
|| ((flag_tree_loop_vectorize || loop->force_vectorize)
|
|
&& !loop->dont_vectorize))
|
|
todo |= tree_if_conversion (loop);
|
|
|
|
remove_fake_exit_edges ();
|
|
|
|
if (flag_checking)
|
|
{
|
|
basic_block bb;
|
|
FOR_EACH_BB_FN (bb, fun)
|
|
gcc_assert (!bb->aux);
|
|
}
|
|
|
|
return todo;
|
|
}
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_if_conversion (gcc::context *ctxt)
|
|
{
|
|
return new pass_if_conversion (ctxt);
|
|
}
|